tree_plugin.h revision 1772947bd0126661866069157e95197e9c0020e9
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27#include <linux/delay.h>
28#include <linux/gfp.h>
29#include <linux/oom.h>
30#include <linux/smpboot.h>
31#include "../time/tick-internal.h"
32
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
36#include "../locking/rtmutex_common.h"
37#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38#else
39#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40#endif
41
42#ifdef CONFIG_RCU_NOCB_CPU
43static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
45static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
46static char __initdata nocb_buf[NR_CPUS * 5];
47#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
49/*
50 * Check the RCU kernel configuration parameters and print informative
51 * messages about anything out of the ordinary.  If you like #ifdef, you
52 * will love this function.
53 */
54static void __init rcu_bootup_announce_oddness(void)
55{
56#ifdef CONFIG_RCU_TRACE
57	pr_info("\tRCU debugfs-based tracing is enabled.\n");
58#endif
59#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61	       CONFIG_RCU_FANOUT);
62#endif
63#ifdef CONFIG_RCU_FANOUT_EXACT
64	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65#endif
66#ifdef CONFIG_RCU_FAST_NO_HZ
67	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68#endif
69#ifdef CONFIG_PROVE_RCU
70	pr_info("\tRCU lockdep checking is enabled.\n");
71#endif
72#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73	pr_info("\tRCU torture testing starts during boot.\n");
74#endif
75#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77#endif
78#if defined(CONFIG_RCU_CPU_STALL_INFO)
79	pr_info("\tAdditional per-CPU info printed with stalls.\n");
80#endif
81#if NUM_RCU_LVL_4 != 0
82	pr_info("\tFour-level hierarchy is enabled.\n");
83#endif
84	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86	if (nr_cpu_ids != NR_CPUS)
87		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88}
89
90#ifdef CONFIG_TREE_PREEMPT_RCU
91
92RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93static struct rcu_state *rcu_state_p = &rcu_preempt_state;
94
95static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96
97/*
98 * Tell them what RCU they are running.
99 */
100static void __init rcu_bootup_announce(void)
101{
102	pr_info("Preemptible hierarchical RCU implementation.\n");
103	rcu_bootup_announce_oddness();
104}
105
106/*
107 * Return the number of RCU-preempt batches processed thus far
108 * for debug and statistics.
109 */
110long rcu_batches_completed_preempt(void)
111{
112	return rcu_preempt_state.completed;
113}
114EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
115
116/*
117 * Return the number of RCU batches processed thus far for debug & stats.
118 */
119long rcu_batches_completed(void)
120{
121	return rcu_batches_completed_preempt();
122}
123EXPORT_SYMBOL_GPL(rcu_batches_completed);
124
125/*
126 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
127 * that this just means that the task currently running on the CPU is
128 * not in a quiescent state.  There might be any number of tasks blocked
129 * while in an RCU read-side critical section.
130 *
131 * Unlike the other rcu_*_qs() functions, callers to this function
132 * must disable irqs in order to protect the assignment to
133 * ->rcu_read_unlock_special.
134 */
135static void rcu_preempt_qs(int cpu)
136{
137	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
138
139	if (rdp->passed_quiesce == 0)
140		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
141	rdp->passed_quiesce = 1;
142	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
143}
144
145/*
146 * We have entered the scheduler, and the current task might soon be
147 * context-switched away from.  If this task is in an RCU read-side
148 * critical section, we will no longer be able to rely on the CPU to
149 * record that fact, so we enqueue the task on the blkd_tasks list.
150 * The task will dequeue itself when it exits the outermost enclosing
151 * RCU read-side critical section.  Therefore, the current grace period
152 * cannot be permitted to complete until the blkd_tasks list entries
153 * predating the current grace period drain, in other words, until
154 * rnp->gp_tasks becomes NULL.
155 *
156 * Caller must disable preemption.
157 */
158static void rcu_preempt_note_context_switch(int cpu)
159{
160	struct task_struct *t = current;
161	unsigned long flags;
162	struct rcu_data *rdp;
163	struct rcu_node *rnp;
164
165	if (t->rcu_read_lock_nesting > 0 &&
166	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
167
168		/* Possibly blocking in an RCU read-side critical section. */
169		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
170		rnp = rdp->mynode;
171		raw_spin_lock_irqsave(&rnp->lock, flags);
172		smp_mb__after_unlock_lock();
173		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
174		t->rcu_blocked_node = rnp;
175
176		/*
177		 * If this CPU has already checked in, then this task
178		 * will hold up the next grace period rather than the
179		 * current grace period.  Queue the task accordingly.
180		 * If the task is queued for the current grace period
181		 * (i.e., this CPU has not yet passed through a quiescent
182		 * state for the current grace period), then as long
183		 * as that task remains queued, the current grace period
184		 * cannot end.  Note that there is some uncertainty as
185		 * to exactly when the current grace period started.
186		 * We take a conservative approach, which can result
187		 * in unnecessarily waiting on tasks that started very
188		 * slightly after the current grace period began.  C'est
189		 * la vie!!!
190		 *
191		 * But first, note that the current CPU must still be
192		 * on line!
193		 */
194		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
195		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
196		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
197			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
198			rnp->gp_tasks = &t->rcu_node_entry;
199#ifdef CONFIG_RCU_BOOST
200			if (rnp->boost_tasks != NULL)
201				rnp->boost_tasks = rnp->gp_tasks;
202#endif /* #ifdef CONFIG_RCU_BOOST */
203		} else {
204			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
205			if (rnp->qsmask & rdp->grpmask)
206				rnp->gp_tasks = &t->rcu_node_entry;
207		}
208		trace_rcu_preempt_task(rdp->rsp->name,
209				       t->pid,
210				       (rnp->qsmask & rdp->grpmask)
211				       ? rnp->gpnum
212				       : rnp->gpnum + 1);
213		raw_spin_unlock_irqrestore(&rnp->lock, flags);
214	} else if (t->rcu_read_lock_nesting < 0 &&
215		   t->rcu_read_unlock_special) {
216
217		/*
218		 * Complete exit from RCU read-side critical section on
219		 * behalf of preempted instance of __rcu_read_unlock().
220		 */
221		rcu_read_unlock_special(t);
222	}
223
224	/*
225	 * Either we were not in an RCU read-side critical section to
226	 * begin with, or we have now recorded that critical section
227	 * globally.  Either way, we can now note a quiescent state
228	 * for this CPU.  Again, if we were in an RCU read-side critical
229	 * section, and if that critical section was blocking the current
230	 * grace period, then the fact that the task has been enqueued
231	 * means that we continue to block the current grace period.
232	 */
233	local_irq_save(flags);
234	rcu_preempt_qs(cpu);
235	local_irq_restore(flags);
236}
237
238/*
239 * Check for preempted RCU readers blocking the current grace period
240 * for the specified rcu_node structure.  If the caller needs a reliable
241 * answer, it must hold the rcu_node's ->lock.
242 */
243static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
244{
245	return rnp->gp_tasks != NULL;
246}
247
248/*
249 * Record a quiescent state for all tasks that were previously queued
250 * on the specified rcu_node structure and that were blocking the current
251 * RCU grace period.  The caller must hold the specified rnp->lock with
252 * irqs disabled, and this lock is released upon return, but irqs remain
253 * disabled.
254 */
255static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
256	__releases(rnp->lock)
257{
258	unsigned long mask;
259	struct rcu_node *rnp_p;
260
261	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
262		raw_spin_unlock_irqrestore(&rnp->lock, flags);
263		return;  /* Still need more quiescent states! */
264	}
265
266	rnp_p = rnp->parent;
267	if (rnp_p == NULL) {
268		/*
269		 * Either there is only one rcu_node in the tree,
270		 * or tasks were kicked up to root rcu_node due to
271		 * CPUs going offline.
272		 */
273		rcu_report_qs_rsp(&rcu_preempt_state, flags);
274		return;
275	}
276
277	/* Report up the rest of the hierarchy. */
278	mask = rnp->grpmask;
279	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
280	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
281	smp_mb__after_unlock_lock();
282	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
283}
284
285/*
286 * Advance a ->blkd_tasks-list pointer to the next entry, instead
287 * returning NULL if at the end of the list.
288 */
289static struct list_head *rcu_next_node_entry(struct task_struct *t,
290					     struct rcu_node *rnp)
291{
292	struct list_head *np;
293
294	np = t->rcu_node_entry.next;
295	if (np == &rnp->blkd_tasks)
296		np = NULL;
297	return np;
298}
299
300/*
301 * Handle special cases during rcu_read_unlock(), such as needing to
302 * notify RCU core processing or task having blocked during the RCU
303 * read-side critical section.
304 */
305void rcu_read_unlock_special(struct task_struct *t)
306{
307	int empty;
308	int empty_exp;
309	int empty_exp_now;
310	unsigned long flags;
311	struct list_head *np;
312#ifdef CONFIG_RCU_BOOST
313	bool drop_boost_mutex = false;
314#endif /* #ifdef CONFIG_RCU_BOOST */
315	struct rcu_node *rnp;
316	int special;
317
318	/* NMI handlers cannot block and cannot safely manipulate state. */
319	if (in_nmi())
320		return;
321
322	local_irq_save(flags);
323
324	/*
325	 * If RCU core is waiting for this CPU to exit critical section,
326	 * let it know that we have done so.
327	 */
328	special = t->rcu_read_unlock_special;
329	if (special & RCU_READ_UNLOCK_NEED_QS) {
330		rcu_preempt_qs(smp_processor_id());
331		if (!t->rcu_read_unlock_special) {
332			local_irq_restore(flags);
333			return;
334		}
335	}
336
337	/* Hardware IRQ handlers cannot block, complain if they get here. */
338	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
339		local_irq_restore(flags);
340		return;
341	}
342
343	/* Clean up if blocked during RCU read-side critical section. */
344	if (special & RCU_READ_UNLOCK_BLOCKED) {
345		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
346
347		/*
348		 * Remove this task from the list it blocked on.  The
349		 * task can migrate while we acquire the lock, but at
350		 * most one time.  So at most two passes through loop.
351		 */
352		for (;;) {
353			rnp = t->rcu_blocked_node;
354			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
355			smp_mb__after_unlock_lock();
356			if (rnp == t->rcu_blocked_node)
357				break;
358			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
359		}
360		empty = !rcu_preempt_blocked_readers_cgp(rnp);
361		empty_exp = !rcu_preempted_readers_exp(rnp);
362		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
363		np = rcu_next_node_entry(t, rnp);
364		list_del_init(&t->rcu_node_entry);
365		t->rcu_blocked_node = NULL;
366		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
367						rnp->gpnum, t->pid);
368		if (&t->rcu_node_entry == rnp->gp_tasks)
369			rnp->gp_tasks = np;
370		if (&t->rcu_node_entry == rnp->exp_tasks)
371			rnp->exp_tasks = np;
372#ifdef CONFIG_RCU_BOOST
373		if (&t->rcu_node_entry == rnp->boost_tasks)
374			rnp->boost_tasks = np;
375		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
376		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
377#endif /* #ifdef CONFIG_RCU_BOOST */
378
379		/*
380		 * If this was the last task on the current list, and if
381		 * we aren't waiting on any CPUs, report the quiescent state.
382		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
383		 * so we must take a snapshot of the expedited state.
384		 */
385		empty_exp_now = !rcu_preempted_readers_exp(rnp);
386		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
387			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
388							 rnp->gpnum,
389							 0, rnp->qsmask,
390							 rnp->level,
391							 rnp->grplo,
392							 rnp->grphi,
393							 !!rnp->gp_tasks);
394			rcu_report_unblock_qs_rnp(rnp, flags);
395		} else {
396			raw_spin_unlock_irqrestore(&rnp->lock, flags);
397		}
398
399#ifdef CONFIG_RCU_BOOST
400		/* Unboost if we were boosted. */
401		if (drop_boost_mutex) {
402			rt_mutex_unlock(&rnp->boost_mtx);
403			complete(&rnp->boost_completion);
404		}
405#endif /* #ifdef CONFIG_RCU_BOOST */
406
407		/*
408		 * If this was the last task on the expedited lists,
409		 * then we need to report up the rcu_node hierarchy.
