tree_plugin.h revision 48a7639ce80cf279834d0d44865e49ecd714f37d
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27#include <linux/delay.h>
28#include <linux/gfp.h>
29#include <linux/oom.h>
30#include <linux/smpboot.h>
31#include "../time/tick-internal.h"
32
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
36#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37#else
38#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39#endif
40
41#ifdef CONFIG_RCU_NOCB_CPU
42static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
44static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
45static char __initdata nocb_buf[NR_CPUS * 5];
46#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47
48/*
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary.  If you like #ifdef, you
51 * will love this function.
52 */
53static void __init rcu_bootup_announce_oddness(void)
54{
55#ifdef CONFIG_RCU_TRACE
56	pr_info("\tRCU debugfs-based tracing is enabled.\n");
57#endif
58#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60	       CONFIG_RCU_FANOUT);
61#endif
62#ifdef CONFIG_RCU_FANOUT_EXACT
63	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64#endif
65#ifdef CONFIG_RCU_FAST_NO_HZ
66	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67#endif
68#ifdef CONFIG_PROVE_RCU
69	pr_info("\tRCU lockdep checking is enabled.\n");
70#endif
71#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72	pr_info("\tRCU torture testing starts during boot.\n");
73#endif
74#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76#endif
77#if defined(CONFIG_RCU_CPU_STALL_INFO)
78	pr_info("\tAdditional per-CPU info printed with stalls.\n");
79#endif
80#if NUM_RCU_LVL_4 != 0
81	pr_info("\tFour-level hierarchy is enabled.\n");
82#endif
83	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85	if (nr_cpu_ids != NR_CPUS)
86		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
87#ifdef CONFIG_RCU_NOCB_CPU
88#ifndef CONFIG_RCU_NOCB_CPU_NONE
89	if (!have_rcu_nocb_mask) {
90		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91		have_rcu_nocb_mask = true;
92	}
93#ifdef CONFIG_RCU_NOCB_CPU_ZERO
94	pr_info("\tOffload RCU callbacks from CPU 0\n");
95	cpumask_set_cpu(0, rcu_nocb_mask);
96#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97#ifdef CONFIG_RCU_NOCB_CPU_ALL
98	pr_info("\tOffload RCU callbacks from all CPUs\n");
99	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
102	if (have_rcu_nocb_mask) {
103		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106				    rcu_nocb_mask);
107		}
108		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
110		if (rcu_nocb_poll)
111			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
112	}
113#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114}
115
116#ifdef CONFIG_TREE_PREEMPT_RCU
117
118RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119static struct rcu_state *rcu_state = &rcu_preempt_state;
120
121static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122
123/*
124 * Tell them what RCU they are running.
125 */
126static void __init rcu_bootup_announce(void)
127{
128	pr_info("Preemptible hierarchical RCU implementation.\n");
129	rcu_bootup_announce_oddness();
130}
131
132/*
133 * Return the number of RCU-preempt batches processed thus far
134 * for debug and statistics.
135 */
136long rcu_batches_completed_preempt(void)
137{
138	return rcu_preempt_state.completed;
139}
140EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141
142/*
143 * Return the number of RCU batches processed thus far for debug & stats.
144 */
145long rcu_batches_completed(void)
146{
147	return rcu_batches_completed_preempt();
148}
149EXPORT_SYMBOL_GPL(rcu_batches_completed);
150
151/*
152 * Force a quiescent state for preemptible RCU.
153 */
154void rcu_force_quiescent_state(void)
155{
156	force_quiescent_state(&rcu_preempt_state);
157}
158EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
159
160/*
161 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
162 * that this just means that the task currently running on the CPU is
163 * not in a quiescent state.  There might be any number of tasks blocked
164 * while in an RCU read-side critical section.
165 *
166 * Unlike the other rcu_*_qs() functions, callers to this function
167 * must disable irqs in order to protect the assignment to
168 * ->rcu_read_unlock_special.
169 */
170static void rcu_preempt_qs(int cpu)
171{
172	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
173
174	if (rdp->passed_quiesce == 0)
175		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
176	rdp->passed_quiesce = 1;
177	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
178}
179
180/*
181 * We have entered the scheduler, and the current task might soon be
182 * context-switched away from.  If this task is in an RCU read-side
183 * critical section, we will no longer be able to rely on the CPU to
184 * record that fact, so we enqueue the task on the blkd_tasks list.
185 * The task will dequeue itself when it exits the outermost enclosing
186 * RCU read-side critical section.  Therefore, the current grace period
187 * cannot be permitted to complete until the blkd_tasks list entries
188 * predating the current grace period drain, in other words, until
189 * rnp->gp_tasks becomes NULL.
190 *
191 * Caller must disable preemption.
192 */
193static void rcu_preempt_note_context_switch(int cpu)
194{
195	struct task_struct *t = current;
196	unsigned long flags;
197	struct rcu_data *rdp;
198	struct rcu_node *rnp;
199
200	if (t->rcu_read_lock_nesting > 0 &&
201	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
202
203		/* Possibly blocking in an RCU read-side critical section. */
204		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
205		rnp = rdp->mynode;
206		raw_spin_lock_irqsave(&rnp->lock, flags);
207		smp_mb__after_unlock_lock();
208		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
209		t->rcu_blocked_node = rnp;
210
211		/*
212		 * If this CPU has already checked in, then this task
213		 * will hold up the next grace period rather than the
214		 * current grace period.  Queue the task accordingly.
