1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27#include <linux/delay.h>
28#include <linux/gfp.h>
29#include <linux/oom.h>
30#include <linux/smpboot.h>
31#include "../time/tick-internal.h"
32
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
36#include "../locking/rtmutex_common.h"
37#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38#else
39#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40#endif
41
42#ifdef CONFIG_RCU_NOCB_CPU
43static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
45static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
46static char __initdata nocb_buf[NR_CPUS * 5];
47#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
49/*
50 * Check the RCU kernel configuration parameters and print informative
51 * messages about anything out of the ordinary.  If you like #ifdef, you
52 * will love this function.
53 */
54static void __init rcu_bootup_announce_oddness(void)
55{
56#ifdef CONFIG_RCU_TRACE
57	pr_info("\tRCU debugfs-based tracing is enabled.\n");
58#endif
59#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61	       CONFIG_RCU_FANOUT);
62#endif
63#ifdef CONFIG_RCU_FANOUT_EXACT
64	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65#endif
66#ifdef CONFIG_RCU_FAST_NO_HZ
67	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68#endif
69#ifdef CONFIG_PROVE_RCU
70	pr_info("\tRCU lockdep checking is enabled.\n");
71#endif
72#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73	pr_info("\tRCU torture testing starts during boot.\n");
74#endif
75#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77#endif
78#if defined(CONFIG_RCU_CPU_STALL_INFO)
79	pr_info("\tAdditional per-CPU info printed with stalls.\n");
80#endif
81#if NUM_RCU_LVL_4 != 0
82	pr_info("\tFour-level hierarchy is enabled.\n");
83#endif
84	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86	if (nr_cpu_ids != NR_CPUS)
87		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88}
89
90#ifdef CONFIG_TREE_PREEMPT_RCU
91
92RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93static struct rcu_state *rcu_state_p = &rcu_preempt_state;
94
95static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96
97/*
98 * Tell them what RCU they are running.
99 */
100static void __init rcu_bootup_announce(void)
101{
102	pr_info("Preemptible hierarchical RCU implementation.\n");
103	rcu_bootup_announce_oddness();
104}
105
106/*
107 * Return the number of RCU-preempt batches processed thus far
108 * for debug and statistics.
109 */
110static long rcu_batches_completed_preempt(void)
111{
112	return rcu_preempt_state.completed;
113}
114EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
115
116/*
117 * Return the number of RCU batches processed thus far for debug & stats.
118 */
119long rcu_batches_completed(void)
120{
121	return rcu_batches_completed_preempt();
122}
123EXPORT_SYMBOL_GPL(rcu_batches_completed);
124
125/*
126 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
127 * that this just means that the task currently running on the CPU is
128 * not in a quiescent state.  There might be any number of tasks blocked
129 * while in an RCU read-side critical section.
130 *
131 * As with the other rcu_*_qs() functions, callers to this function
132 * must disable preemption.
133 */
134static void rcu_preempt_qs(void)
135{
136	if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
137		trace_rcu_grace_period(TPS("rcu_preempt"),
138				       __this_cpu_read(rcu_preempt_data.gpnum),
139				       TPS("cpuqs"));
140		__this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
141		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
142		current->rcu_read_unlock_special.b.need_qs = false;
143	}
144}
145
146/*
147 * We have entered the scheduler, and the current task might soon be
148 * context-switched away from.  If this task is in an RCU read-side
149 * critical section, we will no longer be able to rely on the CPU to
150 * record that fact, so we enqueue the task on the blkd_tasks list.
151 * The task will dequeue itself when it exits the outermost enclosing
152 * RCU read-side critical section.  Therefore, the current grace period
153 * cannot be permitted to complete until the blkd_tasks list entries
154 * predating the current grace period drain, in other words, until
155 * rnp->gp_tasks becomes NULL.
156 *
157 * Caller must disable preemption.
158 */
159static void rcu_preempt_note_context_switch(int cpu)
160{
161	struct task_struct *t = current;
162	unsigned long flags;
163	struct rcu_data *rdp;
164	struct rcu_node *rnp;
165
166	if (t->rcu_read_lock_nesting > 0 &&
167	    !t->rcu_read_unlock_special.b.blocked) {
168
169		/* Possibly blocking in an RCU read-side critical section. */
170		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
171		rnp = rdp->mynode;
172		raw_spin_lock_irqsave(&rnp->lock, flags);
173		smp_mb__after_unlock_lock();
174		t->rcu_read_unlock_special.b.blocked = true;
175		t->rcu_blocked_node = rnp;
176
177		/*
178		 * If this CPU has already checked in, then this task
179		 * will hold up the next grace period rather than the
180		 * current grace period.  Queue the task accordingly.
181		 * If the task is queued for the current grace period
182		 * (i.e., this CPU has not yet passed through a quiescent
183		 * state for the current grace period), then as long
184		 * as that task remains queued, the current grace period
185		 * cannot end.  Note that there is some uncertainty as
186		 * to exactly when the current grace period started.
187		 * We take a conservative approach, which can result
188		 * in unnecessarily waiting on tasks that started very
189		 * slightly after the current grace period began.  C'est
190		 * la vie!!!
191		 *
192		 * But first, note that the current CPU must still be
193		 * on line!
194		 */
195		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
196		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
197		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
198			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
199			rnp->gp_tasks = &t->rcu_node_entry;
200#ifdef CONFIG_RCU_BOOST
201			if (rnp->boost_tasks != NULL)
202				rnp->boost_tasks = rnp->gp_tasks;
203#endif /* #ifdef CONFIG_RCU_BOOST */
204		} else {
205			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206			if (rnp->qsmask & rdp->grpmask)
207				rnp->gp_tasks = &t->rcu_node_entry;
208		}
209		trace_rcu_preempt_task(rdp->rsp->name,
210				       t->pid,
211				       (rnp->qsmask & rdp->grpmask)
212				       ? rnp->gpnum
213				       : rnp->gpnum + 1);
214		raw_spin_unlock_irqrestore(&rnp->lock, flags);
215	} else if (t->rcu_read_lock_nesting < 0 &&
216		   t->rcu_read_unlock_special.s) {
217
218		/*
219		 * Complete exit from RCU read-side critical section on
220		 * behalf of preempted instance of __rcu_read_unlock().
221		 */
222		rcu_read_unlock_special(t);
223	}
224
225	/*
226	 * Either we were not in an RCU read-side critical section to
227	 * begin with, or we have now recorded that critical section
228	 * globally.  Either way, we can now note a quiescent state
229	 * for this CPU.  Again, if we were in an RCU read-side critical
230	 * section, and if that critical section was blocking the current
231	 * grace period, then the fact that the task has been enqueued
232	 * means that we continue to block the current grace period.
233	 */
234	rcu_preempt_qs();
235}
236
237/*
238 * Check for preempted RCU readers blocking the current grace period
239 * for the specified rcu_node structure.  If the caller needs a reliable
240 * answer, it must hold the rcu_node's ->lock.
241 */
242static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
243{
244	return rnp->gp_tasks != NULL;
245}
246
247/*
248 * Record a quiescent state for all tasks that were previously queued
249 * on the specified rcu_node structure and that were blocking the current
250 * RCU grace period.  The caller must hold the specified rnp->lock with
251 * irqs disabled, and this lock is released upon return, but irqs remain
252 * disabled.
253 */
254static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
255	__releases(rnp->lock)
256{
257	unsigned long mask;
258	struct rcu_node *rnp_p;
259
260	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
261		raw_spin_unlock_irqrestore(&rnp->lock, flags);
262		return;  /* Still need more quiescent states! */
263	}
264
265	rnp_p = rnp->parent;
266	if (rnp_p == NULL) {
267		/*
268		 * Either there is only one rcu_node in the tree,
269		 * or tasks were kicked up to root rcu_node due to
270		 * CPUs going offline.
271		 */
272		rcu_report_qs_rsp(&rcu_preempt_state, flags);
273		return;
274	}
275
276	/* Report up the rest of the hierarchy. */
277	mask = rnp->grpmask;
278	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
279	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
280	smp_mb__after_unlock_lock();
281	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
282}
283
284/*
285 * Advance a ->blkd_tasks-list pointer to the next entry, instead
286 * returning NULL if at the end of the list.
287 */
288static struct list_head *rcu_next_node_entry(struct task_struct *t,
289					     struct rcu_node *rnp)
290{
291	struct list_head *np;
292
293	np = t->rcu_node_entry.next;
294	if (np == &rnp->blkd_tasks)
295		np = NULL;
296	return np;
297}
298
299/*
300 * Handle special cases during rcu_read_unlock(), such as needing to
301 * notify RCU core processing or task having blocked during the RCU
302 * read-side critical section.
303 */
304void rcu_read_unlock_special(struct task_struct *t)
305{
306	int empty;
307	int empty_exp;
308	int empty_exp_now;
309	unsigned long flags;
310	struct list_head *np;
311#ifdef CONFIG_RCU_BOOST
312	bool drop_boost_mutex = false;
313#endif /* #ifdef CONFIG_RCU_BOOST */
314	struct rcu_node *rnp;
315	union rcu_special special;
316
317	/* NMI handlers cannot block and cannot safely manipulate state. */
318	if (in_nmi())
319		return;
320
321	local_irq_save(flags);
322
323	/*
324	 * If RCU core is waiting for this CPU to exit critical section,
325	 * let it know that we have done so.  Because irqs are disabled,
326	 * t->rcu_read_unlock_special cannot change.
327	 */
328	special = t->rcu_read_unlock_special;
329	if (special.b.need_qs) {
330		rcu_preempt_qs();
331		if (!t->rcu_read_unlock_special.s) {
332			local_irq_restore(flags);
333			return;
334		}
335	}
336
337	/* Hardware IRQ handlers cannot block, complain if they get here. */
338	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
339		local_irq_restore(flags);
340		return;
341	}
342
343	/* Clean up if blocked during RCU read-side critical section. */
344	if (special.b.blocked) {
345		t->rcu_read_unlock_special.b.blocked = false;
346
347		/*
348		 * Remove this task from the list it blocked on.  The
349		 * task can migrate while we acquire the lock, but at
350		 * most one time.  So at most two passes through loop.
351		 */
352		for (;;) {
353			rnp = t->rcu_blocked_node;
354			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
355			smp_mb__after_unlock_lock();
356			if (rnp == t->rcu_blocked_node)
357				break;
358			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
359		}
360		empty = !rcu_preempt_blocked_readers_cgp(rnp);
361		empty_exp = !rcu_preempted_readers_exp(rnp);
362		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
363		np = rcu_next_node_entry(t, rnp);
364		list_del_init(&t->rcu_node_entry);
365		t->rcu_blocked_node = NULL;
366		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
367						rnp->gpnum, t->pid);
368		if (&t->rcu_node_entry == rnp->gp_tasks)
369			rnp->gp_tasks = np;
370		if (&t->rcu_node_entry == rnp->exp_tasks)
371			rnp->exp_tasks = np;
372#ifdef CONFIG_RCU_BOOST
373		if (&t->rcu_node_entry == rnp->boost_tasks)
374			rnp->boost_tasks = np;
375		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
376		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
377#endif /* #ifdef CONFIG_RCU_BOOST */
378
379		/*
380		 * If this was the last task on the current list, and if
381		 * we aren't waiting on any CPUs, report the quiescent state.
382		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
383		 * so we must take a snapshot of the expedited state.
384		 */
385		empty_exp_now = !rcu_preempted_readers_exp(rnp);
386		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
387			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
388							 rnp->gpnum,
389							 0, rnp->qsmask,
390							 rnp->level,
391							 rnp->grplo,
392							 rnp->grphi,
393							 !!rnp->gp_tasks);
394			rcu_report_unblock_qs_rnp(rnp, flags);
395		} else {
396			raw_spin_unlock_irqrestore(&rnp->lock, flags);
397		}
398
399#ifdef CONFIG_RCU_BOOST
400		/* Unboost if we were boosted. */
401		if (drop_boost_mutex) {
402			rt_mutex_unlock(&rnp->boost_mtx);
403			complete(&rnp->boost_completion);
404		}
405#endif /* #ifdef CONFIG_RCU_BOOST */
406
407		/*
408		 * If this was the last task on the expedited lists,
409		 * then we need to report up the rcu_node hierarchy.
