1/*
2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3 *
4 * started by Ingo Molnar and Thomas Gleixner.
5 *
6 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9 *  Copyright (C) 2006 Esben Nielsen
10 *
11 *  See Documentation/locking/rt-mutex-design.txt for details.
12 */
13#include <linux/spinlock.h>
14#include <linux/export.h>
15#include <linux/sched.h>
16#include <linux/sched/rt.h>
17#include <linux/sched/deadline.h>
18#include <linux/timer.h>
19
20#include "rtmutex_common.h"
21
22/*
23 * lock->owner state tracking:
24 *
25 * lock->owner holds the task_struct pointer of the owner. Bit 0
26 * is used to keep track of the "lock has waiters" state.
27 *
28 * owner	bit0
29 * NULL		0	lock is free (fast acquire possible)
30 * NULL		1	lock is free and has waiters and the top waiter
31 *				is going to take the lock*
32 * taskpointer	0	lock is held (fast release possible)
33 * taskpointer	1	lock is held and has waiters**
34 *
35 * The fast atomic compare exchange based acquire and release is only
36 * possible when bit 0 of lock->owner is 0.
37 *
38 * (*) It also can be a transitional state when grabbing the lock
39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40 * we need to set the bit0 before looking at the lock, and the owner may be
41 * NULL in this small time, hence this can be a transitional state.
42 *
43 * (**) There is a small time when bit 0 is set but there are no
44 * waiters. This can happen when grabbing the lock in the slow path.
45 * To prevent a cmpxchg of the owner releasing the lock, we need to
46 * set this bit before looking at the lock.
47 */
48
49static void
50rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51{
52	unsigned long val = (unsigned long)owner;
53
54	if (rt_mutex_has_waiters(lock))
55		val |= RT_MUTEX_HAS_WAITERS;
56
57	lock->owner = (struct task_struct *)val;
58}
59
60static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61{
62	lock->owner = (struct task_struct *)
63			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64}
65
66static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67{
68	if (!rt_mutex_has_waiters(lock))
69		clear_rt_mutex_waiters(lock);
70}
71
72/*
73 * We can speed up the acquire/release, if the architecture
74 * supports cmpxchg and if there's no debugging state to be set up
75 */
76#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77# define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
78static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79{
80	unsigned long owner, *p = (unsigned long *) &lock->owner;
81
82	do {
83		owner = *p;
84	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85}
86
87/*
88 * Safe fastpath aware unlock:
89 * 1) Clear the waiters bit
90 * 2) Drop lock->wait_lock
91 * 3) Try to unlock the lock with cmpxchg
92 */
93static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94	__releases(lock->wait_lock)
95{
96	struct task_struct *owner = rt_mutex_owner(lock);
97
98	clear_rt_mutex_waiters(lock);
99	raw_spin_unlock(&lock->wait_lock);
100	/*
101	 * If a new waiter comes in between the unlock and the cmpxchg
102	 * we have two situations:
103	 *
104	 * unlock(wait_lock);
105	 *					lock(wait_lock);
106	 * cmpxchg(p, owner, 0) == owner
107	 *					mark_rt_mutex_waiters(lock);
108	 *					acquire(lock);
109	 * or:
110	 *
111	 * unlock(wait_lock);
112	 *					lock(wait_lock);
113	 *					mark_rt_mutex_waiters(lock);
114	 *
115	 * cmpxchg(p, owner, 0) != owner
116	 *					enqueue_waiter();
117	 *					unlock(wait_lock);
118	 * lock(wait_lock);
119	 * wake waiter();
120	 * unlock(wait_lock);
121	 *					lock(wait_lock);
122	 *					acquire(lock);
123	 */
124	return rt_mutex_cmpxchg(lock, owner, NULL);
125}
126
127#else
128# define rt_mutex_cmpxchg(l,c,n)	(0)
129static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130{
131	lock->owner = (struct task_struct *)
132			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133}
134
135/*
136 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137 */
138static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139	__releases(lock->wait_lock)
140{
141	lock->owner = NULL;
142	raw_spin_unlock(&lock->wait_lock);
143	return true;
144}
145#endif
146
147static inline int
148rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149		     struct rt_mutex_waiter *right)
150{
151	if (left->prio < right->prio)
152		return 1;
153
154	/*
155	 * If both waiters have dl_prio(), we check the deadlines of the
156	 * associated tasks.
157	 * If left waiter has a dl_prio(), and we didn't return 1 above,
158	 * then right waiter has a dl_prio() too.
159	 */
160	if (dl_prio(left->prio))
161		return (left->task->dl.deadline < right->task->dl.deadline);
162
163	return 0;
164}
165
166static void
167rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168{
169	struct rb_node **link = &lock->waiters.rb_node;
170	struct rb_node *parent = NULL;
171	struct rt_mutex_waiter *entry;
172	int leftmost = 1;
173
174	while (*link) {
175		parent = *link;
176		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177		if (rt_mutex_waiter_less(waiter, entry)) {
178			link = &parent->rb_left;
179		} else {
180			link = &parent->rb_right;
181			leftmost = 0;
182		}
183	}
184
185	if (leftmost)
186		lock->waiters_leftmost = &waiter->tree_entry;
187
188	rb_link_node(&waiter->tree_entry, parent, link);
189	rb_insert_color(&waiter->tree_entry, &lock->waiters);
190}
191
192static void
193rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194{
195	if (RB_EMPTY_NODE(&waiter->tree_entry))
196		return;
197
198	if (lock->waiters_leftmost == &waiter->tree_entry)
199		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200
201	rb_erase(&waiter->tree_entry, &lock->waiters);
202	RB_CLEAR_NODE(&waiter->tree_entry);
203}
204
205static void
206rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207{
208	struct rb_node **link = &task->pi_waiters.rb_node;
209	struct rb_node *parent = NULL;
210	struct rt_mutex_waiter *entry;
211	int leftmost = 1;
212
213	while (*link) {
214		parent = *link;
215		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216		if (rt_mutex_waiter_less(waiter, entry)) {
217			link = &parent->rb_left;
218		} else {
219			link = &parent->rb_right;
220			leftmost = 0;
221		}
222	}
223
224	if (leftmost)
225		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226
227	rb_link_node(&waiter->pi_tree_entry, parent, link);
228	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229}
230
231static void
232rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233{
234	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235		return;
236
237	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239
240	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241	RB_CLEAR_NODE(&waiter->pi_tree_entry);
242}
243
244/*
245 * Calculate task priority from the waiter tree priority
246 *
247 * Return task->normal_prio when the waiter tree is empty or when
248 * the waiter is not allowed to do priority boosting
249 */
250int rt_mutex_getprio(struct task_struct *task)
251{
252	if (likely(!task_has_pi_waiters(task)))
253		return task->normal_prio;
254
255	return min(task_top_pi_waiter(task)->prio,
256		   task->normal_prio);
257}
258
259struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260{
261	if (likely(!task_has_pi_waiters(task)))
262		return NULL;
263
264	return task_top_pi_waiter(task)->task;
265}
266
267/*
268 * Called by sched_setscheduler() to check whether the priority change
269 * is overruled by a possible priority boosting.