410		 */
411		if (!empty_exp && empty_exp_now)
412			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
413	} else {
414		local_irq_restore(flags);
415	}
416}
417
418#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
419
420/*
421 * Dump detailed information for all tasks blocking the current RCU
422 * grace period on the specified rcu_node structure.
423 */
424static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
425{
426	unsigned long flags;
427	struct task_struct *t;
428
429	raw_spin_lock_irqsave(&rnp->lock, flags);
430	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
431		raw_spin_unlock_irqrestore(&rnp->lock, flags);
432		return;
433	}
434	t = list_entry(rnp->gp_tasks,
435		       struct task_struct, rcu_node_entry);
436	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
437		sched_show_task(t);
438	raw_spin_unlock_irqrestore(&rnp->lock, flags);
439}
440
441/*
442 * Dump detailed information for all tasks blocking the current RCU
443 * grace period.
444 */
445static void rcu_print_detail_task_stall(struct rcu_state *rsp)
446{
447	struct rcu_node *rnp = rcu_get_root(rsp);
448
449	rcu_print_detail_task_stall_rnp(rnp);
450	rcu_for_each_leaf_node(rsp, rnp)
451		rcu_print_detail_task_stall_rnp(rnp);
452}
453
454#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
455
456static void rcu_print_detail_task_stall(struct rcu_state *rsp)
457{
458}
459
460#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
461
462#ifdef CONFIG_RCU_CPU_STALL_INFO
463
464static void rcu_print_task_stall_begin(struct rcu_node *rnp)
465{
466	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
467	       rnp->level, rnp->grplo, rnp->grphi);
468}
469
470static void rcu_print_task_stall_end(void)
471{
472	pr_cont("\n");
473}
474
475#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
476
477static void rcu_print_task_stall_begin(struct rcu_node *rnp)
478{
479}
480
481static void rcu_print_task_stall_end(void)
482{
483}
484
485#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
486
487/*
488 * Scan the current list of tasks blocked within RCU read-side critical
489 * sections, printing out the tid of each.
490 */
491static int rcu_print_task_stall(struct rcu_node *rnp)
492{
493	struct task_struct *t;
494	int ndetected = 0;
495
496	if (!rcu_preempt_blocked_readers_cgp(rnp))
497		return 0;
498	rcu_print_task_stall_begin(rnp);
499	t = list_entry(rnp->gp_tasks,
500		       struct task_struct, rcu_node_entry);
501	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
502		pr_cont(" P%d", t->pid);
503		ndetected++;
504	}
505	rcu_print_task_stall_end();
506	return ndetected;
507}
508
509/*
510 * Check that the list of blocked tasks for the newly completed grace
511 * period is in fact empty.  It is a serious bug to complete a grace
512 * period that still has RCU readers blocked!  This function must be
513 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
514 * must be held by the caller.
515 *
516 * Also, if there are blocked tasks on the list, they automatically
517 * block the newly created grace period, so set up ->gp_tasks accordingly.
518 */
519static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
520{
521	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
522	if (!list_empty(&rnp->blkd_tasks))
523		rnp->gp_tasks = rnp->blkd_tasks.next;
524	WARN_ON_ONCE(rnp->qsmask);
525}
526
527#ifdef CONFIG_HOTPLUG_CPU
528
529/*
530 * Handle tasklist migration for case in which all CPUs covered by the
531 * specified rcu_node have gone offline.  Move them up to the root
532 * rcu_node.  The reason for not just moving them to the immediate
533 * parent is to remove the need for rcu_read_unlock_special() to
534 * make more than two attempts to acquire the target rcu_node's lock.
535 * Returns true if there were tasks blocking the current RCU grace
536 * period.
537 *
538 * Returns 1 if there was previously a task blocking the current grace
539 * period on the specified rcu_node structure.
540 *
541 * The caller must hold rnp->lock with irqs disabled.
542 */
543static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
544				     struct rcu_node *rnp,
545				     struct rcu_data *rdp)
546{
547	struct list_head *lp;
548	struct list_head *lp_root;
549	int retval = 0;
550	struct rcu_node *rnp_root = rcu_get_root(rsp);
551	struct task_struct *t;
552
553	if (rnp == rnp_root) {
554		WARN_ONCE(1, "Last CPU thought to be offlined?");
555		return 0;  /* Shouldn't happen: at least one CPU online. */
556	}
557
558	/* If we are on an internal node, complain bitterly. */
559	WARN_ON_ONCE(rnp != rdp->mynode);
560
561	/*
562	 * Move tasks up to root rcu_node.  Don't try to get fancy for
563	 * this corner-case operation -- just put this node's tasks
564	 * at the head of the root node's list, and update the root node's
565	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
566	 * if non-NULL.  This might result in waiting for more tasks than
567	 * absolutely necessary, but this is a good performance/complexity
568	 * tradeoff.
569	 */
570	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
571		retval |= RCU_OFL_TASKS_NORM_GP;
572	if (rcu_preempted_readers_exp(rnp))
573		retval |= RCU_OFL_TASKS_EXP_GP;
574	lp = &rnp->blkd_tasks;
575	lp_root = &rnp_root->blkd_tasks;
576	while (!list_empty(lp)) {
577		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
578		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
579		smp_mb__after_unlock_lock();
580		list_del(&t->rcu_node_entry);
581		t->rcu_blocked_node = rnp_root;
582		list_add(&t->rcu_node_entry, lp_root);
583		if (&t->rcu_node_entry == rnp->gp_tasks)
584			rnp_root->gp_tasks = rnp->gp_tasks;
585		if (&t->rcu_node_entry == rnp->exp_tasks)
586			rnp_root->exp_tasks = rnp->exp_tasks;
587#ifdef CONFIG_RCU_BOOST
588		if (&t->rcu_node_entry == rnp->boost_tasks)
589			rnp_root->boost_tasks = rnp->boost_tasks;
590#endif /* #ifdef CONFIG_RCU_BOOST */
591		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
592	}
593
594	rnp->gp_tasks = NULL;
595	rnp->exp_tasks = NULL;
596#ifdef CONFIG_RCU_BOOST
597	rnp->boost_tasks = NULL;
598	/*
599	 * In case root is being boosted and leaf was not.  Make sure
600	 * that we boost the tasks blocking the current grace period
601	 * in this case.
602	 */
603	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
604	smp_mb__after_unlock_lock();
605	if (rnp_root->boost_tasks != NULL &&
606	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
607	    rnp_root->boost_tasks != rnp_root->exp_tasks)
608		rnp_root->boost_tasks = rnp_root->gp_tasks;
609	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
610#endif /* #ifdef CONFIG_RCU_BOOST */
611
612	return retval;
613}
614
615#endif /* #ifdef CONFIG_HOTPLUG_CPU */
616
617/*
618 * Check for a quiescent state from the current CPU.  When a task blocks,
619 * the task is recorded in the corresponding CPU's rcu_node structure,
620 * which is checked elsewhere.
621 *
622 * Caller must disable hard irqs.
623 */
624static void rcu_preempt_check_callbacks(int cpu)
625{
626	struct task_struct *t = current;
627
628	if (t->rcu_read_lock_nesting == 0) {
629		rcu_preempt_qs(cpu);
630		return;
631	}
632	if (t->rcu_read_lock_nesting > 0 &&
633	    per_cpu(rcu_preempt_data, cpu).qs_pending)
634		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
635}
636
637#ifdef CONFIG_RCU_BOOST
638
639static void rcu_preempt_do_callbacks(void)
640{
641	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
642}
643
644#endif /* #ifdef CONFIG_RCU_BOOST */
645
646/*
647 * Queue a preemptible-RCU callback for invocation after a grace period.
648 */
649void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
650{
651	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
652}
653EXPORT_SYMBOL_GPL(call_rcu);
654
655/**
656 * synchronize_rcu - wait until a grace period has elapsed.
657 *
658 * Control will return to the caller some time after a full grace
659 * period has elapsed, in other words after all currently executing RCU
660 * read-side critical sections have completed.  Note, however, that
661 * upon return from synchronize_rcu(), the caller might well be executing
662 * concurrently with new RCU read-side critical sections that began while
663 * synchronize_rcu() was waiting.  RCU read-side critical sections are
664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665 *
666 * See the description of synchronize_sched() for more detailed information
667 * on memory ordering guarantees.
668 */
669void synchronize_rcu(void)
670{
671	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
672			   !lock_is_held(&rcu_lock_map) &&
673			   !lock_is_held(&rcu_sched_lock_map),
674			   "Illegal synchronize_rcu() in RCU read-side critical section");
675	if (!rcu_scheduler_active)
676		return;
677	if (rcu_expedited)
678		synchronize_rcu_expedited();
679	else
680		wait_rcu_gp(call_rcu);
681}
682EXPORT_SYMBOL_GPL(synchronize_rcu);
683
684static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
685static unsigned long sync_rcu_preempt_exp_count;
686static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
687
688/*
689 * Return non-zero if there are any tasks in RCU read-side critical
690 * sections blocking the current preemptible-RCU expedited grace period.
691 * If there is no preemptible-RCU expedited grace period currently in
692 * progress, returns zero unconditionally.
693 */
694static int rcu_preempted_readers_exp(struct rcu_node *rnp)
695{
696	return rnp->exp_tasks != NULL;
697}
698
699/*
700 * return non-zero if there is no RCU expedited grace period in progress
701 * for the specified rcu_node structure, in other words, if all CPUs and
702 * tasks covered by the specified rcu_node structure have done their bit
703 * for the current expedited grace period.  Works only for preemptible
704 * RCU -- other RCU implementation use other means.
705 *
706 * Caller must hold sync_rcu_preempt_exp_mutex.
707 */
708static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
709{
710	return !rcu_preempted_readers_exp(rnp) &&
711	       ACCESS_ONCE(rnp->expmask) == 0;
712}
713
714/*
715 * Report the exit from RCU read-side critical section for the last task
716 * that queued itself during or before the current expedited preemptible-RCU
717 * grace period.  This event is reported either to the rcu_node structure on
718 * which the task was queued or to one of that rcu_node structure's ancestors,
719 * recursively up the tree.  (Calm down, calm down, we do the recursion
720 * iteratively!)
721 *
722 * Most callers will set the "wake" flag, but the task initiating the
723 * expedited grace period need not wake itself.
724 *
725 * Caller must hold sync_rcu_preempt_exp_mutex.
726 */
727static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
728			       bool wake)
729{
730	unsigned long flags;
731	unsigned long mask;
732
733	raw_spin_lock_irqsave(&rnp->lock, flags);
734	smp_mb__after_unlock_lock();
735	for (;;) {
736		if (!sync_rcu_preempt_exp_done(rnp)) {
737			raw_spin_unlock_irqrestore(&rnp->lock, flags);
738			break;
739		}
740		if (rnp->parent == NULL) {
741			raw_spin_unlock_irqrestore(&rnp->lock, flags);
742			if (wake) {
743				smp_mb(); /* EGP done before wake_up(). */
744				wake_up(&sync_rcu_preempt_exp_wq);
745			}
746			break;
747		}
748		mask = rnp->grpmask;
749		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
750		rnp = rnp->parent;
751		raw_spin_lock(&rnp->lock); /* irqs already disabled */
752		smp_mb__after_unlock_lock();
753		rnp->expmask &= ~mask;
754	}
755}
756
757/*
758 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
759 * grace period for the specified rcu_node structure.  If there are no such
760 * tasks, report it up the rcu_node hierarchy.
