tree_plugin.h revision 176f8f7a52cc6d09d686f0d900abda6942a52fbb
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27#include <linux/delay.h>
28#include <linux/gfp.h>
29#include <linux/oom.h>
30#include <linux/smpboot.h>
31#include "../time/tick-internal.h"
32
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
36#include "../locking/rtmutex_common.h"
37#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38#else
39#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40#endif
41
42#ifdef CONFIG_RCU_NOCB_CPU
43static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
45static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
46static char __initdata nocb_buf[NR_CPUS * 5];
47#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
49/*
50 * Check the RCU kernel configuration parameters and print informative
51 * messages about anything out of the ordinary.  If you like #ifdef, you
52 * will love this function.
53 */
54static void __init rcu_bootup_announce_oddness(void)
55{
56#ifdef CONFIG_RCU_TRACE
57	pr_info("\tRCU debugfs-based tracing is enabled.\n");
58#endif
59#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61	       CONFIG_RCU_FANOUT);
62#endif
63#ifdef CONFIG_RCU_FANOUT_EXACT
64	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65#endif
66#ifdef CONFIG_RCU_FAST_NO_HZ
67	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68#endif
69#ifdef CONFIG_PROVE_RCU
70	pr_info("\tRCU lockdep checking is enabled.\n");
71#endif
72#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73	pr_info("\tRCU torture testing starts during boot.\n");
74#endif
75#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77#endif
78#if defined(CONFIG_RCU_CPU_STALL_INFO)
79	pr_info("\tAdditional per-CPU info printed with stalls.\n");
80#endif
81#if NUM_RCU_LVL_4 != 0
82	pr_info("\tFour-level hierarchy is enabled.\n");
83#endif
84	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86	if (nr_cpu_ids != NR_CPUS)
87		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88#ifdef CONFIG_RCU_NOCB_CPU
89#ifndef CONFIG_RCU_NOCB_CPU_NONE
90	if (!have_rcu_nocb_mask) {
91		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
92		have_rcu_nocb_mask = true;
93	}
94#ifdef CONFIG_RCU_NOCB_CPU_ZERO
95	pr_info("\tOffload RCU callbacks from CPU 0\n");
96	cpumask_set_cpu(0, rcu_nocb_mask);
97#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
98#ifdef CONFIG_RCU_NOCB_CPU_ALL
99	pr_info("\tOffload RCU callbacks from all CPUs\n");
100	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
101#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
102#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
103	if (have_rcu_nocb_mask) {
104		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
105			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
106			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
107				    rcu_nocb_mask);
108		}
109		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
110		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
111		if (rcu_nocb_poll)
112			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
113	}
114#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
115}
116
117#ifdef CONFIG_TREE_PREEMPT_RCU
118
119RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
120static struct rcu_state *rcu_state_p = &rcu_preempt_state;
121
122static int rcu_preempted_readers_exp(struct rcu_node *rnp);
123
124/*
125 * Tell them what RCU they are running.
126 */
127static void __init rcu_bootup_announce(void)
128{
129	pr_info("Preemptible hierarchical RCU implementation.\n");
130	rcu_bootup_announce_oddness();
131}
132
133/*
134 * Return the number of RCU-preempt batches processed thus far
135 * for debug and statistics.
136 */
137long rcu_batches_completed_preempt(void)
138{
139	return rcu_preempt_state.completed;
140}
141EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
142
143/*
144 * Return the number of RCU batches processed thus far for debug & stats.
145 */
146long rcu_batches_completed(void)
147{
148	return rcu_batches_completed_preempt();
149}
150EXPORT_SYMBOL_GPL(rcu_batches_completed);
151
152/*
153 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
154 * that this just means that the task currently running on the CPU is
155 * not in a quiescent state.  There might be any number of tasks blocked
156 * while in an RCU read-side critical section.
157 *
158 * Unlike the other rcu_*_qs() functions, callers to this function
159 * must disable irqs in order to protect the assignment to
160 * ->rcu_read_unlock_special.
161 */
162static void rcu_preempt_qs(int cpu)
163{
164	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
165
166	if (rdp->passed_quiesce == 0)
167		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
168	rdp->passed_quiesce = 1;
169	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
170}
171
172/*
173 * We have entered the scheduler, and the current task might soon be
174 * context-switched away from.  If this task is in an RCU read-side
175 * critical section, we will no longer be able to rely on the CPU to
176 * record that fact, so we enqueue the task on the blkd_tasks list.
177 * The task will dequeue itself when it exits the outermost enclosing
178 * RCU read-side critical section.  Therefore, the current grace period
179 * cannot be permitted to complete until the blkd_tasks list entries
180 * predating the current grace period drain, in other words, until
181 * rnp->gp_tasks becomes NULL.
182 *
183 * Caller must disable preemption.
184 */
185static void rcu_preempt_note_context_switch(int cpu)
186{
187	struct task_struct *t = current;
188	unsigned long flags;
189	struct rcu_data *rdp;
190	struct rcu_node *rnp;
191
192	if (t->rcu_read_lock_nesting > 0 &&
193	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
194
195		/* Possibly blocking in an RCU read-side critical section. */
196		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
197		rnp = rdp->mynode;
198		raw_spin_lock_irqsave(&rnp->lock, flags);
199		smp_mb__after_unlock_lock();
200		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
201		t->rcu_blocked_node = rnp;
202
203		/*
204		 * If this CPU has already checked in, then this task
205		 * will hold up the next grace period rather than the
206		 * current grace period.  Queue the task accordingly.
207		 * If the task is queued for the current grace period
208		 * (i.e., this CPU has not yet passed through a quiescent
209		 * state for the current grace period), then as long
210		 * as that task remains queued, the current grace period
211		 * cannot end.  Note that there is some uncertainty as
212		 * to exactly when the current grace period started.
213		 * We take a conservative approach, which can result
214		 * in unnecessarily waiting on tasks that started very
215		 * slightly after the current grace period began.  C'est
216		 * la vie!!!
217		 *
218		 * But first, note that the current CPU must still be
219		 * on line!
220		 */
221		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
222		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
223		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
224			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
225			rnp->gp_tasks = &t->rcu_node_entry;
226#ifdef CONFIG_RCU_BOOST
227			if (rnp->boost_tasks != NULL)
228				rnp->boost_tasks = rnp->gp_tasks;
229#endif /* #ifdef CONFIG_RCU_BOOST */
230		} else {
231			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
232			if (rnp->qsmask & rdp->grpmask)
233				rnp->gp_tasks = &t->rcu_node_entry;
234		}
235		trace_rcu_preempt_task(rdp->rsp->name,
236				       t->pid,
237				       (rnp->qsmask & rdp->grpmask)
238				       ? rnp->gpnum
239				       : rnp->gpnum + 1);
240		raw_spin_unlock_irqrestore(&rnp->lock, flags);
241	} else if (t->rcu_read_lock_nesting < 0 &&
242		   t->rcu_read_unlock_special) {
243
244		/*
245		 * Complete exit from RCU read-side critical section on
246		 * behalf of preempted instance of __rcu_read_unlock().
247		 */
248		rcu_read_unlock_special(t);
249	}
250
251	/*
252	 * Either we were not in an RCU read-side critical section to
253	 * begin with, or we have now recorded that critical section
254	 * globally.  Either way, we can now note a quiescent state
255	 * for this CPU.  Again, if we were in an RCU read-side critical
256	 * section, and if that critical section was blocking the current
257	 * grace period, then the fact that the task has been enqueued
258	 * means that we continue to block the current grace period.
259	 */
260	local_irq_save(flags);
261	rcu_preempt_qs(cpu);
262	local_irq_restore(flags);
263}
264
265/*
266 * Check for preempted RCU readers blocking the current grace period
267 * for the specified rcu_node structure.  If the caller needs a reliable
268 * answer, it must hold the rcu_node's ->lock.
269 */
270static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
271{
272	return rnp->gp_tasks != NULL;
273}
274
275/*
276 * Record a quiescent state for all tasks that were previously queued
277 * on the specified rcu_node structure and that were blocking the current
278 * RCU grace period.  The caller must hold the specified rnp->lock with
279 * irqs disabled, and this lock is released upon return, but irqs remain
280 * disabled.
281 */
282static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
283	__releases(rnp->lock)
284{
285	unsigned long mask;
286	struct rcu_node *rnp_p;
287
288	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
289		raw_spin_unlock_irqrestore(&rnp->lock, flags);
290		return;  /* Still need more quiescent states! */
291	}
292
293	rnp_p = rnp->parent;
294	if (rnp_p == NULL) {
295		/*
296		 * Either there is only one rcu_node in the tree,
297		 * or tasks were kicked up to root rcu_node due to
298		 * CPUs going offline.
299		 */
300		rcu_report_qs_rsp(&rcu_preempt_state, flags);
301		return;
302	}
303
304	/* Report up the rest of the hierarchy. */
305	mask = rnp->grpmask;
306	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
307	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
308	smp_mb__after_unlock_lock();
309	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
310}
311
312/*
313 * Advance a ->blkd_tasks-list pointer to the next entry, instead
314 * returning NULL if at the end of the list.
315 */
316static struct list_head *rcu_next_node_entry(struct task_struct *t,
317					     struct rcu_node *rnp)
318{
319	struct list_head *np;
320
321	np = t->rcu_node_entry.next;
322	if (np == &rnp->blkd_tasks)
323		np = NULL;
324	return np;
325}
326
327/*
328 * Handle special cases during rcu_read_unlock(), such as needing to
329 * notify RCU core processing or task having blocked during the RCU
330 * read-side critical section.
331 */
332void rcu_read_unlock_special(struct task_struct *t)
333{
334	int empty;
335	int empty_exp;
336	int empty_exp_now;
337	unsigned long flags;
338	struct list_head *np;
339#ifdef CONFIG_RCU_BOOST
340	bool drop_boost_mutex = false;
341#endif /* #ifdef CONFIG_RCU_BOOST */
342	struct rcu_node *rnp;
343	int special;
344
345	/* NMI handlers cannot block and cannot safely manipulate state. */
346	if (in_nmi())
347		return;
348
349	local_irq_save(flags);
350
351	/*
352	 * If RCU core is waiting for this CPU to exit critical section,
353	 * let it know that we have done so.
354	 */
355	special = t->rcu_read_unlock_special;
356	if (special & RCU_READ_UNLOCK_NEED_QS) {
357		rcu_preempt_qs(smp_processor_id());
358		if (!t->rcu_read_unlock_special) {
359			local_irq_restore(flags);
360			return;
361		}
362	}
363
364	/* Hardware IRQ handlers cannot block, complain if they get here. */
365	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
366		local_irq_restore(flags);
367		return;
368	}
369
370	/* Clean up if blocked during RCU read-side critical section. */
371	if (special & RCU_READ_UNLOCK_BLOCKED) {
372		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
373
374		/*
375		 * Remove this task from the list it blocked on.  The
376		 * task can migrate while we acquire the lock, but at
377		 * most one time.  So at most two passes through loop.