215		 * If the task is queued for the current grace period
216		 * (i.e., this CPU has not yet passed through a quiescent
217		 * state for the current grace period), then as long
218		 * as that task remains queued, the current grace period
219		 * cannot end.  Note that there is some uncertainty as
220		 * to exactly when the current grace period started.
221		 * We take a conservative approach, which can result
222		 * in unnecessarily waiting on tasks that started very
223		 * slightly after the current grace period began.  C'est
224		 * la vie!!!
225		 *
226		 * But first, note that the current CPU must still be
227		 * on line!
228		 */
229		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
230		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
231		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
232			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
233			rnp->gp_tasks = &t->rcu_node_entry;
234#ifdef CONFIG_RCU_BOOST
235			if (rnp->boost_tasks != NULL)
236				rnp->boost_tasks = rnp->gp_tasks;
237#endif /* #ifdef CONFIG_RCU_BOOST */
238		} else {
239			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
240			if (rnp->qsmask & rdp->grpmask)
241				rnp->gp_tasks = &t->rcu_node_entry;
242		}
243		trace_rcu_preempt_task(rdp->rsp->name,
244				       t->pid,
245				       (rnp->qsmask & rdp->grpmask)
246				       ? rnp->gpnum
247				       : rnp->gpnum + 1);
248		raw_spin_unlock_irqrestore(&rnp->lock, flags);
249	} else if (t->rcu_read_lock_nesting < 0 &&
250		   t->rcu_read_unlock_special) {
251
252		/*
253		 * Complete exit from RCU read-side critical section on
254		 * behalf of preempted instance of __rcu_read_unlock().
255		 */
256		rcu_read_unlock_special(t);
257	}
258
259	/*
260	 * Either we were not in an RCU read-side critical section to
261	 * begin with, or we have now recorded that critical section
262	 * globally.  Either way, we can now note a quiescent state
263	 * for this CPU.  Again, if we were in an RCU read-side critical
264	 * section, and if that critical section was blocking the current
265	 * grace period, then the fact that the task has been enqueued
266	 * means that we continue to block the current grace period.
267	 */
268	local_irq_save(flags);
269	rcu_preempt_qs(cpu);
270	local_irq_restore(flags);
271}
272
273/*
274 * Check for preempted RCU readers blocking the current grace period
275 * for the specified rcu_node structure.  If the caller needs a reliable
276 * answer, it must hold the rcu_node's ->lock.
277 */
278static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
279{
280	return rnp->gp_tasks != NULL;
281}
282
283/*
284 * Record a quiescent state for all tasks that were previously queued
285 * on the specified rcu_node structure and that were blocking the current
286 * RCU grace period.  The caller must hold the specified rnp->lock with
287 * irqs disabled, and this lock is released upon return, but irqs remain
288 * disabled.
289 */
290static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
291	__releases(rnp->lock)
292{
293	unsigned long mask;
294	struct rcu_node *rnp_p;
295
296	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
297		raw_spin_unlock_irqrestore(&rnp->lock, flags);
298		return;  /* Still need more quiescent states! */
299	}
300
301	rnp_p = rnp->parent;
302	if (rnp_p == NULL) {
303		/*
304		 * Either there is only one rcu_node in the tree,
305		 * or tasks were kicked up to root rcu_node due to
306		 * CPUs going offline.
307		 */
308		rcu_report_qs_rsp(&rcu_preempt_state, flags);
309		return;
310	}
311
312	/* Report up the rest of the hierarchy. */
313	mask = rnp->grpmask;
314	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
315	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
316	smp_mb__after_unlock_lock();
317	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
318}
319
320/*
321 * Advance a ->blkd_tasks-list pointer to the next entry, instead
322 * returning NULL if at the end of the list.
323 */
324static struct list_head *rcu_next_node_entry(struct task_struct *t,
325					     struct rcu_node *rnp)
326{
327	struct list_head *np;
328
329	np = t->rcu_node_entry.next;
330	if (np == &rnp->blkd_tasks)
331		np = NULL;
332	return np;
333}
334
335/*
336 * Handle special cases during rcu_read_unlock(), such as needing to
337 * notify RCU core processing or task having blocked during the RCU
338 * read-side critical section.
339 */
340void rcu_read_unlock_special(struct task_struct *t)
341{
342	int empty;
343	int empty_exp;
344	int empty_exp_now;
345	unsigned long flags;
346	struct list_head *np;
347#ifdef CONFIG_RCU_BOOST
348	struct rt_mutex *rbmp = NULL;
349#endif /* #ifdef CONFIG_RCU_BOOST */
350	struct rcu_node *rnp;
351	int special;
352
353	/* NMI handlers cannot block and cannot safely manipulate state. */
354	if (in_nmi())
355		return;
356
357	local_irq_save(flags);
358
359	/*
360	 * If RCU core is waiting for this CPU to exit critical section,
361	 * let it know that we have done so.