270 */
271int rt_mutex_check_prio(struct task_struct *task, int newprio)
272{
273	if (!task_has_pi_waiters(task))
274		return 0;
275
276	return task_top_pi_waiter(task)->task->prio <= newprio;
277}
278
279/*
280 * Adjust the priority of a task, after its pi_waiters got modified.
281 *
282 * This can be both boosting and unboosting. task->pi_lock must be held.
283 */
284static void __rt_mutex_adjust_prio(struct task_struct *task)
285{
286	int prio = rt_mutex_getprio(task);
287
288	if (task->prio != prio || dl_prio(prio))
289		rt_mutex_setprio(task, prio);
290}
291
292/*
293 * Adjust task priority (undo boosting). Called from the exit path of
294 * rt_mutex_slowunlock() and rt_mutex_slowlock().
295 *
296 * (Note: We do this outside of the protection of lock->wait_lock to
297 * allow the lock to be taken while or before we readjust the priority
298 * of task. We do not use the spin_xx_mutex() variants here as we are
299 * outside of the debug path.)
300 */
301static void rt_mutex_adjust_prio(struct task_struct *task)
302{
303	unsigned long flags;
304
305	raw_spin_lock_irqsave(&task->pi_lock, flags);
306	__rt_mutex_adjust_prio(task);
307	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
308}
309
310/*
311 * Deadlock detection is conditional:
312 *
313 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
314 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
315 *
316 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
317 * conducted independent of the detect argument.
318 *
319 * If the waiter argument is NULL this indicates the deboost path and
320 * deadlock detection is disabled independent of the detect argument
321 * and the config settings.
322 */
323static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
324					  enum rtmutex_chainwalk chwalk)
325{
326	/*
327	 * This is just a wrapper function for the following call,
328	 * because debug_rt_mutex_detect_deadlock() smells like a magic
329	 * debug feature and I wanted to keep the cond function in the
330	 * main source file along with the comments instead of having
331	 * two of the same in the headers.
332	 */
333	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
334}
335
336/*
337 * Max number of times we'll walk the boosting chain:
338 */
339int max_lock_depth = 1024;
340
341static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
342{
343	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
344}
345
346/*
347 * Adjust the priority chain. Also used for deadlock detection.
348 * Decreases task's usage by one - may thus free the task.
349 *
350 * @task:	the task owning the mutex (owner) for which a chain walk is
351 *		probably needed
352 * @deadlock_detect: do we have to carry out deadlock detection?
353 * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
354 *		things for a task that has just got its priority adjusted, and
355 *		is waiting on a mutex)
356 * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
357 *		we dropped its pi_lock. Is never dereferenced, only used for
358 *		comparison to detect lock chain changes.
359 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
360 *		its priority to the mutex owner (can be NULL in the case
361 *		depicted above or if the top waiter is gone away and we are
362 *		actually deboosting the owner)
363 * @top_task:	the current top waiter
364 *
365 * Returns 0 or -EDEADLK.
366 *
367 * Chain walk basics and protection scope
368 *
369 * [R] refcount on task
370 * [P] task->pi_lock held
371 * [L] rtmutex->wait_lock held
372 *
373 * Step	Description				Protected by
374 *	function arguments:
375 *	@task					[R]
376 *	@orig_lock if != NULL			@top_task is blocked on it
377 *	@next_lock				Unprotected. Cannot be
378 *						dereferenced. Only used for
379 *						comparison.
380 *	@orig_waiter if != NULL			@top_task is blocked on it
381 *	@top_task				current, or in case of proxy
382 *						locking protected by calling
383 *						code
384 *	again:
385 *	  loop_sanity_check();
386 *	retry:
387 * [1]	  lock(task->pi_lock);			[R] acquire [P]
388 * [2]	  waiter = task->pi_blocked_on;		[P]
389 * [3]	  check_exit_conditions_1();		[P]
390 * [4]	  lock = waiter->lock;			[P]
391 * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
392 *	    unlock(task->pi_lock);		release [P]
393 *	    goto retry;
394 *	  }
395 * [6]	  check_exit_conditions_2();		[P] + [L]
396 * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
397 * [8]	  unlock(task->pi_lock);		release [P]
398 *	  put_task_struct(task);		release [R]
399 * [9]	  check_exit_conditions_3();		[L]
400 * [10]	  task = owner(lock);			[L]
401 *	  get_task_struct(task);		[L] acquire [R]
402 *	  lock(task->pi_lock);			[L] acquire [P]
403 * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
404 * [12]	  check_exit_conditions_4();		[P] + [L]
405 * [13]	  unlock(task->pi_lock);		release [P]
406 *	  unlock(lock->wait_lock);		release [L]
407 *	  goto again;
408 */
409static int rt_mutex_adjust_prio_chain(struct task_struct *task,
410				      enum rtmutex_chainwalk chwalk,
411				      struct rt_mutex *orig_lock,
412				      struct rt_mutex *next_lock,
413				      struct rt_mutex_waiter *orig_waiter,
414				      struct task_struct *top_task)
415{
416	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
417	struct rt_mutex_waiter *prerequeue_top_waiter;
418	int ret = 0, depth = 0;
419	struct rt_mutex *lock;
420	bool detect_deadlock;
421	unsigned long flags;
422	bool requeue = true;
423
424	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
425
426	/*
427	 * The (de)boosting is a step by step approach with a lot of
428	 * pitfalls. We want this to be preemptible and we want hold a
429	 * maximum of two locks per step. So we have to check
430	 * carefully whether things change under us.