761 *
762 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
763 * CPU hotplug operations.
764 */
765static void
766sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
767{
768	unsigned long flags;
769	int must_wait = 0;
770
771	raw_spin_lock_irqsave(&rnp->lock, flags);
772	smp_mb__after_unlock_lock();
773	if (list_empty(&rnp->blkd_tasks)) {
774		raw_spin_unlock_irqrestore(&rnp->lock, flags);
775	} else {
776		rnp->exp_tasks = rnp->blkd_tasks.next;
777		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
778		must_wait = 1;
779	}
780	if (!must_wait)
781		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
782}
783
784/**
785 * synchronize_rcu_expedited - Brute-force RCU grace period
786 *
787 * Wait for an RCU-preempt grace period, but expedite it.  The basic
788 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
789 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
790 * significant time on all CPUs and is unfriendly to real-time workloads,
791 * so is thus not recommended for any sort of common-case code.
792 * In fact, if you are using synchronize_rcu_expedited() in a loop,
793 * please restructure your code to batch your updates, and then Use a
794 * single synchronize_rcu() instead.
795 *
796 * Note that it is illegal to call this function while holding any lock
797 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
798 * to call this function from a CPU-hotplug notifier.  Failing to observe
799 * these restriction will result in deadlock.
800 */
801void synchronize_rcu_expedited(void)
802{
803	unsigned long flags;
804	struct rcu_node *rnp;
805	struct rcu_state *rsp = &rcu_preempt_state;
806	unsigned long snap;
807	int trycount = 0;
808
809	smp_mb(); /* Caller's modifications seen first by other CPUs. */
810	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
811	smp_mb(); /* Above access cannot bleed into critical section. */
812
813	/*
814	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
815	 * operation that finds an rcu_node structure with tasks in the
816	 * process of being boosted will know that all tasks blocking
817	 * this expedited grace period will already be in the process of
818	 * being boosted.  This simplifies the process of moving tasks
819	 * from leaf to root rcu_node structures.
820	 */
821	get_online_cpus();
822
823	/*
824	 * Acquire lock, falling back to synchronize_rcu() if too many
825	 * lock-acquisition failures.  Of course, if someone does the
826	 * expedited grace period for us, just leave.
827	 */
828	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
829		if (ULONG_CMP_LT(snap,
830		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
831			put_online_cpus();
832			goto mb_ret; /* Others did our work for us. */
833		}
834		if (trycount++ < 10) {
835			udelay(trycount * num_online_cpus());
836		} else {
837			put_online_cpus();
838			wait_rcu_gp(call_rcu);
839			return;
840		}
841	}
842	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
843		put_online_cpus();
844		goto unlock_mb_ret; /* Others did our work for us. */
845	}
846
847	/* force all RCU readers onto ->blkd_tasks lists. */
848	synchronize_sched_expedited();
849
850	/* Initialize ->expmask for all non-leaf rcu_node structures. */
851	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
852		raw_spin_lock_irqsave(&rnp->lock, flags);
853		smp_mb__after_unlock_lock();
854		rnp->expmask = rnp->qsmaskinit;
855		raw_spin_unlock_irqrestore(&rnp->lock, flags);
856	}
857
858	/* Snapshot current state of ->blkd_tasks lists. */
859	rcu_for_each_leaf_node(rsp, rnp)
860		sync_rcu_preempt_exp_init(rsp, rnp);
861	if (NUM_RCU_NODES > 1)
862		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
863
864	put_online_cpus();
865
866	/* Wait for snapshotted ->blkd_tasks lists to drain. */
867	rnp = rcu_get_root(rsp);
868	wait_event(sync_rcu_preempt_exp_wq,
869		   sync_rcu_preempt_exp_done(rnp));
870
871	/* Clean up and exit. */
872	smp_mb(); /* ensure expedited GP seen before counter increment. */
873	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
874unlock_mb_ret:
875	mutex_unlock(&sync_rcu_preempt_exp_mutex);
876mb_ret:
877	smp_mb(); /* ensure subsequent action seen after grace period. */
878}
879EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
880
881/**
882 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
883 *
884 * Note that this primitive does not necessarily wait for an RCU grace period
885 * to complete.  For example, if there are no RCU callbacks queued anywhere
886 * in the system, then rcu_barrier() is within its rights to return
887 * immediately, without waiting for anything, much less an RCU grace period.
888 */
889void rcu_barrier(void)
890{
891	_rcu_barrier(&rcu_preempt_state);
892}
893EXPORT_SYMBOL_GPL(rcu_barrier);
894
895/*
896 * Initialize preemptible RCU's state structures.
897 */
898static void __init __rcu_init_preempt(void)
899{
900	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
901}
902
903/*
904 * Check for a task exiting while in a preemptible-RCU read-side
905 * critical section, clean up if so.  No need to issue warnings,
906 * as debug_check_no_locks_held() already does this if lockdep
907 * is enabled.
908 */
909void exit_rcu(void)
910{
911	struct task_struct *t = current;
912
913	if (likely(list_empty(&current->rcu_node_entry)))
914		return;
915	t->rcu_read_lock_nesting = 1;
916	barrier();
917	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
918	__rcu_read_unlock();
919}
920
921#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
922
923static struct rcu_state *rcu_state_p = &rcu_sched_state;
924
925/*
926 * Tell them what RCU they are running.
927 */
928static void __init rcu_bootup_announce(void)
929{
930	pr_info("Hierarchical RCU implementation.\n");
931	rcu_bootup_announce_oddness();
932}
933
934/*
935 * Return the number of RCU batches processed thus far for debug & stats.
936 */
937long rcu_batches_completed(void)
938{
939	return rcu_batches_completed_sched();
940}
941EXPORT_SYMBOL_GPL(rcu_batches_completed);
942
943/*
944 * Because preemptible RCU does not exist, we never have to check for
945 * CPUs being in quiescent states.
946 */
947static void rcu_preempt_note_context_switch(int cpu)
948{
949}
950
951/*
952 * Because preemptible RCU does not exist, there are never any preempted
953 * RCU readers.
954 */
955static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
956{
957	return 0;
958}
959
960#ifdef CONFIG_HOTPLUG_CPU
961
962/* Because preemptible RCU does not exist, no quieting of tasks. */
963static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
964	__releases(rnp->lock)
965{
966	raw_spin_unlock_irqrestore(&rnp->lock, flags);
967}
968
969#endif /* #ifdef CONFIG_HOTPLUG_CPU */
970
971/*
972 * Because preemptible RCU does not exist, we never have to check for
973 * tasks blocked within RCU read-side critical sections.
974 */
975static void rcu_print_detail_task_stall(struct rcu_state *rsp)
976{
977}
978
979/*
980 * Because preemptible RCU does not exist, we never have to check for
981 * tasks blocked within RCU read-side critical sections.
982 */
983static int rcu_print_task_stall(struct rcu_node *rnp)
984{
985	return 0;
986}
987
988/*
989 * Because there is no preemptible RCU, there can be no readers blocked,
990 * so there is no need to check for blocked tasks.  So check only for
991 * bogus qsmask values.
992 */
993static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
994{
995	WARN_ON_ONCE(rnp->qsmask);
996}
997
998#ifdef CONFIG_HOTPLUG_CPU
999
1000/*
1001 * Because preemptible RCU does not exist, it never needs to migrate
1002 * tasks that were blocked within RCU read-side critical sections, and
1003 * such non-existent tasks cannot possibly have been blocking the current
1004 * grace period.
1005 */
1006static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1007				     struct rcu_node *rnp,
1008				     struct rcu_data *rdp)
1009{
1010	return 0;
1011}
1012
1013#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1014
1015/*
1016 * Because preemptible RCU does not exist, it never has any callbacks
1017 * to check.
1018 */
1019static void rcu_preempt_check_callbacks(int cpu)
1020{
1021}
1022
1023/*
1024 * Wait for an rcu-preempt grace period, but make it happen quickly.
1025 * But because preemptible RCU does not exist, map to rcu-sched.
1026 */
1027void synchronize_rcu_expedited(void)
1028{
1029	synchronize_sched_expedited();
1030}
1031EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1032
1033#ifdef CONFIG_HOTPLUG_CPU
1034
1035/*
1036 * Because preemptible RCU does not exist, there is never any need to
1037 * report on tasks preempted in RCU read-side critical sections during
1038 * expedited RCU grace periods.
1039 */
1040static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1041			       bool wake)
1042{
1043}
1044
1045#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1046
1047/*
1048 * Because preemptible RCU does not exist, rcu_barrier() is just
1049 * another name for rcu_barrier_sched().
1050 */
1051void rcu_barrier(void)
1052{
1053	rcu_barrier_sched();
1054}
1055EXPORT_SYMBOL_GPL(rcu_barrier);
1056
1057/*
1058 * Because preemptible RCU does not exist, it need not be initialized.
1059 */
1060static void __init __rcu_init_preempt(void)
1061{
1062}
1063
1064/*
1065 * Because preemptible RCU does not exist, tasks cannot possibly exit
1066 * while in preemptible RCU read-side critical sections.
1067 */
1068void exit_rcu(void)
1069{
1070}
1071
1072#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1073
1074#ifdef CONFIG_RCU_BOOST
1075
1076#include "../locking/rtmutex_common.h"
1077
1078#ifdef CONFIG_RCU_TRACE
1079
1080static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1081{
1082	if (list_empty(&rnp->blkd_tasks))
1083		rnp->n_balk_blkd_tasks++;
1084	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1085		rnp->n_balk_exp_gp_tasks++;
1086	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1087		rnp->n_balk_boost_tasks++;
1088	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1089		rnp->n_balk_notblocked++;
1090	else if (rnp->gp_tasks != NULL &&
1091		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1092		rnp->n_balk_notyet++;
1093	else
1094		rnp->n_balk_nos++;
1095}
1096
1097#else /* #ifdef CONFIG_RCU_TRACE */
1098
1099static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1100{
1101}
1102
1103#endif /* #else #ifdef CONFIG_RCU_TRACE */
1104
1105static void rcu_wake_cond(struct task_struct *t, int status)
1106{
1107	/*
1108	 * If the thread is yielding, only wake it when this
1109	 * is invoked from idle
1110	 */
1111	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1112		wake_up_process(t);
1113}
1114
1115/*
1116 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1117 * or ->boost_tasks, advancing the pointer to the next task in the
1118 * ->blkd_tasks list.
1119 *
1120 * Note that irqs must be enabled: boosting the task can block.
1121 * Returns 1 if there are more tasks needing to be boosted.
1122 */
1123static int rcu_boost(struct rcu_node *rnp)
1124{
1125	unsigned long flags;
1126	struct task_struct *t;
1127	struct list_head *tb;
1128
1129	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1130		return 0;  /* Nothing left to boost. */
1131
1132	raw_spin_lock_irqsave(&rnp->lock, flags);
1133	smp_mb__after_unlock_lock();
1134
1135	/*
1136	 * Recheck under the lock: all tasks in need of boosting
1137	 * might exit their RCU read-side critical sections on their own.
1138	 */
1139	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1140		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1141		return 0;
1142	}
1143
1144	/*
1145	 * Preferentially boost tasks blocking expedited grace periods.
1146	 * This cannot starve the normal grace periods because a second
1147	 * expedited grace period must boost all blocked tasks, including
1148	 * those blocking the pre-existing normal grace period.