410		 */
411		if (!empty_exp && empty_exp_now)
412			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
413	} else {
414		local_irq_restore(flags);
415	}
416}
417
418#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
419
420/*
421 * Dump detailed information for all tasks blocking the current RCU
422 * grace period on the specified rcu_node structure.
423 */
424static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
425{
426	unsigned long flags;
427	struct task_struct *t;
428
429	raw_spin_lock_irqsave(&rnp->lock, flags);
430	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
431		raw_spin_unlock_irqrestore(&rnp->lock, flags);
432		return;
433	}
434	t = list_entry(rnp->gp_tasks,
435		       struct task_struct, rcu_node_entry);
436	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
437		sched_show_task(t);
438	raw_spin_unlock_irqrestore(&rnp->lock, flags);
439}
440
441/*
442 * Dump detailed information for all tasks blocking the current RCU
443 * grace period.
444 */
445static void rcu_print_detail_task_stall(struct rcu_state *rsp)
446{
447	struct rcu_node *rnp = rcu_get_root(rsp);
448
449	rcu_print_detail_task_stall_rnp(rnp);
450	rcu_for_each_leaf_node(rsp, rnp)
451		rcu_print_detail_task_stall_rnp(rnp);
452}
453
454#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
455
456static void rcu_print_detail_task_stall(struct rcu_state *rsp)
457{
458}
459
460#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
461
462#ifdef CONFIG_RCU_CPU_STALL_INFO
463
464static void rcu_print_task_stall_begin(struct rcu_node *rnp)
465{
466	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
467	       rnp->level, rnp->grplo, rnp->grphi);
468}
469
470static void rcu_print_task_stall_end(void)
471{
472	pr_cont("\n");
473}
474
475#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
476
477static void rcu_print_task_stall_begin(struct rcu_node *rnp)
478{
479}
480
481static void rcu_print_task_stall_end(void)
482{
483}
484
485#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
486
487/*
488 * Scan the current list of tasks blocked within RCU read-side critical
489 * sections, printing out the tid of each.
490 */
491static int rcu_print_task_stall(struct rcu_node *rnp)
492{
493	struct task_struct *t;
494	int ndetected = 0;
495
496	if (!rcu_preempt_blocked_readers_cgp(rnp))
497		return 0;
498	rcu_print_task_stall_begin(rnp);
499	t = list_entry(rnp->gp_tasks,
500		       struct task_struct, rcu_node_entry);
501	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
502		pr_cont(" P%d", t->pid);
503		ndetected++;
504	}
505	rcu_print_task_stall_end();
506	return ndetected;
507}
508
509/*
510 * Check that the list of blocked tasks for the newly completed grace
511 * period is in fact empty.  It is a serious bug to complete a grace
512 * period that still has RCU readers blocked!  This function must be
513 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
514 * must be held by the caller.
515 *
516 * Also, if there are blocked tasks on the list, they automatically
517 * block the newly created grace period, so set up ->gp_tasks accordingly.
518 */
519static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
520{
521	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
522	if (!list_empty(&rnp->blkd_tasks))
523		rnp->gp_tasks = rnp->blkd_tasks.next;
524	WARN_ON_ONCE(rnp->qsmask);
525}
526
527#ifdef CONFIG_HOTPLUG_CPU
528
529/*
530 * Handle tasklist migration for case in which all CPUs covered by the
531 * specified rcu_node have gone offline.  Move them up to the root
532 * rcu_node.  The reason for not just moving them to the immediate
533 * parent is to remove the need for rcu_read_unlock_special() to
534 * make more than two attempts to acquire the target rcu_node's lock.
535 * Returns true if there were tasks blocking the current RCU grace
536 * period.
537 *
538 * Returns 1 if there was previously a task blocking the current grace
539 * period on the specified rcu_node structure.
540 *
541 * The caller must hold rnp->lock with irqs disabled.
542 */
543static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
544				     struct rcu_node *rnp,
545				     struct rcu_data *rdp)
546{
547	struct list_head *lp;
548	struct list_head *lp_root;
549	int retval = 0;
550	struct rcu_node *rnp_root = rcu_get_root(rsp);
551	struct task_struct *t;
552
553	if (rnp == rnp_root) {
554		WARN_ONCE(1, "Last CPU thought to be offlined?");
555		return 0;  /* Shouldn't happen: at least one CPU online. */
556	}
557
558	/* If we are on an internal node, complain bitterly. */
559	WARN_ON_ONCE(rnp != rdp->mynode);
560
561	/*
562	 * Move tasks up to root rcu_node.  Don't try to get fancy for
563	 * this corner-case operation -- just put this node's tasks
564	 * at the head of the root node's list, and update the root node's
565	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
566	 * if non-NULL.  This might result in waiting for more tasks than
567	 * absolutely necessary, but this is a good performance/complexity
568	 * tradeoff.
569	 */
570	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
571		retval |= RCU_OFL_TASKS_NORM_GP;
572	if (rcu_preempted_readers_exp(rnp))
573		retval |= RCU_OFL_TASKS_EXP_GP;
574	lp = &rnp->blkd_tasks;
575	lp_root = &rnp_root->blkd_tasks;
576	while (!list_empty(lp)) {
577		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
578		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
579		smp_mb__after_unlock_lock();
580		list_del(&t->rcu_node_entry);
581		t->rcu_blocked_node = rnp_root;
582		list_add(&t->rcu_node_entry, lp_root);
583		if (&t->rcu_node_entry == rnp->gp_tasks)
584			rnp_root->gp_tasks = rnp->gp_tasks;
585		if (&t->rcu_node_entry == rnp->exp_tasks)
586			rnp_root->exp_tasks = rnp->exp_tasks;
587#ifdef CONFIG_RCU_BOOST
588		if (&t->rcu_node_entry == rnp->boost_tasks)
589			rnp_root->boost_tasks = rnp->boost_tasks;
590#endif /* #ifdef CONFIG_RCU_BOOST */
591		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
592	}
593
594	rnp->gp_tasks = NULL;
595	rnp->exp_tasks = NULL;
596#ifdef CONFIG_RCU_BOOST
597	rnp->boost_tasks = NULL;
598	/*
599	 * In case root is being boosted and leaf was not.  Make sure
600	 * that we boost the tasks blocking the current grace period
601	 * in this case.
602	 */
603	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
604	smp_mb__after_unlock_lock();
605	if (rnp_root->boost_tasks != NULL &&
606	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
607	    rnp_root->boost_tasks != rnp_root->exp_tasks)
608		rnp_root->boost_tasks = rnp_root->gp_tasks;
609	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
610#endif /* #ifdef CONFIG_RCU_BOOST */
611
612	return retval;
613}
614
615#endif /* #ifdef CONFIG_HOTPLUG_CPU */
616
617/*
618 * Check for a quiescent state from the current CPU.  When a task blocks,
619 * the task is recorded in the corresponding CPU's rcu_node structure,
620 * which is checked elsewhere.
621 *
622 * Caller must disable hard irqs.
623 */
624static void rcu_preempt_check_callbacks(int cpu)
625{
626	struct task_struct *t = current;
627
628	if (t->rcu_read_lock_nesting == 0) {
629		rcu_preempt_qs();
630		return;
631	}
632	if (t->rcu_read_lock_nesting > 0 &&
633	    per_cpu(rcu_preempt_data, cpu).qs_pending &&
634	    !per_cpu(rcu_preempt_data, cpu).passed_quiesce)
635		t->rcu_read_unlock_special.b.need_qs = true;
636}
637
638#ifdef CONFIG_RCU_BOOST
639
640static void rcu_preempt_do_callbacks(void)
641{
642	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
643}
644
645#endif /* #ifdef CONFIG_RCU_BOOST */
646
647/*
648 * Queue a preemptible-RCU callback for invocation after a grace period.
649 */
650void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
651{
652	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
653}
654EXPORT_SYMBOL_GPL(call_rcu);
655
656/**
657 * synchronize_rcu - wait until a grace period has elapsed.
658 *
659 * Control will return to the caller some time after a full grace
660 * period has elapsed, in other words after all currently executing RCU
661 * read-side critical sections have completed.  Note, however, that
662 * upon return from synchronize_rcu(), the caller might well be executing
663 * concurrently with new RCU read-side critical sections that began while
664 * synchronize_rcu() was waiting.  RCU read-side critical sections are
665 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
666 *
667 * See the description of synchronize_sched() for more detailed information
668 * on memory ordering guarantees.
669 */
670void synchronize_rcu(void)
671{
672	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
673			   !lock_is_held(&rcu_lock_map) &&
674			   !lock_is_held(&rcu_sched_lock_map),
675			   "Illegal synchronize_rcu() in RCU read-side critical section");
676	if (!rcu_scheduler_active)
677		return;
678	if (rcu_expedited)
679		synchronize_rcu_expedited();
680	else
681		wait_rcu_gp(call_rcu);
682}
683EXPORT_SYMBOL_GPL(synchronize_rcu);
684
685static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
686static unsigned long sync_rcu_preempt_exp_count;
687static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
688
689/*
690 * Return non-zero if there are any tasks in RCU read-side critical
691 * sections blocking the current preemptible-RCU expedited grace period.
692 * If there is no preemptible-RCU expedited grace period currently in
693 * progress, returns zero unconditionally.
694 */
695static int rcu_preempted_readers_exp(struct rcu_node *rnp)
696{
697	return rnp->exp_tasks != NULL;
698}
699
700/*
701 * return non-zero if there is no RCU expedited grace period in progress
702 * for the specified rcu_node structure, in other words, if all CPUs and
703 * tasks covered by the specified rcu_node structure have done their bit
704 * for the current expedited grace period.  Works only for preemptible
705 * RCU -- other RCU implementation use other means.
706 *
707 * Caller must hold sync_rcu_preempt_exp_mutex.
708 */
709static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
710{
711	return !rcu_preempted_readers_exp(rnp) &&
712	       ACCESS_ONCE(rnp->expmask) == 0;
713}
714
715/*
716 * Report the exit from RCU read-side critical section for the last task
717 * that queued itself during or before the current expedited preemptible-RCU
718 * grace period.  This event is reported either to the rcu_node structure on
719 * which the task was queued or to one of that rcu_node structure's ancestors,
720 * recursively up the tree.  (Calm down, calm down, we do the recursion
721 * iteratively!)
722 *
723 * Most callers will set the "wake" flag, but the task initiating the
724 * expedited grace period need not wake itself.
725 *
726 * Caller must hold sync_rcu_preempt_exp_mutex.
727 */
728static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
729			       bool wake)
730{
731	unsigned long flags;
732	unsigned long mask;
733
734	raw_spin_lock_irqsave(&rnp->lock, flags);
735	smp_mb__after_unlock_lock();
736	for (;;) {
737		if (!sync_rcu_preempt_exp_done(rnp)) {
738			raw_spin_unlock_irqrestore(&rnp->lock, flags);
739			break;
740		}
741		if (rnp->parent == NULL) {
742			raw_spin_unlock_irqrestore(&rnp->lock, flags);
743			if (wake) {
744				smp_mb(); /* EGP done before wake_up(). */
745				wake_up(&sync_rcu_preempt_exp_wq);
746			}
747			break;
748		}
749		mask = rnp->grpmask;
750		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
751		rnp = rnp->parent;
752		raw_spin_lock(&rnp->lock); /* irqs already disabled */
753		smp_mb__after_unlock_lock();
754		rnp->expmask &= ~mask;
755	}
756}
757
758/*
759 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
760 * grace period for the specified rcu_node structure.  If there are no such
761 * tasks, report it up the rcu_node hierarchy.
762 *
763 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
764 * CPU hotplug operations.