378		 */
379		for (;;) {
380			rnp = t->rcu_blocked_node;
381			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
382			smp_mb__after_unlock_lock();
383			if (rnp == t->rcu_blocked_node)
384				break;
385			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
386		}
387		empty = !rcu_preempt_blocked_readers_cgp(rnp);
388		empty_exp = !rcu_preempted_readers_exp(rnp);
389		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
390		np = rcu_next_node_entry(t, rnp);
391		list_del_init(&t->rcu_node_entry);
392		t->rcu_blocked_node = NULL;
393		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
394						rnp->gpnum, t->pid);
395		if (&t->rcu_node_entry == rnp->gp_tasks)
396			rnp->gp_tasks = np;
397		if (&t->rcu_node_entry == rnp->exp_tasks)
398			rnp->exp_tasks = np;
399#ifdef CONFIG_RCU_BOOST
400		if (&t->rcu_node_entry == rnp->boost_tasks)
401			rnp->boost_tasks = np;
402		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
403		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
404#endif /* #ifdef CONFIG_RCU_BOOST */
405
406		/*
407		 * If this was the last task on the current list, and if
408		 * we aren't waiting on any CPUs, report the quiescent state.
409		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
410		 * so we must take a snapshot of the expedited state.
411		 */
412		empty_exp_now = !rcu_preempted_readers_exp(rnp);
413		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
414			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
415							 rnp->gpnum,
416							 0, rnp->qsmask,
417							 rnp->level,
418							 rnp->grplo,
419							 rnp->grphi,
420							 !!rnp->gp_tasks);
421			rcu_report_unblock_qs_rnp(rnp, flags);
422		} else {
423			raw_spin_unlock_irqrestore(&rnp->lock, flags);
424		}
425
426#ifdef CONFIG_RCU_BOOST
427		/* Unboost if we were boosted. */
428		if (drop_boost_mutex) {
429			rt_mutex_unlock(&rnp->boost_mtx);
430			complete(&rnp->boost_completion);
431		}
432#endif /* #ifdef CONFIG_RCU_BOOST */
433
434		/*
435		 * If this was the last task on the expedited lists,
436		 * then we need to report up the rcu_node hierarchy.
437		 */
438		if (!empty_exp && empty_exp_now)
439			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
440	} else {
441		local_irq_restore(flags);
442	}
443}
444
445#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
446
447/*
448 * Dump detailed information for all tasks blocking the current RCU
449 * grace period on the specified rcu_node structure.
450 */
451static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
452{
453	unsigned long flags;
454	struct task_struct *t;
455
456	raw_spin_lock_irqsave(&rnp->lock, flags);
457	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
458		raw_spin_unlock_irqrestore(&rnp->lock, flags);
459		return;
460	}
461	t = list_entry(rnp->gp_tasks,
462		       struct task_struct, rcu_node_entry);
463	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
464		sched_show_task(t);
465	raw_spin_unlock_irqrestore(&rnp->lock, flags);
466}
467
468/*
469 * Dump detailed information for all tasks blocking the current RCU
470 * grace period.
471 */
472static void rcu_print_detail_task_stall(struct rcu_state *rsp)
473{
474	struct rcu_node *rnp = rcu_get_root(rsp);
475
476	rcu_print_detail_task_stall_rnp(rnp);
477	rcu_for_each_leaf_node(rsp, rnp)
478		rcu_print_detail_task_stall_rnp(rnp);
479}
480
481#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
482
483static void rcu_print_detail_task_stall(struct rcu_state *rsp)
484{
485}
486
487#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488
489#ifdef CONFIG_RCU_CPU_STALL_INFO
490
491static void rcu_print_task_stall_begin(struct rcu_node *rnp)
492{
493	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
494	       rnp->level, rnp->grplo, rnp->grphi);
495}
496
497static void rcu_print_task_stall_end(void)
498{
499	pr_cont("\n");
500}
501
502#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
503
504static void rcu_print_task_stall_begin(struct rcu_node *rnp)
505{
506}
507
508static void rcu_print_task_stall_end(void)
509{
510}
511
512#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
513
514/*
515 * Scan the current list of tasks blocked within RCU read-side critical
516 * sections, printing out the tid of each.
517 */
518static int rcu_print_task_stall(struct rcu_node *rnp)
519{
520	struct task_struct *t;
521	int ndetected = 0;
522
523	if (!rcu_preempt_blocked_readers_cgp(rnp))
524		return 0;
525	rcu_print_task_stall_begin(rnp);
526	t = list_entry(rnp->gp_tasks,
527		       struct task_struct, rcu_node_entry);
528	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
529		pr_cont(" P%d", t->pid);
530		ndetected++;
531	}
532	rcu_print_task_stall_end();
533	return ndetected;
534}
535
536/*
537 * Check that the list of blocked tasks for the newly completed grace
538 * period is in fact empty.  It is a serious bug to complete a grace
539 * period that still has RCU readers blocked!  This function must be
540 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
541 * must be held by the caller.
542 *
543 * Also, if there are blocked tasks on the list, they automatically
544 * block the newly created grace period, so set up ->gp_tasks accordingly.
545 */
546static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
547{
548	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
549	if (!list_empty(&rnp->blkd_tasks))
550		rnp->gp_tasks = rnp->blkd_tasks.next;
551	WARN_ON_ONCE(rnp->qsmask);
552}
553
554#ifdef CONFIG_HOTPLUG_CPU
555
556/*
557 * Handle tasklist migration for case in which all CPUs covered by the
558 * specified rcu_node have gone offline.  Move them up to the root
559 * rcu_node.  The reason for not just moving them to the immediate
560 * parent is to remove the need for rcu_read_unlock_special() to
561 * make more than two attempts to acquire the target rcu_node's lock.
562 * Returns true if there were tasks blocking the current RCU grace
563 * period.
564 *
565 * Returns 1 if there was previously a task blocking the current grace
566 * period on the specified rcu_node structure.
567 *
568 * The caller must hold rnp->lock with irqs disabled.
569 */
570static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
571				     struct rcu_node *rnp,
572				     struct rcu_data *rdp)
573{
574	struct list_head *lp;
575	struct list_head *lp_root;
576	int retval = 0;
577	struct rcu_node *rnp_root = rcu_get_root(rsp);
578	struct task_struct *t;
579
580	if (rnp == rnp_root) {
581		WARN_ONCE(1, "Last CPU thought to be offlined?");
582		return 0;  /* Shouldn't happen: at least one CPU online. */
583	}
584
585	/* If we are on an internal node, complain bitterly. */
586	WARN_ON_ONCE(rnp != rdp->mynode);
587
588	/*
589	 * Move tasks up to root rcu_node.  Don't try to get fancy for
590	 * this corner-case operation -- just put this node's tasks
591	 * at the head of the root node's list, and update the root node's
592	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
593	 * if non-NULL.  This might result in waiting for more tasks than
594	 * absolutely necessary, but this is a good performance/complexity
595	 * tradeoff.
596	 */
597	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
598		retval |= RCU_OFL_TASKS_NORM_GP;
599	if (rcu_preempted_readers_exp(rnp))
600		retval |= RCU_OFL_TASKS_EXP_GP;
601	lp = &rnp->blkd_tasks;
602	lp_root = &rnp_root->blkd_tasks;
603	while (!list_empty(lp)) {
604		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
605		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
606		smp_mb__after_unlock_lock();
607		list_del(&t->rcu_node_entry);
608		t->rcu_blocked_node = rnp_root;
609		list_add(&t->rcu_node_entry, lp_root);
610		if (&t->rcu_node_entry == rnp->gp_tasks)
611			rnp_root->gp_tasks = rnp->gp_tasks;
612		if (&t->rcu_node_entry == rnp->exp_tasks)
613			rnp_root->exp_tasks = rnp->exp_tasks;
614#ifdef CONFIG_RCU_BOOST
615		if (&t->rcu_node_entry == rnp->boost_tasks)
616			rnp_root->boost_tasks = rnp->boost_tasks;
617#endif /* #ifdef CONFIG_RCU_BOOST */
618		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
619	}
620
621	rnp->gp_tasks = NULL;
622	rnp->exp_tasks = NULL;
623#ifdef CONFIG_RCU_BOOST
624	rnp->boost_tasks = NULL;
625	/*
626	 * In case root is being boosted and leaf was not.  Make sure
627	 * that we boost the tasks blocking the current grace period
628	 * in this case.
629	 */
630	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
631	smp_mb__after_unlock_lock();
632	if (rnp_root->boost_tasks != NULL &&
633	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
634	    rnp_root->boost_tasks != rnp_root->exp_tasks)
635		rnp_root->boost_tasks = rnp_root->gp_tasks;
636	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637#endif /* #ifdef CONFIG_RCU_BOOST */
638
639	return retval;
640}
641
642#endif /* #ifdef CONFIG_HOTPLUG_CPU */
643
644/*
645 * Check for a quiescent state from the current CPU.  When a task blocks,
646 * the task is recorded in the corresponding CPU's rcu_node structure,
647 * which is checked elsewhere.
648 *
649 * Caller must disable hard irqs.
650 */
651static void rcu_preempt_check_callbacks(int cpu)
652{
653	struct task_struct *t = current;
654
655	if (t->rcu_read_lock_nesting == 0) {
656		rcu_preempt_qs(cpu);
657		return;
658	}
659	if (t->rcu_read_lock_nesting > 0 &&
660	    per_cpu(rcu_preempt_data, cpu).qs_pending)
661		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
662}
663
664#ifdef CONFIG_RCU_BOOST
665
666static void rcu_preempt_do_callbacks(void)
667{
668	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
669}
670
671#endif /* #ifdef CONFIG_RCU_BOOST */
672
673/*
674 * Queue a preemptible-RCU callback for invocation after a grace period.
675 */
676void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
677{
678	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
679}
680EXPORT_SYMBOL_GPL(call_rcu);
681
682/**
683 * synchronize_rcu - wait until a grace period has elapsed.
684 *
685 * Control will return to the caller some time after a full grace
686 * period has elapsed, in other words after all currently executing RCU
687 * read-side critical sections have completed.  Note, however, that
688 * upon return from synchronize_rcu(), the caller might well be executing
689 * concurrently with new RCU read-side critical sections that began while
690 * synchronize_rcu() was waiting.  RCU read-side critical sections are
691 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
692 *
693 * See the description of synchronize_sched() for more detailed information
694 * on memory ordering guarantees.
695 */
696void synchronize_rcu(void)
697{
698	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
699			   !lock_is_held(&rcu_lock_map) &&
700			   !lock_is_held(&rcu_sched_lock_map),
701			   "Illegal synchronize_rcu() in RCU read-side critical section");
702	if (!rcu_scheduler_active)
703		return;
704	if (rcu_expedited)
705		synchronize_rcu_expedited();
706	else
707		wait_rcu_gp(call_rcu);
708}
709EXPORT_SYMBOL_GPL(synchronize_rcu);
710
711static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
712static unsigned long sync_rcu_preempt_exp_count;
713static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
714
715/*
716 * Return non-zero if there are any tasks in RCU read-side critical
717 * sections blocking the current preemptible-RCU expedited grace period.
718 * If there is no preemptible-RCU expedited grace period currently in
719 * progress, returns zero unconditionally.
720 */
721static int rcu_preempted_readers_exp(struct rcu_node *rnp)
722{
723	return rnp->exp_tasks != NULL;
724}
725
726/*
727 * return non-zero if there is no RCU expedited grace period in progress
728 * for the specified rcu_node structure, in other words, if all CPUs and
729 * tasks covered by the specified rcu_node structure have done their bit
730 * for the current expedited grace period.  Works only for preemptible
731 * RCU -- other RCU implementation use other means.
732 *
733 * Caller must hold sync_rcu_preempt_exp_mutex.