362	 */
363	special = t->rcu_read_unlock_special;
364	if (special & RCU_READ_UNLOCK_NEED_QS) {
365		rcu_preempt_qs(smp_processor_id());
366		if (!t->rcu_read_unlock_special) {
367			local_irq_restore(flags);
368			return;
369		}
370	}
371
372	/* Hardware IRQ handlers cannot block, complain if they get here. */
373	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
374		local_irq_restore(flags);
375		return;
376	}
377
378	/* Clean up if blocked during RCU read-side critical section. */
379	if (special & RCU_READ_UNLOCK_BLOCKED) {
380		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
381
382		/*
383		 * Remove this task from the list it blocked on.  The
384		 * task can migrate while we acquire the lock, but at
385		 * most one time.  So at most two passes through loop.
386		 */
387		for (;;) {
388			rnp = t->rcu_blocked_node;
389			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
390			smp_mb__after_unlock_lock();
391			if (rnp == t->rcu_blocked_node)
392				break;
393			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
394		}
395		empty = !rcu_preempt_blocked_readers_cgp(rnp);
396		empty_exp = !rcu_preempted_readers_exp(rnp);
397		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
398		np = rcu_next_node_entry(t, rnp);
399		list_del_init(&t->rcu_node_entry);
400		t->rcu_blocked_node = NULL;
401		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
402						rnp->gpnum, t->pid);
403		if (&t->rcu_node_entry == rnp->gp_tasks)
404			rnp->gp_tasks = np;
405		if (&t->rcu_node_entry == rnp->exp_tasks)
406			rnp->exp_tasks = np;
407#ifdef CONFIG_RCU_BOOST
408		if (&t->rcu_node_entry == rnp->boost_tasks)
409			rnp->boost_tasks = np;
410		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
411		if (t->rcu_boost_mutex) {
412			rbmp = t->rcu_boost_mutex;
413			t->rcu_boost_mutex = NULL;
414		}
415#endif /* #ifdef CONFIG_RCU_BOOST */
416
417		/*
418		 * If this was the last task on the current list, and if
419		 * we aren't waiting on any CPUs, report the quiescent state.
420		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
421		 * so we must take a snapshot of the expedited state.
422		 */
423		empty_exp_now = !rcu_preempted_readers_exp(rnp);
424		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
425			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
426							 rnp->gpnum,
427							 0, rnp->qsmask,
428							 rnp->level,
429							 rnp->grplo,
430							 rnp->grphi,
431							 !!rnp->gp_tasks);
432			rcu_report_unblock_qs_rnp(rnp, flags);
433		} else {
434			raw_spin_unlock_irqrestore(&rnp->lock, flags);
435		}
436
437#ifdef CONFIG_RCU_BOOST
438		/* Unboost if we were boosted. */
439		if (rbmp)
440			rt_mutex_unlock(rbmp);
441#endif /* #ifdef CONFIG_RCU_BOOST */
442
443		/*
444		 * If this was the last task on the expedited lists,
445		 * then we need to report up the rcu_node hierarchy.
446		 */
447		if (!empty_exp && empty_exp_now)
448			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
449	} else {
450		local_irq_restore(flags);
451	}
452}
453
454#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
455
456/*
457 * Dump detailed information for all tasks blocking the current RCU
458 * grace period on the specified rcu_node structure.
459 */
460static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
461{
462	unsigned long flags;
463	struct task_struct *t;
464
465	raw_spin_lock_irqsave(&rnp->lock, flags);
466	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
467		raw_spin_unlock_irqrestore(&rnp->lock, flags);
468		return;
469	}
470	t = list_entry(rnp->gp_tasks,
471		       struct task_struct, rcu_node_entry);
472	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
473		sched_show_task(t);
474	raw_spin_unlock_irqrestore(&rnp->lock, flags);
475}
476
477/*
478 * Dump detailed information for all tasks blocking the current RCU
479 * grace period.
480 */
481static void rcu_print_detail_task_stall(struct rcu_state *rsp)
482{
483	struct rcu_node *rnp = rcu_get_root(rsp);
484
485	rcu_print_detail_task_stall_rnp(rnp);
486	rcu_for_each_leaf_node(rsp, rnp)
487		rcu_print_detail_task_stall_rnp(rnp);
488}
489
490#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
491
492static void rcu_print_detail_task_stall(struct rcu_state *rsp)
493{
494}
495
496#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
497
498#ifdef CONFIG_RCU_CPU_STALL_INFO
499
500static void rcu_print_task_stall_begin(struct rcu_node *rnp)
501{
502	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
503	       rnp->level, rnp->grplo, rnp->grphi);
504}
505
506static void rcu_print_task_stall_end(void)
507{
508	pr_cont("\n");
509}
510
511#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
512
513static void rcu_print_task_stall_begin(struct rcu_node *rnp)
514{
515}
516
517static void rcu_print_task_stall_end(void)
518{
519}
520
521#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
522
523/*
524 * Scan the current list of tasks blocked within RCU read-side critical
525 * sections, printing out the tid of each.