431	 */
432 again:
433	/*
434	 * We limit the lock chain length for each invocation.
435	 */
436	if (++depth > max_lock_depth) {
437		static int prev_max;
438
439		/*
440		 * Print this only once. If the admin changes the limit,
441		 * print a new message when reaching the limit again.
442		 */
443		if (prev_max != max_lock_depth) {
444			prev_max = max_lock_depth;
445			printk(KERN_WARNING "Maximum lock depth %d reached "
446			       "task: %s (%d)\n", max_lock_depth,
447			       top_task->comm, task_pid_nr(top_task));
448		}
449		put_task_struct(task);
450
451		return -EDEADLK;
452	}
453
454	/*
455	 * We are fully preemptible here and only hold the refcount on
456	 * @task. So everything can have changed under us since the
457	 * caller or our own code below (goto retry/again) dropped all
458	 * locks.
459	 */
460 retry:
461	/*
462	 * [1] Task cannot go away as we did a get_task() before !
463	 */
464	raw_spin_lock_irqsave(&task->pi_lock, flags);
465
466	/*
467	 * [2] Get the waiter on which @task is blocked on.
468	 */
469	waiter = task->pi_blocked_on;
470
471	/*
472	 * [3] check_exit_conditions_1() protected by task->pi_lock.
473	 */
474
475	/*
476	 * Check whether the end of the boosting chain has been
477	 * reached or the state of the chain has changed while we
478	 * dropped the locks.
479	 */
480	if (!waiter)
481		goto out_unlock_pi;
482
483	/*
484	 * Check the orig_waiter state. After we dropped the locks,
485	 * the previous owner of the lock might have released the lock.
486	 */
487	if (orig_waiter && !rt_mutex_owner(orig_lock))
488		goto out_unlock_pi;
489
490	/*
491	 * We dropped all locks after taking a refcount on @task, so
492	 * the task might have moved on in the lock chain or even left
493	 * the chain completely and blocks now on an unrelated lock or
494	 * on @orig_lock.
495	 *
496	 * We stored the lock on which @task was blocked in @next_lock,
497	 * so we can detect the chain change.
498	 */
499	if (next_lock != waiter->lock)
500		goto out_unlock_pi;
501
502	/*
503	 * Drop out, when the task has no waiters. Note,
504	 * top_waiter can be NULL, when we are in the deboosting
505	 * mode!
506	 */
507	if (top_waiter) {
508		if (!task_has_pi_waiters(task))
509			goto out_unlock_pi;
510		/*
511		 * If deadlock detection is off, we stop here if we
512		 * are not the top pi waiter of the task. If deadlock
513		 * detection is enabled we continue, but stop the
514		 * requeueing in the chain walk.
515		 */
516		if (top_waiter != task_top_pi_waiter(task)) {
517			if (!detect_deadlock)
518				goto out_unlock_pi;
519			else
520				requeue = false;
521		}
522	}
523
524	/*
525	 * If the waiter priority is the same as the task priority
526	 * then there is no further priority adjustment necessary.  If
527	 * deadlock detection is off, we stop the chain walk. If its
528	 * enabled we continue, but stop the requeueing in the chain
529	 * walk.
530	 */
531	if (waiter->prio == task->prio) {
532		if (!detect_deadlock)
533			goto out_unlock_pi;
534		else
535			requeue = false;
536	}
537
538	/*
539	 * [4] Get the next lock
540	 */
541	lock = waiter->lock;
542	/*
543	 * [5] We need to trylock here as we are holding task->pi_lock,
544	 * which is the reverse lock order versus the other rtmutex
545	 * operations.
546	 */
547	if (!raw_spin_trylock(&lock->wait_lock)) {
548		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
549		cpu_relax();
550		goto retry;
551	}
552
553	/*
554	 * [6] check_exit_conditions_2() protected by task->pi_lock and
555	 * lock->wait_lock.
556	 *
557	 * Deadlock detection. If the lock is the same as the original
558	 * lock which caused us to walk the lock chain or if the
559	 * current lock is owned by the task which initiated the chain
560	 * walk, we detected a deadlock.
561	 */
562	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
563		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
564		raw_spin_unlock(&lock->wait_lock);
565		ret = -EDEADLK;
566		goto out_unlock_pi;
567	}
568
569	/*
570	 * If we just follow the lock chain for deadlock detection, no
571	 * need to do all the requeue operations. To avoid a truckload
572	 * of conditionals around the various places below, just do the
573	 * minimum chain walk checks.
574	 */
575	if (!requeue) {
576		/*
577		 * No requeue[7] here. Just release @task [8]
578		 */
579		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
580		put_task_struct(task);
581
582		/*
583		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
584		 * If there is no owner of the lock, end of chain.
585		 */
586		if (!rt_mutex_owner(lock)) {
587			raw_spin_unlock(&lock->wait_lock);
588			return 0;
589		}
590
591		/* [10] Grab the next task, i.e. owner of @lock */
592		task = rt_mutex_owner(lock);
593		get_task_struct(task);
594		raw_spin_lock_irqsave(&task->pi_lock, flags);
595
596		/*
597		 * No requeue [11] here. We just do deadlock detection.
598		 *
599		 * [12] Store whether owner is blocked
600		 * itself. Decision is made after dropping the locks
601		 */
602		next_lock = task_blocked_on_lock(task);
603		/*
604		 * Get the top waiter for the next iteration
605		 */
606		top_waiter = rt_mutex_top_waiter(lock);
607
608		/* [13] Drop locks */
609		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
610		raw_spin_unlock(&lock->wait_lock);
611
612		/* If owner is not blocked, end of chain. */
613		if (!next_lock)
614			goto out_put_task;
615		goto again;
616	}
617
618	/*
619	 * Store the current top waiter before doing the requeue
620	 * operation on @lock. We need it for the boost/deboost
621	 * decision below.