734 */
735static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
736{
737	return !rcu_preempted_readers_exp(rnp) &&
738	       ACCESS_ONCE(rnp->expmask) == 0;
739}
740
741/*
742 * Report the exit from RCU read-side critical section for the last task
743 * that queued itself during or before the current expedited preemptible-RCU
744 * grace period.  This event is reported either to the rcu_node structure on
745 * which the task was queued or to one of that rcu_node structure's ancestors,
746 * recursively up the tree.  (Calm down, calm down, we do the recursion
747 * iteratively!)
748 *
749 * Most callers will set the "wake" flag, but the task initiating the
750 * expedited grace period need not wake itself.
751 *
752 * Caller must hold sync_rcu_preempt_exp_mutex.
753 */
754static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
755			       bool wake)
756{
757	unsigned long flags;
758	unsigned long mask;
759
760	raw_spin_lock_irqsave(&rnp->lock, flags);
761	smp_mb__after_unlock_lock();
762	for (;;) {
763		if (!sync_rcu_preempt_exp_done(rnp)) {
764			raw_spin_unlock_irqrestore(&rnp->lock, flags);
765			break;
766		}
767		if (rnp->parent == NULL) {
768			raw_spin_unlock_irqrestore(&rnp->lock, flags);
769			if (wake) {
770				smp_mb(); /* EGP done before wake_up(). */
771				wake_up(&sync_rcu_preempt_exp_wq);
772			}
773			break;
774		}
775		mask = rnp->grpmask;
776		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
777		rnp = rnp->parent;
778		raw_spin_lock(&rnp->lock); /* irqs already disabled */
779		smp_mb__after_unlock_lock();
780		rnp->expmask &= ~mask;
781	}
782}
783
784/*
785 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
786 * grace period for the specified rcu_node structure.  If there are no such
787 * tasks, report it up the rcu_node hierarchy.
788 *
789 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
790 * CPU hotplug operations.
791 */
792static void
793sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
794{
795	unsigned long flags;
796	int must_wait = 0;
797
798	raw_spin_lock_irqsave(&rnp->lock, flags);
799	smp_mb__after_unlock_lock();
800	if (list_empty(&rnp->blkd_tasks)) {
801		raw_spin_unlock_irqrestore(&rnp->lock, flags);
802	} else {
803		rnp->exp_tasks = rnp->blkd_tasks.next;
804		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
805		must_wait = 1;
806	}
807	if (!must_wait)
808		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
809}
810
811/**
812 * synchronize_rcu_expedited - Brute-force RCU grace period
813 *
814 * Wait for an RCU-preempt grace period, but expedite it.  The basic
815 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
816 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
817 * significant time on all CPUs and is unfriendly to real-time workloads,
818 * so is thus not recommended for any sort of common-case code.
819 * In fact, if you are using synchronize_rcu_expedited() in a loop,
820 * please restructure your code to batch your updates, and then Use a
821 * single synchronize_rcu() instead.
822 *
823 * Note that it is illegal to call this function while holding any lock
824 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
825 * to call this function from a CPU-hotplug notifier.  Failing to observe
826 * these restriction will result in deadlock.
827 */
828void synchronize_rcu_expedited(void)
829{
830	unsigned long flags;
831	struct rcu_node *rnp;
832	struct rcu_state *rsp = &rcu_preempt_state;
833	unsigned long snap;
834	int trycount = 0;
835
836	smp_mb(); /* Caller's modifications seen first by other CPUs. */
837	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
838	smp_mb(); /* Above access cannot bleed into critical section. */
839
840	/*
841	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
842	 * operation that finds an rcu_node structure with tasks in the
843	 * process of being boosted will know that all tasks blocking
844	 * this expedited grace period will already be in the process of
845	 * being boosted.  This simplifies the process of moving tasks
846	 * from leaf to root rcu_node structures.
847	 */
848	get_online_cpus();
849
850	/*
851	 * Acquire lock, falling back to synchronize_rcu() if too many
852	 * lock-acquisition failures.  Of course, if someone does the
853	 * expedited grace period for us, just leave.
854	 */
855	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
856		if (ULONG_CMP_LT(snap,
857		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
858			put_online_cpus();
859			goto mb_ret; /* Others did our work for us. */
860		}
861		if (trycount++ < 10) {
862			udelay(trycount * num_online_cpus());
863		} else {
864			put_online_cpus();
865			wait_rcu_gp(call_rcu);
866			return;
867		}
868	}
869	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
870		put_online_cpus();
871		goto unlock_mb_ret; /* Others did our work for us. */
872	}
873
874	/* force all RCU readers onto ->blkd_tasks lists. */
875	synchronize_sched_expedited();
876
877	/* Initialize ->expmask for all non-leaf rcu_node structures. */
878	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
879		raw_spin_lock_irqsave(&rnp->lock, flags);
880		smp_mb__after_unlock_lock();
881		rnp->expmask = rnp->qsmaskinit;
882		raw_spin_unlock_irqrestore(&rnp->lock, flags);
883	}
884
885	/* Snapshot current state of ->blkd_tasks lists. */
886	rcu_for_each_leaf_node(rsp, rnp)
887		sync_rcu_preempt_exp_init(rsp, rnp);
888	if (NUM_RCU_NODES > 1)
889		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
890
891	put_online_cpus();
892
893	/* Wait for snapshotted ->blkd_tasks lists to drain. */
894	rnp = rcu_get_root(rsp);
895	wait_event(sync_rcu_preempt_exp_wq,
896		   sync_rcu_preempt_exp_done(rnp));
897
898	/* Clean up and exit. */
899	smp_mb(); /* ensure expedited GP seen before counter increment. */
900	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
901unlock_mb_ret:
902	mutex_unlock(&sync_rcu_preempt_exp_mutex);
903mb_ret:
904	smp_mb(); /* ensure subsequent action seen after grace period. */
905}
906EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
907
908/**
909 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
910 *
911 * Note that this primitive does not necessarily wait for an RCU grace period
912 * to complete.  For example, if there are no RCU callbacks queued anywhere
913 * in the system, then rcu_barrier() is within its rights to return
914 * immediately, without waiting for anything, much less an RCU grace period.
915 */
916void rcu_barrier(void)
917{
918	_rcu_barrier(&rcu_preempt_state);
919}
920EXPORT_SYMBOL_GPL(rcu_barrier);
921
922/*
923 * Initialize preemptible RCU's state structures.
924 */
925static void __init __rcu_init_preempt(void)
926{
927	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
928}
929
930/*
931 * Check for a task exiting while in a preemptible-RCU read-side
932 * critical section, clean up if so.  No need to issue warnings,
933 * as debug_check_no_locks_held() already does this if lockdep
934 * is enabled.
935 */
936void exit_rcu(void)
937{
938	struct task_struct *t = current;
939
940	if (likely(list_empty(&current->rcu_node_entry)))
941		return;
942	t->rcu_read_lock_nesting = 1;
943	barrier();
944	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
945	__rcu_read_unlock();
946}
947
948#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
949
950static struct rcu_state *rcu_state_p = &rcu_sched_state;
951
952/*
953 * Tell them what RCU they are running.
954 */
955static void __init rcu_bootup_announce(void)
956{
957	pr_info("Hierarchical RCU implementation.\n");
958	rcu_bootup_announce_oddness();
959}
960
961/*
962 * Return the number of RCU batches processed thus far for debug & stats.
963 */
964long rcu_batches_completed(void)
965{
966	return rcu_batches_completed_sched();
967}
968EXPORT_SYMBOL_GPL(rcu_batches_completed);
969
970/*
971 * Because preemptible RCU does not exist, we never have to check for
972 * CPUs being in quiescent states.
973 */
974static void rcu_preempt_note_context_switch(int cpu)
975{
976}
977
978/*
979 * Because preemptible RCU does not exist, there are never any preempted
980 * RCU readers.
981 */
982static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
983{
984	return 0;
985}
986
987#ifdef CONFIG_HOTPLUG_CPU
988
989/* Because preemptible RCU does not exist, no quieting of tasks. */
990static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
991	__releases(rnp->lock)
992{
993	raw_spin_unlock_irqrestore(&rnp->lock, flags);
994}
995
996#endif /* #ifdef CONFIG_HOTPLUG_CPU */
997
998/*
999 * Because preemptible RCU does not exist, we never have to check for
1000 * tasks blocked within RCU read-side critical sections.
1001 */
1002static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1003{
1004}
1005
1006/*
1007 * Because preemptible RCU does not exist, we never have to check for
1008 * tasks blocked within RCU read-side critical sections.
1009 */
1010static int rcu_print_task_stall(struct rcu_node *rnp)
1011{
1012	return 0;
1013}
1014
1015/*
1016 * Because there is no preemptible RCU, there can be no readers blocked,
1017 * so there is no need to check for blocked tasks.  So check only for
1018 * bogus qsmask values.
1019 */
1020static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1021{
1022	WARN_ON_ONCE(rnp->qsmask);
1023}
1024
1025#ifdef CONFIG_HOTPLUG_CPU
1026
1027/*
1028 * Because preemptible RCU does not exist, it never needs to migrate
1029 * tasks that were blocked within RCU read-side critical sections, and
1030 * such non-existent tasks cannot possibly have been blocking the current
1031 * grace period.
1032 */
1033static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1034				     struct rcu_node *rnp,
1035				     struct rcu_data *rdp)
1036{
1037	return 0;
1038}
1039
1040#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1041
1042/*
1043 * Because preemptible RCU does not exist, it never has any callbacks
1044 * to check.
1045 */
1046static void rcu_preempt_check_callbacks(int cpu)
1047{
1048}
1049
1050/*
1051 * Wait for an rcu-preempt grace period, but make it happen quickly.
1052 * But because preemptible RCU does not exist, map to rcu-sched.
1053 */
1054void synchronize_rcu_expedited(void)
1055{
1056	synchronize_sched_expedited();
1057}
1058EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1059
1060#ifdef CONFIG_HOTPLUG_CPU
1061
1062/*
1063 * Because preemptible RCU does not exist, there is never any need to
1064 * report on tasks preempted in RCU read-side critical sections during
1065 * expedited RCU grace periods.
1066 */
1067static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1068			       bool wake)
1069{
1070}
1071
1072#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1073
1074/*
1075 * Because preemptible RCU does not exist, rcu_barrier() is just
1076 * another name for rcu_barrier_sched().
1077 */
1078void rcu_barrier(void)
1079{
1080	rcu_barrier_sched();
1081}
1082EXPORT_SYMBOL_GPL(rcu_barrier);
1083
1084/*
1085 * Because preemptible RCU does not exist, it need not be initialized.
1086 */
1087static void __init __rcu_init_preempt(void)
1088{
1089}
1090
1091/*
1092 * Because preemptible RCU does not exist, tasks cannot possibly exit
1093 * while in preemptible RCU read-side critical sections.
1094 */
1095void exit_rcu(void)
1096{
1097}
1098
1099#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1100
1101#ifdef CONFIG_RCU_BOOST
1102
1103#include "../locking/rtmutex_common.h"
1104
1105#ifdef CONFIG_RCU_TRACE
1106
1107static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1108{
1109	if (list_empty(&rnp->blkd_tasks))
1110		rnp->n_balk_blkd_tasks++;
1111	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1112		rnp->n_balk_exp_gp_tasks++;
1113	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1114		rnp->n_balk_boost_tasks++;
1115	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1116		rnp->n_balk_notblocked++;
1117	else if (rnp->gp_tasks != NULL &&
1118		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1119		rnp->n_balk_notyet++;
1120	else
1121		rnp->n_balk_nos++;
1122}
1123
1124#else /* #ifdef CONFIG_RCU_TRACE */
1125
1126static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1127{
1128}
1129
1130#endif /* #else #ifdef CONFIG_RCU_TRACE */
1131
1132static void rcu_wake_cond(struct task_struct *t, int status)
1133{
1134	/*
1135	 * If the thread is yielding, only wake it when this
1136	 * is invoked from idle
1137	 */
1138	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1139		wake_up_process(t);
1140}
1141
1142/*
1143 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1144 * or ->boost_tasks, advancing the pointer to the next task in the
1145 * ->blkd_tasks list.