526 */
527static int rcu_print_task_stall(struct rcu_node *rnp)
528{
529	struct task_struct *t;
530	int ndetected = 0;
531
532	if (!rcu_preempt_blocked_readers_cgp(rnp))
533		return 0;
534	rcu_print_task_stall_begin(rnp);
535	t = list_entry(rnp->gp_tasks,
536		       struct task_struct, rcu_node_entry);
537	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
538		pr_cont(" P%d", t->pid);
539		ndetected++;
540	}
541	rcu_print_task_stall_end();
542	return ndetected;
543}
544
545/*
546 * Check that the list of blocked tasks for the newly completed grace
547 * period is in fact empty.  It is a serious bug to complete a grace
548 * period that still has RCU readers blocked!  This function must be
549 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
550 * must be held by the caller.
551 *
552 * Also, if there are blocked tasks on the list, they automatically
553 * block the newly created grace period, so set up ->gp_tasks accordingly.
554 */
555static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
556{
557	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
558	if (!list_empty(&rnp->blkd_tasks))
559		rnp->gp_tasks = rnp->blkd_tasks.next;
560	WARN_ON_ONCE(rnp->qsmask);
561}
562
563#ifdef CONFIG_HOTPLUG_CPU
564
565/*
566 * Handle tasklist migration for case in which all CPUs covered by the
567 * specified rcu_node have gone offline.  Move them up to the root
568 * rcu_node.  The reason for not just moving them to the immediate
569 * parent is to remove the need for rcu_read_unlock_special() to
570 * make more than two attempts to acquire the target rcu_node's lock.
571 * Returns true if there were tasks blocking the current RCU grace
572 * period.
573 *
574 * Returns 1 if there was previously a task blocking the current grace
575 * period on the specified rcu_node structure.
576 *
577 * The caller must hold rnp->lock with irqs disabled.
578 */
579static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
580				     struct rcu_node *rnp,
581				     struct rcu_data *rdp)
582{
583	struct list_head *lp;
584	struct list_head *lp_root;
585	int retval = 0;
586	struct rcu_node *rnp_root = rcu_get_root(rsp);
587	struct task_struct *t;
588
589	if (rnp == rnp_root) {
590		WARN_ONCE(1, "Last CPU thought to be offlined?");
591		return 0;  /* Shouldn't happen: at least one CPU online. */
592	}
593
594	/* If we are on an internal node, complain bitterly. */
595	WARN_ON_ONCE(rnp != rdp->mynode);
596
597	/*
598	 * Move tasks up to root rcu_node.  Don't try to get fancy for
599	 * this corner-case operation -- just put this node's tasks
600	 * at the head of the root node's list, and update the root node's
601	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
602	 * if non-NULL.  This might result in waiting for more tasks than
603	 * absolutely necessary, but this is a good performance/complexity
604	 * tradeoff.
605	 */
606	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
607		retval |= RCU_OFL_TASKS_NORM_GP;
608	if (rcu_preempted_readers_exp(rnp))
609		retval |= RCU_OFL_TASKS_EXP_GP;
610	lp = &rnp->blkd_tasks;
611	lp_root = &rnp_root->blkd_tasks;
612	while (!list_empty(lp)) {
613		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
614		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
615		smp_mb__after_unlock_lock();
616		list_del(&t->rcu_node_entry);
617		t->rcu_blocked_node = rnp_root;
618		list_add(&t->rcu_node_entry, lp_root);
619		if (&t->rcu_node_entry == rnp->gp_tasks)
620			rnp_root->gp_tasks = rnp->gp_tasks;
621		if (&t->rcu_node_entry == rnp->exp_tasks)
622			rnp_root->exp_tasks = rnp->exp_tasks;
623#ifdef CONFIG_RCU_BOOST
624		if (&t->rcu_node_entry == rnp->boost_tasks)
625			rnp_root->boost_tasks = rnp->boost_tasks;
626#endif /* #ifdef CONFIG_RCU_BOOST */
627		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
628	}
629
630	rnp->gp_tasks = NULL;
631	rnp->exp_tasks = NULL;
632#ifdef CONFIG_RCU_BOOST
633	rnp->boost_tasks = NULL;
634	/*
635	 * In case root is being boosted and leaf was not.  Make sure
636	 * that we boost the tasks blocking the current grace period
637	 * in this case.
638	 */
639	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
640	smp_mb__after_unlock_lock();
641	if (rnp_root->boost_tasks != NULL &&
642	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
643	    rnp_root->boost_tasks != rnp_root->exp_tasks)
644		rnp_root->boost_tasks = rnp_root->gp_tasks;
645	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
646#endif /* #ifdef CONFIG_RCU_BOOST */
647
648	return retval;
649}
650
651#endif /* #ifdef CONFIG_HOTPLUG_CPU */
652
653/*
654 * Check for a quiescent state from the current CPU.  When a task blocks,
655 * the task is recorded in the corresponding CPU's rcu_node structure,
656 * which is checked elsewhere.
657 *
658 * Caller must disable hard irqs.