1149	 */
1150	if (rnp->exp_tasks != NULL) {
1151		tb = rnp->exp_tasks;
1152		rnp->n_exp_boosts++;
1153	} else {
1154		tb = rnp->boost_tasks;
1155		rnp->n_normal_boosts++;
1156	}
1157	rnp->n_tasks_boosted++;
1158
1159	/*
1160	 * We boost task t by manufacturing an rt_mutex that appears to
1161	 * be held by task t.  We leave a pointer to that rt_mutex where
1162	 * task t can find it, and task t will release the mutex when it
1163	 * exits its outermost RCU read-side critical section.  Then
1164	 * simply acquiring this artificial rt_mutex will boost task
1165	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1166	 *
1167	 * Note that task t must acquire rnp->lock to remove itself from
1168	 * the ->blkd_tasks list, which it will do from exit() if from
1169	 * nowhere else.  We therefore are guaranteed that task t will
1170	 * stay around at least until we drop rnp->lock.  Note that
1171	 * rnp->lock also resolves races between our priority boosting
1172	 * and task t's exiting its outermost RCU read-side critical
1173	 * section.
1174	 */
1175	t = container_of(tb, struct task_struct, rcu_node_entry);
1176	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1177	init_completion(&rnp->boost_completion);
1178	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1179	/* Lock only for side effect: boosts task t's priority. */
1180	rt_mutex_lock(&rnp->boost_mtx);
1181	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1182
1183	/* Wait for boostee to be done w/boost_mtx before reinitializing. */
1184	wait_for_completion(&rnp->boost_completion);
1185
1186	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1187	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1188}
1189
1190/*
1191 * Priority-boosting kthread.  One per leaf rcu_node and one for the
1192 * root rcu_node.
1193 */
1194static int rcu_boost_kthread(void *arg)
1195{
1196	struct rcu_node *rnp = (struct rcu_node *)arg;
1197	int spincnt = 0;
1198	int more2boost;
1199
1200	trace_rcu_utilization(TPS("Start boost kthread@init"));
1201	for (;;) {
1202		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1203		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1204		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1205		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1206		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1207		more2boost = rcu_boost(rnp);
1208		if (more2boost)
1209			spincnt++;
1210		else
1211			spincnt = 0;
1212		if (spincnt > 10) {
1213			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1214			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1215			schedule_timeout_interruptible(2);
1216			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1217			spincnt = 0;
1218		}
1219	}
1220	/* NOTREACHED */
1221	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1222	return 0;
1223}
1224
1225/*
1226 * Check to see if it is time to start boosting RCU readers that are
1227 * blocking the current grace period, and, if so, tell the per-rcu_node
1228 * kthread to start boosting them.  If there is an expedited grace
1229 * period in progress, it is always time to boost.
1230 *
1231 * The caller must hold rnp->lock, which this function releases.
1232 * The ->boost_kthread_task is immortal, so we don't need to worry
1233 * about it going away.
1234 */
1235static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1236	__releases(rnp->lock)
1237{
1238	struct task_struct *t;
1239
1240	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1241		rnp->n_balk_exp_gp_tasks++;
1242		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1243		return;
1244	}
1245	if (rnp->exp_tasks != NULL ||
1246	    (rnp->gp_tasks != NULL &&
1247	     rnp->boost_tasks == NULL &&
1248	     rnp->qsmask == 0 &&
1249	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1250		if (rnp->exp_tasks == NULL)
1251			rnp->boost_tasks = rnp->gp_tasks;
1252		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1253		t = rnp->boost_kthread_task;
1254		if (t)
1255			rcu_wake_cond(t, rnp->boost_kthread_status);
1256	} else {
1257		rcu_initiate_boost_trace(rnp);
1258		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1259	}
1260}
1261
1262/*
1263 * Wake up the per-CPU kthread to invoke RCU callbacks.
1264 */
1265static void invoke_rcu_callbacks_kthread(void)
1266{
1267	unsigned long flags;
1268
1269	local_irq_save(flags);
1270	__this_cpu_write(rcu_cpu_has_work, 1);
1271	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1272	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1273		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1274			      __this_cpu_read(rcu_cpu_kthread_status));
1275	}
1276	local_irq_restore(flags);
1277}
1278
1279/*
1280 * Is the current CPU running the RCU-callbacks kthread?
1281 * Caller must have preemption disabled.
1282 */
1283static bool rcu_is_callbacks_kthread(void)
1284{
1285	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1286}
1287
1288#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1289
1290/*
1291 * Do priority-boost accounting for the start of a new grace period.
1292 */
1293static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1294{
1295	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1296}
1297
1298/*
1299 * Create an RCU-boost kthread for the specified node if one does not
1300 * already exist.  We only create this kthread for preemptible RCU.
1301 * Returns zero if all is well, a negated errno otherwise.
1302 */
1303static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1304						 struct rcu_node *rnp)
1305{
1306	int rnp_index = rnp - &rsp->node[0];
1307	unsigned long flags;
1308	struct sched_param sp;
1309	struct task_struct *t;
1310
1311	if (&rcu_preempt_state != rsp)
1312		return 0;
1313
1314	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1315		return 0;
1316
1317	rsp->boost = 1;
1318	if (rnp->boost_kthread_task != NULL)
1319		return 0;
1320	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1321			   "rcub/%d", rnp_index);
1322	if (IS_ERR(t))
1323		return PTR_ERR(t);
1324	raw_spin_lock_irqsave(&rnp->lock, flags);
1325	smp_mb__after_unlock_lock();
1326	rnp->boost_kthread_task = t;
1327	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1328	sp.sched_priority = RCU_BOOST_PRIO;
1329	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1330	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1331	return 0;
1332}
1333
1334static void rcu_kthread_do_work(void)
1335{
1336	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1337	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1338	rcu_preempt_do_callbacks();
1339}
1340
1341static void rcu_cpu_kthread_setup(unsigned int cpu)
1342{
1343	struct sched_param sp;
1344
1345	sp.sched_priority = RCU_KTHREAD_PRIO;
1346	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1347}
1348
1349static void rcu_cpu_kthread_park(unsigned int cpu)
1350{
1351	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1352}
1353
1354static int rcu_cpu_kthread_should_run(unsigned int cpu)
1355{
1356	return __this_cpu_read(rcu_cpu_has_work);
1357}
1358
1359/*
1360 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1361 * RCU softirq used in flavors and configurations of RCU that do not
1362 * support RCU priority boosting.
1363 */
1364static void rcu_cpu_kthread(unsigned int cpu)
1365{
1366	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1367	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1368	int spincnt;
1369
1370	for (spincnt = 0; spincnt < 10; spincnt++) {
1371		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1372		local_bh_disable();
1373		*statusp = RCU_KTHREAD_RUNNING;
1374		this_cpu_inc(rcu_cpu_kthread_loops);
1375		local_irq_disable();
1376		work = *workp;
1377		*workp = 0;
1378		local_irq_enable();
1379		if (work)
1380			rcu_kthread_do_work();
1381		local_bh_enable();
1382		if (*workp == 0) {
1383			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1384			*statusp = RCU_KTHREAD_WAITING;
1385			return;
1386		}
1387	}
1388	*statusp = RCU_KTHREAD_YIELDING;
1389	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1390	schedule_timeout_interruptible(2);
1391	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1392	*statusp = RCU_KTHREAD_WAITING;
1393}
1394
1395/*
1396 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1397 * served by the rcu_node in question.  The CPU hotplug lock is still
1398 * held, so the value of rnp->qsmaskinit will be stable.
1399 *
1400 * We don't include outgoingcpu in the affinity set, use -1 if there is
1401 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1402 * this function allows the kthread to execute on any CPU.
1403 */
1404static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1405{
1406	struct task_struct *t = rnp->boost_kthread_task;
1407	unsigned long mask = rnp->qsmaskinit;
1408	cpumask_var_t cm;
1409	int cpu;
1410
1411	if (!t)
1412		return;
1413	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1414		return;
1415	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1416		if ((mask & 0x1) && cpu != outgoingcpu)
1417			cpumask_set_cpu(cpu, cm);
1418	if (cpumask_weight(cm) == 0) {
1419		cpumask_setall(cm);
1420		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1421			cpumask_clear_cpu(cpu, cm);
1422		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1423	}
1424	set_cpus_allowed_ptr(t, cm);
1425	free_cpumask_var(cm);
1426}
1427
1428static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1429	.store			= &rcu_cpu_kthread_task,
1430	.thread_should_run	= rcu_cpu_kthread_should_run,
1431	.thread_fn		= rcu_cpu_kthread,
1432	.thread_comm		= "rcuc/%u",
1433	.setup			= rcu_cpu_kthread_setup,
1434	.park			= rcu_cpu_kthread_park,
1435};
1436
1437/*
1438 * Spawn boost kthreads -- called as soon as the scheduler is running.
1439 */
1440static void __init rcu_spawn_boost_kthreads(void)
1441{
1442	struct rcu_node *rnp;
1443	int cpu;
1444
1445	for_each_possible_cpu(cpu)
1446		per_cpu(rcu_cpu_has_work, cpu) = 0;
1447	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1448	rnp = rcu_get_root(rcu_state_p);
1449	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1450	if (NUM_RCU_NODES > 1) {
1451		rcu_for_each_leaf_node(rcu_state_p, rnp)
1452			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1453	}
1454}
1455
1456static void rcu_prepare_kthreads(int cpu)
1457{
1458	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1459	struct rcu_node *rnp = rdp->mynode;
1460
1461	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1462	if (rcu_scheduler_fully_active)
1463		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1464}
1465
1466#else /* #ifdef CONFIG_RCU_BOOST */
1467
1468static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1469	__releases(rnp->lock)
1470{
1471	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1472}
1473
1474static void invoke_rcu_callbacks_kthread(void)
1475{
1476	WARN_ON_ONCE(1);
1477}
1478
1479static bool rcu_is_callbacks_kthread(void)
1480{
1481	return false;
1482}
1483
1484static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1485{
1486}
1487
1488static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1489{
1490}
1491
1492static void __init rcu_spawn_boost_kthreads(void)
1493{
1494}
1495
1496static void rcu_prepare_kthreads(int cpu)
1497{
1498}
1499
1500#endif /* #else #ifdef CONFIG_RCU_BOOST */
1501
1502#if !defined(CONFIG_RCU_FAST_NO_HZ)
1503
1504/*
1505 * Check to see if any future RCU-related work will need to be done
1506 * by the current CPU, even if none need be done immediately, returning
1507 * 1 if so.  This function is part of the RCU implementation; it is -not-
1508 * an exported member of the RCU API.
1509 *
1510 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1511 * any flavor of RCU.
1512 */
1513#ifndef CONFIG_RCU_NOCB_CPU_ALL
1514int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1515{
1516	*delta_jiffies = ULONG_MAX;
1517	return rcu_cpu_has_callbacks(cpu, NULL);
1518}
1519#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1520
1521/*
1522 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1523 * after it.
1524 */
1525static void rcu_cleanup_after_idle(int cpu)
1526{
1527}
1528
1529/*
1530 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1531 * is nothing.
1532 */
1533static void rcu_prepare_for_idle(int cpu)
1534{
1535}
1536
1537/*
1538 * Don't bother keeping a running count of the number of RCU callbacks
1539 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1540 */
1541static void rcu_idle_count_callbacks_posted(void)
1542{
1543}
1544
1545#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1546
1547/*
1548 * This code is invoked when a CPU goes idle, at which point we want
1549 * to have the CPU do everything required for RCU so that it can enter
1550 * the energy-efficient dyntick-idle mode.  This is handled by a
1551 * state machine implemented by rcu_prepare_for_idle() below.
1552 *
1553 * The following three proprocessor symbols control this state machine:
1554 *
1555 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1556 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1557 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1558 *	benchmarkers who might otherwise be tempted to set this to a large
1559 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1560 *	system.  And if you are -that- concerned about energy efficiency,
1561 *	just power the system down and be done with it!
1562 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1563 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1564 *	callbacks pending.  Setting this too high can OOM your system.
1565 *
1566 * The values below work well in practice.  If future workloads require
1567 * adjustment, they can be converted into kernel config parameters, though
1568 * making the state machine smarter might be a better option.