1146 *
1147 * Note that irqs must be enabled: boosting the task can block.
1148 * Returns 1 if there are more tasks needing to be boosted.
1149 */
1150static int rcu_boost(struct rcu_node *rnp)
1151{
1152	unsigned long flags;
1153	struct task_struct *t;
1154	struct list_head *tb;
1155
1156	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1157		return 0;  /* Nothing left to boost. */
1158
1159	raw_spin_lock_irqsave(&rnp->lock, flags);
1160	smp_mb__after_unlock_lock();
1161
1162	/*
1163	 * Recheck under the lock: all tasks in need of boosting
1164	 * might exit their RCU read-side critical sections on their own.
1165	 */
1166	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1167		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1168		return 0;
1169	}
1170
1171	/*
1172	 * Preferentially boost tasks blocking expedited grace periods.
1173	 * This cannot starve the normal grace periods because a second
1174	 * expedited grace period must boost all blocked tasks, including
1175	 * those blocking the pre-existing normal grace period.
1176	 */
1177	if (rnp->exp_tasks != NULL) {
1178		tb = rnp->exp_tasks;
1179		rnp->n_exp_boosts++;
1180	} else {
1181		tb = rnp->boost_tasks;
1182		rnp->n_normal_boosts++;
1183	}
1184	rnp->n_tasks_boosted++;
1185
1186	/*
1187	 * We boost task t by manufacturing an rt_mutex that appears to
1188	 * be held by task t.  We leave a pointer to that rt_mutex where
1189	 * task t can find it, and task t will release the mutex when it
1190	 * exits its outermost RCU read-side critical section.  Then
1191	 * simply acquiring this artificial rt_mutex will boost task
1192	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1193	 *
1194	 * Note that task t must acquire rnp->lock to remove itself from
1195	 * the ->blkd_tasks list, which it will do from exit() if from
1196	 * nowhere else.  We therefore are guaranteed that task t will
1197	 * stay around at least until we drop rnp->lock.  Note that
1198	 * rnp->lock also resolves races between our priority boosting
1199	 * and task t's exiting its outermost RCU read-side critical
1200	 * section.
1201	 */
1202	t = container_of(tb, struct task_struct, rcu_node_entry);
1203	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1204	init_completion(&rnp->boost_completion);
1205	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1206	/* Lock only for side effect: boosts task t's priority. */
1207	rt_mutex_lock(&rnp->boost_mtx);
1208	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1209
1210	/* Wait for boostee to be done w/boost_mtx before reinitializing. */
1211	wait_for_completion(&rnp->boost_completion);
1212
1213	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1214	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1215}
1216
1217/*
1218 * Priority-boosting kthread.  One per leaf rcu_node and one for the
1219 * root rcu_node.
1220 */
1221static int rcu_boost_kthread(void *arg)
1222{
1223	struct rcu_node *rnp = (struct rcu_node *)arg;
1224	int spincnt = 0;
1225	int more2boost;
1226
1227	trace_rcu_utilization(TPS("Start boost kthread@init"));
1228	for (;;) {
1229		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1230		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1231		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1232		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1233		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1234		more2boost = rcu_boost(rnp);
1235		if (more2boost)
1236			spincnt++;
1237		else
1238			spincnt = 0;
1239		if (spincnt > 10) {
1240			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1241			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1242			schedule_timeout_interruptible(2);
1243			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1244			spincnt = 0;
1245		}
1246	}
1247	/* NOTREACHED */
1248	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1249	return 0;
1250}
1251
1252/*
1253 * Check to see if it is time to start boosting RCU readers that are
1254 * blocking the current grace period, and, if so, tell the per-rcu_node
1255 * kthread to start boosting them.  If there is an expedited grace
1256 * period in progress, it is always time to boost.
1257 *
1258 * The caller must hold rnp->lock, which this function releases.
1259 * The ->boost_kthread_task is immortal, so we don't need to worry
1260 * about it going away.
1261 */
1262static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1263	__releases(rnp->lock)
1264{
1265	struct task_struct *t;
1266
1267	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1268		rnp->n_balk_exp_gp_tasks++;
1269		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1270		return;
1271	}
1272	if (rnp->exp_tasks != NULL ||
1273	    (rnp->gp_tasks != NULL &&
1274	     rnp->boost_tasks == NULL &&
1275	     rnp->qsmask == 0 &&
1276	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1277		if (rnp->exp_tasks == NULL)
1278			rnp->boost_tasks = rnp->gp_tasks;
1279		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1280		t = rnp->boost_kthread_task;
1281		if (t)
1282			rcu_wake_cond(t, rnp->boost_kthread_status);
1283	} else {
1284		rcu_initiate_boost_trace(rnp);
1285		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1286	}
1287}
1288
1289/*
1290 * Wake up the per-CPU kthread to invoke RCU callbacks.
1291 */
1292static void invoke_rcu_callbacks_kthread(void)
1293{
1294	unsigned long flags;
1295
1296	local_irq_save(flags);
1297	__this_cpu_write(rcu_cpu_has_work, 1);
1298	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1299	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1300		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1301			      __this_cpu_read(rcu_cpu_kthread_status));
1302	}
1303	local_irq_restore(flags);
1304}
1305
1306/*
1307 * Is the current CPU running the RCU-callbacks kthread?
1308 * Caller must have preemption disabled.
1309 */
1310static bool rcu_is_callbacks_kthread(void)
1311{
1312	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1313}
1314
1315#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1316
1317/*
1318 * Do priority-boost accounting for the start of a new grace period.
1319 */
1320static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1321{
1322	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1323}
1324
1325/*
1326 * Create an RCU-boost kthread for the specified node if one does not
1327 * already exist.  We only create this kthread for preemptible RCU.
1328 * Returns zero if all is well, a negated errno otherwise.
1329 */
1330static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1331						 struct rcu_node *rnp)
1332{
1333	int rnp_index = rnp - &rsp->node[0];
1334	unsigned long flags;
1335	struct sched_param sp;
1336	struct task_struct *t;
1337
1338	if (&rcu_preempt_state != rsp)
1339		return 0;
1340
1341	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1342		return 0;
1343
1344	rsp->boost = 1;
1345	if (rnp->boost_kthread_task != NULL)
1346		return 0;
1347	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1348			   "rcub/%d", rnp_index);
1349	if (IS_ERR(t))
1350		return PTR_ERR(t);
1351	raw_spin_lock_irqsave(&rnp->lock, flags);
1352	smp_mb__after_unlock_lock();
1353	rnp->boost_kthread_task = t;
1354	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1355	sp.sched_priority = RCU_BOOST_PRIO;
1356	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1357	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1358	return 0;
1359}
1360
1361static void rcu_kthread_do_work(void)
1362{
1363	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1364	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1365	rcu_preempt_do_callbacks();
1366}
1367
1368static void rcu_cpu_kthread_setup(unsigned int cpu)
1369{
1370	struct sched_param sp;
1371
1372	sp.sched_priority = RCU_KTHREAD_PRIO;
1373	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1374}
1375
1376static void rcu_cpu_kthread_park(unsigned int cpu)
1377{
1378	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1379}
1380
1381static int rcu_cpu_kthread_should_run(unsigned int cpu)
1382{
1383	return __this_cpu_read(rcu_cpu_has_work);
1384}
1385
1386/*
1387 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1388 * RCU softirq used in flavors and configurations of RCU that do not
1389 * support RCU priority boosting.
1390 */
1391static void rcu_cpu_kthread(unsigned int cpu)
1392{
1393	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1394	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1395	int spincnt;
1396
1397	for (spincnt = 0; spincnt < 10; spincnt++) {
1398		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1399		local_bh_disable();
1400		*statusp = RCU_KTHREAD_RUNNING;
1401		this_cpu_inc(rcu_cpu_kthread_loops);
1402		local_irq_disable();
1403		work = *workp;
1404		*workp = 0;
1405		local_irq_enable();
1406		if (work)
1407			rcu_kthread_do_work();
1408		local_bh_enable();
1409		if (*workp == 0) {
1410			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1411			*statusp = RCU_KTHREAD_WAITING;
1412			return;
1413		}
1414	}
1415	*statusp = RCU_KTHREAD_YIELDING;
1416	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1417	schedule_timeout_interruptible(2);
1418	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1419	*statusp = RCU_KTHREAD_WAITING;
1420}
1421
1422/*
1423 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1424 * served by the rcu_node in question.  The CPU hotplug lock is still
1425 * held, so the value of rnp->qsmaskinit will be stable.
1426 *
1427 * We don't include outgoingcpu in the affinity set, use -1 if there is
1428 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1429 * this function allows the kthread to execute on any CPU.
1430 */
1431static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1432{
1433	struct task_struct *t = rnp->boost_kthread_task;
1434	unsigned long mask = rnp->qsmaskinit;
1435	cpumask_var_t cm;
1436	int cpu;
1437
1438	if (!t)
1439		return;
1440	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1441		return;
1442	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1443		if ((mask & 0x1) && cpu != outgoingcpu)
1444			cpumask_set_cpu(cpu, cm);
1445	if (cpumask_weight(cm) == 0) {
1446		cpumask_setall(cm);
1447		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1448			cpumask_clear_cpu(cpu, cm);
1449		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1450	}
1451	set_cpus_allowed_ptr(t, cm);
1452	free_cpumask_var(cm);
1453}
1454
1455static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1456	.store			= &rcu_cpu_kthread_task,
1457	.thread_should_run	= rcu_cpu_kthread_should_run,
1458	.thread_fn		= rcu_cpu_kthread,
1459	.thread_comm		= "rcuc/%u",
1460	.setup			= rcu_cpu_kthread_setup,
1461	.park			= rcu_cpu_kthread_park,
1462};
1463
1464/*
1465 * Spawn all kthreads -- called as soon as the scheduler is running.
1466 */
1467static int __init rcu_spawn_kthreads(void)
1468{
1469	struct rcu_node *rnp;
1470	int cpu;
1471
1472	rcu_scheduler_fully_active = 1;
1473	for_each_possible_cpu(cpu)
1474		per_cpu(rcu_cpu_has_work, cpu) = 0;
1475	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1476	rnp = rcu_get_root(rcu_state_p);
1477	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1478	if (NUM_RCU_NODES > 1) {
1479		rcu_for_each_leaf_node(rcu_state_p, rnp)
1480			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1481	}
1482	return 0;
1483}
1484early_initcall(rcu_spawn_kthreads);
1485
1486static void rcu_prepare_kthreads(int cpu)
1487{
1488	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1489	struct rcu_node *rnp = rdp->mynode;
1490
1491	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1492	if (rcu_scheduler_fully_active)
1493		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1494}
1495
1496#else /* #ifdef CONFIG_RCU_BOOST */
1497
1498static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1499	__releases(rnp->lock)
1500{
1501	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1502}
1503
1504static void invoke_rcu_callbacks_kthread(void)
1505{
1506	WARN_ON_ONCE(1);
1507}
1508
1509static bool rcu_is_callbacks_kthread(void)
1510{
1511	return false;
1512}
1513
1514static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1515{
1516}
1517
1518static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1519{
1520}
1521
1522static int __init rcu_scheduler_really_started(void)
1523{
1524	rcu_scheduler_fully_active = 1;
1525	return 0;
1526}
1527early_initcall(rcu_scheduler_really_started);
1528
1529static void rcu_prepare_kthreads(int cpu)
1530{
1531}
1532
1533#endif /* #else #ifdef CONFIG_RCU_BOOST */
1534
1535#if !defined(CONFIG_RCU_FAST_NO_HZ)
1536
1537/*
1538 * Check to see if any future RCU-related work will need to be done
1539 * by the current CPU, even if none need be done immediately, returning
1540 * 1 if so.  This function is part of the RCU implementation; it is -not-
1541 * an exported member of the RCU API.