659 */
660static void rcu_preempt_check_callbacks(int cpu)
661{
662	struct task_struct *t = current;
663
664	if (t->rcu_read_lock_nesting == 0) {
665		rcu_preempt_qs(cpu);
666		return;
667	}
668	if (t->rcu_read_lock_nesting > 0 &&
669	    per_cpu(rcu_preempt_data, cpu).qs_pending)
670		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
671}
672
673#ifdef CONFIG_RCU_BOOST
674
675static void rcu_preempt_do_callbacks(void)
676{
677	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
678}
679
680#endif /* #ifdef CONFIG_RCU_BOOST */
681
682/*
683 * Queue a preemptible-RCU callback for invocation after a grace period.
684 */
685void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
686{
687	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
688}
689EXPORT_SYMBOL_GPL(call_rcu);
690
691/*
692 * Queue an RCU callback for lazy invocation after a grace period.
693 * This will likely be later named something like "call_rcu_lazy()",
694 * but this change will require some way of tagging the lazy RCU
695 * callbacks in the list of pending callbacks.  Until then, this
696 * function may only be called from __kfree_rcu().
697 */
698void kfree_call_rcu(struct rcu_head *head,
699		    void (*func)(struct rcu_head *rcu))
700{
701	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
702}
703EXPORT_SYMBOL_GPL(kfree_call_rcu);
704
705/**
706 * synchronize_rcu - wait until a grace period has elapsed.
707 *
708 * Control will return to the caller some time after a full grace
709 * period has elapsed, in other words after all currently executing RCU
710 * read-side critical sections have completed.  Note, however, that
711 * upon return from synchronize_rcu(), the caller might well be executing
712 * concurrently with new RCU read-side critical sections that began while
713 * synchronize_rcu() was waiting.  RCU read-side critical sections are
714 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
715 *
716 * See the description of synchronize_sched() for more detailed information
717 * on memory ordering guarantees.
718 */
719void synchronize_rcu(void)
720{
721	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
722			   !lock_is_held(&rcu_lock_map) &&
723			   !lock_is_held(&rcu_sched_lock_map),
724			   "Illegal synchronize_rcu() in RCU read-side critical section");
725	if (!rcu_scheduler_active)
726		return;
727	if (rcu_expedited)
728		synchronize_rcu_expedited();
729	else
730		wait_rcu_gp(call_rcu);
731}
732EXPORT_SYMBOL_GPL(synchronize_rcu);
733
734static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
735static unsigned long sync_rcu_preempt_exp_count;
736static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
737
738/*
739 * Return non-zero if there are any tasks in RCU read-side critical
740 * sections blocking the current preemptible-RCU expedited grace period.
741 * If there is no preemptible-RCU expedited grace period currently in
742 * progress, returns zero unconditionally.
743 */
744static int rcu_preempted_readers_exp(struct rcu_node *rnp)
745{
746	return rnp->exp_tasks != NULL;
747}
748
749/*
750 * return non-zero if there is no RCU expedited grace period in progress
751 * for the specified rcu_node structure, in other words, if all CPUs and
752 * tasks covered by the specified rcu_node structure have done their bit
753 * for the current expedited grace period.  Works only for preemptible
754 * RCU -- other RCU implementation use other means.
755 *
756 * Caller must hold sync_rcu_preempt_exp_mutex.
757 */
758static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
759{
760	return !rcu_preempted_readers_exp(rnp) &&
761	       ACCESS_ONCE(rnp->expmask) == 0;
762}
763
764/*
765 * Report the exit from RCU read-side critical section for the last task
766 * that queued itself during or before the current expedited preemptible-RCU
767 * grace period.  This event is reported either to the rcu_node structure on
768 * which the task was queued or to one of that rcu_node structure's ancestors,
769 * recursively up the tree.  (Calm down, calm down, we do the recursion
770 * iteratively!)
771 *
772 * Most callers will set the "wake" flag, but the task initiating the
773 * expedited grace period need not wake itself.
774 *
775 * Caller must hold sync_rcu_preempt_exp_mutex.
776 */
777static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
778			       bool wake)
779{
780	unsigned long flags;
781	unsigned long mask;
782
783	raw_spin_lock_irqsave(&rnp->lock, flags);
784	smp_mb__after_unlock_lock();
785	for (;;) {
786		if (!sync_rcu_preempt_exp_done(rnp)) {
787			raw_spin_unlock_irqrestore(&rnp->lock, flags);
788			break;
789		}
790		if (rnp->parent == NULL) {
791			raw_spin_unlock_irqrestore(&rnp->lock, flags);
792			if (wake) {
793				smp_mb(); /* EGP done before wake_up(). */
794				wake_up(&sync_rcu_preempt_exp_wq);
795			}
796			break;
797		}
798		mask = rnp->grpmask;
799		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
800		rnp = rnp->parent;
801		raw_spin_lock(&rnp->lock); /* irqs already disabled */
802		smp_mb__after_unlock_lock();
803		rnp->expmask &= ~mask;
804	}
805}
806
807/*
808 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
809 * grace period for the specified rcu_node structure.  If there are no such
810 * tasks, report it up the rcu_node hierarchy.
811 *
812 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
813 * CPU hotplug operations.