765 */
766static void
767sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
768{
769	unsigned long flags;
770	int must_wait = 0;
771
772	raw_spin_lock_irqsave(&rnp->lock, flags);
773	smp_mb__after_unlock_lock();
774	if (list_empty(&rnp->blkd_tasks)) {
775		raw_spin_unlock_irqrestore(&rnp->lock, flags);
776	} else {
777		rnp->exp_tasks = rnp->blkd_tasks.next;
778		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
779		must_wait = 1;
780	}
781	if (!must_wait)
782		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
783}
784
785/**
786 * synchronize_rcu_expedited - Brute-force RCU grace period
787 *
788 * Wait for an RCU-preempt grace period, but expedite it.  The basic
789 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
790 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
791 * significant time on all CPUs and is unfriendly to real-time workloads,
792 * so is thus not recommended for any sort of common-case code.
793 * In fact, if you are using synchronize_rcu_expedited() in a loop,
794 * please restructure your code to batch your updates, and then Use a
795 * single synchronize_rcu() instead.
796 */
797void synchronize_rcu_expedited(void)
798{
799	unsigned long flags;
800	struct rcu_node *rnp;
801	struct rcu_state *rsp = &rcu_preempt_state;
802	unsigned long snap;
803	int trycount = 0;
804
805	smp_mb(); /* Caller's modifications seen first by other CPUs. */
806	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
807	smp_mb(); /* Above access cannot bleed into critical section. */
808
809	/*
810	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
811	 * operation that finds an rcu_node structure with tasks in the
812	 * process of being boosted will know that all tasks blocking
813	 * this expedited grace period will already be in the process of
814	 * being boosted.  This simplifies the process of moving tasks
815	 * from leaf to root rcu_node structures.
816	 */
817	if (!try_get_online_cpus()) {
818		/* CPU-hotplug operation in flight, fall back to normal GP. */
819		wait_rcu_gp(call_rcu);
820		return;
821	}
822
823	/*
824	 * Acquire lock, falling back to synchronize_rcu() if too many
825	 * lock-acquisition failures.  Of course, if someone does the
826	 * expedited grace period for us, just leave.
827	 */
828	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
829		if (ULONG_CMP_LT(snap,
830		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
831			put_online_cpus();
832			goto mb_ret; /* Others did our work for us. */
833		}
834		if (trycount++ < 10) {
835			udelay(trycount * num_online_cpus());
836		} else {
837			put_online_cpus();
838			wait_rcu_gp(call_rcu);
839			return;
840		}
841	}
842	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
843		put_online_cpus();
844		goto unlock_mb_ret; /* Others did our work for us. */
845	}
846
847	/* force all RCU readers onto ->blkd_tasks lists. */
848	synchronize_sched_expedited();
849
850	/* Initialize ->expmask for all non-leaf rcu_node structures. */
851	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
852		raw_spin_lock_irqsave(&rnp->lock, flags);
853		smp_mb__after_unlock_lock();
854		rnp->expmask = rnp->qsmaskinit;
855		raw_spin_unlock_irqrestore(&rnp->lock, flags);
856	}
857
858	/* Snapshot current state of ->blkd_tasks lists. */
859	rcu_for_each_leaf_node(rsp, rnp)
860		sync_rcu_preempt_exp_init(rsp, rnp);
861	if (NUM_RCU_NODES > 1)
862		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
863
864	put_online_cpus();
865
866	/* Wait for snapshotted ->blkd_tasks lists to drain. */
867	rnp = rcu_get_root(rsp);
868	wait_event(sync_rcu_preempt_exp_wq,
869		   sync_rcu_preempt_exp_done(rnp));
870
871	/* Clean up and exit. */
872	smp_mb(); /* ensure expedited GP seen before counter increment. */
873	ACCESS_ONCE(sync_rcu_preempt_exp_count) =
874					sync_rcu_preempt_exp_count + 1;
875unlock_mb_ret:
876	mutex_unlock(&sync_rcu_preempt_exp_mutex);
877mb_ret:
878	smp_mb(); /* ensure subsequent action seen after grace period. */
879}
880EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
881
882/**
883 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
884 *
885 * Note that this primitive does not necessarily wait for an RCU grace period
886 * to complete.  For example, if there are no RCU callbacks queued anywhere
887 * in the system, then rcu_barrier() is within its rights to return
888 * immediately, without waiting for anything, much less an RCU grace period.
889 */
890void rcu_barrier(void)
891{
892	_rcu_barrier(&rcu_preempt_state);
893}
894EXPORT_SYMBOL_GPL(rcu_barrier);
895
896/*
897 * Initialize preemptible RCU's state structures.
898 */
899static void __init __rcu_init_preempt(void)
900{
901	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
902}
903
904/*
905 * Check for a task exiting while in a preemptible-RCU read-side
906 * critical section, clean up if so.  No need to issue warnings,
907 * as debug_check_no_locks_held() already does this if lockdep
908 * is enabled.
909 */
910void exit_rcu(void)
911{
912	struct task_struct *t = current;
913
914	if (likely(list_empty(&current->rcu_node_entry)))
915		return;
916	t->rcu_read_lock_nesting = 1;
917	barrier();
918	t->rcu_read_unlock_special.b.blocked = true;
919	__rcu_read_unlock();
920}
921
922#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
923
924static struct rcu_state *rcu_state_p = &rcu_sched_state;
925
926/*
927 * Tell them what RCU they are running.
928 */
929static void __init rcu_bootup_announce(void)
930{
931	pr_info("Hierarchical RCU implementation.\n");
932	rcu_bootup_announce_oddness();
933}
934
935/*
936 * Return the number of RCU batches processed thus far for debug & stats.
937 */
938long rcu_batches_completed(void)
939{
940	return rcu_batches_completed_sched();
941}
942EXPORT_SYMBOL_GPL(rcu_batches_completed);
943
944/*
945 * Because preemptible RCU does not exist, we never have to check for
946 * CPUs being in quiescent states.
947 */
948static void rcu_preempt_note_context_switch(int cpu)
949{
950}
951
952/*
953 * Because preemptible RCU does not exist, there are never any preempted
954 * RCU readers.
955 */
956static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
957{
958	return 0;
959}
960
961#ifdef CONFIG_HOTPLUG_CPU
962
963/* Because preemptible RCU does not exist, no quieting of tasks. */
964static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
965	__releases(rnp->lock)
966{
967	raw_spin_unlock_irqrestore(&rnp->lock, flags);
968}
969
970#endif /* #ifdef CONFIG_HOTPLUG_CPU */
971
972/*
973 * Because preemptible RCU does not exist, we never have to check for
974 * tasks blocked within RCU read-side critical sections.
975 */
976static void rcu_print_detail_task_stall(struct rcu_state *rsp)
977{
978}
979
980/*
981 * Because preemptible RCU does not exist, we never have to check for
982 * tasks blocked within RCU read-side critical sections.
983 */
984static int rcu_print_task_stall(struct rcu_node *rnp)
985{
986	return 0;
987}
988
989/*
990 * Because there is no preemptible RCU, there can be no readers blocked,
991 * so there is no need to check for blocked tasks.  So check only for
992 * bogus qsmask values.
993 */
994static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
995{
996	WARN_ON_ONCE(rnp->qsmask);
997}
998
999#ifdef CONFIG_HOTPLUG_CPU
1000
1001/*
1002 * Because preemptible RCU does not exist, it never needs to migrate
1003 * tasks that were blocked within RCU read-side critical sections, and
1004 * such non-existent tasks cannot possibly have been blocking the current
1005 * grace period.
1006 */
1007static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1008				     struct rcu_node *rnp,
1009				     struct rcu_data *rdp)
1010{
1011	return 0;
1012}
1013
1014#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1015
1016/*
1017 * Because preemptible RCU does not exist, it never has any callbacks
1018 * to check.
1019 */
1020static void rcu_preempt_check_callbacks(int cpu)
1021{
1022}
1023
1024/*
1025 * Wait for an rcu-preempt grace period, but make it happen quickly.
1026 * But because preemptible RCU does not exist, map to rcu-sched.
1027 */
1028void synchronize_rcu_expedited(void)
1029{
1030	synchronize_sched_expedited();
1031}
1032EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1033
1034#ifdef CONFIG_HOTPLUG_CPU
1035
1036/*
1037 * Because preemptible RCU does not exist, there is never any need to
1038 * report on tasks preempted in RCU read-side critical sections during
1039 * expedited RCU grace periods.
1040 */
1041static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1042			       bool wake)
1043{
1044}
1045
1046#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1047
1048/*
1049 * Because preemptible RCU does not exist, rcu_barrier() is just
1050 * another name for rcu_barrier_sched().
1051 */
1052void rcu_barrier(void)
1053{
1054	rcu_barrier_sched();
1055}
1056EXPORT_SYMBOL_GPL(rcu_barrier);
1057
1058/*
1059 * Because preemptible RCU does not exist, it need not be initialized.
1060 */
1061static void __init __rcu_init_preempt(void)
1062{
1063}
1064
1065/*
1066 * Because preemptible RCU does not exist, tasks cannot possibly exit
1067 * while in preemptible RCU read-side critical sections.
1068 */
1069void exit_rcu(void)
1070{
1071}
1072
1073#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1074
1075#ifdef CONFIG_RCU_BOOST
1076
1077#include "../locking/rtmutex_common.h"
1078
1079#ifdef CONFIG_RCU_TRACE
1080
1081static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1082{
1083	if (list_empty(&rnp->blkd_tasks))
1084		rnp->n_balk_blkd_tasks++;
1085	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1086		rnp->n_balk_exp_gp_tasks++;
1087	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1088		rnp->n_balk_boost_tasks++;
1089	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1090		rnp->n_balk_notblocked++;
1091	else if (rnp->gp_tasks != NULL &&
1092		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1093		rnp->n_balk_notyet++;
1094	else
1095		rnp->n_balk_nos++;
1096}
1097
1098#else /* #ifdef CONFIG_RCU_TRACE */
1099
1100static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1101{
1102}
1103
1104#endif /* #else #ifdef CONFIG_RCU_TRACE */
1105
1106static void rcu_wake_cond(struct task_struct *t, int status)
1107{
1108	/*
1109	 * If the thread is yielding, only wake it when this
1110	 * is invoked from idle
1111	 */
1112	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1113		wake_up_process(t);
1114}
1115
1116/*
1117 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1118 * or ->boost_tasks, advancing the pointer to the next task in the
1119 * ->blkd_tasks list.
1120 *
1121 * Note that irqs must be enabled: boosting the task can block.
1122 * Returns 1 if there are more tasks needing to be boosted.
1123 */
1124static int rcu_boost(struct rcu_node *rnp)
1125{
1126	unsigned long flags;
1127	struct task_struct *t;
1128	struct list_head *tb;
1129
1130	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1131		return 0;  /* Nothing left to boost. */
1132
1133	raw_spin_lock_irqsave(&rnp->lock, flags);
1134	smp_mb__after_unlock_lock();
1135
1136	/*
1137	 * Recheck under the lock: all tasks in need of boosting
1138	 * might exit their RCU read-side critical sections on their own.
1139	 */
1140	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1141		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1142		return 0;
1143	}
1144
1145	/*
1146	 * Preferentially boost tasks blocking expedited grace periods.
1147	 * This cannot starve the normal grace periods because a second
1148	 * expedited grace period must boost all blocked tasks, including
1149	 * those blocking the pre-existing normal grace period.
1150	 */
1151	if (rnp->exp_tasks != NULL) {
1152		tb = rnp->exp_tasks;
1153		rnp->n_exp_boosts++;
1154	} else {
1155		tb = rnp->boost_tasks;
1156		rnp->n_normal_boosts++;
1157	}
1158	rnp->n_tasks_boosted++;
1159
1160	/*
1161	 * We boost task t by manufacturing an rt_mutex that appears to
1162	 * be held by task t.  We leave a pointer to that rt_mutex where
1163	 * task t can find it, and task t will release the mutex when it
1164	 * exits its outermost RCU read-side critical section.  Then
1165	 * simply acquiring this artificial rt_mutex will boost task
1166	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1167	 *
1168	 * Note that task t must acquire rnp->lock to remove itself from
1169	 * the ->blkd_tasks list, which it will do from exit() if from
1170	 * nowhere else.  We therefore are guaranteed that task t will
1171	 * stay around at least until we drop rnp->lock.  Note that
1172	 * rnp->lock also resolves races between our priority boosting
1173	 * and task t's exiting its outermost RCU read-side critical
1174	 * section.