1542 *
1543 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1544 * any flavor of RCU.
1545 */
1546#ifndef CONFIG_RCU_NOCB_CPU_ALL
1547int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1548{
1549	*delta_jiffies = ULONG_MAX;
1550	return rcu_cpu_has_callbacks(cpu, NULL);
1551}
1552#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1553
1554/*
1555 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1556 * after it.
1557 */
1558static void rcu_cleanup_after_idle(int cpu)
1559{
1560}
1561
1562/*
1563 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1564 * is nothing.
1565 */
1566static void rcu_prepare_for_idle(int cpu)
1567{
1568}
1569
1570/*
1571 * Don't bother keeping a running count of the number of RCU callbacks
1572 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1573 */
1574static void rcu_idle_count_callbacks_posted(void)
1575{
1576}
1577
1578#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1579
1580/*
1581 * This code is invoked when a CPU goes idle, at which point we want
1582 * to have the CPU do everything required for RCU so that it can enter
1583 * the energy-efficient dyntick-idle mode.  This is handled by a
1584 * state machine implemented by rcu_prepare_for_idle() below.
1585 *
1586 * The following three proprocessor symbols control this state machine:
1587 *
1588 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1589 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1590 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1591 *	benchmarkers who might otherwise be tempted to set this to a large
1592 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1593 *	system.  And if you are -that- concerned about energy efficiency,
1594 *	just power the system down and be done with it!
1595 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1596 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1597 *	callbacks pending.  Setting this too high can OOM your system.
1598 *
1599 * The values below work well in practice.  If future workloads require
1600 * adjustment, they can be converted into kernel config parameters, though
1601 * making the state machine smarter might be a better option.
1602 */
1603#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1604#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1605
1606static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1607module_param(rcu_idle_gp_delay, int, 0644);
1608static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1609module_param(rcu_idle_lazy_gp_delay, int, 0644);
1610
1611extern int tick_nohz_active;
1612
1613/*
1614 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1615 * only if it has been awhile since the last time we did so.  Afterwards,
1616 * if there are any callbacks ready for immediate invocation, return true.
1617 */
1618static bool __maybe_unused rcu_try_advance_all_cbs(void)
1619{
1620	bool cbs_ready = false;
1621	struct rcu_data *rdp;
1622	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1623	struct rcu_node *rnp;
1624	struct rcu_state *rsp;
1625
1626	/* Exit early if we advanced recently. */
1627	if (jiffies == rdtp->last_advance_all)
1628		return 0;
1629	rdtp->last_advance_all = jiffies;
1630
1631	for_each_rcu_flavor(rsp) {
1632		rdp = this_cpu_ptr(rsp->rda);
1633		rnp = rdp->mynode;
1634
1635		/*
1636		 * Don't bother checking unless a grace period has
1637		 * completed since we last checked and there are
1638		 * callbacks not yet ready to invoke.
1639		 */
1640		if (rdp->completed != rnp->completed &&
1641		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1642			note_gp_changes(rsp, rdp);
1643
1644		if (cpu_has_callbacks_ready_to_invoke(rdp))
1645			cbs_ready = true;
1646	}
1647	return cbs_ready;
1648}
1649
1650/*
1651 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1652 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1653 * caller to set the timeout based on whether or not there are non-lazy
1654 * callbacks.
1655 *
1656 * The caller must have disabled interrupts.
1657 */
1658#ifndef CONFIG_RCU_NOCB_CPU_ALL
1659int rcu_needs_cpu(int cpu, unsigned long *dj)
1660{
1661	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1662
1663	/* Snapshot to detect later posting of non-lazy callback. */
1664	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1665
1666	/* If no callbacks, RCU doesn't need the CPU. */
1667	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1668		*dj = ULONG_MAX;
1669		return 0;
1670	}
1671
1672	/* Attempt to advance callbacks. */
1673	if (rcu_try_advance_all_cbs()) {
1674		/* Some ready to invoke, so initiate later invocation. */
1675		invoke_rcu_core();
1676		return 1;
1677	}
1678	rdtp->last_accelerate = jiffies;
1679
1680	/* Request timer delay depending on laziness, and round. */
1681	if (!rdtp->all_lazy) {
1682		*dj = round_up(rcu_idle_gp_delay + jiffies,
1683			       rcu_idle_gp_delay) - jiffies;
1684	} else {
1685		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1686	}
1687	return 0;
1688}
1689#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1690
1691/*
1692 * Prepare a CPU for idle from an RCU perspective.  The first major task
1693 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1694 * The second major task is to check to see if a non-lazy callback has
1695 * arrived at a CPU that previously had only lazy callbacks.  The third
1696 * major task is to accelerate (that is, assign grace-period numbers to)
1697 * any recently arrived callbacks.
1698 *
1699 * The caller must have disabled interrupts.
1700 */
1701static void rcu_prepare_for_idle(int cpu)
1702{
1703#ifndef CONFIG_RCU_NOCB_CPU_ALL
1704	bool needwake;
1705	struct rcu_data *rdp;
1706	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1707	struct rcu_node *rnp;
1708	struct rcu_state *rsp;
1709	int tne;
1710
1711	/* Handle nohz enablement switches conservatively. */
1712	tne = ACCESS_ONCE(tick_nohz_active);
1713	if (tne != rdtp->tick_nohz_enabled_snap) {
1714		if (rcu_cpu_has_callbacks(cpu, NULL))
1715			invoke_rcu_core(); /* force nohz to see update. */
1716		rdtp->tick_nohz_enabled_snap = tne;
1717		return;
1718	}
1719	if (!tne)
1720		return;
1721
1722	/* If this is a no-CBs CPU, no callbacks, just return. */
1723	if (rcu_is_nocb_cpu(cpu))
1724		return;
1725
1726	/*
1727	 * If a non-lazy callback arrived at a CPU having only lazy
1728	 * callbacks, invoke RCU core for the side-effect of recalculating
1729	 * idle duration on re-entry to idle.
1730	 */
1731	if (rdtp->all_lazy &&
1732	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1733		rdtp->all_lazy = false;
1734		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1735		invoke_rcu_core();
1736		return;
1737	}
1738
1739	/*
1740	 * If we have not yet accelerated this jiffy, accelerate all
1741	 * callbacks on this CPU.
1742	 */
1743	if (rdtp->last_accelerate == jiffies)
1744		return;
1745	rdtp->last_accelerate = jiffies;
1746	for_each_rcu_flavor(rsp) {
1747		rdp = per_cpu_ptr(rsp->rda, cpu);
1748		if (!*rdp->nxttail[RCU_DONE_TAIL])
1749			continue;
1750		rnp = rdp->mynode;
1751		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1752		smp_mb__after_unlock_lock();
1753		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1754		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1755		if (needwake)
1756			rcu_gp_kthread_wake(rsp);
1757	}
1758#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1759}
1760
1761/*
1762 * Clean up for exit from idle.  Attempt to advance callbacks based on
1763 * any grace periods that elapsed while the CPU was idle, and if any
1764 * callbacks are now ready to invoke, initiate invocation.
1765 */
1766static void rcu_cleanup_after_idle(int cpu)
1767{
1768#ifndef CONFIG_RCU_NOCB_CPU_ALL
1769	if (rcu_is_nocb_cpu(cpu))
1770		return;
1771	if (rcu_try_advance_all_cbs())
1772		invoke_rcu_core();
1773#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1774}
1775
1776/*
1777 * Keep a running count of the number of non-lazy callbacks posted
1778 * on this CPU.  This running counter (which is never decremented) allows
1779 * rcu_prepare_for_idle() to detect when something out of the idle loop
1780 * posts a callback, even if an equal number of callbacks are invoked.
1781 * Of course, callbacks should only be posted from within a trace event
1782 * designed to be called from idle or from within RCU_NONIDLE().
1783 */
1784static void rcu_idle_count_callbacks_posted(void)
1785{
1786	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1787}
1788
1789/*
1790 * Data for flushing lazy RCU callbacks at OOM time.
1791 */
1792static atomic_t oom_callback_count;
1793static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1794
1795/*
1796 * RCU OOM callback -- decrement the outstanding count and deliver the
1797 * wake-up if we are the last one.
1798 */
1799static void rcu_oom_callback(struct rcu_head *rhp)
1800{
1801	if (atomic_dec_and_test(&oom_callback_count))
1802		wake_up(&oom_callback_wq);
1803}
1804
1805/*
1806 * Post an rcu_oom_notify callback on the current CPU if it has at
1807 * least one lazy callback.  This will unnecessarily post callbacks
1808 * to CPUs that already have a non-lazy callback at the end of their
1809 * callback list, but this is an infrequent operation, so accept some
1810 * extra overhead to keep things simple.
1811 */
1812static void rcu_oom_notify_cpu(void *unused)
1813{
1814	struct rcu_state *rsp;
1815	struct rcu_data *rdp;
1816
1817	for_each_rcu_flavor(rsp) {
1818		rdp = raw_cpu_ptr(rsp->rda);
1819		if (rdp->qlen_lazy != 0) {
1820			atomic_inc(&oom_callback_count);
1821			rsp->call(&rdp->oom_head, rcu_oom_callback);
1822		}
1823	}
1824}
1825
1826/*
1827 * If low on memory, ensure that each CPU has a non-lazy callback.
1828 * This will wake up CPUs that have only lazy callbacks, in turn
1829 * ensuring that they free up the corresponding memory in a timely manner.
1830 * Because an uncertain amount of memory will be freed in some uncertain
1831 * timeframe, we do not claim to have freed anything.
1832 */
1833static int rcu_oom_notify(struct notifier_block *self,
1834			  unsigned long notused, void *nfreed)
1835{
1836	int cpu;
1837
1838	/* Wait for callbacks from earlier instance to complete. */
1839	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1840	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1841
1842	/*
1843	 * Prevent premature wakeup: ensure that all increments happen
1844	 * before there is a chance of the counter reaching zero.