814 */
815static void
816sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
817{
818	unsigned long flags;
819	int must_wait = 0;
820
821	raw_spin_lock_irqsave(&rnp->lock, flags);
822	smp_mb__after_unlock_lock();
823	if (list_empty(&rnp->blkd_tasks)) {
824		raw_spin_unlock_irqrestore(&rnp->lock, flags);
825	} else {
826		rnp->exp_tasks = rnp->blkd_tasks.next;
827		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
828		must_wait = 1;
829	}
830	if (!must_wait)
831		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
832}
833
834/**
835 * synchronize_rcu_expedited - Brute-force RCU grace period
836 *
837 * Wait for an RCU-preempt grace period, but expedite it.  The basic
838 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
839 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
840 * significant time on all CPUs and is unfriendly to real-time workloads,
841 * so is thus not recommended for any sort of common-case code.
842 * In fact, if you are using synchronize_rcu_expedited() in a loop,
843 * please restructure your code to batch your updates, and then Use a
844 * single synchronize_rcu() instead.
845 *
846 * Note that it is illegal to call this function while holding any lock
847 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
848 * to call this function from a CPU-hotplug notifier.  Failing to observe
849 * these restriction will result in deadlock.
850 */
851void synchronize_rcu_expedited(void)
852{
853	unsigned long flags;
854	struct rcu_node *rnp;
855	struct rcu_state *rsp = &rcu_preempt_state;
856	unsigned long snap;
857	int trycount = 0;
858
859	smp_mb(); /* Caller's modifications seen first by other CPUs. */
860	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
861	smp_mb(); /* Above access cannot bleed into critical section. */
862
863	/*
864	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
865	 * operation that finds an rcu_node structure with tasks in the
866	 * process of being boosted will know that all tasks blocking
867	 * this expedited grace period will already be in the process of
868	 * being boosted.  This simplifies the process of moving tasks
869	 * from leaf to root rcu_node structures.
870	 */
871	get_online_cpus();
872
873	/*
874	 * Acquire lock, falling back to synchronize_rcu() if too many
875	 * lock-acquisition failures.  Of course, if someone does the
876	 * expedited grace period for us, just leave.
877	 */
878	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
879		if (ULONG_CMP_LT(snap,
880		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
881			put_online_cpus();
882			goto mb_ret; /* Others did our work for us. */
883		}
884		if (trycount++ < 10) {
885			udelay(trycount * num_online_cpus());
886		} else {
887			put_online_cpus();
888			wait_rcu_gp(call_rcu);
889			return;
890		}
891	}
892	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
893		put_online_cpus();
894		goto unlock_mb_ret; /* Others did our work for us. */
895	}
896
897	/* force all RCU readers onto ->blkd_tasks lists. */
898	synchronize_sched_expedited();
899
900	/* Initialize ->expmask for all non-leaf rcu_node structures. */
901	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
902		raw_spin_lock_irqsave(&rnp->lock, flags);
903		smp_mb__after_unlock_lock();
904		rnp->expmask = rnp->qsmaskinit;
905		raw_spin_unlock_irqrestore(&rnp->lock, flags);
906	}
907
908	/* Snapshot current state of ->blkd_tasks lists. */
909	rcu_for_each_leaf_node(rsp, rnp)
910		sync_rcu_preempt_exp_init(rsp, rnp);
911	if (NUM_RCU_NODES > 1)
912		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
913
914	put_online_cpus();
915
916	/* Wait for snapshotted ->blkd_tasks lists to drain. */
917	rnp = rcu_get_root(rsp);
918	wait_event(sync_rcu_preempt_exp_wq,
919		   sync_rcu_preempt_exp_done(rnp));
920
921	/* Clean up and exit. */
922	smp_mb(); /* ensure expedited GP seen before counter increment. */
923	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
924unlock_mb_ret:
925	mutex_unlock(&sync_rcu_preempt_exp_mutex);
926mb_ret:
927	smp_mb(); /* ensure subsequent action seen after grace period. */
928}
929EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
930
931/**
932 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
933 *
934 * Note that this primitive does not necessarily wait for an RCU grace period
935 * to complete.  For example, if there are no RCU callbacks queued anywhere
936 * in the system, then rcu_barrier() is within its rights to return
937 * immediately, without waiting for anything, much less an RCU grace period.
938 */
939void rcu_barrier(void)
940{
941	_rcu_barrier(&rcu_preempt_state);
942}
943EXPORT_SYMBOL_GPL(rcu_barrier);
944
945/*
946 * Initialize preemptible RCU's state structures.
947 */
948static void __init __rcu_init_preempt(void)
949{
950	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
951}
952
953/*
954 * Check for a task exiting while in a preemptible-RCU read-side
955 * critical section, clean up if so.  No need to issue warnings,
956 * as debug_check_no_locks_held() already does this if lockdep
957 * is enabled.
958 */
959void exit_rcu(void)
960{
961	struct task_struct *t = current;
962
963	if (likely(list_empty(&current->rcu_node_entry)))
964		return;
965	t->rcu_read_lock_nesting = 1;
966	barrier();
967	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
968	__rcu_read_unlock();
969}
970
971#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
972
973static struct rcu_state *rcu_state = &rcu_sched_state;
974
975/*
976 * Tell them what RCU they are running.
977 */
978static void __init rcu_bootup_announce(void)
979{
980	pr_info("Hierarchical RCU implementation.\n");
981	rcu_bootup_announce_oddness();
982}
983
984/*
985 * Return the number of RCU batches processed thus far for debug & stats.