1175	 */
1176	t = container_of(tb, struct task_struct, rcu_node_entry);
1177	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1178	init_completion(&rnp->boost_completion);
1179	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1180	/* Lock only for side effect: boosts task t's priority. */
1181	rt_mutex_lock(&rnp->boost_mtx);
1182	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1183
1184	/* Wait for boostee to be done w/boost_mtx before reinitializing. */
1185	wait_for_completion(&rnp->boost_completion);
1186
1187	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1188	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1189}
1190
1191/*
1192 * Priority-boosting kthread.  One per leaf rcu_node and one for the
1193 * root rcu_node.
1194 */
1195static int rcu_boost_kthread(void *arg)
1196{
1197	struct rcu_node *rnp = (struct rcu_node *)arg;
1198	int spincnt = 0;
1199	int more2boost;
1200
1201	trace_rcu_utilization(TPS("Start boost kthread@init"));
1202	for (;;) {
1203		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1204		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1205		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1206		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1207		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1208		more2boost = rcu_boost(rnp);
1209		if (more2boost)
1210			spincnt++;
1211		else
1212			spincnt = 0;
1213		if (spincnt > 10) {
1214			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1215			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1216			schedule_timeout_interruptible(2);
1217			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1218			spincnt = 0;
1219		}
1220	}
1221	/* NOTREACHED */
1222	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1223	return 0;
1224}
1225
1226/*
1227 * Check to see if it is time to start boosting RCU readers that are
1228 * blocking the current grace period, and, if so, tell the per-rcu_node
1229 * kthread to start boosting them.  If there is an expedited grace
1230 * period in progress, it is always time to boost.
1231 *
1232 * The caller must hold rnp->lock, which this function releases.
1233 * The ->boost_kthread_task is immortal, so we don't need to worry
1234 * about it going away.
1235 */
1236static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1237	__releases(rnp->lock)
1238{
1239	struct task_struct *t;
1240
1241	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1242		rnp->n_balk_exp_gp_tasks++;
1243		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1244		return;
1245	}
1246	if (rnp->exp_tasks != NULL ||
1247	    (rnp->gp_tasks != NULL &&
1248	     rnp->boost_tasks == NULL &&
1249	     rnp->qsmask == 0 &&
1250	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1251		if (rnp->exp_tasks == NULL)
1252			rnp->boost_tasks = rnp->gp_tasks;
1253		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1254		t = rnp->boost_kthread_task;
1255		if (t)
1256			rcu_wake_cond(t, rnp->boost_kthread_status);
1257	} else {
1258		rcu_initiate_boost_trace(rnp);
1259		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1260	}
1261}
1262
1263/*
1264 * Wake up the per-CPU kthread to invoke RCU callbacks.
1265 */
1266static void invoke_rcu_callbacks_kthread(void)
1267{
1268	unsigned long flags;
1269
1270	local_irq_save(flags);
1271	__this_cpu_write(rcu_cpu_has_work, 1);
1272	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1273	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1274		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1275			      __this_cpu_read(rcu_cpu_kthread_status));
1276	}
1277	local_irq_restore(flags);
1278}
1279
1280/*
1281 * Is the current CPU running the RCU-callbacks kthread?
1282 * Caller must have preemption disabled.
1283 */
1284static bool rcu_is_callbacks_kthread(void)
1285{
1286	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1287}
1288
1289#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1290
1291/*
1292 * Do priority-boost accounting for the start of a new grace period.
1293 */
1294static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1295{
1296	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1297}
1298
1299/*
1300 * Create an RCU-boost kthread for the specified node if one does not
1301 * already exist.  We only create this kthread for preemptible RCU.
1302 * Returns zero if all is well, a negated errno otherwise.
1303 */
1304static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1305						 struct rcu_node *rnp)
1306{
1307	int rnp_index = rnp - &rsp->node[0];
1308	unsigned long flags;
1309	struct sched_param sp;
1310	struct task_struct *t;
1311
1312	if (&rcu_preempt_state != rsp)
1313		return 0;
1314
1315	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1316		return 0;
1317
1318	rsp->boost = 1;
1319	if (rnp->boost_kthread_task != NULL)
1320		return 0;
1321	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1322			   "rcub/%d", rnp_index);
1323	if (IS_ERR(t))
1324		return PTR_ERR(t);
1325	raw_spin_lock_irqsave(&rnp->lock, flags);
1326	smp_mb__after_unlock_lock();
1327	rnp->boost_kthread_task = t;
1328	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1329	sp.sched_priority = RCU_BOOST_PRIO;
1330	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1331	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1332	return 0;
1333}
1334
1335static void rcu_kthread_do_work(void)
1336{
1337	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1338	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1339	rcu_preempt_do_callbacks();
1340}
1341
1342static void rcu_cpu_kthread_setup(unsigned int cpu)
1343{
1344	struct sched_param sp;
1345
1346	sp.sched_priority = RCU_KTHREAD_PRIO;
1347	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1348}
1349
1350static void rcu_cpu_kthread_park(unsigned int cpu)
1351{
1352	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1353}
1354
1355static int rcu_cpu_kthread_should_run(unsigned int cpu)
1356{
1357	return __this_cpu_read(rcu_cpu_has_work);
1358}
1359
1360/*
1361 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1362 * RCU softirq used in flavors and configurations of RCU that do not
1363 * support RCU priority boosting.
1364 */
1365static void rcu_cpu_kthread(unsigned int cpu)
1366{
1367	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1368	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1369	int spincnt;
1370
1371	for (spincnt = 0; spincnt < 10; spincnt++) {
1372		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1373		local_bh_disable();
1374		*statusp = RCU_KTHREAD_RUNNING;
1375		this_cpu_inc(rcu_cpu_kthread_loops);
1376		local_irq_disable();
1377		work = *workp;
1378		*workp = 0;
1379		local_irq_enable();
1380		if (work)
1381			rcu_kthread_do_work();
1382		local_bh_enable();
1383		if (*workp == 0) {
1384			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1385			*statusp = RCU_KTHREAD_WAITING;
1386			return;
1387		}
1388	}
1389	*statusp = RCU_KTHREAD_YIELDING;
1390	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1391	schedule_timeout_interruptible(2);
1392	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1393	*statusp = RCU_KTHREAD_WAITING;
1394}
1395
1396/*
1397 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1398 * served by the rcu_node in question.  The CPU hotplug lock is still
1399 * held, so the value of rnp->qsmaskinit will be stable.
1400 *
1401 * We don't include outgoingcpu in the affinity set, use -1 if there is
1402 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1403 * this function allows the kthread to execute on any CPU.
1404 */
1405static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1406{
1407	struct task_struct *t = rnp->boost_kthread_task;
1408	unsigned long mask = rnp->qsmaskinit;
1409	cpumask_var_t cm;
1410	int cpu;
1411
1412	if (!t)
1413		return;
1414	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1415		return;
1416	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1417		if ((mask & 0x1) && cpu != outgoingcpu)
1418			cpumask_set_cpu(cpu, cm);
1419	if (cpumask_weight(cm) == 0) {
1420		cpumask_setall(cm);
1421		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1422			cpumask_clear_cpu(cpu, cm);
1423		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1424	}
1425	set_cpus_allowed_ptr(t, cm);
1426	free_cpumask_var(cm);
1427}
1428
1429static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1430	.store			= &rcu_cpu_kthread_task,
1431	.thread_should_run	= rcu_cpu_kthread_should_run,
1432	.thread_fn		= rcu_cpu_kthread,
1433	.thread_comm		= "rcuc/%u",
1434	.setup			= rcu_cpu_kthread_setup,
1435	.park			= rcu_cpu_kthread_park,
1436};
1437
1438/*
1439 * Spawn boost kthreads -- called as soon as the scheduler is running.
1440 */
1441static void __init rcu_spawn_boost_kthreads(void)
1442{
1443	struct rcu_node *rnp;
1444	int cpu;
1445
1446	for_each_possible_cpu(cpu)
1447		per_cpu(rcu_cpu_has_work, cpu) = 0;
1448	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1449	rnp = rcu_get_root(rcu_state_p);
1450	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1451	if (NUM_RCU_NODES > 1) {
1452		rcu_for_each_leaf_node(rcu_state_p, rnp)
1453			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1454	}
1455}
1456
1457static void rcu_prepare_kthreads(int cpu)
1458{
1459	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1460	struct rcu_node *rnp = rdp->mynode;
1461
1462	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1463	if (rcu_scheduler_fully_active)
1464		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1465}
1466
1467#else /* #ifdef CONFIG_RCU_BOOST */
1468
1469static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1470	__releases(rnp->lock)
1471{
1472	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1473}
1474
1475static void invoke_rcu_callbacks_kthread(void)
1476{
1477	WARN_ON_ONCE(1);
1478}
1479
1480static bool rcu_is_callbacks_kthread(void)
1481{
1482	return false;
1483}
1484
1485static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1486{
1487}
1488
1489static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1490{
1491}
1492
1493static void __init rcu_spawn_boost_kthreads(void)
1494{
1495}
1496
1497static void rcu_prepare_kthreads(int cpu)
1498{
1499}
1500
1501#endif /* #else #ifdef CONFIG_RCU_BOOST */
1502
1503#if !defined(CONFIG_RCU_FAST_NO_HZ)
1504
1505/*
1506 * Check to see if any future RCU-related work will need to be done
1507 * by the current CPU, even if none need be done immediately, returning
1508 * 1 if so.  This function is part of the RCU implementation; it is -not-
1509 * an exported member of the RCU API.
1510 *
1511 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1512 * any flavor of RCU.
1513 */
1514#ifndef CONFIG_RCU_NOCB_CPU_ALL
1515int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1516{
1517	*delta_jiffies = ULONG_MAX;
1518	return rcu_cpu_has_callbacks(cpu, NULL);
1519}
1520#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1521
1522/*
1523 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1524 * after it.
1525 */
1526static void rcu_cleanup_after_idle(int cpu)
1527{
1528}
1529
1530/*
1531 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1532 * is nothing.
1533 */
1534static void rcu_prepare_for_idle(int cpu)
1535{
1536}
1537
1538/*
1539 * Don't bother keeping a running count of the number of RCU callbacks
1540 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1541 */
1542static void rcu_idle_count_callbacks_posted(void)
1543{
1544}
1545
1546#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1547
1548/*
1549 * This code is invoked when a CPU goes idle, at which point we want
1550 * to have the CPU do everything required for RCU so that it can enter
1551 * the energy-efficient dyntick-idle mode.  This is handled by a
1552 * state machine implemented by rcu_prepare_for_idle() below.
1553 *
1554 * The following three proprocessor symbols control this state machine:
1555 *
1556 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1557 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1558 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1559 *	benchmarkers who might otherwise be tempted to set this to a large
1560 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1561 *	system.  And if you are -that- concerned about energy efficiency,
1562 *	just power the system down and be done with it!
1563 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1564 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1565 *	callbacks pending.  Setting this too high can OOM your system.
1566 *
1567 * The values below work well in practice.  If future workloads require
1568 * adjustment, they can be converted into kernel config parameters, though
1569 * making the state machine smarter might be a better option.
1570 */
1571#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1572#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1573
1574static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1575module_param(rcu_idle_gp_delay, int, 0644);
1576static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1577module_param(rcu_idle_lazy_gp_delay, int, 0644);
1578
1579extern int tick_nohz_active;
1580
1581/*
1582 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1583 * only if it has been awhile since the last time we did so.  Afterwards,
1584 * if there are any callbacks ready for immediate invocation, return true.