1845	 */
1846	atomic_set(&oom_callback_count, 1);
1847
1848	get_online_cpus();
1849	for_each_online_cpu(cpu) {
1850		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1851		cond_resched_rcu_qs();
1852	}
1853	put_online_cpus();
1854
1855	/* Unconditionally decrement: no need to wake ourselves up. */
1856	atomic_dec(&oom_callback_count);
1857
1858	return NOTIFY_OK;
1859}
1860
1861static struct notifier_block rcu_oom_nb = {
1862	.notifier_call = rcu_oom_notify
1863};
1864
1865static int __init rcu_register_oom_notifier(void)
1866{
1867	register_oom_notifier(&rcu_oom_nb);
1868	return 0;
1869}
1870early_initcall(rcu_register_oom_notifier);
1871
1872#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1873
1874#ifdef CONFIG_RCU_CPU_STALL_INFO
1875
1876#ifdef CONFIG_RCU_FAST_NO_HZ
1877
1878static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1879{
1880	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1881	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1882
1883	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1884		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1885		ulong2long(nlpd),
1886		rdtp->all_lazy ? 'L' : '.',
1887		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1888}
1889
1890#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1891
1892static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1893{
1894	*cp = '\0';
1895}
1896
1897#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1898
1899/* Initiate the stall-info list. */
1900static void print_cpu_stall_info_begin(void)
1901{
1902	pr_cont("\n");
1903}
1904
1905/*
1906 * Print out diagnostic information for the specified stalled CPU.
1907 *
1908 * If the specified CPU is aware of the current RCU grace period
1909 * (flavor specified by rsp), then print the number of scheduling
1910 * clock interrupts the CPU has taken during the time that it has
1911 * been aware.  Otherwise, print the number of RCU grace periods
1912 * that this CPU is ignorant of, for example, "1" if the CPU was
1913 * aware of the previous grace period.
1914 *
1915 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1916 */
1917static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1918{
1919	char fast_no_hz[72];
1920	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1921	struct rcu_dynticks *rdtp = rdp->dynticks;
1922	char *ticks_title;
1923	unsigned long ticks_value;
1924
1925	if (rsp->gpnum == rdp->gpnum) {
1926		ticks_title = "ticks this GP";
1927		ticks_value = rdp->ticks_this_gp;
1928	} else {
1929		ticks_title = "GPs behind";
1930		ticks_value = rsp->gpnum - rdp->gpnum;
1931	}
1932	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1933	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1934	       cpu, ticks_value, ticks_title,
1935	       atomic_read(&rdtp->dynticks) & 0xfff,
1936	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1937	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1938	       fast_no_hz);
1939}
1940
1941/* Terminate the stall-info list. */
1942static void print_cpu_stall_info_end(void)
1943{
1944	pr_err("\t");
1945}
1946
1947/* Zero ->ticks_this_gp for all flavors of RCU. */
1948static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1949{
1950	rdp->ticks_this_gp = 0;
1951	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1952}
1953
1954/* Increment ->ticks_this_gp for all flavors of RCU. */
1955static void increment_cpu_stall_ticks(void)
1956{
1957	struct rcu_state *rsp;
1958
1959	for_each_rcu_flavor(rsp)
1960		raw_cpu_inc(rsp->rda->ticks_this_gp);
1961}
1962
1963#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1964
1965static void print_cpu_stall_info_begin(void)
1966{
1967	pr_cont(" {");
1968}
1969
1970static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1971{
1972	pr_cont(" %d", cpu);
1973}
1974
1975static void print_cpu_stall_info_end(void)
1976{
1977	pr_cont("} ");
1978}
1979
1980static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1981{
1982}
1983
1984static void increment_cpu_stall_ticks(void)
1985{
1986}
1987
1988#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1989
1990#ifdef CONFIG_RCU_NOCB_CPU
1991
1992/*
1993 * Offload callback processing from the boot-time-specified set of CPUs
1994 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1995 * kthread created that pulls the callbacks from the corresponding CPU,
1996 * waits for a grace period to elapse, and invokes the callbacks.
1997 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1998 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1999 * has been specified, in which case each kthread actively polls its
2000 * CPU.  (Which isn't so great for energy efficiency, but which does
2001 * reduce RCU's overhead on that CPU.)
2002 *
2003 * This is intended to be used in conjunction with Frederic Weisbecker's
2004 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2005 * running CPU-bound user-mode computations.
2006 *
2007 * Offloading of callback processing could also in theory be used as
2008 * an energy-efficiency measure because CPUs with no RCU callbacks
2009 * queued are more aggressive about entering dyntick-idle mode.
2010 */
2011
2012
2013/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2014static int __init rcu_nocb_setup(char *str)
2015{
2016	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2017	have_rcu_nocb_mask = true;
2018	cpulist_parse(str, rcu_nocb_mask);
2019	return 1;
2020}
2021__setup("rcu_nocbs=", rcu_nocb_setup);
2022
2023static int __init parse_rcu_nocb_poll(char *arg)
2024{
2025	rcu_nocb_poll = 1;
2026	return 0;
2027}
2028early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2029
2030/*
2031 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2032 * grace period.
2033 */
2034static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2035{
2036	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2037}
2038
2039/*
2040 * Set the root rcu_node structure's ->need_future_gp field
2041 * based on the sum of those of all rcu_node structures.  This does
2042 * double-count the root rcu_node structure's requests, but this
2043 * is necessary to handle the possibility of a rcu_nocb_kthread()
2044 * having awakened during the time that the rcu_node structures
2045 * were being updated for the end of the previous grace period.
2046 */
2047static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2048{
2049	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2050}
2051
2052static void rcu_init_one_nocb(struct rcu_node *rnp)
2053{
2054	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2055	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2056}
2057
2058#ifndef CONFIG_RCU_NOCB_CPU_ALL
2059/* Is the specified CPU a no-CBs CPU? */
2060bool rcu_is_nocb_cpu(int cpu)
2061{
2062	if (have_rcu_nocb_mask)
2063		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2064	return false;
2065}
2066#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2067
2068/*
2069 * Kick the leader kthread for this NOCB group.
2070 */
2071static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2072{
2073	struct rcu_data *rdp_leader = rdp->nocb_leader;
2074
2075	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2076		return;
2077	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2078		/* Prior xchg orders against prior callback enqueue. */
2079		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2080		wake_up(&rdp_leader->nocb_wq);
2081	}
2082}
2083
2084/*
2085 * Enqueue the specified string of rcu_head structures onto the specified
2086 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2087 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2088 * counts are supplied by rhcount and rhcount_lazy.
2089 *
2090 * If warranted, also wake up the kthread servicing this CPUs queues.
2091 */
2092static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2093				    struct rcu_head *rhp,
2094				    struct rcu_head **rhtp,
2095				    int rhcount, int rhcount_lazy,
2096				    unsigned long flags)
2097{
2098	int len;
2099	struct rcu_head **old_rhpp;
2100	struct task_struct *t;
2101
2102	/* Enqueue the callback on the nocb list and update counts. */
2103	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2104	ACCESS_ONCE(*old_rhpp) = rhp;
2105	atomic_long_add(rhcount, &rdp->nocb_q_count);
2106	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2107
2108	/* If we are not being polled and there is a kthread, awaken it ... */
2109	t = ACCESS_ONCE(rdp->nocb_kthread);
2110	if (rcu_nocb_poll || !t) {
2111		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2112				    TPS("WakeNotPoll"));
2113		return;
2114	}
2115	len = atomic_long_read(&rdp->nocb_q_count);
2116	if (old_rhpp == &rdp->nocb_head) {
2117		if (!irqs_disabled_flags(flags)) {
2118			/* ... if queue was empty ... */
2119			wake_nocb_leader(rdp, false);
2120			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121					    TPS("WakeEmpty"));
2122		} else {
2123			rdp->nocb_defer_wakeup = true;
2124			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2125					    TPS("WakeEmptyIsDeferred"));
2126		}
2127		rdp->qlen_last_fqs_check = 0;
2128	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2129		/* ... or if many callbacks queued. */
2130		wake_nocb_leader(rdp, true);
2131		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2132		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2133	} else {
2134		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2135	}
2136	return;
2137}
2138
2139/*
2140 * This is a helper for __call_rcu(), which invokes this when the normal
2141 * callback queue is inoperable.  If this is not a no-CBs CPU, this
2142 * function returns failure back to __call_rcu(), which can complain
2143 * appropriately.
2144 *
2145 * Otherwise, this function queues the callback where the corresponding
2146 * "rcuo" kthread can find it.
2147 */
2148static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2149			    bool lazy, unsigned long flags)
2150{
2151
2152	if (!rcu_is_nocb_cpu(rdp->cpu))
2153		return 0;
2154	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2155	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2156		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2157					 (unsigned long)rhp->func,
2158					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2159					 -atomic_long_read(&rdp->nocb_q_count));
2160	else
2161		trace_rcu_callback(rdp->rsp->name, rhp,
2162				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2163				   -atomic_long_read(&rdp->nocb_q_count));
2164	return 1;
2165}
2166
2167/*
2168 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2169 * not a no-CBs CPU.
2170 */
2171static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2172						     struct rcu_data *rdp,
2173						     unsigned long flags)
2174{
2175	long ql = rsp->qlen;
2176	long qll = rsp->qlen_lazy;
2177
2178	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2179	if (!rcu_is_nocb_cpu(smp_processor_id()))
2180		return 0;
2181	rsp->qlen = 0;
2182	rsp->qlen_lazy = 0;
2183
2184	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2185	if (rsp->orphan_donelist != NULL) {
2186		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2187					rsp->orphan_donetail, ql, qll, flags);
2188		ql = qll = 0;
2189		rsp->orphan_donelist = NULL;
2190		rsp->orphan_donetail = &rsp->orphan_donelist;
2191	}
2192	if (rsp->orphan_nxtlist != NULL) {
2193		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2194					rsp->orphan_nxttail, ql, qll, flags);
2195		ql = qll = 0;
2196		rsp->orphan_nxtlist = NULL;
2197		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2198	}
2199	return 1;
2200}
2201
2202/*
2203 * If necessary, kick off a new grace period, and either way wait
2204 * for a subsequent grace period to complete.
2205 */
2206static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2207{
2208	unsigned long c;
2209	bool d;
2210	unsigned long flags;
2211	bool needwake;
2212	struct rcu_node *rnp = rdp->mynode;
2213
2214	raw_spin_lock_irqsave(&rnp->lock, flags);
2215	smp_mb__after_unlock_lock();
2216	needwake = rcu_start_future_gp(rnp, rdp, &c);
2217	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2218	if (needwake)
2219		rcu_gp_kthread_wake(rdp->rsp);
2220
2221	/*
2222	 * Wait for the grace period.  Do so interruptibly to avoid messing
2223	 * up the load average.
2224	 */
2225	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2226	for (;;) {
2227		wait_event_interruptible(
2228			rnp->nocb_gp_wq[c & 0x1],
2229			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2230		if (likely(d))
2231			break;
2232		flush_signals(current);
2233		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2234	}
2235	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2236	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2237}
2238
2239/*
2240 * Leaders come here to wait for additional callbacks to show up.
2241 * This function does not return until callbacks appear.
2242 */
2243static void nocb_leader_wait(struct rcu_data *my_rdp)
2244{
2245	bool firsttime = true;
2246	bool gotcbs;
2247	struct rcu_data *rdp;
2248	struct rcu_head **tail;
2249
2250wait_again:
2251
2252	/* Wait for callbacks to appear. */
2253	if (!rcu_nocb_poll) {
2254		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2255		wait_event_interruptible(my_rdp->nocb_wq,
2256				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2257		/* Memory barrier handled by smp_mb() calls below and repoll. */
2258	} else if (firsttime) {
2259		firsttime = false; /* Don't drown trace log with "Poll"! */
2260		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2261	}
2262
2263	/*
2264	 * Each pass through the following loop checks a follower for CBs.
2265	 * We are our own first follower.  Any CBs found are moved to
2266	 * nocb_gp_head, where they await a grace period.