1569 */
1570#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1571#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1572
1573static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1574module_param(rcu_idle_gp_delay, int, 0644);
1575static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1576module_param(rcu_idle_lazy_gp_delay, int, 0644);
1577
1578extern int tick_nohz_active;
1579
1580/*
1581 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1582 * only if it has been awhile since the last time we did so.  Afterwards,
1583 * if there are any callbacks ready for immediate invocation, return true.
1584 */
1585static bool __maybe_unused rcu_try_advance_all_cbs(void)
1586{
1587	bool cbs_ready = false;
1588	struct rcu_data *rdp;
1589	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1590	struct rcu_node *rnp;
1591	struct rcu_state *rsp;
1592
1593	/* Exit early if we advanced recently. */
1594	if (jiffies == rdtp->last_advance_all)
1595		return 0;
1596	rdtp->last_advance_all = jiffies;
1597
1598	for_each_rcu_flavor(rsp) {
1599		rdp = this_cpu_ptr(rsp->rda);
1600		rnp = rdp->mynode;
1601
1602		/*
1603		 * Don't bother checking unless a grace period has
1604		 * completed since we last checked and there are
1605		 * callbacks not yet ready to invoke.
1606		 */
1607		if (rdp->completed != rnp->completed &&
1608		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1609			note_gp_changes(rsp, rdp);
1610
1611		if (cpu_has_callbacks_ready_to_invoke(rdp))
1612			cbs_ready = true;
1613	}
1614	return cbs_ready;
1615}
1616
1617/*
1618 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1619 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1620 * caller to set the timeout based on whether or not there are non-lazy
1621 * callbacks.
1622 *
1623 * The caller must have disabled interrupts.
1624 */
1625#ifndef CONFIG_RCU_NOCB_CPU_ALL
1626int rcu_needs_cpu(int cpu, unsigned long *dj)
1627{
1628	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1629
1630	/* Snapshot to detect later posting of non-lazy callback. */
1631	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1632
1633	/* If no callbacks, RCU doesn't need the CPU. */
1634	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1635		*dj = ULONG_MAX;
1636		return 0;
1637	}
1638
1639	/* Attempt to advance callbacks. */
1640	if (rcu_try_advance_all_cbs()) {
1641		/* Some ready to invoke, so initiate later invocation. */
1642		invoke_rcu_core();
1643		return 1;
1644	}
1645	rdtp->last_accelerate = jiffies;
1646
1647	/* Request timer delay depending on laziness, and round. */
1648	if (!rdtp->all_lazy) {
1649		*dj = round_up(rcu_idle_gp_delay + jiffies,
1650			       rcu_idle_gp_delay) - jiffies;
1651	} else {
1652		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1653	}
1654	return 0;
1655}
1656#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1657
1658/*
1659 * Prepare a CPU for idle from an RCU perspective.  The first major task
1660 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1661 * The second major task is to check to see if a non-lazy callback has
1662 * arrived at a CPU that previously had only lazy callbacks.  The third
1663 * major task is to accelerate (that is, assign grace-period numbers to)
1664 * any recently arrived callbacks.
1665 *
1666 * The caller must have disabled interrupts.
1667 */
1668static void rcu_prepare_for_idle(int cpu)
1669{
1670#ifndef CONFIG_RCU_NOCB_CPU_ALL
1671	bool needwake;
1672	struct rcu_data *rdp;
1673	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1674	struct rcu_node *rnp;
1675	struct rcu_state *rsp;
1676	int tne;
1677
1678	/* Handle nohz enablement switches conservatively. */
1679	tne = ACCESS_ONCE(tick_nohz_active);
1680	if (tne != rdtp->tick_nohz_enabled_snap) {
1681		if (rcu_cpu_has_callbacks(cpu, NULL))
1682			invoke_rcu_core(); /* force nohz to see update. */
1683		rdtp->tick_nohz_enabled_snap = tne;
1684		return;
1685	}
1686	if (!tne)
1687		return;
1688
1689	/* If this is a no-CBs CPU, no callbacks, just return. */
1690	if (rcu_is_nocb_cpu(cpu))
1691		return;
1692
1693	/*
1694	 * If a non-lazy callback arrived at a CPU having only lazy
1695	 * callbacks, invoke RCU core for the side-effect of recalculating
1696	 * idle duration on re-entry to idle.
1697	 */
1698	if (rdtp->all_lazy &&
1699	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1700		rdtp->all_lazy = false;
1701		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1702		invoke_rcu_core();
1703		return;
1704	}
1705
1706	/*
1707	 * If we have not yet accelerated this jiffy, accelerate all
1708	 * callbacks on this CPU.
1709	 */
1710	if (rdtp->last_accelerate == jiffies)
1711		return;
1712	rdtp->last_accelerate = jiffies;
1713	for_each_rcu_flavor(rsp) {
1714		rdp = per_cpu_ptr(rsp->rda, cpu);
1715		if (!*rdp->nxttail[RCU_DONE_TAIL])
1716			continue;
1717		rnp = rdp->mynode;
1718		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1719		smp_mb__after_unlock_lock();
1720		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1721		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1722		if (needwake)
1723			rcu_gp_kthread_wake(rsp);
1724	}
1725#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1726}
1727
1728/*
1729 * Clean up for exit from idle.  Attempt to advance callbacks based on
1730 * any grace periods that elapsed while the CPU was idle, and if any
1731 * callbacks are now ready to invoke, initiate invocation.
1732 */
1733static void rcu_cleanup_after_idle(int cpu)
1734{
1735#ifndef CONFIG_RCU_NOCB_CPU_ALL
1736	if (rcu_is_nocb_cpu(cpu))
1737		return;
1738	if (rcu_try_advance_all_cbs())
1739		invoke_rcu_core();
1740#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1741}
1742
1743/*
1744 * Keep a running count of the number of non-lazy callbacks posted
1745 * on this CPU.  This running counter (which is never decremented) allows
1746 * rcu_prepare_for_idle() to detect when something out of the idle loop
1747 * posts a callback, even if an equal number of callbacks are invoked.
1748 * Of course, callbacks should only be posted from within a trace event
1749 * designed to be called from idle or from within RCU_NONIDLE().
1750 */
1751static void rcu_idle_count_callbacks_posted(void)
1752{
1753	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1754}
1755
1756/*
1757 * Data for flushing lazy RCU callbacks at OOM time.
1758 */
1759static atomic_t oom_callback_count;
1760static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1761
1762/*
1763 * RCU OOM callback -- decrement the outstanding count and deliver the
1764 * wake-up if we are the last one.
1765 */
1766static void rcu_oom_callback(struct rcu_head *rhp)
1767{
1768	if (atomic_dec_and_test(&oom_callback_count))
1769		wake_up(&oom_callback_wq);
1770}
1771
1772/*
1773 * Post an rcu_oom_notify callback on the current CPU if it has at
1774 * least one lazy callback.  This will unnecessarily post callbacks
1775 * to CPUs that already have a non-lazy callback at the end of their
1776 * callback list, but this is an infrequent operation, so accept some
1777 * extra overhead to keep things simple.
1778 */
1779static void rcu_oom_notify_cpu(void *unused)
1780{
1781	struct rcu_state *rsp;
1782	struct rcu_data *rdp;
1783
1784	for_each_rcu_flavor(rsp) {
1785		rdp = raw_cpu_ptr(rsp->rda);
1786		if (rdp->qlen_lazy != 0) {
1787			atomic_inc(&oom_callback_count);
1788			rsp->call(&rdp->oom_head, rcu_oom_callback);
1789		}
1790	}
1791}
1792
1793/*
1794 * If low on memory, ensure that each CPU has a non-lazy callback.
1795 * This will wake up CPUs that have only lazy callbacks, in turn
1796 * ensuring that they free up the corresponding memory in a timely manner.
1797 * Because an uncertain amount of memory will be freed in some uncertain
1798 * timeframe, we do not claim to have freed anything.
1799 */
1800static int rcu_oom_notify(struct notifier_block *self,
1801			  unsigned long notused, void *nfreed)
1802{
1803	int cpu;
1804
1805	/* Wait for callbacks from earlier instance to complete. */
1806	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1807	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1808
1809	/*
1810	 * Prevent premature wakeup: ensure that all increments happen
1811	 * before there is a chance of the counter reaching zero.
1812	 */
1813	atomic_set(&oom_callback_count, 1);
1814
1815	get_online_cpus();
1816	for_each_online_cpu(cpu) {
1817		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1818		cond_resched();
1819	}
1820	put_online_cpus();
1821
1822	/* Unconditionally decrement: no need to wake ourselves up. */
1823	atomic_dec(&oom_callback_count);
1824
1825	return NOTIFY_OK;
1826}
1827
1828static struct notifier_block rcu_oom_nb = {
1829	.notifier_call = rcu_oom_notify
1830};
1831
1832static int __init rcu_register_oom_notifier(void)
1833{
1834	register_oom_notifier(&rcu_oom_nb);
1835	return 0;
1836}
1837early_initcall(rcu_register_oom_notifier);
1838
1839#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1840
1841#ifdef CONFIG_RCU_CPU_STALL_INFO
1842
1843#ifdef CONFIG_RCU_FAST_NO_HZ
1844
1845static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1846{
1847	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1848	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1849
1850	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1851		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1852		ulong2long(nlpd),
1853		rdtp->all_lazy ? 'L' : '.',
1854		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1855}
1856
1857#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1858
1859static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1860{
1861	*cp = '\0';
1862}
1863
1864#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1865
1866/* Initiate the stall-info list. */
1867static void print_cpu_stall_info_begin(void)
1868{
1869	pr_cont("\n");
1870}
1871
1872/*
1873 * Print out diagnostic information for the specified stalled CPU.
1874 *
1875 * If the specified CPU is aware of the current RCU grace period
1876 * (flavor specified by rsp), then print the number of scheduling
1877 * clock interrupts the CPU has taken during the time that it has
1878 * been aware.  Otherwise, print the number of RCU grace periods
1879 * that this CPU is ignorant of, for example, "1" if the CPU was
1880 * aware of the previous grace period.
1881 *
1882 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1883 */
1884static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1885{
1886	char fast_no_hz[72];
1887	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1888	struct rcu_dynticks *rdtp = rdp->dynticks;
1889	char *ticks_title;
1890	unsigned long ticks_value;
1891
1892	if (rsp->gpnum == rdp->gpnum) {
1893		ticks_title = "ticks this GP";
1894		ticks_value = rdp->ticks_this_gp;
1895	} else {
1896		ticks_title = "GPs behind";
1897		ticks_value = rsp->gpnum - rdp->gpnum;
1898	}
1899	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1900	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1901	       cpu, ticks_value, ticks_title,
1902	       atomic_read(&rdtp->dynticks) & 0xfff,
1903	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1904	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1905	       fast_no_hz);
1906}
1907
1908/* Terminate the stall-info list. */
1909static void print_cpu_stall_info_end(void)
1910{
1911	pr_err("\t");
1912}
1913
1914/* Zero ->ticks_this_gp for all flavors of RCU. */
1915static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1916{
1917	rdp->ticks_this_gp = 0;
1918	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1919}
1920
1921/* Increment ->ticks_this_gp for all flavors of RCU. */
1922static void increment_cpu_stall_ticks(void)
1923{
1924	struct rcu_state *rsp;
1925
1926	for_each_rcu_flavor(rsp)
1927		raw_cpu_inc(rsp->rda->ticks_this_gp);
1928}
1929
1930#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1931
1932static void print_cpu_stall_info_begin(void)
1933{
1934	pr_cont(" {");
1935}
1936
1937static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1938{
1939	pr_cont(" %d", cpu);
1940}
1941
1942static void print_cpu_stall_info_end(void)
1943{
1944	pr_cont("} ");
1945}
1946
1947static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1948{
1949}
1950
1951static void increment_cpu_stall_ticks(void)
1952{
1953}
1954
1955#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1956
1957#ifdef CONFIG_RCU_NOCB_CPU
1958
1959/*
1960 * Offload callback processing from the boot-time-specified set of CPUs
1961 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1962 * kthread created that pulls the callbacks from the corresponding CPU,
1963 * waits for a grace period to elapse, and invokes the callbacks.