622	 */
623	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
624
625	/* [7] Requeue the waiter in the lock waiter list. */
626	rt_mutex_dequeue(lock, waiter);
627	waiter->prio = task->prio;
628	rt_mutex_enqueue(lock, waiter);
629
630	/* [8] Release the task */
631	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
632	put_task_struct(task);
633
634	/*
635	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
636	 *
637	 * We must abort the chain walk if there is no lock owner even
638	 * in the dead lock detection case, as we have nothing to
639	 * follow here. This is the end of the chain we are walking.
640	 */
641	if (!rt_mutex_owner(lock)) {
642		/*
643		 * If the requeue [7] above changed the top waiter,
644		 * then we need to wake the new top waiter up to try
645		 * to get the lock.
646		 */
647		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
648			wake_up_process(rt_mutex_top_waiter(lock)->task);
649		raw_spin_unlock(&lock->wait_lock);
650		return 0;
651	}
652
653	/* [10] Grab the next task, i.e. the owner of @lock */
654	task = rt_mutex_owner(lock);
655	get_task_struct(task);
656	raw_spin_lock_irqsave(&task->pi_lock, flags);
657
658	/* [11] requeue the pi waiters if necessary */
659	if (waiter == rt_mutex_top_waiter(lock)) {
660		/*
661		 * The waiter became the new top (highest priority)
662		 * waiter on the lock. Replace the previous top waiter
663		 * in the owner tasks pi waiters list with this waiter
664		 * and adjust the priority of the owner.
665		 */
666		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
667		rt_mutex_enqueue_pi(task, waiter);
668		__rt_mutex_adjust_prio(task);
669
670	} else if (prerequeue_top_waiter == waiter) {
671		/*
672		 * The waiter was the top waiter on the lock, but is
673		 * no longer the top prority waiter. Replace waiter in
674		 * the owner tasks pi waiters list with the new top
675		 * (highest priority) waiter and adjust the priority
676		 * of the owner.
677		 * The new top waiter is stored in @waiter so that
678		 * @waiter == @top_waiter evaluates to true below and
679		 * we continue to deboost the rest of the chain.
680		 */
681		rt_mutex_dequeue_pi(task, waiter);
682		waiter = rt_mutex_top_waiter(lock);
683		rt_mutex_enqueue_pi(task, waiter);
684		__rt_mutex_adjust_prio(task);
685	} else {
686		/*
687		 * Nothing changed. No need to do any priority
688		 * adjustment.
689		 */
690	}
691
692	/*
693	 * [12] check_exit_conditions_4() protected by task->pi_lock
694	 * and lock->wait_lock. The actual decisions are made after we
695	 * dropped the locks.
696	 *
697	 * Check whether the task which owns the current lock is pi
698	 * blocked itself. If yes we store a pointer to the lock for
699	 * the lock chain change detection above. After we dropped
700	 * task->pi_lock next_lock cannot be dereferenced anymore.
701	 */
702	next_lock = task_blocked_on_lock(task);
703	/*
704	 * Store the top waiter of @lock for the end of chain walk
705	 * decision below.
706	 */
707	top_waiter = rt_mutex_top_waiter(lock);
708
709	/* [13] Drop the locks */
710	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
711	raw_spin_unlock(&lock->wait_lock);
712
713	/*
714	 * Make the actual exit decisions [12], based on the stored
715	 * values.
716	 *
717	 * We reached the end of the lock chain. Stop right here. No
718	 * point to go back just to figure that out.
719	 */
720	if (!next_lock)
721		goto out_put_task;
722
723	/*
724	 * If the current waiter is not the top waiter on the lock,
725	 * then we can stop the chain walk here if we are not in full
726	 * deadlock detection mode.
727	 */
728	if (!detect_deadlock && waiter != top_waiter)
729		goto out_put_task;
730
731	goto again;
732
733 out_unlock_pi:
734	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
735 out_put_task:
736	put_task_struct(task);
737
738	return ret;
739}
740
741/*
742 * Try to take an rt-mutex
743 *
744 * Must be called with lock->wait_lock held.
745 *
746 * @lock:   The lock to be acquired.
747 * @task:   The task which wants to acquire the lock
748 * @waiter: The waiter that is queued to the lock's wait list if the
749 *	    callsite called task_blocked_on_lock(), otherwise NULL
750 */
751static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
752				struct rt_mutex_waiter *waiter)
753{
754	unsigned long flags;
755
756	/*
757	 * Before testing whether we can acquire @lock, we set the
758	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
759	 * other tasks which try to modify @lock into the slow path
760	 * and they serialize on @lock->wait_lock.
761	 *
762	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
763	 * as explained at the top of this file if and only if:
764	 *
765	 * - There is a lock owner. The caller must fixup the
766	 *   transient state if it does a trylock or leaves the lock
767	 *   function due to a signal or timeout.
768	 *
769	 * - @task acquires the lock and there are no other
770	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
771	 *   the end of this function.
772	 */
773	mark_rt_mutex_waiters(lock);
774
775	/*
776	 * If @lock has an owner, give up.
777	 */
778	if (rt_mutex_owner(lock))
779		return 0;
780
781	/*
782	 * If @waiter != NULL, @task has already enqueued the waiter
783	 * into @lock waiter list. If @waiter == NULL then this is a
784	 * trylock attempt.
785	 */
786	if (waiter) {
787		/*
788		 * If waiter is not the highest priority waiter of
789		 * @lock, give up.
790		 */
791		if (waiter != rt_mutex_top_waiter(lock))
792			return 0;
793
794		/*
795		 * We can acquire the lock. Remove the waiter from the
796		 * lock waiters list.
797		 */
798		rt_mutex_dequeue(lock, waiter);
799
800	} else {
801		/*
802		 * If the lock has waiters already we check whether @task is
803		 * eligible to take over the lock.
804		 *
805		 * If there are no other waiters, @task can acquire
806		 * the lock.  @task->pi_blocked_on is NULL, so it does
807		 * not need to be dequeued.
808		 */
809		if (rt_mutex_has_waiters(lock)) {
810			/*
811			 * If @task->prio is greater than or equal to
812			 * the top waiter priority (kernel view),
813			 * @task lost.
814			 */
815			if (task->prio >= rt_mutex_top_waiter(lock)->prio)
816				return 0;
817
818			/*
819			 * The current top waiter stays enqueued. We
820			 * don't have to change anything in the lock
821			 * waiters order.