2267	 */
2268	gotcbs = false;
2269	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2270		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2271		if (!rdp->nocb_gp_head)
2272			continue;  /* No CBs here, try next follower. */
2273
2274		/* Move callbacks to wait-for-GP list, which is empty. */
2275		ACCESS_ONCE(rdp->nocb_head) = NULL;
2276		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2277		rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2278		rdp->nocb_gp_count_lazy =
2279			atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2280		gotcbs = true;
2281	}
2282
2283	/*
2284	 * If there were no callbacks, sleep a bit, rescan after a
2285	 * memory barrier, and go retry.
2286	 */
2287	if (unlikely(!gotcbs)) {
2288		if (!rcu_nocb_poll)
2289			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2290					    "WokeEmpty");
2291		flush_signals(current);
2292		schedule_timeout_interruptible(1);
2293
2294		/* Rescan in case we were a victim of memory ordering. */
2295		my_rdp->nocb_leader_sleep = true;
2296		smp_mb();  /* Ensure _sleep true before scan. */
2297		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2298			if (ACCESS_ONCE(rdp->nocb_head)) {
2299				/* Found CB, so short-circuit next wait. */
2300				my_rdp->nocb_leader_sleep = false;
2301				break;
2302			}
2303		goto wait_again;
2304	}
2305
2306	/* Wait for one grace period. */
2307	rcu_nocb_wait_gp(my_rdp);
2308
2309	/*
2310	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2311	 * We set it now, but recheck for new callbacks while
2312	 * traversing our follower list.
2313	 */
2314	my_rdp->nocb_leader_sleep = true;
2315	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2316
2317	/* Each pass through the following loop wakes a follower, if needed. */
2318	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2319		if (ACCESS_ONCE(rdp->nocb_head))
2320			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2321		if (!rdp->nocb_gp_head)
2322			continue; /* No CBs, so no need to wake follower. */
2323
2324		/* Append callbacks to follower's "done" list. */
2325		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2326		*tail = rdp->nocb_gp_head;
2327		atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2328		atomic_long_add(rdp->nocb_gp_count_lazy,
2329				&rdp->nocb_follower_count_lazy);
2330		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2331			/*
2332			 * List was empty, wake up the follower.
2333			 * Memory barriers supplied by atomic_long_add().
2334			 */
2335			wake_up(&rdp->nocb_wq);
2336		}
2337	}
2338
2339	/* If we (the leader) don't have CBs, go wait some more. */
2340	if (!my_rdp->nocb_follower_head)
2341		goto wait_again;
2342}
2343
2344/*
2345 * Followers come here to wait for additional callbacks to show up.
2346 * This function does not return until callbacks appear.
2347 */
2348static void nocb_follower_wait(struct rcu_data *rdp)
2349{
2350	bool firsttime = true;
2351
2352	for (;;) {
2353		if (!rcu_nocb_poll) {
2354			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2355					    "FollowerSleep");
2356			wait_event_interruptible(rdp->nocb_wq,
2357						 ACCESS_ONCE(rdp->nocb_follower_head));
2358		} else if (firsttime) {
2359			/* Don't drown trace log with "Poll"! */
2360			firsttime = false;
2361			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2362		}
2363		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2364			/* ^^^ Ensure CB invocation follows _head test. */
2365			return;
2366		}
2367		if (!rcu_nocb_poll)
2368			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2369					    "WokeEmpty");
2370		flush_signals(current);
2371		schedule_timeout_interruptible(1);
2372	}
2373}
2374
2375/*
2376 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2377 * callbacks queued by the corresponding no-CBs CPU, however, there is
2378 * an optional leader-follower relationship so that the grace-period
2379 * kthreads don't have to do quite so many wakeups.
2380 */
2381static int rcu_nocb_kthread(void *arg)
2382{
2383	int c, cl;
2384	struct rcu_head *list;
2385	struct rcu_head *next;
2386	struct rcu_head **tail;
2387	struct rcu_data *rdp = arg;
2388
2389	/* Each pass through this loop invokes one batch of callbacks */
2390	for (;;) {
2391		/* Wait for callbacks. */
2392		if (rdp->nocb_leader == rdp)
2393			nocb_leader_wait(rdp);
2394		else
2395			nocb_follower_wait(rdp);
2396
2397		/* Pull the ready-to-invoke callbacks onto local list. */
2398		list = ACCESS_ONCE(rdp->nocb_follower_head);
2399		BUG_ON(!list);
2400		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2401		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2402		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2403		c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2404		cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2405		rdp->nocb_p_count += c;
2406		rdp->nocb_p_count_lazy += cl;
2407
2408		/* Each pass through the following loop invokes a callback. */
2409		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2410		c = cl = 0;
2411		while (list) {
2412			next = list->next;
2413			/* Wait for enqueuing to complete, if needed. */
2414			while (next == NULL && &list->next != tail) {
2415				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2416						    TPS("WaitQueue"));
2417				schedule_timeout_interruptible(1);
2418				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2419						    TPS("WokeQueue"));
2420				next = list->next;
2421			}
2422			debug_rcu_head_unqueue(list);
2423			local_bh_disable();
2424			if (__rcu_reclaim(rdp->rsp->name, list))
2425				cl++;
2426			c++;
2427			local_bh_enable();
2428			list = next;
2429		}
2430		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2431		ACCESS_ONCE(rdp->nocb_p_count) -= c;
2432		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2433		rdp->n_nocbs_invoked += c;
2434	}
2435	return 0;
2436}
2437
2438/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2439static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2440{
2441	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2442}
2443
2444/* Do a deferred wakeup of rcu_nocb_kthread(). */
2445static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2446{
2447	if (!rcu_nocb_need_deferred_wakeup(rdp))
2448		return;
2449	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2450	wake_nocb_leader(rdp, false);
2451	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2452}
2453
2454/* Initialize per-rcu_data variables for no-CBs CPUs. */
2455static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2456{
2457	rdp->nocb_tail = &rdp->nocb_head;
2458	init_waitqueue_head(&rdp->nocb_wq);
2459	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2460}
2461
2462/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2463static int rcu_nocb_leader_stride = -1;
2464module_param(rcu_nocb_leader_stride, int, 0444);
2465
2466/*
2467 * Create a kthread for each RCU flavor for each no-CBs CPU.
2468 * Also initialize leader-follower relationships.
2469 */
2470static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2471{
2472	int cpu;
2473	int ls = rcu_nocb_leader_stride;
2474	int nl = 0;  /* Next leader. */
2475	struct rcu_data *rdp;
2476	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2477	struct rcu_data *rdp_prev = NULL;
2478	struct task_struct *t;
2479
2480	if (rcu_nocb_mask == NULL)
2481		return;
2482#if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL)
2483	if (tick_nohz_full_running)
2484		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2485#endif /* #if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL) */
2486	if (ls == -1) {
2487		ls = int_sqrt(nr_cpu_ids);
2488		rcu_nocb_leader_stride = ls;
2489	}
2490
2491	/*
2492	 * Each pass through this loop sets up one rcu_data structure and
2493	 * spawns one rcu_nocb_kthread().
2494	 */
2495	for_each_cpu(cpu, rcu_nocb_mask) {
2496		rdp = per_cpu_ptr(rsp->rda, cpu);
2497		if (rdp->cpu >= nl) {
2498			/* New leader, set up for followers & next leader. */
2499			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2500			rdp->nocb_leader = rdp;
2501			rdp_leader = rdp;
2502		} else {
2503			/* Another follower, link to previous leader. */
2504			rdp->nocb_leader = rdp_leader;
2505			rdp_prev->nocb_next_follower = rdp;
2506		}
2507		rdp_prev = rdp;
2508
2509		/* Spawn the kthread for this CPU. */
2510		t = kthread_run(rcu_nocb_kthread, rdp,
2511				"rcuo%c/%d", rsp->abbr, cpu);
2512		BUG_ON(IS_ERR(t));
2513		ACCESS_ONCE(rdp->nocb_kthread) = t;
2514	}
2515}
2516
2517/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2518static bool init_nocb_callback_list(struct rcu_data *rdp)
2519{
2520	if (rcu_nocb_mask == NULL ||
2521	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2522		return false;
2523	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2524	return true;
2525}
2526
2527#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2528
2529static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2530{
2531}
2532
2533static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2534{
2535}
2536
2537static void rcu_init_one_nocb(struct rcu_node *rnp)
2538{
2539}
2540
2541static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2542			    bool lazy, unsigned long flags)
2543{
2544	return 0;
2545}
2546
2547static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2548						     struct rcu_data *rdp,
2549						     unsigned long flags)
2550{
2551	return 0;
2552}
2553
2554static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2555{
2556}
2557
2558static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2559{
2560	return false;
2561}
2562
2563static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2564{
2565}
2566
2567static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2568{
2569}
2570
2571static bool init_nocb_callback_list(struct rcu_data *rdp)
2572{
2573	return false;
2574}
2575
2576#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2577
2578/*
2579 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2580 * arbitrarily long period of time with the scheduling-clock tick turned
2581 * off.  RCU will be paying attention to this CPU because it is in the
2582 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2583 * machine because the scheduling-clock tick has been disabled.  Therefore,
2584 * if an adaptive-ticks CPU is failing to respond to the current grace
2585 * period and has not be idle from an RCU perspective, kick it.
2586 */
2587static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2588{
2589#ifdef CONFIG_NO_HZ_FULL
2590	if (tick_nohz_full_cpu(cpu))
2591		smp_send_reschedule(cpu);
2592#endif /* #ifdef CONFIG_NO_HZ_FULL */
2593}
2594
2595
2596#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2597
2598/*
2599 * Define RCU flavor that holds sysidle state.  This needs to be the
2600 * most active flavor of RCU.
2601 */
2602#ifdef CONFIG_PREEMPT_RCU
2603static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2604#else /* #ifdef CONFIG_PREEMPT_RCU */
2605static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2606#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2607
2608static int full_sysidle_state;		/* Current system-idle state. */
2609#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2610#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2611#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2612#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2613#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2614
2615/*
2616 * Invoked to note exit from irq or task transition to idle.  Note that
2617 * usermode execution does -not- count as idle here!  After all, we want
2618 * to detect full-system idle states, not RCU quiescent states and grace
2619 * periods.  The caller must have disabled interrupts.
2620 */
2621static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2622{
2623	unsigned long j;
2624
2625	/* Adjust nesting, check for fully idle. */
2626	if (irq) {
2627		rdtp->dynticks_idle_nesting--;
2628		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2629		if (rdtp->dynticks_idle_nesting != 0)
2630			return;  /* Still not fully idle. */
2631	} else {
2632		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2633		    DYNTICK_TASK_NEST_VALUE) {
2634			rdtp->dynticks_idle_nesting = 0;
2635		} else {
2636			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2637			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2638			return;  /* Still not fully idle. */
2639		}
2640	}
2641
2642	/* Record start of fully idle period. */
2643	j = jiffies;
2644	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2645	smp_mb__before_atomic();
2646	atomic_inc(&rdtp->dynticks_idle);
2647	smp_mb__after_atomic();
2648	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2649}
2650
2651/*
2652 * Unconditionally force exit from full system-idle state.  This is
2653 * invoked when a normal CPU exits idle, but must be called separately
2654 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2655 * is that the timekeeping CPU is permitted to take scheduling-clock
2656 * interrupts while the system is in system-idle state, and of course
2657 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2658 * interrupt from any other type of interrupt.