1964 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1965 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1966 * has been specified, in which case each kthread actively polls its
1967 * CPU.  (Which isn't so great for energy efficiency, but which does
1968 * reduce RCU's overhead on that CPU.)
1969 *
1970 * This is intended to be used in conjunction with Frederic Weisbecker's
1971 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1972 * running CPU-bound user-mode computations.
1973 *
1974 * Offloading of callback processing could also in theory be used as
1975 * an energy-efficiency measure because CPUs with no RCU callbacks
1976 * queued are more aggressive about entering dyntick-idle mode.
1977 */
1978
1979
1980/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1981static int __init rcu_nocb_setup(char *str)
1982{
1983	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1984	have_rcu_nocb_mask = true;
1985	cpulist_parse(str, rcu_nocb_mask);
1986	return 1;
1987}
1988__setup("rcu_nocbs=", rcu_nocb_setup);
1989
1990static int __init parse_rcu_nocb_poll(char *arg)
1991{
1992	rcu_nocb_poll = 1;
1993	return 0;
1994}
1995early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1996
1997/*
1998 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1999 * grace period.
2000 */
2001static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2002{
2003	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2004}
2005
2006/*
2007 * Set the root rcu_node structure's ->need_future_gp field
2008 * based on the sum of those of all rcu_node structures.  This does
2009 * double-count the root rcu_node structure's requests, but this
2010 * is necessary to handle the possibility of a rcu_nocb_kthread()
2011 * having awakened during the time that the rcu_node structures
2012 * were being updated for the end of the previous grace period.
2013 */
2014static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2015{
2016	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2017}
2018
2019static void rcu_init_one_nocb(struct rcu_node *rnp)
2020{
2021	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2022	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2023}
2024
2025#ifndef CONFIG_RCU_NOCB_CPU_ALL
2026/* Is the specified CPU a no-CBs CPU? */
2027bool rcu_is_nocb_cpu(int cpu)
2028{
2029	if (have_rcu_nocb_mask)
2030		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2031	return false;
2032}
2033#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2034
2035/*
2036 * Kick the leader kthread for this NOCB group.
2037 */
2038static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2039{
2040	struct rcu_data *rdp_leader = rdp->nocb_leader;
2041
2042	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2043		return;
2044	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2045		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
2046		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2047		wake_up(&rdp_leader->nocb_wq);
2048	}
2049}
2050
2051/*
2052 * Enqueue the specified string of rcu_head structures onto the specified
2053 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2054 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2055 * counts are supplied by rhcount and rhcount_lazy.
2056 *
2057 * If warranted, also wake up the kthread servicing this CPUs queues.
2058 */
2059static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2060				    struct rcu_head *rhp,
2061				    struct rcu_head **rhtp,
2062				    int rhcount, int rhcount_lazy,
2063				    unsigned long flags)
2064{
2065	int len;
2066	struct rcu_head **old_rhpp;
2067	struct task_struct *t;
2068
2069	/* Enqueue the callback on the nocb list and update counts. */
2070	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2071	ACCESS_ONCE(*old_rhpp) = rhp;
2072	atomic_long_add(rhcount, &rdp->nocb_q_count);
2073	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2074	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2075
2076	/* If we are not being polled and there is a kthread, awaken it ... */
2077	t = ACCESS_ONCE(rdp->nocb_kthread);
2078	if (rcu_nocb_poll || !t) {
2079		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2080				    TPS("WakeNotPoll"));
2081		return;
2082	}
2083	len = atomic_long_read(&rdp->nocb_q_count);
2084	if (old_rhpp == &rdp->nocb_head) {
2085		if (!irqs_disabled_flags(flags)) {
2086			/* ... if queue was empty ... */
2087			wake_nocb_leader(rdp, false);
2088			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2089					    TPS("WakeEmpty"));
2090		} else {
2091			rdp->nocb_defer_wakeup = true;
2092			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2093					    TPS("WakeEmptyIsDeferred"));
2094		}
2095		rdp->qlen_last_fqs_check = 0;
2096	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2097		/* ... or if many callbacks queued. */
2098		wake_nocb_leader(rdp, true);
2099		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2100		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2101	} else {
2102		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2103	}
2104	return;
2105}
2106
2107/*
2108 * This is a helper for __call_rcu(), which invokes this when the normal
2109 * callback queue is inoperable.  If this is not a no-CBs CPU, this
2110 * function returns failure back to __call_rcu(), which can complain
2111 * appropriately.
2112 *
2113 * Otherwise, this function queues the callback where the corresponding
2114 * "rcuo" kthread can find it.
2115 */
2116static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2117			    bool lazy, unsigned long flags)
2118{
2119
2120	if (!rcu_is_nocb_cpu(rdp->cpu))
2121		return false;
2122	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2123	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2124		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2125					 (unsigned long)rhp->func,
2126					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2127					 -atomic_long_read(&rdp->nocb_q_count));
2128	else
2129		trace_rcu_callback(rdp->rsp->name, rhp,
2130				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2131				   -atomic_long_read(&rdp->nocb_q_count));
2132
2133	/*
2134	 * If called from an extended quiescent state with interrupts
2135	 * disabled, invoke the RCU core in order to allow the idle-entry
2136	 * deferred-wakeup check to function.
2137	 */
2138	if (irqs_disabled_flags(flags) &&
2139	    !rcu_is_watching() &&
2140	    cpu_online(smp_processor_id()))
2141		invoke_rcu_core();
2142
2143	return true;
2144}
2145
2146/*
2147 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2148 * not a no-CBs CPU.
2149 */
2150static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2151						     struct rcu_data *rdp,
2152						     unsigned long flags)
2153{
2154	long ql = rsp->qlen;
2155	long qll = rsp->qlen_lazy;
2156
2157	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2158	if (!rcu_is_nocb_cpu(smp_processor_id()))
2159		return false;
2160	rsp->qlen = 0;
2161	rsp->qlen_lazy = 0;
2162
2163	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2164	if (rsp->orphan_donelist != NULL) {
2165		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2166					rsp->orphan_donetail, ql, qll, flags);
2167		ql = qll = 0;
2168		rsp->orphan_donelist = NULL;
2169		rsp->orphan_donetail = &rsp->orphan_donelist;
2170	}
2171	if (rsp->orphan_nxtlist != NULL) {
2172		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2173					rsp->orphan_nxttail, ql, qll, flags);
2174		ql = qll = 0;
2175		rsp->orphan_nxtlist = NULL;
2176		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2177	}
2178	return true;
2179}
2180
2181/*
2182 * If necessary, kick off a new grace period, and either way wait
2183 * for a subsequent grace period to complete.
2184 */
2185static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2186{
2187	unsigned long c;
2188	bool d;
2189	unsigned long flags;
2190	bool needwake;
2191	struct rcu_node *rnp = rdp->mynode;
2192
2193	raw_spin_lock_irqsave(&rnp->lock, flags);
2194	smp_mb__after_unlock_lock();
2195	needwake = rcu_start_future_gp(rnp, rdp, &c);
2196	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2197	if (needwake)
2198		rcu_gp_kthread_wake(rdp->rsp);
2199
2200	/*
2201	 * Wait for the grace period.  Do so interruptibly to avoid messing
2202	 * up the load average.
2203	 */
2204	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2205	for (;;) {
2206		wait_event_interruptible(
2207			rnp->nocb_gp_wq[c & 0x1],
2208			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2209		if (likely(d))
2210			break;
2211		flush_signals(current);
2212		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2213	}
2214	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2215	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2216}
2217
2218/*
2219 * Leaders come here to wait for additional callbacks to show up.
2220 * This function does not return until callbacks appear.
2221 */
2222static void nocb_leader_wait(struct rcu_data *my_rdp)
2223{
2224	bool firsttime = true;
2225	bool gotcbs;
2226	struct rcu_data *rdp;
2227	struct rcu_head **tail;
2228
2229wait_again:
2230
2231	/* Wait for callbacks to appear. */
2232	if (!rcu_nocb_poll) {
2233		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2234		wait_event_interruptible(my_rdp->nocb_wq,
2235				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2236		/* Memory barrier handled by smp_mb() calls below and repoll. */
2237	} else if (firsttime) {
2238		firsttime = false; /* Don't drown trace log with "Poll"! */
2239		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2240	}
2241
2242	/*
2243	 * Each pass through the following loop checks a follower for CBs.
2244	 * We are our own first follower.  Any CBs found are moved to
2245	 * nocb_gp_head, where they await a grace period.
2246	 */
2247	gotcbs = false;
2248	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2249		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2250		if (!rdp->nocb_gp_head)
2251			continue;  /* No CBs here, try next follower. */
2252
2253		/* Move callbacks to wait-for-GP list, which is empty. */
2254		ACCESS_ONCE(rdp->nocb_head) = NULL;
2255		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2256		rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2257		rdp->nocb_gp_count_lazy =
2258			atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2259		gotcbs = true;
2260	}
2261
2262	/*
2263	 * If there were no callbacks, sleep a bit, rescan after a
2264	 * memory barrier, and go retry.
2265	 */
2266	if (unlikely(!gotcbs)) {
2267		if (!rcu_nocb_poll)
2268			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2269					    "WokeEmpty");
2270		flush_signals(current);
2271		schedule_timeout_interruptible(1);
2272
2273		/* Rescan in case we were a victim of memory ordering. */
2274		my_rdp->nocb_leader_sleep = true;
2275		smp_mb();  /* Ensure _sleep true before scan. */
2276		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2277			if (ACCESS_ONCE(rdp->nocb_head)) {
2278				/* Found CB, so short-circuit next wait. */
2279				my_rdp->nocb_leader_sleep = false;
2280				break;
2281			}
2282		goto wait_again;
2283	}
2284
2285	/* Wait for one grace period. */
2286	rcu_nocb_wait_gp(my_rdp);
2287
2288	/*
2289	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2290	 * We set it now, but recheck for new callbacks while
2291	 * traversing our follower list.
2292	 */
2293	my_rdp->nocb_leader_sleep = true;
2294	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2295
2296	/* Each pass through the following loop wakes a follower, if needed. */
2297	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2298		if (ACCESS_ONCE(rdp->nocb_head))
2299			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2300		if (!rdp->nocb_gp_head)
2301			continue; /* No CBs, so no need to wake follower. */
2302
2303		/* Append callbacks to follower's "done" list. */
2304		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2305		*tail = rdp->nocb_gp_head;
2306		atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2307		atomic_long_add(rdp->nocb_gp_count_lazy,
2308				&rdp->nocb_follower_count_lazy);
2309		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2310			/*
2311			 * List was empty, wake up the follower.
2312			 * Memory barriers supplied by atomic_long_add().
2313			 */
2314			wake_up(&rdp->nocb_wq);
2315		}
2316	}
2317
2318	/* If we (the leader) don't have CBs, go wait some more. */
2319	if (!my_rdp->nocb_follower_head)
2320		goto wait_again;
2321}
2322
2323/*
2324 * Followers come here to wait for additional callbacks to show up.
2325 * This function does not return until callbacks appear.