822			 */
823		} else {
824			/*
825			 * No waiters. Take the lock without the
826			 * pi_lock dance.@task->pi_blocked_on is NULL
827			 * and we have no waiters to enqueue in @task
828			 * pi waiters list.
829			 */
830			goto takeit;
831		}
832	}
833
834	/*
835	 * Clear @task->pi_blocked_on. Requires protection by
836	 * @task->pi_lock. Redundant operation for the @waiter == NULL
837	 * case, but conditionals are more expensive than a redundant
838	 * store.
839	 */
840	raw_spin_lock_irqsave(&task->pi_lock, flags);
841	task->pi_blocked_on = NULL;
842	/*
843	 * Finish the lock acquisition. @task is the new owner. If
844	 * other waiters exist we have to insert the highest priority
845	 * waiter into @task->pi_waiters list.
846	 */
847	if (rt_mutex_has_waiters(lock))
848		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
849	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
850
851takeit:
852	/* We got the lock. */
853	debug_rt_mutex_lock(lock);
854
855	/*
856	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
857	 * are still waiters or clears it.
858	 */
859	rt_mutex_set_owner(lock, task);
860
861	rt_mutex_deadlock_account_lock(lock, task);
862
863	return 1;
864}
865
866/*
867 * Task blocks on lock.
868 *
869 * Prepare waiter and propagate pi chain
870 *
871 * This must be called with lock->wait_lock held.
872 */
873static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
874				   struct rt_mutex_waiter *waiter,
875				   struct task_struct *task,
876				   enum rtmutex_chainwalk chwalk)
877{
878	struct task_struct *owner = rt_mutex_owner(lock);
879	struct rt_mutex_waiter *top_waiter = waiter;
880	struct rt_mutex *next_lock;
881	int chain_walk = 0, res;
882	unsigned long flags;
883
884	/*
885	 * Early deadlock detection. We really don't want the task to
886	 * enqueue on itself just to untangle the mess later. It's not
887	 * only an optimization. We drop the locks, so another waiter
888	 * can come in before the chain walk detects the deadlock. So
889	 * the other will detect the deadlock and return -EDEADLOCK,
890	 * which is wrong, as the other waiter is not in a deadlock
891	 * situation.
892	 */
893	if (owner == task)
894		return -EDEADLK;
895
896	raw_spin_lock_irqsave(&task->pi_lock, flags);
897	__rt_mutex_adjust_prio(task);
898	waiter->task = task;
899	waiter->lock = lock;
900	waiter->prio = task->prio;
901
902	/* Get the top priority waiter on the lock */
903	if (rt_mutex_has_waiters(lock))
904		top_waiter = rt_mutex_top_waiter(lock);
905	rt_mutex_enqueue(lock, waiter);
906
907	task->pi_blocked_on = waiter;
908
909	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
910
911	if (!owner)
912		return 0;
913
914	raw_spin_lock_irqsave(&owner->pi_lock, flags);
915	if (waiter == rt_mutex_top_waiter(lock)) {
916		rt_mutex_dequeue_pi(owner, top_waiter);
917		rt_mutex_enqueue_pi(owner, waiter);
918
919		__rt_mutex_adjust_prio(owner);
920		if (owner->pi_blocked_on)
921			chain_walk = 1;
922	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
923		chain_walk = 1;
924	}
925
926	/* Store the lock on which owner is blocked or NULL */
927	next_lock = task_blocked_on_lock(owner);
928
929	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
930	/*
931	 * Even if full deadlock detection is on, if the owner is not
932	 * blocked itself, we can avoid finding this out in the chain
933	 * walk.
934	 */
935	if (!chain_walk || !next_lock)
936		return 0;
937
938	/*
939	 * The owner can't disappear while holding a lock,
940	 * so the owner struct is protected by wait_lock.
941	 * Gets dropped in rt_mutex_adjust_prio_chain()!
942	 */
943	get_task_struct(owner);
944
945	raw_spin_unlock(&lock->wait_lock);
946
947	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
948					 next_lock, waiter, task);
949
950	raw_spin_lock(&lock->wait_lock);
951
952	return res;
953}
954
955/*
956 * Wake up the next waiter on the lock.
957 *
958 * Remove the top waiter from the current tasks pi waiter list and
959 * wake it up.
960 *
961 * Called with lock->wait_lock held.
962 */
963static void wakeup_next_waiter(struct rt_mutex *lock)
964{
965	struct rt_mutex_waiter *waiter;
966	unsigned long flags;
967
968	raw_spin_lock_irqsave(&current->pi_lock, flags);
969
970	waiter = rt_mutex_top_waiter(lock);
971
972	/*
973	 * Remove it from current->pi_waiters. We do not adjust a
974	 * possible priority boost right now. We execute wakeup in the
975	 * boosted mode and go back to normal after releasing
976	 * lock->wait_lock.
977	 */
978	rt_mutex_dequeue_pi(current, waiter);
979
980	/*
981	 * As we are waking up the top waiter, and the waiter stays
982	 * queued on the lock until it gets the lock, this lock
983	 * obviously has waiters. Just set the bit here and this has
984	 * the added benefit of forcing all new tasks into the
985	 * slow path making sure no task of lower priority than
986	 * the top waiter can steal this lock.
987	 */
988	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
989
990	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
991
992	/*
993	 * It's safe to dereference waiter as it cannot go away as
994	 * long as we hold lock->wait_lock. The waiter task needs to
995	 * acquire it in order to dequeue the waiter.
996	 */
997	wake_up_process(waiter->task);
998}
999
1000/*
1001 * Remove a waiter from a lock and give up
1002 *
1003 * Must be called with lock->wait_lock held and
1004 * have just failed to try_to_take_rt_mutex().
1005 */
1006static void remove_waiter(struct rt_mutex *lock,
1007			  struct rt_mutex_waiter *waiter)
1008{
1009	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1010	struct task_struct *owner = rt_mutex_owner(lock);
1011	struct rt_mutex *next_lock;
1012	unsigned long flags;
1013
1014	raw_spin_lock_irqsave(&current->pi_lock, flags);
1015	rt_mutex_dequeue(lock, waiter);
1016	current->pi_blocked_on = NULL;
1017	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
1018
1019	/*
1020	 * Only update priority if the waiter was the highest priority
1021	 * waiter of the lock and there is an owner to update.