1585 */
1586static bool __maybe_unused rcu_try_advance_all_cbs(void)
1587{
1588	bool cbs_ready = false;
1589	struct rcu_data *rdp;
1590	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1591	struct rcu_node *rnp;
1592	struct rcu_state *rsp;
1593
1594	/* Exit early if we advanced recently. */
1595	if (jiffies == rdtp->last_advance_all)
1596		return false;
1597	rdtp->last_advance_all = jiffies;
1598
1599	for_each_rcu_flavor(rsp) {
1600		rdp = this_cpu_ptr(rsp->rda);
1601		rnp = rdp->mynode;
1602
1603		/*
1604		 * Don't bother checking unless a grace period has
1605		 * completed since we last checked and there are
1606		 * callbacks not yet ready to invoke.
1607		 */
1608		if (rdp->completed != rnp->completed &&
1609		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1610			note_gp_changes(rsp, rdp);
1611
1612		if (cpu_has_callbacks_ready_to_invoke(rdp))
1613			cbs_ready = true;
1614	}
1615	return cbs_ready;
1616}
1617
1618/*
1619 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1620 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1621 * caller to set the timeout based on whether or not there are non-lazy
1622 * callbacks.
1623 *
1624 * The caller must have disabled interrupts.
1625 */
1626#ifndef CONFIG_RCU_NOCB_CPU_ALL
1627int rcu_needs_cpu(int cpu, unsigned long *dj)
1628{
1629	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1630
1631	/* Snapshot to detect later posting of non-lazy callback. */
1632	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1633
1634	/* If no callbacks, RCU doesn't need the CPU. */
1635	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1636		*dj = ULONG_MAX;
1637		return 0;
1638	}
1639
1640	/* Attempt to advance callbacks. */
1641	if (rcu_try_advance_all_cbs()) {
1642		/* Some ready to invoke, so initiate later invocation. */
1643		invoke_rcu_core();
1644		return 1;
1645	}
1646	rdtp->last_accelerate = jiffies;
1647
1648	/* Request timer delay depending on laziness, and round. */
1649	if (!rdtp->all_lazy) {
1650		*dj = round_up(rcu_idle_gp_delay + jiffies,
1651			       rcu_idle_gp_delay) - jiffies;
1652	} else {
1653		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1654	}
1655	return 0;
1656}
1657#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1658
1659/*
1660 * Prepare a CPU for idle from an RCU perspective.  The first major task
1661 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1662 * The second major task is to check to see if a non-lazy callback has
1663 * arrived at a CPU that previously had only lazy callbacks.  The third
1664 * major task is to accelerate (that is, assign grace-period numbers to)
1665 * any recently arrived callbacks.
1666 *
1667 * The caller must have disabled interrupts.
1668 */
1669static void rcu_prepare_for_idle(int cpu)
1670{
1671#ifndef CONFIG_RCU_NOCB_CPU_ALL
1672	bool needwake;
1673	struct rcu_data *rdp;
1674	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1675	struct rcu_node *rnp;
1676	struct rcu_state *rsp;
1677	int tne;
1678
1679	/* Handle nohz enablement switches conservatively. */
1680	tne = ACCESS_ONCE(tick_nohz_active);
1681	if (tne != rdtp->tick_nohz_enabled_snap) {
1682		if (rcu_cpu_has_callbacks(cpu, NULL))
1683			invoke_rcu_core(); /* force nohz to see update. */
1684		rdtp->tick_nohz_enabled_snap = tne;
1685		return;
1686	}
1687	if (!tne)
1688		return;
1689
1690	/* If this is a no-CBs CPU, no callbacks, just return. */
1691	if (rcu_is_nocb_cpu(cpu))
1692		return;
1693
1694	/*
1695	 * If a non-lazy callback arrived at a CPU having only lazy
1696	 * callbacks, invoke RCU core for the side-effect of recalculating
1697	 * idle duration on re-entry to idle.
1698	 */
1699	if (rdtp->all_lazy &&
1700	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1701		rdtp->all_lazy = false;
1702		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1703		invoke_rcu_core();
1704		return;
1705	}
1706
1707	/*
1708	 * If we have not yet accelerated this jiffy, accelerate all
1709	 * callbacks on this CPU.
1710	 */
1711	if (rdtp->last_accelerate == jiffies)
1712		return;
1713	rdtp->last_accelerate = jiffies;
1714	for_each_rcu_flavor(rsp) {
1715		rdp = per_cpu_ptr(rsp->rda, cpu);
1716		if (!*rdp->nxttail[RCU_DONE_TAIL])
1717			continue;
1718		rnp = rdp->mynode;
1719		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1720		smp_mb__after_unlock_lock();
1721		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1722		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1723		if (needwake)
1724			rcu_gp_kthread_wake(rsp);
1725	}
1726#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1727}
1728
1729/*
1730 * Clean up for exit from idle.  Attempt to advance callbacks based on
1731 * any grace periods that elapsed while the CPU was idle, and if any
1732 * callbacks are now ready to invoke, initiate invocation.
1733 */
1734static void rcu_cleanup_after_idle(int cpu)
1735{
1736#ifndef CONFIG_RCU_NOCB_CPU_ALL
1737	if (rcu_is_nocb_cpu(cpu))
1738		return;
1739	if (rcu_try_advance_all_cbs())
1740		invoke_rcu_core();
1741#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1742}
1743
1744/*
1745 * Keep a running count of the number of non-lazy callbacks posted
1746 * on this CPU.  This running counter (which is never decremented) allows
1747 * rcu_prepare_for_idle() to detect when something out of the idle loop
1748 * posts a callback, even if an equal number of callbacks are invoked.
1749 * Of course, callbacks should only be posted from within a trace event
1750 * designed to be called from idle or from within RCU_NONIDLE().
1751 */
1752static void rcu_idle_count_callbacks_posted(void)
1753{
1754	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1755}
1756
1757/*
1758 * Data for flushing lazy RCU callbacks at OOM time.
1759 */
1760static atomic_t oom_callback_count;
1761static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1762
1763/*
1764 * RCU OOM callback -- decrement the outstanding count and deliver the
1765 * wake-up if we are the last one.
1766 */
1767static void rcu_oom_callback(struct rcu_head *rhp)
1768{
1769	if (atomic_dec_and_test(&oom_callback_count))
1770		wake_up(&oom_callback_wq);
1771}
1772
1773/*
1774 * Post an rcu_oom_notify callback on the current CPU if it has at
1775 * least one lazy callback.  This will unnecessarily post callbacks
1776 * to CPUs that already have a non-lazy callback at the end of their
1777 * callback list, but this is an infrequent operation, so accept some
1778 * extra overhead to keep things simple.
1779 */
1780static void rcu_oom_notify_cpu(void *unused)
1781{
1782	struct rcu_state *rsp;
1783	struct rcu_data *rdp;
1784
1785	for_each_rcu_flavor(rsp) {
1786		rdp = raw_cpu_ptr(rsp->rda);
1787		if (rdp->qlen_lazy != 0) {
1788			atomic_inc(&oom_callback_count);
1789			rsp->call(&rdp->oom_head, rcu_oom_callback);
1790		}
1791	}
1792}
1793
1794/*
1795 * If low on memory, ensure that each CPU has a non-lazy callback.
1796 * This will wake up CPUs that have only lazy callbacks, in turn
1797 * ensuring that they free up the corresponding memory in a timely manner.
1798 * Because an uncertain amount of memory will be freed in some uncertain
1799 * timeframe, we do not claim to have freed anything.
1800 */
1801static int rcu_oom_notify(struct notifier_block *self,
1802			  unsigned long notused, void *nfreed)
1803{
1804	int cpu;
1805
1806	/* Wait for callbacks from earlier instance to complete. */
1807	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1808	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1809
1810	/*
1811	 * Prevent premature wakeup: ensure that all increments happen
1812	 * before there is a chance of the counter reaching zero.
1813	 */
1814	atomic_set(&oom_callback_count, 1);
1815
1816	get_online_cpus();
1817	for_each_online_cpu(cpu) {
1818		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1819		cond_resched_rcu_qs();
1820	}
1821	put_online_cpus();
1822
1823	/* Unconditionally decrement: no need to wake ourselves up. */
1824	atomic_dec(&oom_callback_count);
1825
1826	return NOTIFY_OK;
1827}
1828
1829static struct notifier_block rcu_oom_nb = {
1830	.notifier_call = rcu_oom_notify
1831};
1832
1833static int __init rcu_register_oom_notifier(void)
1834{
1835	register_oom_notifier(&rcu_oom_nb);
1836	return 0;
1837}
1838early_initcall(rcu_register_oom_notifier);
1839
1840#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1841
1842#ifdef CONFIG_RCU_CPU_STALL_INFO
1843
1844#ifdef CONFIG_RCU_FAST_NO_HZ
1845
1846static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1847{
1848	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1849	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1850
1851	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1852		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1853		ulong2long(nlpd),
1854		rdtp->all_lazy ? 'L' : '.',
1855		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1856}
1857
1858#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1859
1860static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1861{
1862	*cp = '\0';
1863}
1864
1865#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1866
1867/* Initiate the stall-info list. */
1868static void print_cpu_stall_info_begin(void)
1869{
1870	pr_cont("\n");
1871}
1872
1873/*
1874 * Print out diagnostic information for the specified stalled CPU.
1875 *
1876 * If the specified CPU is aware of the current RCU grace period
1877 * (flavor specified by rsp), then print the number of scheduling
1878 * clock interrupts the CPU has taken during the time that it has
1879 * been aware.  Otherwise, print the number of RCU grace periods
1880 * that this CPU is ignorant of, for example, "1" if the CPU was
1881 * aware of the previous grace period.
1882 *
1883 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1884 */
1885static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1886{
1887	char fast_no_hz[72];
1888	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1889	struct rcu_dynticks *rdtp = rdp->dynticks;
1890	char *ticks_title;
1891	unsigned long ticks_value;
1892
1893	if (rsp->gpnum == rdp->gpnum) {
1894		ticks_title = "ticks this GP";
1895		ticks_value = rdp->ticks_this_gp;
1896	} else {
1897		ticks_title = "GPs behind";
1898		ticks_value = rsp->gpnum - rdp->gpnum;
1899	}
1900	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1901	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1902	       cpu, ticks_value, ticks_title,
1903	       atomic_read(&rdtp->dynticks) & 0xfff,
1904	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1905	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1906	       fast_no_hz);
1907}
1908
1909/* Terminate the stall-info list. */
1910static void print_cpu_stall_info_end(void)
1911{
1912	pr_err("\t");
1913}
1914
1915/* Zero ->ticks_this_gp for all flavors of RCU. */
1916static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1917{
1918	rdp->ticks_this_gp = 0;
1919	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1920}
1921
1922/* Increment ->ticks_this_gp for all flavors of RCU. */
1923static void increment_cpu_stall_ticks(void)
1924{
1925	struct rcu_state *rsp;
1926
1927	for_each_rcu_flavor(rsp)
1928		raw_cpu_inc(rsp->rda->ticks_this_gp);
1929}
1930
1931#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1932
1933static void print_cpu_stall_info_begin(void)
1934{
1935	pr_cont(" {");
1936}
1937
1938static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1939{
1940	pr_cont(" %d", cpu);
1941}
1942
1943static void print_cpu_stall_info_end(void)
1944{
1945	pr_cont("} ");
1946}
1947
1948static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1949{
1950}
1951
1952static void increment_cpu_stall_ticks(void)
1953{
1954}
1955
1956#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1957
1958#ifdef CONFIG_RCU_NOCB_CPU
1959
1960/*
1961 * Offload callback processing from the boot-time-specified set of CPUs
1962 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1963 * kthread created that pulls the callbacks from the corresponding CPU,
1964 * waits for a grace period to elapse, and invokes the callbacks.
1965 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1966 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1967 * has been specified, in which case each kthread actively polls its
1968 * CPU.  (Which isn't so great for energy efficiency, but which does
1969 * reduce RCU's overhead on that CPU.)
1970 *
1971 * This is intended to be used in conjunction with Frederic Weisbecker's
1972 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1973 * running CPU-bound user-mode computations.