2326 */
2327static void nocb_follower_wait(struct rcu_data *rdp)
2328{
2329	bool firsttime = true;
2330
2331	for (;;) {
2332		if (!rcu_nocb_poll) {
2333			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2334					    "FollowerSleep");
2335			wait_event_interruptible(rdp->nocb_wq,
2336						 ACCESS_ONCE(rdp->nocb_follower_head));
2337		} else if (firsttime) {
2338			/* Don't drown trace log with "Poll"! */
2339			firsttime = false;
2340			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2341		}
2342		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2343			/* ^^^ Ensure CB invocation follows _head test. */
2344			return;
2345		}
2346		if (!rcu_nocb_poll)
2347			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2348					    "WokeEmpty");
2349		flush_signals(current);
2350		schedule_timeout_interruptible(1);
2351	}
2352}
2353
2354/*
2355 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2356 * callbacks queued by the corresponding no-CBs CPU, however, there is
2357 * an optional leader-follower relationship so that the grace-period
2358 * kthreads don't have to do quite so many wakeups.
2359 */
2360static int rcu_nocb_kthread(void *arg)
2361{
2362	int c, cl;
2363	struct rcu_head *list;
2364	struct rcu_head *next;
2365	struct rcu_head **tail;
2366	struct rcu_data *rdp = arg;
2367
2368	/* Each pass through this loop invokes one batch of callbacks */
2369	for (;;) {
2370		/* Wait for callbacks. */
2371		if (rdp->nocb_leader == rdp)
2372			nocb_leader_wait(rdp);
2373		else
2374			nocb_follower_wait(rdp);
2375
2376		/* Pull the ready-to-invoke callbacks onto local list. */
2377		list = ACCESS_ONCE(rdp->nocb_follower_head);
2378		BUG_ON(!list);
2379		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2380		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2381		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2382		c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2383		cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2384		rdp->nocb_p_count += c;
2385		rdp->nocb_p_count_lazy += cl;
2386
2387		/* Each pass through the following loop invokes a callback. */
2388		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2389		c = cl = 0;
2390		while (list) {
2391			next = list->next;
2392			/* Wait for enqueuing to complete, if needed. */
2393			while (next == NULL && &list->next != tail) {
2394				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2395						    TPS("WaitQueue"));
2396				schedule_timeout_interruptible(1);
2397				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2398						    TPS("WokeQueue"));
2399				next = list->next;
2400			}
2401			debug_rcu_head_unqueue(list);
2402			local_bh_disable();
2403			if (__rcu_reclaim(rdp->rsp->name, list))
2404				cl++;
2405			c++;
2406			local_bh_enable();
2407			list = next;
2408		}
2409		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2410		ACCESS_ONCE(rdp->nocb_p_count) -= c;
2411		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2412		rdp->n_nocbs_invoked += c;
2413	}
2414	return 0;
2415}
2416
2417/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2418static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2419{
2420	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2421}
2422
2423/* Do a deferred wakeup of rcu_nocb_kthread(). */
2424static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2425{
2426	if (!rcu_nocb_need_deferred_wakeup(rdp))
2427		return;
2428	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2429	wake_nocb_leader(rdp, false);
2430	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2431}
2432
2433void __init rcu_init_nohz(void)
2434{
2435	int cpu;
2436	bool need_rcu_nocb_mask = true;
2437	struct rcu_state *rsp;
2438
2439#ifdef CONFIG_RCU_NOCB_CPU_NONE
2440	need_rcu_nocb_mask = false;
2441#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2442
2443#if defined(CONFIG_NO_HZ_FULL)
2444	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2445		need_rcu_nocb_mask = true;
2446#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2447
2448	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2449		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2450			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2451			return;
2452		}
2453		have_rcu_nocb_mask = true;
2454	}
2455	if (!have_rcu_nocb_mask)
2456		return;
2457
2458#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2459	pr_info("\tOffload RCU callbacks from CPU 0\n");
2460	cpumask_set_cpu(0, rcu_nocb_mask);
2461#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2462#ifdef CONFIG_RCU_NOCB_CPU_ALL
2463	pr_info("\tOffload RCU callbacks from all CPUs\n");
2464	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2465#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2466#if defined(CONFIG_NO_HZ_FULL)
2467	if (tick_nohz_full_running)
2468		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2469#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2470
2471	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2472		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2473		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2474			    rcu_nocb_mask);
2475	}
2476	cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2477	pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2478	if (rcu_nocb_poll)
2479		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2480
2481	for_each_rcu_flavor(rsp) {
2482		for_each_cpu(cpu, rcu_nocb_mask) {
2483			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2484
2485			/*
2486			 * If there are early callbacks, they will need
2487			 * to be moved to the nocb lists.
2488			 */
2489			WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2490				     &rdp->nxtlist &&
2491				     rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2492			init_nocb_callback_list(rdp);
2493		}
2494		rcu_organize_nocb_kthreads(rsp);
2495	}
2496}
2497
2498/* Initialize per-rcu_data variables for no-CBs CPUs. */
2499static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2500{
2501	rdp->nocb_tail = &rdp->nocb_head;
2502	init_waitqueue_head(&rdp->nocb_wq);
2503	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2504}
2505
2506/*
2507 * If the specified CPU is a no-CBs CPU that does not already have its
2508 * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2509 * brought online out of order, this can require re-organizing the
2510 * leader-follower relationships.
2511 */
2512static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2513{
2514	struct rcu_data *rdp;
2515	struct rcu_data *rdp_last;
2516	struct rcu_data *rdp_old_leader;
2517	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2518	struct task_struct *t;
2519
2520	/*
2521	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2522	 * then nothing to do.
2523	 */
2524	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2525		return;
2526
2527	/* If we didn't spawn the leader first, reorganize! */
2528	rdp_old_leader = rdp_spawn->nocb_leader;
2529	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2530		rdp_last = NULL;
2531		rdp = rdp_old_leader;
2532		do {
2533			rdp->nocb_leader = rdp_spawn;
2534			if (rdp_last && rdp != rdp_spawn)
2535				rdp_last->nocb_next_follower = rdp;
2536			rdp_last = rdp;
2537			rdp = rdp->nocb_next_follower;
2538			rdp_last->nocb_next_follower = NULL;
2539		} while (rdp);
2540		rdp_spawn->nocb_next_follower = rdp_old_leader;
2541	}
2542
2543	/* Spawn the kthread for this CPU and RCU flavor. */
2544	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2545			"rcuo%c/%d", rsp->abbr, cpu);
2546	BUG_ON(IS_ERR(t));
2547	ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2548}
2549
2550/*
2551 * If the specified CPU is a no-CBs CPU that does not already have its
2552 * rcuo kthreads, spawn them.
2553 */
2554static void rcu_spawn_all_nocb_kthreads(int cpu)
2555{
2556	struct rcu_state *rsp;
2557
2558	if (rcu_scheduler_fully_active)
2559		for_each_rcu_flavor(rsp)
2560			rcu_spawn_one_nocb_kthread(rsp, cpu);
2561}
2562
2563/*
2564 * Once the scheduler is running, spawn rcuo kthreads for all online
2565 * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2566 * non-boot CPUs come online -- if this changes, we will need to add
2567 * some mutual exclusion.
2568 */
2569static void __init rcu_spawn_nocb_kthreads(void)
2570{
2571	int cpu;
2572
2573	for_each_online_cpu(cpu)
2574		rcu_spawn_all_nocb_kthreads(cpu);
2575}
2576
2577/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2578static int rcu_nocb_leader_stride = -1;
2579module_param(rcu_nocb_leader_stride, int, 0444);
2580
2581/*
2582 * Initialize leader-follower relationships for all no-CBs CPU.
2583 */
2584static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2585{
2586	int cpu;
2587	int ls = rcu_nocb_leader_stride;
2588	int nl = 0;  /* Next leader. */
2589	struct rcu_data *rdp;
2590	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2591	struct rcu_data *rdp_prev = NULL;
2592
2593	if (!have_rcu_nocb_mask)
2594		return;
2595	if (ls == -1) {
2596		ls = int_sqrt(nr_cpu_ids);
2597		rcu_nocb_leader_stride = ls;
2598	}
2599
2600	/*
2601	 * Each pass through this loop sets up one rcu_data structure and
2602	 * spawns one rcu_nocb_kthread().
2603	 */
2604	for_each_cpu(cpu, rcu_nocb_mask) {
2605		rdp = per_cpu_ptr(rsp->rda, cpu);
2606		if (rdp->cpu >= nl) {
2607			/* New leader, set up for followers & next leader. */
2608			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2609			rdp->nocb_leader = rdp;
2610			rdp_leader = rdp;
2611		} else {
2612			/* Another follower, link to previous leader. */
2613			rdp->nocb_leader = rdp_leader;
2614			rdp_prev->nocb_next_follower = rdp;
2615		}
2616		rdp_prev = rdp;
2617	}
2618}
2619
2620/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2621static bool init_nocb_callback_list(struct rcu_data *rdp)
2622{
2623	if (!rcu_is_nocb_cpu(rdp->cpu))
2624		return false;
2625
2626	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2627	return true;
2628}
2629
2630#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2631
2632static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2633{
2634}
2635
2636static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2637{
2638}
2639
2640static void rcu_init_one_nocb(struct rcu_node *rnp)
2641{
2642}
2643
2644static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2645			    bool lazy, unsigned long flags)
2646{
2647	return false;
2648}
2649
2650static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2651						     struct rcu_data *rdp,
2652						     unsigned long flags)
2653{
2654	return false;
2655}
2656
2657static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2658{
2659}
2660
2661static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2662{
2663	return false;
2664}
2665
2666static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2667{
2668}
2669
2670static void rcu_spawn_all_nocb_kthreads(int cpu)
2671{
2672}
2673
2674static void __init rcu_spawn_nocb_kthreads(void)
2675{
2676}
2677
2678static bool init_nocb_callback_list(struct rcu_data *rdp)
2679{
2680	return false;
2681}
2682
2683#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2684
2685/*
2686 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2687 * arbitrarily long period of time with the scheduling-clock tick turned
2688 * off.  RCU will be paying attention to this CPU because it is in the
2689 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2690 * machine because the scheduling-clock tick has been disabled.  Therefore,
2691 * if an adaptive-ticks CPU is failing to respond to the current grace
2692 * period and has not be idle from an RCU perspective, kick it.
2693 */
2694static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2695{
2696#ifdef CONFIG_NO_HZ_FULL
2697	if (tick_nohz_full_cpu(cpu))
2698		smp_send_reschedule(cpu);
2699#endif /* #ifdef CONFIG_NO_HZ_FULL */
2700}
2701
2702
2703#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2704
2705static int full_sysidle_state;		/* Current system-idle state. */
2706#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2707#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2708#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2709#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2710#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2711
2712/*
2713 * Invoked to note exit from irq or task transition to idle.  Note that
2714 * usermode execution does -not- count as idle here!  After all, we want
2715 * to detect full-system idle states, not RCU quiescent states and grace
2716 * periods.  The caller must have disabled interrupts.
2717 */
2718static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2719{
2720	unsigned long j;
2721
2722	/* If there are no nohz_full= CPUs, no need to track this. */
2723	if (!tick_nohz_full_enabled())
2724		return;
2725
2726	/* Adjust nesting, check for fully idle. */
2727	if (irq) {
2728		rdtp->dynticks_idle_nesting--;
2729		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2730		if (rdtp->dynticks_idle_nesting != 0)
2731			return;  /* Still not fully idle. */
2732	} else {
2733		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2734		    DYNTICK_TASK_NEST_VALUE) {
2735			rdtp->dynticks_idle_nesting = 0;
2736		} else {
2737			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2738			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2739			return;  /* Still not fully idle. */
2740		}
2741	}
2742
2743	/* Record start of fully idle period. */
2744	j = jiffies;
2745	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2746	smp_mb__before_atomic();
2747	atomic_inc(&rdtp->dynticks_idle);
2748	smp_mb__after_atomic();
2749	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2750}
2751
2752/*
2753 * Unconditionally force exit from full system-idle state.  This is
2754 * invoked when a normal CPU exits idle, but must be called separately
2755 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2756 * is that the timekeeping CPU is permitted to take scheduling-clock
2757 * interrupts while the system is in system-idle state, and of course
2758 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2759 * interrupt from any other type of interrupt.