1022	 */
1023	if (!owner || !is_top_waiter)
1024		return;
1025
1026	raw_spin_lock_irqsave(&owner->pi_lock, flags);
1027
1028	rt_mutex_dequeue_pi(owner, waiter);
1029
1030	if (rt_mutex_has_waiters(lock))
1031		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1032
1033	__rt_mutex_adjust_prio(owner);
1034
1035	/* Store the lock on which owner is blocked or NULL */
1036	next_lock = task_blocked_on_lock(owner);
1037
1038	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
1039
1040	/*
1041	 * Don't walk the chain, if the owner task is not blocked
1042	 * itself.
1043	 */
1044	if (!next_lock)
1045		return;
1046
1047	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1048	get_task_struct(owner);
1049
1050	raw_spin_unlock(&lock->wait_lock);
1051
1052	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1053				   next_lock, NULL, current);
1054
1055	raw_spin_lock(&lock->wait_lock);
1056}
1057
1058/*
1059 * Recheck the pi chain, in case we got a priority setting
1060 *
1061 * Called from sched_setscheduler
1062 */
1063void rt_mutex_adjust_pi(struct task_struct *task)
1064{
1065	struct rt_mutex_waiter *waiter;
1066	struct rt_mutex *next_lock;
1067	unsigned long flags;
1068
1069	raw_spin_lock_irqsave(&task->pi_lock, flags);
1070
1071	waiter = task->pi_blocked_on;
1072	if (!waiter || (waiter->prio == task->prio &&
1073			!dl_prio(task->prio))) {
1074		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1075		return;
1076	}
1077	next_lock = waiter->lock;
1078	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1079
1080	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1081	get_task_struct(task);
1082
1083	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1084				   next_lock, NULL, task);
1085}
1086
1087/**
1088 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1089 * @lock:		 the rt_mutex to take
1090 * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1091 * 			 or TASK_UNINTERRUPTIBLE)
1092 * @timeout:		 the pre-initialized and started timer, or NULL for none
1093 * @waiter:		 the pre-initialized rt_mutex_waiter
1094 *
1095 * lock->wait_lock must be held by the caller.
1096 */
1097static int __sched
1098__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1099		    struct hrtimer_sleeper *timeout,
1100		    struct rt_mutex_waiter *waiter)
1101{
1102	int ret = 0;
1103
1104	for (;;) {
1105		/* Try to acquire the lock: */
1106		if (try_to_take_rt_mutex(lock, current, waiter))
1107			break;
1108
1109		/*
1110		 * TASK_INTERRUPTIBLE checks for signals and
1111		 * timeout. Ignored otherwise.
1112		 */
1113		if (unlikely(state == TASK_INTERRUPTIBLE)) {
1114			/* Signal pending? */
1115			if (signal_pending(current))
1116				ret = -EINTR;
1117			if (timeout && !timeout->task)
1118				ret = -ETIMEDOUT;
1119			if (ret)
1120				break;
1121		}
1122
1123		raw_spin_unlock(&lock->wait_lock);
1124
1125		debug_rt_mutex_print_deadlock(waiter);
1126
1127		schedule_rt_mutex(lock);
1128
1129		raw_spin_lock(&lock->wait_lock);
1130		set_current_state(state);
1131	}
1132
1133	return ret;
1134}
1135
1136static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1137				     struct rt_mutex_waiter *w)
1138{
1139	/*
1140	 * If the result is not -EDEADLOCK or the caller requested
1141	 * deadlock detection, nothing to do here.
1142	 */
1143	if (res != -EDEADLOCK || detect_deadlock)
1144		return;
1145
1146	/*
1147	 * Yell lowdly and stop the task right here.
1148	 */
1149	rt_mutex_print_deadlock(w);
1150	while (1) {
1151		set_current_state(TASK_INTERRUPTIBLE);
1152		schedule();
1153	}
1154}
1155
1156/*
1157 * Slow path lock function:
1158 */
1159static int __sched
1160rt_mutex_slowlock(struct rt_mutex *lock, int state,
1161		  struct hrtimer_sleeper *timeout,
1162		  enum rtmutex_chainwalk chwalk)
1163{
1164	struct rt_mutex_waiter waiter;
1165	int ret = 0;
1166
1167	debug_rt_mutex_init_waiter(&waiter);
1168	RB_CLEAR_NODE(&waiter.pi_tree_entry);
1169	RB_CLEAR_NODE(&waiter.tree_entry);
1170
1171	raw_spin_lock(&lock->wait_lock);
1172
1173	/* Try to acquire the lock again: */
1174	if (try_to_take_rt_mutex(lock, current, NULL)) {
1175		raw_spin_unlock(&lock->wait_lock);
1176		return 0;
1177	}
1178
1179	set_current_state(state);
1180
1181	/* Setup the timer, when timeout != NULL */
1182	if (unlikely(timeout)) {
1183		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1184		if (!hrtimer_active(&timeout->timer))
1185			timeout->task = NULL;
1186	}
1187
1188	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1189
1190	if (likely(!ret))
1191		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1192
1193	set_current_state(TASK_RUNNING);
1194
1195	if (unlikely(ret)) {
1196		remove_waiter(lock, &waiter);
1197		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1198	}
1199
1200	/*
1201	 * try_to_take_rt_mutex() sets the waiter bit
1202	 * unconditionally. We might have to fix that up.
1203	 */
1204	fixup_rt_mutex_waiters(lock);
1205
1206	raw_spin_unlock(&lock->wait_lock);
1207
1208	/* Remove pending timer: */
1209	if (unlikely(timeout))
1210		hrtimer_cancel(&timeout->timer);
1211
1212	debug_rt_mutex_free_waiter(&waiter);
1213
1214	return ret;
1215}
1216
1217/*
1218 * Slow path try-lock function:
1219 */
1220static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1221{
1222	int ret;
1223
1224	/*
1225	 * If the lock already has an owner we fail to get the lock.
1226	 * This can be done without taking the @lock->wait_lock as
1227	 * it is only being read, and this is a trylock anyway.
1228	 */
1229	if (rt_mutex_owner(lock))
1230		return 0;
1231
1232	/*
1233	 * The mutex has currently no owner. Lock the wait lock and
1234	 * try to acquire the lock.