1974 *
1975 * Offloading of callback processing could also in theory be used as
1976 * an energy-efficiency measure because CPUs with no RCU callbacks
1977 * queued are more aggressive about entering dyntick-idle mode.
1978 */
1979
1980
1981/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1982static int __init rcu_nocb_setup(char *str)
1983{
1984	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1985	have_rcu_nocb_mask = true;
1986	cpulist_parse(str, rcu_nocb_mask);
1987	return 1;
1988}
1989__setup("rcu_nocbs=", rcu_nocb_setup);
1990
1991static int __init parse_rcu_nocb_poll(char *arg)
1992{
1993	rcu_nocb_poll = 1;
1994	return 0;
1995}
1996early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1997
1998/*
1999 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2000 * grace period.
2001 */
2002static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2003{
2004	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2005}
2006
2007/*
2008 * Set the root rcu_node structure's ->need_future_gp field
2009 * based on the sum of those of all rcu_node structures.  This does
2010 * double-count the root rcu_node structure's requests, but this
2011 * is necessary to handle the possibility of a rcu_nocb_kthread()
2012 * having awakened during the time that the rcu_node structures
2013 * were being updated for the end of the previous grace period.
2014 */
2015static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2016{
2017	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2018}
2019
2020static void rcu_init_one_nocb(struct rcu_node *rnp)
2021{
2022	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2023	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2024}
2025
2026#ifndef CONFIG_RCU_NOCB_CPU_ALL
2027/* Is the specified CPU a no-CBs CPU? */
2028bool rcu_is_nocb_cpu(int cpu)
2029{
2030	if (have_rcu_nocb_mask)
2031		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2032	return false;
2033}
2034#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2035
2036/*
2037 * Kick the leader kthread for this NOCB group.
2038 */
2039static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2040{
2041	struct rcu_data *rdp_leader = rdp->nocb_leader;
2042
2043	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2044		return;
2045	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2046		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
2047		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2048		wake_up(&rdp_leader->nocb_wq);
2049	}
2050}
2051
2052/*
2053 * Does the specified CPU need an RCU callback for the specified flavor
2054 * of rcu_barrier()?
2055 */
2056static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2057{
2058	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2059	struct rcu_head *rhp;
2060
2061	/* No-CBs CPUs might have callbacks on any of three lists. */
2062	rhp = ACCESS_ONCE(rdp->nocb_head);
2063	if (!rhp)
2064		rhp = ACCESS_ONCE(rdp->nocb_gp_head);
2065	if (!rhp)
2066		rhp = ACCESS_ONCE(rdp->nocb_follower_head);
2067
2068	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
2069	if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
2070		/* RCU callback enqueued before CPU first came online??? */
2071		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2072		       cpu, rhp->func);
2073		WARN_ON_ONCE(1);
2074	}
2075
2076	return !!rhp;
2077}
2078
2079/*
2080 * Enqueue the specified string of rcu_head structures onto the specified
2081 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2082 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2083 * counts are supplied by rhcount and rhcount_lazy.
2084 *
2085 * If warranted, also wake up the kthread servicing this CPUs queues.
2086 */
2087static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2088				    struct rcu_head *rhp,
2089				    struct rcu_head **rhtp,
2090				    int rhcount, int rhcount_lazy,
2091				    unsigned long flags)
2092{
2093	int len;
2094	struct rcu_head **old_rhpp;
2095	struct task_struct *t;
2096
2097	/* Enqueue the callback on the nocb list and update counts. */
2098	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2099	ACCESS_ONCE(*old_rhpp) = rhp;
2100	atomic_long_add(rhcount, &rdp->nocb_q_count);
2101	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2102	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2103
2104	/* If we are not being polled and there is a kthread, awaken it ... */
2105	t = ACCESS_ONCE(rdp->nocb_kthread);
2106	if (rcu_nocb_poll || !t) {
2107		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2108				    TPS("WakeNotPoll"));
2109		return;
2110	}
2111	len = atomic_long_read(&rdp->nocb_q_count);
2112	if (old_rhpp == &rdp->nocb_head) {
2113		if (!irqs_disabled_flags(flags)) {
2114			/* ... if queue was empty ... */
2115			wake_nocb_leader(rdp, false);
2116			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2117					    TPS("WakeEmpty"));
2118		} else {
2119			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
2120			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121					    TPS("WakeEmptyIsDeferred"));
2122		}
2123		rdp->qlen_last_fqs_check = 0;
2124	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2125		/* ... or if many callbacks queued. */
2126		if (!irqs_disabled_flags(flags)) {
2127			wake_nocb_leader(rdp, true);
2128			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2129					    TPS("WakeOvf"));
2130		} else {
2131			rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2132			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2133					    TPS("WakeOvfIsDeferred"));
2134		}
2135		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2136	} else {
2137		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2138	}
2139	return;
2140}
2141
2142/*
2143 * This is a helper for __call_rcu(), which invokes this when the normal
2144 * callback queue is inoperable.  If this is not a no-CBs CPU, this
2145 * function returns failure back to __call_rcu(), which can complain
2146 * appropriately.
2147 *
2148 * Otherwise, this function queues the callback where the corresponding
2149 * "rcuo" kthread can find it.
2150 */
2151static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2152			    bool lazy, unsigned long flags)
2153{
2154
2155	if (!rcu_is_nocb_cpu(rdp->cpu))
2156		return false;
2157	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2158	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2159		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2160					 (unsigned long)rhp->func,
2161					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2162					 -atomic_long_read(&rdp->nocb_q_count));
2163	else
2164		trace_rcu_callback(rdp->rsp->name, rhp,
2165				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2166				   -atomic_long_read(&rdp->nocb_q_count));
2167
2168	/*
2169	 * If called from an extended quiescent state with interrupts
2170	 * disabled, invoke the RCU core in order to allow the idle-entry
2171	 * deferred-wakeup check to function.
2172	 */
2173	if (irqs_disabled_flags(flags) &&
2174	    !rcu_is_watching() &&
2175	    cpu_online(smp_processor_id()))
2176		invoke_rcu_core();
2177
2178	return true;
2179}
2180
2181/*
2182 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2183 * not a no-CBs CPU.
2184 */
2185static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2186						     struct rcu_data *rdp,
2187						     unsigned long flags)
2188{
2189	long ql = rsp->qlen;
2190	long qll = rsp->qlen_lazy;
2191
2192	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2193	if (!rcu_is_nocb_cpu(smp_processor_id()))
2194		return false;
2195	rsp->qlen = 0;
2196	rsp->qlen_lazy = 0;
2197
2198	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2199	if (rsp->orphan_donelist != NULL) {
2200		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2201					rsp->orphan_donetail, ql, qll, flags);
2202		ql = qll = 0;
2203		rsp->orphan_donelist = NULL;
2204		rsp->orphan_donetail = &rsp->orphan_donelist;
2205	}
2206	if (rsp->orphan_nxtlist != NULL) {
2207		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2208					rsp->orphan_nxttail, ql, qll, flags);
2209		ql = qll = 0;
2210		rsp->orphan_nxtlist = NULL;
2211		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2212	}
2213	return true;
2214}
2215
2216/*
2217 * If necessary, kick off a new grace period, and either way wait
2218 * for a subsequent grace period to complete.
2219 */
2220static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2221{
2222	unsigned long c;
2223	bool d;
2224	unsigned long flags;
2225	bool needwake;
2226	struct rcu_node *rnp = rdp->mynode;
2227
2228	raw_spin_lock_irqsave(&rnp->lock, flags);
2229	smp_mb__after_unlock_lock();
2230	needwake = rcu_start_future_gp(rnp, rdp, &c);
2231	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2232	if (needwake)
2233		rcu_gp_kthread_wake(rdp->rsp);
2234
2235	/*
2236	 * Wait for the grace period.  Do so interruptibly to avoid messing
2237	 * up the load average.
2238	 */
2239	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2240	for (;;) {
2241		wait_event_interruptible(
2242			rnp->nocb_gp_wq[c & 0x1],
2243			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2244		if (likely(d))
2245			break;
2246		WARN_ON(signal_pending(current));
2247		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2248	}
2249	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2250	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2251}
2252
2253/*
2254 * Leaders come here to wait for additional callbacks to show up.
2255 * This function does not return until callbacks appear.
2256 */
2257static void nocb_leader_wait(struct rcu_data *my_rdp)
2258{
2259	bool firsttime = true;
2260	bool gotcbs;
2261	struct rcu_data *rdp;
2262	struct rcu_head **tail;
2263
2264wait_again:
2265
2266	/* Wait for callbacks to appear. */
2267	if (!rcu_nocb_poll) {
2268		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2269		wait_event_interruptible(my_rdp->nocb_wq,
2270				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2271		/* Memory barrier handled by smp_mb() calls below and repoll. */
2272	} else if (firsttime) {
2273		firsttime = false; /* Don't drown trace log with "Poll"! */
2274		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2275	}
2276
2277	/*
2278	 * Each pass through the following loop checks a follower for CBs.
2279	 * We are our own first follower.  Any CBs found are moved to
2280	 * nocb_gp_head, where they await a grace period.
2281	 */
2282	gotcbs = false;
2283	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2284		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2285		if (!rdp->nocb_gp_head)
2286			continue;  /* No CBs here, try next follower. */
2287
2288		/* Move callbacks to wait-for-GP list, which is empty. */
2289		ACCESS_ONCE(rdp->nocb_head) = NULL;
2290		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2291		rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2292		rdp->nocb_gp_count_lazy =
2293			atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2294		gotcbs = true;
2295	}
2296
2297	/*
2298	 * If there were no callbacks, sleep a bit, rescan after a
2299	 * memory barrier, and go retry.
2300	 */
2301	if (unlikely(!gotcbs)) {
2302		if (!rcu_nocb_poll)
2303			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2304					    "WokeEmpty");
2305		WARN_ON(signal_pending(current));
2306		schedule_timeout_interruptible(1);
2307
2308		/* Rescan in case we were a victim of memory ordering. */
2309		my_rdp->nocb_leader_sleep = true;
2310		smp_mb();  /* Ensure _sleep true before scan. */
2311		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2312			if (ACCESS_ONCE(rdp->nocb_head)) {
2313				/* Found CB, so short-circuit next wait. */
2314				my_rdp->nocb_leader_sleep = false;
2315				break;
2316			}
2317		goto wait_again;
2318	}
2319
2320	/* Wait for one grace period. */
2321	rcu_nocb_wait_gp(my_rdp);
2322
2323	/*
2324	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2325	 * We set it now, but recheck for new callbacks while
2326	 * traversing our follower list.
2327	 */
2328	my_rdp->nocb_leader_sleep = true;
2329	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2330
2331	/* Each pass through the following loop wakes a follower, if needed. */
2332	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2333		if (ACCESS_ONCE(rdp->nocb_head))
2334			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2335		if (!rdp->nocb_gp_head)
2336			continue; /* No CBs, so no need to wake follower. */
2337
2338		/* Append callbacks to follower's "done" list. */
2339		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2340		*tail = rdp->nocb_gp_head;
2341		atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2342		atomic_long_add(rdp->nocb_gp_count_lazy,
2343				&rdp->nocb_follower_count_lazy);
2344		smp_mb__after_atomic(); /* Store *tail before wakeup. */
2345		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2346			/*
2347			 * List was empty, wake up the follower.
2348			 * Memory barriers supplied by atomic_long_add().
2349			 */
2350			wake_up(&rdp->nocb_wq);
2351		}
2352	}
2353
2354	/* If we (the leader) don't have CBs, go wait some more. */
2355	if (!my_rdp->nocb_follower_head)
2356		goto wait_again;
2357}
2358
2359/*
2360 * Followers come here to wait for additional callbacks to show up.
2361 * This function does not return until callbacks appear.