986 */
987long rcu_batches_completed(void)
988{
989	return rcu_batches_completed_sched();
990}
991EXPORT_SYMBOL_GPL(rcu_batches_completed);
992
993/*
994 * Force a quiescent state for RCU, which, because there is no preemptible
995 * RCU, becomes the same as rcu-sched.
996 */
997void rcu_force_quiescent_state(void)
998{
999	rcu_sched_force_quiescent_state();
1000}
1001EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
1002
1003/*
1004 * Because preemptible RCU does not exist, we never have to check for
1005 * CPUs being in quiescent states.
1006 */
1007static void rcu_preempt_note_context_switch(int cpu)
1008{
1009}
1010
1011/*
1012 * Because preemptible RCU does not exist, there are never any preempted
1013 * RCU readers.
1014 */
1015static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1016{
1017	return 0;
1018}
1019
1020#ifdef CONFIG_HOTPLUG_CPU
1021
1022/* Because preemptible RCU does not exist, no quieting of tasks. */
1023static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1024{
1025	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1026}
1027
1028#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1029
1030/*
1031 * Because preemptible RCU does not exist, we never have to check for
1032 * tasks blocked within RCU read-side critical sections.
1033 */
1034static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1035{
1036}
1037
1038/*
1039 * Because preemptible RCU does not exist, we never have to check for
1040 * tasks blocked within RCU read-side critical sections.
1041 */
1042static int rcu_print_task_stall(struct rcu_node *rnp)
1043{
1044	return 0;
1045}
1046
1047/*
1048 * Because there is no preemptible RCU, there can be no readers blocked,
1049 * so there is no need to check for blocked tasks.  So check only for
1050 * bogus qsmask values.
1051 */
1052static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1053{
1054	WARN_ON_ONCE(rnp->qsmask);
1055}
1056
1057#ifdef CONFIG_HOTPLUG_CPU
1058
1059/*
1060 * Because preemptible RCU does not exist, it never needs to migrate
1061 * tasks that were blocked within RCU read-side critical sections, and
1062 * such non-existent tasks cannot possibly have been blocking the current
1063 * grace period.
1064 */
1065static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1066				     struct rcu_node *rnp,
1067				     struct rcu_data *rdp)
1068{
1069	return 0;
1070}
1071
1072#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1073
1074/*
1075 * Because preemptible RCU does not exist, it never has any callbacks
1076 * to check.
1077 */
1078static void rcu_preempt_check_callbacks(int cpu)
1079{
1080}
1081
1082/*
1083 * Queue an RCU callback for lazy invocation after a grace period.
1084 * This will likely be later named something like "call_rcu_lazy()",
1085 * but this change will require some way of tagging the lazy RCU
1086 * callbacks in the list of pending callbacks.  Until then, this
1087 * function may only be called from __kfree_rcu().
1088 *
1089 * Because there is no preemptible RCU, we use RCU-sched instead.
1090 */
1091void kfree_call_rcu(struct rcu_head *head,
1092		    void (*func)(struct rcu_head *rcu))
1093{
1094	__call_rcu(head, func, &rcu_sched_state, -1, 1);
1095}
1096EXPORT_SYMBOL_GPL(kfree_call_rcu);
1097
1098/*
1099 * Wait for an rcu-preempt grace period, but make it happen quickly.
1100 * But because preemptible RCU does not exist, map to rcu-sched.
1101 */
1102void synchronize_rcu_expedited(void)
1103{
1104	synchronize_sched_expedited();
1105}
1106EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1107
1108#ifdef CONFIG_HOTPLUG_CPU
1109
1110/*
1111 * Because preemptible RCU does not exist, there is never any need to
1112 * report on tasks preempted in RCU read-side critical sections during
1113 * expedited RCU grace periods.
1114 */
1115static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1116			       bool wake)
1117{
1118}
1119
1120#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1121
1122/*
1123 * Because preemptible RCU does not exist, rcu_barrier() is just
1124 * another name for rcu_barrier_sched().
1125 */
1126void rcu_barrier(void)
1127{
1128	rcu_barrier_sched();
1129}
1130EXPORT_SYMBOL_GPL(rcu_barrier);
1131
1132/*
1133 * Because preemptible RCU does not exist, it need not be initialized.
1134 */
1135static void __init __rcu_init_preempt(void)
1136{
1137}
1138
1139/*
1140 * Because preemptible RCU does not exist, tasks cannot possibly exit
1141 * while in preemptible RCU read-side critical sections.