1235	 */
1236	raw_spin_lock(&lock->wait_lock);
1237
1238	ret = try_to_take_rt_mutex(lock, current, NULL);
1239
1240	/*
1241	 * try_to_take_rt_mutex() sets the lock waiters bit
1242	 * unconditionally. Clean this up.
1243	 */
1244	fixup_rt_mutex_waiters(lock);
1245
1246	raw_spin_unlock(&lock->wait_lock);
1247
1248	return ret;
1249}
1250
1251/*
1252 * Slow path to release a rt-mutex:
1253 */
1254static void __sched
1255rt_mutex_slowunlock(struct rt_mutex *lock)
1256{
1257	raw_spin_lock(&lock->wait_lock);
1258
1259	debug_rt_mutex_unlock(lock);
1260
1261	rt_mutex_deadlock_account_unlock(current);
1262
1263	/*
1264	 * We must be careful here if the fast path is enabled. If we
1265	 * have no waiters queued we cannot set owner to NULL here
1266	 * because of:
1267	 *
1268	 * foo->lock->owner = NULL;
1269	 *			rtmutex_lock(foo->lock);   <- fast path
1270	 *			free = atomic_dec_and_test(foo->refcnt);
1271	 *			rtmutex_unlock(foo->lock); <- fast path
1272	 *			if (free)
1273	 *				kfree(foo);
1274	 * raw_spin_unlock(foo->lock->wait_lock);
1275	 *
1276	 * So for the fastpath enabled kernel:
1277	 *
1278	 * Nothing can set the waiters bit as long as we hold
1279	 * lock->wait_lock. So we do the following sequence:
1280	 *
1281	 *	owner = rt_mutex_owner(lock);
1282	 *	clear_rt_mutex_waiters(lock);
1283	 *	raw_spin_unlock(&lock->wait_lock);
1284	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1285	 *		return;
1286	 *	goto retry;
1287	 *
1288	 * The fastpath disabled variant is simple as all access to
1289	 * lock->owner is serialized by lock->wait_lock:
1290	 *
1291	 *	lock->owner = NULL;
1292	 *	raw_spin_unlock(&lock->wait_lock);
1293	 */
1294	while (!rt_mutex_has_waiters(lock)) {
1295		/* Drops lock->wait_lock ! */
1296		if (unlock_rt_mutex_safe(lock) == true)
1297			return;
1298		/* Relock the rtmutex and try again */
1299		raw_spin_lock(&lock->wait_lock);
1300	}
1301
1302	/*
1303	 * The wakeup next waiter path does not suffer from the above
1304	 * race. See the comments there.
1305	 */
1306	wakeup_next_waiter(lock);
1307
1308	raw_spin_unlock(&lock->wait_lock);
1309
1310	/* Undo pi boosting if necessary: */
1311	rt_mutex_adjust_prio(current);
1312}
1313
1314/*
1315 * debug aware fast / slowpath lock,trylock,unlock
1316 *
1317 * The atomic acquire/release ops are compiled away, when either the
1318 * architecture does not support cmpxchg or when debugging is enabled.
1319 */
1320static inline int
1321rt_mutex_fastlock(struct rt_mutex *lock, int state,
1322		  int (*slowfn)(struct rt_mutex *lock, int state,
1323				struct hrtimer_sleeper *timeout,
1324				enum rtmutex_chainwalk chwalk))
1325{
1326	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1327		rt_mutex_deadlock_account_lock(lock, current);
1328		return 0;
1329	} else
1330		return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1331}
1332
1333static inline int
1334rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1335			struct hrtimer_sleeper *timeout,
1336			enum rtmutex_chainwalk chwalk,
1337			int (*slowfn)(struct rt_mutex *lock, int state,
1338				      struct hrtimer_sleeper *timeout,
1339				      enum rtmutex_chainwalk chwalk))
1340{
1341	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1342	    likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1343		rt_mutex_deadlock_account_lock(lock, current);
1344		return 0;
1345	} else
1346		return slowfn(lock, state, timeout, chwalk);
1347}
1348
1349static inline int
1350rt_mutex_fasttrylock(struct rt_mutex *lock,
1351		     int (*slowfn)(struct rt_mutex *lock))
1352{
1353	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1354		rt_mutex_deadlock_account_lock(lock, current);
1355		return 1;
1356	}
1357	return slowfn(lock);
1358}
1359
1360static inline void
1361rt_mutex_fastunlock(struct rt_mutex *lock,
1362		    void (*slowfn)(struct rt_mutex *lock))
1363{
1364	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
1365		rt_mutex_deadlock_account_unlock(current);
1366	else
1367		slowfn(lock);
1368}
1369
1370/**
1371 * rt_mutex_lock - lock a rt_mutex
1372 *
1373 * @lock: the rt_mutex to be locked
1374 */
1375void __sched rt_mutex_lock(struct rt_mutex *lock)
1376{
1377	might_sleep();
1378
1379	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1380}
1381EXPORT_SYMBOL_GPL(rt_mutex_lock);
1382
1383/**
1384 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1385 *
1386 * @lock:		the rt_mutex to be locked
1387 *
1388 * Returns:
1389 *  0		on success
1390 * -EINTR	when interrupted by a signal
1391 */
1392int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1393{
1394	might_sleep();
1395
1396	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1397}
1398EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1399
1400/*
1401 * Futex variant with full deadlock detection.