2362 */
2363static void nocb_follower_wait(struct rcu_data *rdp)
2364{
2365	bool firsttime = true;
2366
2367	for (;;) {
2368		if (!rcu_nocb_poll) {
2369			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2370					    "FollowerSleep");
2371			wait_event_interruptible(rdp->nocb_wq,
2372						 ACCESS_ONCE(rdp->nocb_follower_head));
2373		} else if (firsttime) {
2374			/* Don't drown trace log with "Poll"! */
2375			firsttime = false;
2376			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2377		}
2378		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2379			/* ^^^ Ensure CB invocation follows _head test. */
2380			return;
2381		}
2382		if (!rcu_nocb_poll)
2383			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2384					    "WokeEmpty");
2385		WARN_ON(signal_pending(current));
2386		schedule_timeout_interruptible(1);
2387	}
2388}
2389
2390/*
2391 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2392 * callbacks queued by the corresponding no-CBs CPU, however, there is
2393 * an optional leader-follower relationship so that the grace-period
2394 * kthreads don't have to do quite so many wakeups.
2395 */
2396static int rcu_nocb_kthread(void *arg)
2397{
2398	int c, cl;
2399	struct rcu_head *list;
2400	struct rcu_head *next;
2401	struct rcu_head **tail;
2402	struct rcu_data *rdp = arg;
2403
2404	/* Each pass through this loop invokes one batch of callbacks */
2405	for (;;) {
2406		/* Wait for callbacks. */
2407		if (rdp->nocb_leader == rdp)
2408			nocb_leader_wait(rdp);
2409		else
2410			nocb_follower_wait(rdp);
2411
2412		/* Pull the ready-to-invoke callbacks onto local list. */
2413		list = ACCESS_ONCE(rdp->nocb_follower_head);
2414		BUG_ON(!list);
2415		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2416		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2417		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2418		c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2419		cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2420		rdp->nocb_p_count += c;
2421		rdp->nocb_p_count_lazy += cl;
2422
2423		/* Each pass through the following loop invokes a callback. */
2424		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2425		c = cl = 0;
2426		while (list) {
2427			next = list->next;
2428			/* Wait for enqueuing to complete, if needed. */
2429			while (next == NULL && &list->next != tail) {
2430				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2431						    TPS("WaitQueue"));
2432				schedule_timeout_interruptible(1);
2433				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2434						    TPS("WokeQueue"));
2435				next = list->next;
2436			}
2437			debug_rcu_head_unqueue(list);
2438			local_bh_disable();
2439			if (__rcu_reclaim(rdp->rsp->name, list))
2440				cl++;
2441			c++;
2442			local_bh_enable();
2443			list = next;
2444		}
2445		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2446		ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2447		ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2448						rdp->nocb_p_count_lazy - cl;
2449		rdp->n_nocbs_invoked += c;
2450	}
2451	return 0;
2452}
2453
2454/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2455static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2456{
2457	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2458}
2459
2460/* Do a deferred wakeup of rcu_nocb_kthread(). */
2461static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2462{
2463	int ndw;
2464
2465	if (!rcu_nocb_need_deferred_wakeup(rdp))
2466		return;
2467	ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2468	ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2469	wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2470	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2471}
2472
2473void __init rcu_init_nohz(void)
2474{
2475	int cpu;
2476	bool need_rcu_nocb_mask = true;
2477	struct rcu_state *rsp;
2478
2479#ifdef CONFIG_RCU_NOCB_CPU_NONE
2480	need_rcu_nocb_mask = false;
2481#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2482
2483#if defined(CONFIG_NO_HZ_FULL)
2484	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2485		need_rcu_nocb_mask = true;
2486#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2487
2488	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2489		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2490			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2491			return;
2492		}
2493		have_rcu_nocb_mask = true;
2494	}
2495	if (!have_rcu_nocb_mask)
2496		return;
2497
2498#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2499	pr_info("\tOffload RCU callbacks from CPU 0\n");
2500	cpumask_set_cpu(0, rcu_nocb_mask);
2501#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2502#ifdef CONFIG_RCU_NOCB_CPU_ALL
2503	pr_info("\tOffload RCU callbacks from all CPUs\n");
2504	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2505#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2506#if defined(CONFIG_NO_HZ_FULL)
2507	if (tick_nohz_full_running)
2508		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2509#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2510
2511	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2512		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2513		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2514			    rcu_nocb_mask);
2515	}
2516	cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2517	pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2518	if (rcu_nocb_poll)
2519		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2520
2521	for_each_rcu_flavor(rsp) {
2522		for_each_cpu(cpu, rcu_nocb_mask) {
2523			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2524
2525			/*
2526			 * If there are early callbacks, they will need
2527			 * to be moved to the nocb lists.
2528			 */
2529			WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2530				     &rdp->nxtlist &&
2531				     rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2532			init_nocb_callback_list(rdp);
2533		}
2534		rcu_organize_nocb_kthreads(rsp);
2535	}
2536}
2537
2538/* Initialize per-rcu_data variables for no-CBs CPUs. */
2539static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2540{
2541	rdp->nocb_tail = &rdp->nocb_head;
2542	init_waitqueue_head(&rdp->nocb_wq);
2543	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2544}
2545
2546/*
2547 * If the specified CPU is a no-CBs CPU that does not already have its
2548 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2549 * brought online out of order, this can require re-organizing the
2550 * leader-follower relationships.
2551 */
2552static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2553{
2554	struct rcu_data *rdp;
2555	struct rcu_data *rdp_last;
2556	struct rcu_data *rdp_old_leader;
2557	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2558	struct task_struct *t;
2559
2560	/*
2561	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2562	 * then nothing to do.
2563	 */
2564	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2565		return;
2566
2567	/* If we didn't spawn the leader first, reorganize! */
2568	rdp_old_leader = rdp_spawn->nocb_leader;
2569	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2570		rdp_last = NULL;
2571		rdp = rdp_old_leader;
2572		do {
2573			rdp->nocb_leader = rdp_spawn;
2574			if (rdp_last && rdp != rdp_spawn)
2575				rdp_last->nocb_next_follower = rdp;
2576			rdp_last = rdp;
2577			rdp = rdp->nocb_next_follower;
2578			rdp_last->nocb_next_follower = NULL;
2579		} while (rdp);
2580		rdp_spawn->nocb_next_follower = rdp_old_leader;
2581	}
2582
2583	/* Spawn the kthread for this CPU and RCU flavor. */
2584	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2585			"rcuo%c/%d", rsp->abbr, cpu);
2586	BUG_ON(IS_ERR(t));
2587	ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2588}
2589
2590/*
2591 * If the specified CPU is a no-CBs CPU that does not already have its
2592 * rcuo kthreads, spawn them.
2593 */
2594static void rcu_spawn_all_nocb_kthreads(int cpu)
2595{
2596	struct rcu_state *rsp;
2597
2598	if (rcu_scheduler_fully_active)
2599		for_each_rcu_flavor(rsp)
2600			rcu_spawn_one_nocb_kthread(rsp, cpu);
2601}
2602
2603/*
2604 * Once the scheduler is running, spawn rcuo kthreads for all online
2605 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2606 * non-boot CPUs come online -- if this changes, we will need to add
2607 * some mutual exclusion.
2608 */
2609static void __init rcu_spawn_nocb_kthreads(void)
2610{
2611	int cpu;
2612
2613	for_each_online_cpu(cpu)
2614		rcu_spawn_all_nocb_kthreads(cpu);
2615}
2616
2617/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2618static int rcu_nocb_leader_stride = -1;
2619module_param(rcu_nocb_leader_stride, int, 0444);
2620
2621/*
2622 * Initialize leader-follower relationships for all no-CBs CPU.
2623 */
2624static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2625{
2626	int cpu;
2627	int ls = rcu_nocb_leader_stride;
2628	int nl = 0;  /* Next leader. */
2629	struct rcu_data *rdp;
2630	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2631	struct rcu_data *rdp_prev = NULL;
2632
2633	if (!have_rcu_nocb_mask)
2634		return;
2635	if (ls == -1) {
2636		ls = int_sqrt(nr_cpu_ids);
2637		rcu_nocb_leader_stride = ls;
2638	}
2639
2640	/*
2641	 * Each pass through this loop sets up one rcu_data structure and
2642	 * spawns one rcu_nocb_kthread().
2643	 */
2644	for_each_cpu(cpu, rcu_nocb_mask) {
2645		rdp = per_cpu_ptr(rsp->rda, cpu);
2646		if (rdp->cpu >= nl) {
2647			/* New leader, set up for followers & next leader. */
2648			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2649			rdp->nocb_leader = rdp;
2650			rdp_leader = rdp;
2651		} else {
2652			/* Another follower, link to previous leader. */
2653			rdp->nocb_leader = rdp_leader;
2654			rdp_prev->nocb_next_follower = rdp;
2655		}
2656		rdp_prev = rdp;
2657	}
2658}
2659
2660/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2661static bool init_nocb_callback_list(struct rcu_data *rdp)
2662{
2663	if (!rcu_is_nocb_cpu(rdp->cpu))
2664		return false;
2665
2666	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2667	return true;
2668}
2669
2670#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2671
2672static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2673{
2674	WARN_ON_ONCE(1); /* Should be dead code. */
2675	return false;
2676}
2677
2678static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2679{
2680}
2681
2682static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2683{
2684}
2685
2686static void rcu_init_one_nocb(struct rcu_node *rnp)
2687{
2688}
2689
2690static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2691			    bool lazy, unsigned long flags)
2692{
2693	return false;
2694}
2695
2696static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2697						     struct rcu_data *rdp,
2698						     unsigned long flags)
2699{
2700	return false;
2701}
2702
2703static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2704{
2705}
2706
2707static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2708{
2709	return false;
2710}
2711
2712static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2713{
2714}
2715
2716static void rcu_spawn_all_nocb_kthreads(int cpu)
2717{
2718}
2719
2720static void __init rcu_spawn_nocb_kthreads(void)
2721{
2722}
2723
2724static bool init_nocb_callback_list(struct rcu_data *rdp)
2725{
2726	return false;
2727}
2728
2729#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2730
2731/*
2732 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2733 * arbitrarily long period of time with the scheduling-clock tick turned
2734 * off.  RCU will be paying attention to this CPU because it is in the
2735 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2736 * machine because the scheduling-clock tick has been disabled.  Therefore,
2737 * if an adaptive-ticks CPU is failing to respond to the current grace
2738 * period and has not be idle from an RCU perspective, kick it.
2739 */
2740static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2741{
2742#ifdef CONFIG_NO_HZ_FULL
2743	if (tick_nohz_full_cpu(cpu))
2744		smp_send_reschedule(cpu);
2745#endif /* #ifdef CONFIG_NO_HZ_FULL */
2746}
2747
2748
2749#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2750
2751static int full_sysidle_state;		/* Current system-idle state. */
2752#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2753#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2754#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2755#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2756#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2757
2758/*
2759 * Invoked to note exit from irq or task transition to idle.  Note that
2760 * usermode execution does -not- count as idle here!  After all, we want
2761 * to detect full-system idle states, not RCU quiescent states and grace
2762 * periods.  The caller must have disabled interrupts.
2763 */
2764static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2765{
2766	unsigned long j;
2767
2768	/* If there are no nohz_full= CPUs, no need to track this. */
2769	if (!tick_nohz_full_enabled())
2770		return;
2771
2772	/* Adjust nesting, check for fully idle. */
2773	if (irq) {
2774		rdtp->dynticks_idle_nesting--;
2775		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2776		if (rdtp->dynticks_idle_nesting != 0)
2777			return;  /* Still not fully idle. */
2778	} else {
2779		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2780		    DYNTICK_TASK_NEST_VALUE) {
2781			rdtp->dynticks_idle_nesting = 0;
2782		} else {
2783			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2784			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2785			return;  /* Still not fully idle. */
2786		}
2787	}
2788
2789	/* Record start of fully idle period. */
2790	j = jiffies;
2791	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2792	smp_mb__before_atomic();
2793	atomic_inc(&rdtp->dynticks_idle);
2794	smp_mb__after_atomic();
2795	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2796}
2797
2798/*
2799 * Unconditionally force exit from full system-idle state.  This is
2800 * invoked when a normal CPU exits idle, but must be called separately
2801 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2802 * is that the timekeeping CPU is permitted to take scheduling-clock
2803 * interrupts while the system is in system-idle state, and of course
2804 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2805 * interrupt from any other type of interrupt.