2760 */
2761void rcu_sysidle_force_exit(void)
2762{
2763	int oldstate = ACCESS_ONCE(full_sysidle_state);
2764	int newoldstate;
2765
2766	/*
2767	 * Each pass through the following loop attempts to exit full
2768	 * system-idle state.  If contention proves to be a problem,
2769	 * a trylock-based contention tree could be used here.
2770	 */
2771	while (oldstate > RCU_SYSIDLE_SHORT) {
2772		newoldstate = cmpxchg(&full_sysidle_state,
2773				      oldstate, RCU_SYSIDLE_NOT);
2774		if (oldstate == newoldstate &&
2775		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2776			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2777			return; /* We cleared it, done! */
2778		}
2779		oldstate = newoldstate;
2780	}
2781	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2782}
2783
2784/*
2785 * Invoked to note entry to irq or task transition from idle.  Note that
2786 * usermode execution does -not- count as idle here!  The caller must
2787 * have disabled interrupts.
2788 */
2789static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2790{
2791	/* If there are no nohz_full= CPUs, no need to track this. */
2792	if (!tick_nohz_full_enabled())
2793		return;
2794
2795	/* Adjust nesting, check for already non-idle. */
2796	if (irq) {
2797		rdtp->dynticks_idle_nesting++;
2798		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2799		if (rdtp->dynticks_idle_nesting != 1)
2800			return; /* Already non-idle. */
2801	} else {
2802		/*
2803		 * Allow for irq misnesting.  Yes, it really is possible
2804		 * to enter an irq handler then never leave it, and maybe
2805		 * also vice versa.  Handle both possibilities.
2806		 */
2807		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2808			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2809			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2810			return; /* Already non-idle. */
2811		} else {
2812			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2813		}
2814	}
2815
2816	/* Record end of idle period. */
2817	smp_mb__before_atomic();
2818	atomic_inc(&rdtp->dynticks_idle);
2819	smp_mb__after_atomic();
2820	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2821
2822	/*
2823	 * If we are the timekeeping CPU, we are permitted to be non-idle
2824	 * during a system-idle state.  This must be the case, because
2825	 * the timekeeping CPU has to take scheduling-clock interrupts
2826	 * during the time that the system is transitioning to full
2827	 * system-idle state.  This means that the timekeeping CPU must
2828	 * invoke rcu_sysidle_force_exit() directly if it does anything
2829	 * more than take a scheduling-clock interrupt.
2830	 */
2831	if (smp_processor_id() == tick_do_timer_cpu)
2832		return;
2833
2834	/* Update system-idle state: We are clearly no longer fully idle! */
2835	rcu_sysidle_force_exit();
2836}
2837
2838/*
2839 * Check to see if the current CPU is idle.  Note that usermode execution
2840 * does not count as idle.  The caller must have disabled interrupts.
2841 */
2842static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2843				  unsigned long *maxj)
2844{
2845	int cur;
2846	unsigned long j;
2847	struct rcu_dynticks *rdtp = rdp->dynticks;
2848
2849	/* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2850	if (!tick_nohz_full_enabled())
2851		return;
2852
2853	/*
2854	 * If some other CPU has already reported non-idle, if this is
2855	 * not the flavor of RCU that tracks sysidle state, or if this
2856	 * is an offline or the timekeeping CPU, nothing to do.
2857	 */
2858	if (!*isidle || rdp->rsp != rcu_state_p ||
2859	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2860		return;
2861	if (rcu_gp_in_progress(rdp->rsp))
2862		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2863
2864	/* Pick up current idle and NMI-nesting counter and check. */
2865	cur = atomic_read(&rdtp->dynticks_idle);
2866	if (cur & 0x1) {
2867		*isidle = false; /* We are not idle! */
2868		return;
2869	}
2870	smp_mb(); /* Read counters before timestamps. */
2871
2872	/* Pick up timestamps. */
2873	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2874	/* If this CPU entered idle more recently, update maxj timestamp. */
2875	if (ULONG_CMP_LT(*maxj, j))
2876		*maxj = j;
2877}
2878
2879/*
2880 * Is this the flavor of RCU that is handling full-system idle?
2881 */
2882static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2883{
2884	return rsp == rcu_state_p;
2885}
2886
2887/*
2888 * Return a delay in jiffies based on the number of CPUs, rcu_node
2889 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2890 * systems more time to transition to full-idle state in order to
2891 * avoid the cache thrashing that otherwise occur on the state variable.
2892 * Really small systems (less than a couple of tens of CPUs) should
2893 * instead use a single global atomically incremented counter, and later
2894 * versions of this will automatically reconfigure themselves accordingly.
2895 */
2896static unsigned long rcu_sysidle_delay(void)
2897{
2898	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2899		return 0;
2900	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2901}
2902
2903/*
2904 * Advance the full-system-idle state.  This is invoked when all of
2905 * the non-timekeeping CPUs are idle.
2906 */
2907static void rcu_sysidle(unsigned long j)
2908{
2909	/* Check the current state. */
2910	switch (ACCESS_ONCE(full_sysidle_state)) {
2911	case RCU_SYSIDLE_NOT:
2912
2913		/* First time all are idle, so note a short idle period. */
2914		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2915		break;
2916
2917	case RCU_SYSIDLE_SHORT:
2918
2919		/*
2920		 * Idle for a bit, time to advance to next state?
2921		 * cmpxchg failure means race with non-idle, let them win.
2922		 */
2923		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2924			(void)cmpxchg(&full_sysidle_state,
2925				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2926		break;
2927
2928	case RCU_SYSIDLE_LONG:
2929
2930		/*
2931		 * Do an additional check pass before advancing to full.
2932		 * cmpxchg failure means race with non-idle, let them win.
2933		 */
2934		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2935			(void)cmpxchg(&full_sysidle_state,
2936				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2937		break;
2938
2939	default:
2940		break;
2941	}
2942}
2943
2944/*
2945 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2946 * back to the beginning.
2947 */
2948static void rcu_sysidle_cancel(void)
2949{
2950	smp_mb();
2951	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2952		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2953}
2954
2955/*
2956 * Update the sysidle state based on the results of a force-quiescent-state
2957 * scan of the CPUs' dyntick-idle state.
2958 */
2959static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2960			       unsigned long maxj, bool gpkt)
2961{
2962	if (rsp != rcu_state_p)
2963		return;  /* Wrong flavor, ignore. */
2964	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2965		return;  /* Running state machine from timekeeping CPU. */
2966	if (isidle)
2967		rcu_sysidle(maxj);    /* More idle! */
2968	else
2969		rcu_sysidle_cancel(); /* Idle is over. */
2970}
2971
2972/*
2973 * Wrapper for rcu_sysidle_report() when called from the grace-period
2974 * kthread's context.
2975 */
2976static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2977				  unsigned long maxj)
2978{
2979	/* If there are no nohz_full= CPUs, no need to track this. */
2980	if (!tick_nohz_full_enabled())
2981		return;
2982
2983	rcu_sysidle_report(rsp, isidle, maxj, true);
2984}
2985
2986/* Callback and function for forcing an RCU grace period. */
2987struct rcu_sysidle_head {
2988	struct rcu_head rh;
2989	int inuse;
2990};
2991
2992static void rcu_sysidle_cb(struct rcu_head *rhp)
2993{
2994	struct rcu_sysidle_head *rshp;
2995
2996	/*
2997	 * The following memory barrier is needed to replace the
2998	 * memory barriers that would normally be in the memory
2999	 * allocator.
3000	 */
3001	smp_mb();  /* grace period precedes setting inuse. */
3002
3003	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
3004	ACCESS_ONCE(rshp->inuse) = 0;
3005}
3006
3007/*
3008 * Check to see if the system is fully idle, other than the timekeeping CPU.
3009 * The caller must have disabled interrupts.  This is not intended to be
3010 * called unless tick_nohz_full_enabled().
3011 */
3012bool rcu_sys_is_idle(void)
3013{
3014	static struct rcu_sysidle_head rsh;
3015	int rss = ACCESS_ONCE(full_sysidle_state);
3016
3017	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
3018		return false;
3019
3020	/* Handle small-system case by doing a full scan of CPUs. */
3021	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
3022		int oldrss = rss - 1;
3023
3024		/*
3025		 * One pass to advance to each state up to _FULL.
3026		 * Give up if any pass fails to advance the state.
3027		 */
3028		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
3029			int cpu;
3030			bool isidle = true;
3031			unsigned long maxj = jiffies - ULONG_MAX / 4;
3032			struct rcu_data *rdp;
3033
3034			/* Scan all the CPUs looking for nonidle CPUs. */
3035			for_each_possible_cpu(cpu) {
3036				rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3037				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
3038				if (!isidle)
3039					break;
3040			}
3041			rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
3042			oldrss = rss;
3043			rss = ACCESS_ONCE(full_sysidle_state);
3044		}
3045	}
3046
3047	/* If this is the first observation of an idle period, record it. */
3048	if (rss == RCU_SYSIDLE_FULL) {
3049		rss = cmpxchg(&full_sysidle_state,
3050			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3051		return rss == RCU_SYSIDLE_FULL;
3052	}
3053
3054	smp_mb(); /* ensure rss load happens before later caller actions. */
3055
3056	/* If already fully idle, tell the caller (in case of races). */
3057	if (rss == RCU_SYSIDLE_FULL_NOTED)
3058		return true;
3059
3060	/*
3061	 * If we aren't there yet, and a grace period is not in flight,
3062	 * initiate a grace period.  Either way, tell the caller that
3063	 * we are not there yet.  We use an xchg() rather than an assignment
3064	 * to make up for the memory barriers that would otherwise be
3065	 * provided by the memory allocator.
3066	 */
3067	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
3068	    !rcu_gp_in_progress(rcu_state_p) &&
3069	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3070		call_rcu(&rsh.rh, rcu_sysidle_cb);
3071	return false;
3072}
3073
3074/*
3075 * Initialize dynticks sysidle state for CPUs coming online.
3076 */
3077static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3078{
3079	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3080}
3081
3082#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3083
3084static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
3085{
3086}
3087
3088static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
3089{
3090}
3091
3092static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3093				  unsigned long *maxj)
3094{
3095}
3096
3097static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3098{
3099	return false;
3100}
3101
3102static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3103				  unsigned long maxj)
3104{
3105}
3106
3107static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3108{
3109}
3110
3111#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3112
3113/*
3114 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3115 * grace-period kthread will do force_quiescent_state() processing?
3116 * The idea is to avoid waking up RCU core processing on such a
3117 * CPU unless the grace period has extended for too long.
3118 *
3119 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3120 * CONFIG_RCU_NOCB_CPU CPUs.
3121 */
3122static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3123{
3124#ifdef CONFIG_NO_HZ_FULL
3125	if (tick_nohz_full_cpu(smp_processor_id()) &&
3126	    (!rcu_gp_in_progress(rsp) ||
3127	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3128		return 1;
3129#endif /* #ifdef CONFIG_NO_HZ_FULL */
3130	return 0;
3131}
3132
3133/*
3134 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3135 * timekeeping CPU.
3136 */
3137static void rcu_bind_gp_kthread(void)
3138{
3139	int __maybe_unused cpu;
3140
3141	if (!tick_nohz_full_enabled())
3142		return;
3143#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3144	cpu = tick_do_timer_cpu;
3145	if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3146		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3147#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3148	if (!is_housekeeping_cpu(raw_smp_processor_id()))
3149		housekeeping_affine(current);
3150#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3151}
3152