1402 */
1403int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1404			      struct hrtimer_sleeper *timeout)
1405{
1406	might_sleep();
1407
1408	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1409				       RT_MUTEX_FULL_CHAINWALK,
1410				       rt_mutex_slowlock);
1411}
1412
1413/**
1414 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1415 *			the timeout structure is provided
1416 *			by the caller
1417 *
1418 * @lock:		the rt_mutex to be locked
1419 * @timeout:		timeout structure or NULL (no timeout)
1420 *
1421 * Returns:
1422 *  0		on success
1423 * -EINTR	when interrupted by a signal
1424 * -ETIMEDOUT	when the timeout expired
1425 */
1426int
1427rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1428{
1429	might_sleep();
1430
1431	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1432				       RT_MUTEX_MIN_CHAINWALK,
1433				       rt_mutex_slowlock);
1434}
1435EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1436
1437/**
1438 * rt_mutex_trylock - try to lock a rt_mutex
1439 *
1440 * @lock:	the rt_mutex to be locked
1441 *
1442 * Returns 1 on success and 0 on contention
1443 */
1444int __sched rt_mutex_trylock(struct rt_mutex *lock)
1445{
1446	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1447}
1448EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1449
1450/**
1451 * rt_mutex_unlock - unlock a rt_mutex
1452 *
1453 * @lock: the rt_mutex to be unlocked
1454 */
1455void __sched rt_mutex_unlock(struct rt_mutex *lock)
1456{
1457	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1458}
1459EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1460
1461/**
1462 * rt_mutex_destroy - mark a mutex unusable
1463 * @lock: the mutex to be destroyed
1464 *
1465 * This function marks the mutex uninitialized, and any subsequent
1466 * use of the mutex is forbidden. The mutex must not be locked when
1467 * this function is called.
1468 */
1469void rt_mutex_destroy(struct rt_mutex *lock)
1470{
1471	WARN_ON(rt_mutex_is_locked(lock));
1472#ifdef CONFIG_DEBUG_RT_MUTEXES
1473	lock->magic = NULL;
1474#endif
1475}
1476
1477EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1478
1479/**
1480 * __rt_mutex_init - initialize the rt lock
1481 *
1482 * @lock: the rt lock to be initialized
1483 *
1484 * Initialize the rt lock to unlocked state.
1485 *
1486 * Initializing of a locked rt lock is not allowed
1487 */
1488void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1489{
1490	lock->owner = NULL;
1491	raw_spin_lock_init(&lock->wait_lock);
1492	lock->waiters = RB_ROOT;
1493	lock->waiters_leftmost = NULL;
1494
1495	debug_rt_mutex_init(lock, name);
1496}
1497EXPORT_SYMBOL_GPL(__rt_mutex_init);
1498
1499/**
1500 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1501 *				proxy owner
1502 *
1503 * @lock: 	the rt_mutex to be locked
1504 * @proxy_owner:the task to set as owner
1505 *
1506 * No locking. Caller has to do serializing itself
1507 * Special API call for PI-futex support
1508 */
1509void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1510				struct task_struct *proxy_owner)
1511{
1512	__rt_mutex_init(lock, NULL);
1513	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1514	rt_mutex_set_owner(lock, proxy_owner);
1515	rt_mutex_deadlock_account_lock(lock, proxy_owner);
1516}
1517
1518/**
1519 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1520 *
1521 * @lock: 	the rt_mutex to be locked
1522 *
1523 * No locking. Caller has to do serializing itself
1524 * Special API call for PI-futex support
1525 */
1526void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1527			   struct task_struct *proxy_owner)
1528{
1529	debug_rt_mutex_proxy_unlock(lock);
1530	rt_mutex_set_owner(lock, NULL);
1531	rt_mutex_deadlock_account_unlock(proxy_owner);
1532}
1533
1534/**
1535 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1536 * @lock:		the rt_mutex to take
1537 * @waiter:		the pre-initialized rt_mutex_waiter
1538 * @task:		the task to prepare
1539 *
1540 * Returns:
1541 *  0 - task blocked on lock
1542 *  1 - acquired the lock for task, caller should wake it up
1543 * <0 - error
1544 *
1545 * Special API call for FUTEX_REQUEUE_PI support.
1546 */
1547int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1548			      struct rt_mutex_waiter *waiter,
1549			      struct task_struct *task)
1550{
1551	int ret;
1552
1553	raw_spin_lock(&lock->wait_lock);
1554
1555	if (try_to_take_rt_mutex(lock, task, NULL)) {
1556		raw_spin_unlock(&lock->wait_lock);
1557		return 1;
1558	}
1559
1560	/* We enforce deadlock detection for futexes */
1561	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1562				      RT_MUTEX_FULL_CHAINWALK);
1563
1564	if (ret && !rt_mutex_owner(lock)) {
1565		/*
1566		 * Reset the return value. We might have
1567		 * returned with -EDEADLK and the owner
1568		 * released the lock while we were walking the
1569		 * pi chain.  Let the waiter sort it out.
1570		 */
1571		ret = 0;
1572	}
1573
1574	if (unlikely(ret))
1575		remove_waiter(lock, waiter);
1576
1577	raw_spin_unlock(&lock->wait_lock);
1578
1579	debug_rt_mutex_print_deadlock(waiter);
1580
1581	return ret;
1582}
1583
1584/**
1585 * rt_mutex_next_owner - return the next owner of the lock
1586 *
1587 * @lock: the rt lock query
1588 *
1589 * Returns the next owner of the lock or NULL
1590 *
1591 * Caller has to serialize against other accessors to the lock
1592 * itself.
1593 *
1594 * Special API call for PI-futex support
1595 */
1596struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1597{
1598	if (!rt_mutex_has_waiters(lock))
1599		return NULL;
1600
1601	return rt_mutex_top_waiter(lock)->task;
1602}
1603
1604/**
1605 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1606 * @lock:		the rt_mutex we were woken on
1607 * @to:			the timeout, null if none. hrtimer should already have
1608 *			been started.
1609 * @waiter:		the pre-initialized rt_mutex_waiter
1610 *
1611 * Complete the lock acquisition started our behalf by another thread.
1612 *
1613 * Returns:
1614 *  0 - success
1615 * <0 - error, one of -EINTR, -ETIMEDOUT
1616 *
1617 * Special API call for PI-futex requeue support
1618 */
1619int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1620			       struct hrtimer_sleeper *to,
1621			       struct rt_mutex_waiter *waiter)
1622{
1623	int ret;
1624
1625	raw_spin_lock(&lock->wait_lock);
1626
1627	set_current_state(TASK_INTERRUPTIBLE);
1628
1629	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1630
1631	set_current_state(TASK_RUNNING);
1632
1633	if (unlikely(ret))
1634		remove_waiter(lock, waiter);
1635
1636	/*
1637	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1638	 * have to fix that up.
1639	 */
1640	fixup_rt_mutex_waiters(lock);
1641
1642	raw_spin_unlock(&lock->wait_lock);
1643
1644	return ret;
1645}
1646