2806 */
2807void rcu_sysidle_force_exit(void)
2808{
2809	int oldstate = ACCESS_ONCE(full_sysidle_state);
2810	int newoldstate;
2811
2812	/*
2813	 * Each pass through the following loop attempts to exit full
2814	 * system-idle state.  If contention proves to be a problem,
2815	 * a trylock-based contention tree could be used here.
2816	 */
2817	while (oldstate > RCU_SYSIDLE_SHORT) {
2818		newoldstate = cmpxchg(&full_sysidle_state,
2819				      oldstate, RCU_SYSIDLE_NOT);
2820		if (oldstate == newoldstate &&
2821		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2822			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2823			return; /* We cleared it, done! */
2824		}
2825		oldstate = newoldstate;
2826	}
2827	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2828}
2829
2830/*
2831 * Invoked to note entry to irq or task transition from idle.  Note that
2832 * usermode execution does -not- count as idle here!  The caller must
2833 * have disabled interrupts.
2834 */
2835static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2836{
2837	/* If there are no nohz_full= CPUs, no need to track this. */
2838	if (!tick_nohz_full_enabled())
2839		return;
2840
2841	/* Adjust nesting, check for already non-idle. */
2842	if (irq) {
2843		rdtp->dynticks_idle_nesting++;
2844		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2845		if (rdtp->dynticks_idle_nesting != 1)
2846			return; /* Already non-idle. */
2847	} else {
2848		/*
2849		 * Allow for irq misnesting.  Yes, it really is possible
2850		 * to enter an irq handler then never leave it, and maybe
2851		 * also vice versa.  Handle both possibilities.
2852		 */
2853		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2854			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2855			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2856			return; /* Already non-idle. */
2857		} else {
2858			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2859		}
2860	}
2861
2862	/* Record end of idle period. */
2863	smp_mb__before_atomic();
2864	atomic_inc(&rdtp->dynticks_idle);
2865	smp_mb__after_atomic();
2866	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2867
2868	/*
2869	 * If we are the timekeeping CPU, we are permitted to be non-idle
2870	 * during a system-idle state.  This must be the case, because
2871	 * the timekeeping CPU has to take scheduling-clock interrupts
2872	 * during the time that the system is transitioning to full
2873	 * system-idle state.  This means that the timekeeping CPU must
2874	 * invoke rcu_sysidle_force_exit() directly if it does anything
2875	 * more than take a scheduling-clock interrupt.
2876	 */
2877	if (smp_processor_id() == tick_do_timer_cpu)
2878		return;
2879
2880	/* Update system-idle state: We are clearly no longer fully idle! */
2881	rcu_sysidle_force_exit();
2882}
2883
2884/*
2885 * Check to see if the current CPU is idle.  Note that usermode execution
2886 * does not count as idle.  The caller must have disabled interrupts.
2887 */
2888static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2889				  unsigned long *maxj)
2890{
2891	int cur;
2892	unsigned long j;
2893	struct rcu_dynticks *rdtp = rdp->dynticks;
2894
2895	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2896	if (!tick_nohz_full_enabled())
2897		return;
2898
2899	/*
2900	 * If some other CPU has already reported non-idle, if this is
2901	 * not the flavor of RCU that tracks sysidle state, or if this
2902	 * is an offline or the timekeeping CPU, nothing to do.
2903	 */
2904	if (!*isidle || rdp->rsp != rcu_state_p ||
2905	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2906		return;
2907	if (rcu_gp_in_progress(rdp->rsp))
2908		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2909
2910	/* Pick up current idle and NMI-nesting counter and check. */
2911	cur = atomic_read(&rdtp->dynticks_idle);
2912	if (cur & 0x1) {
2913		*isidle = false; /* We are not idle! */
2914		return;
2915	}
2916	smp_mb(); /* Read counters before timestamps. */
2917
2918	/* Pick up timestamps. */
2919	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2920	/* If this CPU entered idle more recently, update maxj timestamp. */
2921	if (ULONG_CMP_LT(*maxj, j))
2922		*maxj = j;
2923}
2924
2925/*
2926 * Is this the flavor of RCU that is handling full-system idle?
2927 */
2928static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2929{
2930	return rsp == rcu_state_p;
2931}
2932
2933/*
2934 * Return a delay in jiffies based on the number of CPUs, rcu_node
2935 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2936 * systems more time to transition to full-idle state in order to
2937 * avoid the cache thrashing that otherwise occur on the state variable.
2938 * Really small systems (less than a couple of tens of CPUs) should
2939 * instead use a single global atomically incremented counter, and later
2940 * versions of this will automatically reconfigure themselves accordingly.
2941 */
2942static unsigned long rcu_sysidle_delay(void)
2943{
2944	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2945		return 0;
2946	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2947}
2948
2949/*
2950 * Advance the full-system-idle state.  This is invoked when all of
2951 * the non-timekeeping CPUs are idle.
2952 */
2953static void rcu_sysidle(unsigned long j)
2954{
2955	/* Check the current state. */
2956	switch (ACCESS_ONCE(full_sysidle_state)) {
2957	case RCU_SYSIDLE_NOT:
2958
2959		/* First time all are idle, so note a short idle period. */
2960		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2961		break;
2962
2963	case RCU_SYSIDLE_SHORT:
2964
2965		/*
2966		 * Idle for a bit, time to advance to next state?
2967		 * cmpxchg failure means race with non-idle, let them win.
2968		 */
2969		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2970			(void)cmpxchg(&full_sysidle_state,
2971				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2972		break;
2973
2974	case RCU_SYSIDLE_LONG:
2975
2976		/*
2977		 * Do an additional check pass before advancing to full.
2978		 * cmpxchg failure means race with non-idle, let them win.
2979		 */
2980		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2981			(void)cmpxchg(&full_sysidle_state,
2982				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2983		break;
2984
2985	default:
2986		break;
2987	}
2988}
2989
2990/*
2991 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2992 * back to the beginning.
2993 */
2994static void rcu_sysidle_cancel(void)
2995{
2996	smp_mb();
2997	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2998		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2999}
3000
3001/*
3002 * Update the sysidle state based on the results of a force-quiescent-state
3003 * scan of the CPUs' dyntick-idle state.
3004 */
3005static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
3006			       unsigned long maxj, bool gpkt)
3007{
3008	if (rsp != rcu_state_p)
3009		return;  /* Wrong flavor, ignore. */
3010	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
3011		return;  /* Running state machine from timekeeping CPU. */
3012	if (isidle)
3013		rcu_sysidle(maxj);    /* More idle! */
3014	else
3015		rcu_sysidle_cancel(); /* Idle is over. */
3016}
3017
3018/*
3019 * Wrapper for rcu_sysidle_report() when called from the grace-period
3020 * kthread's context.
3021 */
3022static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3023				  unsigned long maxj)
3024{
3025	/* If there are no nohz_full= CPUs, no need to track this. */
3026	if (!tick_nohz_full_enabled())
3027		return;
3028
3029	rcu_sysidle_report(rsp, isidle, maxj, true);
3030}
3031
3032/* Callback and function for forcing an RCU grace period. */
3033struct rcu_sysidle_head {
3034	struct rcu_head rh;
3035	int inuse;
3036};
3037
3038static void rcu_sysidle_cb(struct rcu_head *rhp)
3039{
3040	struct rcu_sysidle_head *rshp;
3041
3042	/*
3043	 * The following memory barrier is needed to replace the
3044	 * memory barriers that would normally be in the memory
3045	 * allocator.
3046	 */
3047	smp_mb();  /* grace period precedes setting inuse. */
3048
3049	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
3050	ACCESS_ONCE(rshp->inuse) = 0;
3051}
3052
3053/*
3054 * Check to see if the system is fully idle, other than the timekeeping CPU.
3055 * The caller must have disabled interrupts.  This is not intended to be
3056 * called unless tick_nohz_full_enabled().
3057 */
3058bool rcu_sys_is_idle(void)
3059{
3060	static struct rcu_sysidle_head rsh;
3061	int rss = ACCESS_ONCE(full_sysidle_state);
3062
3063	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
3064		return false;
3065
3066	/* Handle small-system case by doing a full scan of CPUs. */
3067	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
3068		int oldrss = rss - 1;
3069
3070		/*
3071		 * One pass to advance to each state up to _FULL.
3072		 * Give up if any pass fails to advance the state.
3073		 */
3074		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
3075			int cpu;
3076			bool isidle = true;
3077			unsigned long maxj = jiffies - ULONG_MAX / 4;
3078			struct rcu_data *rdp;
3079
3080			/* Scan all the CPUs looking for nonidle CPUs. */
3081			for_each_possible_cpu(cpu) {
3082				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3083				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
3084				if (!isidle)
3085					break;
3086			}
3087			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
3088			oldrss = rss;
3089			rss = ACCESS_ONCE(full_sysidle_state);
3090		}
3091	}
3092
3093	/* If this is the first observation of an idle period, record it. */
3094	if (rss == RCU_SYSIDLE_FULL) {
3095		rss = cmpxchg(&full_sysidle_state,
3096			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3097		return rss == RCU_SYSIDLE_FULL;
3098	}
3099
3100	smp_mb(); /* ensure rss load happens before later caller actions. */
3101
3102	/* If already fully idle, tell the caller (in case of races). */
3103	if (rss == RCU_SYSIDLE_FULL_NOTED)
3104		return true;
3105
3106	/*
3107	 * If we aren't there yet, and a grace period is not in flight,
3108	 * initiate a grace period.  Either way, tell the caller that
3109	 * we are not there yet.  We use an xchg() rather than an assignment
3110	 * to make up for the memory barriers that would otherwise be
3111	 * provided by the memory allocator.
3112	 */
3113	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3114	    !rcu_gp_in_progress(rcu_state_p) &&
3115	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3116		call_rcu(&rsh.rh, rcu_sysidle_cb);
3117	return false;
3118}
3119
3120/*
3121 * Initialize dynticks sysidle state for CPUs coming online.
3122 */
3123static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3124{
3125	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3126}
3127
3128#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3129
3130static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
3131{
3132}
3133
3134static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
3135{
3136}
3137
3138static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3139				  unsigned long *maxj)
3140{
3141}
3142
3143static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3144{
3145	return false;
3146}
3147
3148static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3149				  unsigned long maxj)
3150{
3151}
3152
3153static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3154{
3155}
3156
3157#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3158
3159/*
3160 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3161 * grace-period kthread will do force_quiescent_state() processing?
3162 * The idea is to avoid waking up RCU core processing on such a
3163 * CPU unless the grace period has extended for too long.
3164 *
3165 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3166 * CONFIG_RCU_NOCB_CPU CPUs.
3167 */
3168static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3169{
3170#ifdef CONFIG_NO_HZ_FULL
3171	if (tick_nohz_full_cpu(smp_processor_id()) &&
3172	    (!rcu_gp_in_progress(rsp) ||
3173	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3174		return 1;
3175#endif /* #ifdef CONFIG_NO_HZ_FULL */
3176	return 0;
3177}
3178
3179/*
3180 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3181 * timekeeping CPU.
3182 */
3183static void rcu_bind_gp_kthread(void)
3184{
3185	int __maybe_unused cpu;
3186
3187	if (!tick_nohz_full_enabled())
3188		return;
3189#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3190	cpu = tick_do_timer_cpu;
3191	if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3192		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3193#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3194	if (!is_housekeeping_cpu(raw_smp_processor_id()))
3195		housekeeping_affine(current);
3196#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3197}
3198
3199/* Record the current task on dyntick-idle entry. */
3200static void rcu_dynticks_task_enter(void)
3201{
3202#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3203	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3204#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3205}
3206
3207/* Record no current task on dyntick-idle exit. */
3208static void rcu_dynticks_task_exit(void)
3209{
3210#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3211	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3212#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3213}
3214