2659 */
2660void rcu_sysidle_force_exit(void)
2661{
2662	int oldstate = ACCESS_ONCE(full_sysidle_state);
2663	int newoldstate;
2664
2665	/*
2666	 * Each pass through the following loop attempts to exit full
2667	 * system-idle state.  If contention proves to be a problem,
2668	 * a trylock-based contention tree could be used here.
2669	 */
2670	while (oldstate > RCU_SYSIDLE_SHORT) {
2671		newoldstate = cmpxchg(&full_sysidle_state,
2672				      oldstate, RCU_SYSIDLE_NOT);
2673		if (oldstate == newoldstate &&
2674		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2675			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2676			return; /* We cleared it, done! */
2677		}
2678		oldstate = newoldstate;
2679	}
2680	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2681}
2682
2683/*
2684 * Invoked to note entry to irq or task transition from idle.  Note that
2685 * usermode execution does -not- count as idle here!  The caller must
2686 * have disabled interrupts.
2687 */
2688static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2689{
2690	/* Adjust nesting, check for already non-idle. */
2691	if (irq) {
2692		rdtp->dynticks_idle_nesting++;
2693		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2694		if (rdtp->dynticks_idle_nesting != 1)
2695			return; /* Already non-idle. */
2696	} else {
2697		/*
2698		 * Allow for irq misnesting.  Yes, it really is possible
2699		 * to enter an irq handler then never leave it, and maybe
2700		 * also vice versa.  Handle both possibilities.
2701		 */
2702		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2703			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2704			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2705			return; /* Already non-idle. */
2706		} else {
2707			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2708		}
2709	}
2710
2711	/* Record end of idle period. */
2712	smp_mb__before_atomic();
2713	atomic_inc(&rdtp->dynticks_idle);
2714	smp_mb__after_atomic();
2715	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2716
2717	/*
2718	 * If we are the timekeeping CPU, we are permitted to be non-idle
2719	 * during a system-idle state.  This must be the case, because
2720	 * the timekeeping CPU has to take scheduling-clock interrupts
2721	 * during the time that the system is transitioning to full
2722	 * system-idle state.  This means that the timekeeping CPU must
2723	 * invoke rcu_sysidle_force_exit() directly if it does anything
2724	 * more than take a scheduling-clock interrupt.
2725	 */
2726	if (smp_processor_id() == tick_do_timer_cpu)
2727		return;
2728
2729	/* Update system-idle state: We are clearly no longer fully idle! */
2730	rcu_sysidle_force_exit();
2731}
2732
2733/*
2734 * Check to see if the current CPU is idle.  Note that usermode execution
2735 * does not count as idle.  The caller must have disabled interrupts.
2736 */
2737static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2738				  unsigned long *maxj)
2739{
2740	int cur;
2741	unsigned long j;
2742	struct rcu_dynticks *rdtp = rdp->dynticks;
2743
2744	/*
2745	 * If some other CPU has already reported non-idle, if this is
2746	 * not the flavor of RCU that tracks sysidle state, or if this
2747	 * is an offline or the timekeeping CPU, nothing to do.
2748	 */
2749	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2750	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2751		return;
2752	if (rcu_gp_in_progress(rdp->rsp))
2753		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2754
2755	/* Pick up current idle and NMI-nesting counter and check. */
2756	cur = atomic_read(&rdtp->dynticks_idle);
2757	if (cur & 0x1) {
2758		*isidle = false; /* We are not idle! */
2759		return;
2760	}
2761	smp_mb(); /* Read counters before timestamps. */
2762
2763	/* Pick up timestamps. */
2764	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2765	/* If this CPU entered idle more recently, update maxj timestamp. */
2766	if (ULONG_CMP_LT(*maxj, j))
2767		*maxj = j;
2768}
2769
2770/*
2771 * Is this the flavor of RCU that is handling full-system idle?
2772 */
2773static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2774{
2775	return rsp == rcu_sysidle_state;
2776}
2777
2778/*
2779 * Return a delay in jiffies based on the number of CPUs, rcu_node
2780 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2781 * systems more time to transition to full-idle state in order to
2782 * avoid the cache thrashing that otherwise occur on the state variable.
2783 * Really small systems (less than a couple of tens of CPUs) should
2784 * instead use a single global atomically incremented counter, and later
2785 * versions of this will automatically reconfigure themselves accordingly.
2786 */
2787static unsigned long rcu_sysidle_delay(void)
2788{
2789	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2790		return 0;
2791	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2792}
2793
2794/*
2795 * Advance the full-system-idle state.  This is invoked when all of
2796 * the non-timekeeping CPUs are idle.
2797 */
2798static void rcu_sysidle(unsigned long j)
2799{
2800	/* Check the current state. */
2801	switch (ACCESS_ONCE(full_sysidle_state)) {
2802	case RCU_SYSIDLE_NOT:
2803
2804		/* First time all are idle, so note a short idle period. */
2805		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2806		break;
2807
2808	case RCU_SYSIDLE_SHORT:
2809
2810		/*
2811		 * Idle for a bit, time to advance to next state?
2812		 * cmpxchg failure means race with non-idle, let them win.
2813		 */
2814		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2815			(void)cmpxchg(&full_sysidle_state,
2816				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2817		break;
2818
2819	case RCU_SYSIDLE_LONG:
2820
2821		/*
2822		 * Do an additional check pass before advancing to full.
2823		 * cmpxchg failure means race with non-idle, let them win.
2824		 */
2825		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2826			(void)cmpxchg(&full_sysidle_state,
2827				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2828		break;
2829
2830	default:
2831		break;
2832	}
2833}
2834
2835/*
2836 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2837 * back to the beginning.
2838 */
2839static void rcu_sysidle_cancel(void)
2840{
2841	smp_mb();
2842	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2843		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2844}
2845
2846/*
2847 * Update the sysidle state based on the results of a force-quiescent-state
2848 * scan of the CPUs' dyntick-idle state.
2849 */
2850static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2851			       unsigned long maxj, bool gpkt)
2852{
2853	if (rsp != rcu_sysidle_state)
2854		return;  /* Wrong flavor, ignore. */
2855	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2856		return;  /* Running state machine from timekeeping CPU. */
2857	if (isidle)
2858		rcu_sysidle(maxj);    /* More idle! */
2859	else
2860		rcu_sysidle_cancel(); /* Idle is over. */
2861}
2862
2863/*
2864 * Wrapper for rcu_sysidle_report() when called from the grace-period
2865 * kthread's context.
2866 */
2867static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2868				  unsigned long maxj)
2869{
2870	rcu_sysidle_report(rsp, isidle, maxj, true);
2871}
2872
2873/* Callback and function for forcing an RCU grace period. */
2874struct rcu_sysidle_head {
2875	struct rcu_head rh;
2876	int inuse;
2877};
2878
2879static void rcu_sysidle_cb(struct rcu_head *rhp)
2880{
2881	struct rcu_sysidle_head *rshp;
2882
2883	/*
2884	 * The following memory barrier is needed to replace the
2885	 * memory barriers that would normally be in the memory
2886	 * allocator.
2887	 */
2888	smp_mb();  /* grace period precedes setting inuse. */
2889
2890	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2891	ACCESS_ONCE(rshp->inuse) = 0;
2892}
2893
2894/*
2895 * Check to see if the system is fully idle, other than the timekeeping CPU.
2896 * The caller must have disabled interrupts.
2897 */
2898bool rcu_sys_is_idle(void)
2899{
2900	static struct rcu_sysidle_head rsh;
2901	int rss = ACCESS_ONCE(full_sysidle_state);
2902
2903	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2904		return false;
2905
2906	/* Handle small-system case by doing a full scan of CPUs. */
2907	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2908		int oldrss = rss - 1;
2909
2910		/*
2911		 * One pass to advance to each state up to _FULL.
2912		 * Give up if any pass fails to advance the state.
2913		 */
2914		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2915			int cpu;
2916			bool isidle = true;
2917			unsigned long maxj = jiffies - ULONG_MAX / 4;
2918			struct rcu_data *rdp;
2919
2920			/* Scan all the CPUs looking for nonidle CPUs. */
2921			for_each_possible_cpu(cpu) {
2922				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2923				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2924				if (!isidle)
2925					break;
2926			}
2927			rcu_sysidle_report(rcu_sysidle_state,
2928					   isidle, maxj, false);
2929			oldrss = rss;
2930			rss = ACCESS_ONCE(full_sysidle_state);
2931		}
2932	}
2933
2934	/* If this is the first observation of an idle period, record it. */
2935	if (rss == RCU_SYSIDLE_FULL) {
2936		rss = cmpxchg(&full_sysidle_state,
2937			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2938		return rss == RCU_SYSIDLE_FULL;
2939	}
2940
2941	smp_mb(); /* ensure rss load happens before later caller actions. */
2942
2943	/* If already fully idle, tell the caller (in case of races). */
2944	if (rss == RCU_SYSIDLE_FULL_NOTED)
2945		return true;
2946
2947	/*
2948	 * If we aren't there yet, and a grace period is not in flight,
2949	 * initiate a grace period.  Either way, tell the caller that
2950	 * we are not there yet.  We use an xchg() rather than an assignment
2951	 * to make up for the memory barriers that would otherwise be
2952	 * provided by the memory allocator.
2953	 */
2954	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2955	    !rcu_gp_in_progress(rcu_sysidle_state) &&
2956	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2957		call_rcu(&rsh.rh, rcu_sysidle_cb);
2958	return false;
2959}
2960
2961/*
2962 * Initialize dynticks sysidle state for CPUs coming online.
2963 */
2964static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2965{
2966	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2967}
2968
2969#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2970
2971static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2972{
2973}
2974
2975static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2976{
2977}
2978
2979static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2980				  unsigned long *maxj)
2981{
2982}
2983
2984static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2985{
2986	return false;
2987}
2988
2989static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2990				  unsigned long maxj)
2991{
2992}
2993
2994static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2995{
2996}
2997
2998#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2999
3000/*
3001 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3002 * grace-period kthread will do force_quiescent_state() processing?
3003 * The idea is to avoid waking up RCU core processing on such a
3004 * CPU unless the grace period has extended for too long.
3005 *
3006 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3007 * CONFIG_RCU_NOCB_CPU CPUs.
3008 */
3009static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3010{
3011#ifdef CONFIG_NO_HZ_FULL
3012	if (tick_nohz_full_cpu(smp_processor_id()) &&
3013	    (!rcu_gp_in_progress(rsp) ||
3014	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3015		return 1;
3016#endif /* #ifdef CONFIG_NO_HZ_FULL */
3017	return 0;
3018}
3019
3020/*
3021 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3022 * timekeeping CPU.
3023 */
3024static void rcu_bind_gp_kthread(void)
3025{
3026	int __maybe_unused cpu;
3027
3028	if (!tick_nohz_full_enabled())
3029		return;
3030#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3031	cpu = tick_do_timer_cpu;
3032	if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3033		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3034#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3035	if (!is_housekeeping_cpu(raw_smp_processor_id()))
3036		housekeeping_affine(current);
3037#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3038}
3039
3040/* Record the current task on dyntick-idle entry. */
3041static void rcu_dynticks_task_enter(void)
3042{
3043#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3044	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3045#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3046}
3047
3048/* Record no current task on dyntick-idle exit. */
3049static void rcu_dynticks_task_exit(void)
3050{
3051#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3052	ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3053#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3054}
3055