1142 */
1143void exit_rcu(void)
1144{
1145}
1146
1147#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1148
1149#ifdef CONFIG_RCU_BOOST
1150
1151#include "../locking/rtmutex_common.h"
1152
1153#ifdef CONFIG_RCU_TRACE
1154
1155static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1156{
1157	if (list_empty(&rnp->blkd_tasks))
1158		rnp->n_balk_blkd_tasks++;
1159	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1160		rnp->n_balk_exp_gp_tasks++;
1161	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1162		rnp->n_balk_boost_tasks++;
1163	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1164		rnp->n_balk_notblocked++;
1165	else if (rnp->gp_tasks != NULL &&
1166		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1167		rnp->n_balk_notyet++;
1168	else
1169		rnp->n_balk_nos++;
1170}
1171
1172#else /* #ifdef CONFIG_RCU_TRACE */
1173
1174static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1175{
1176}
1177
1178#endif /* #else #ifdef CONFIG_RCU_TRACE */
1179
1180static void rcu_wake_cond(struct task_struct *t, int status)
1181{
1182	/*
1183	 * If the thread is yielding, only wake it when this
1184	 * is invoked from idle
1185	 */
1186	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1187		wake_up_process(t);
1188}
1189
1190/*
1191 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1192 * or ->boost_tasks, advancing the pointer to the next task in the
1193 * ->blkd_tasks list.
1194 *
1195 * Note that irqs must be enabled: boosting the task can block.
1196 * Returns 1 if there are more tasks needing to be boosted.
1197 */
1198static int rcu_boost(struct rcu_node *rnp)
1199{
1200	unsigned long flags;
1201	struct rt_mutex mtx;
1202	struct task_struct *t;
1203	struct list_head *tb;
1204
1205	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1206		return 0;  /* Nothing left to boost. */
1207
1208	raw_spin_lock_irqsave(&rnp->lock, flags);
1209	smp_mb__after_unlock_lock();
1210
1211	/*
1212	 * Recheck under the lock: all tasks in need of boosting
1213	 * might exit their RCU read-side critical sections on their own.
1214	 */
1215	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1216		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1217		return 0;
1218	}
1219
1220	/*
1221	 * Preferentially boost tasks blocking expedited grace periods.
1222	 * This cannot starve the normal grace periods because a second
1223	 * expedited grace period must boost all blocked tasks, including
1224	 * those blocking the pre-existing normal grace period.
1225	 */
1226	if (rnp->exp_tasks != NULL) {
1227		tb = rnp->exp_tasks;
1228		rnp->n_exp_boosts++;
1229	} else {
1230		tb = rnp->boost_tasks;
1231		rnp->n_normal_boosts++;
1232	}
1233	rnp->n_tasks_boosted++;
1234
1235	/*
1236	 * We boost task t by manufacturing an rt_mutex that appears to
1237	 * be held by task t.  We leave a pointer to that rt_mutex where
1238	 * task t can find it, and task t will release the mutex when it
1239	 * exits its outermost RCU read-side critical section.  Then
1240	 * simply acquiring this artificial rt_mutex will boost task
1241	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1242	 *
1243	 * Note that task t must acquire rnp->lock to remove itself from
1244	 * the ->blkd_tasks list, which it will do from exit() if from
1245	 * nowhere else.  We therefore are guaranteed that task t will
1246	 * stay around at least until we drop rnp->lock.  Note that
1247	 * rnp->lock also resolves races between our priority boosting
1248	 * and task t's exiting its outermost RCU read-side critical
1249	 * section.
1250	 */
1251	t = container_of(tb, struct task_struct, rcu_node_entry);
1252	rt_mutex_init_proxy_locked(&mtx, t);
1253	t->rcu_boost_mutex = &mtx;
1254	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1255	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
1256	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
1257
1258	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1259	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1260}
1261
1262/*
1263 * Priority-boosting kthread.  One per leaf rcu_node and one for the
1264 * root rcu_node.
1265 */
1266static int rcu_boost_kthread(void *arg)
1267{
1268	struct rcu_node *rnp = (struct rcu_node *)arg;
1269	int spincnt = 0;
1270	int more2boost;
1271
1272	trace_rcu_utilization(TPS("Start boost kthread@init"));
1273	for (;;) {
1274		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1275		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1276		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1277		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1278		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1279		more2boost = rcu_boost(rnp);
1280		if (more2boost)
1281			spincnt++;
1282		else
1283			spincnt = 0;
1284		if (spincnt > 10) {
1285			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1286			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1287			schedule_timeout_interruptible(2);
1288			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1289			spincnt = 0;
1290		}
1291	}
1292	/* NOTREACHED */
1293	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1294	return 0;
1295}
1296
1297/*
1298 * Check to see if it is time to start boosting RCU readers that are
1299 * blocking the current grace period, and, if so, tell the per-rcu_node
1300 * kthread to start boosting them.  If there is an expedited grace
1301 * period in progress, it is always time to boost.
1302 *
1303 * The caller must hold rnp->lock, which this function releases.
1304 * The ->boost_kthread_task is immortal, so we don't need to worry
1305 * about it going away.
1306 */
1307static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1308{
1309	struct task_struct *t;
1310
1311	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1312		rnp->n_balk_exp_gp_tasks++;
1313		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1314		return;
1315	}
1316	if (rnp->exp_tasks != NULL ||
1317	    (rnp->gp_tasks != NULL &&
1318	     rnp->boost_tasks == NULL &&
1319	     rnp->qsmask == 0 &&
1320	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1321		if (rnp->exp_tasks == NULL)
1322			rnp->boost_tasks = rnp->gp_tasks;
1323		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1324		t = rnp->boost_kthread_task;
1325		if (t)
1326			rcu_wake_cond(t, rnp->boost_kthread_status);
1327	} else {
1328		rcu_initiate_boost_trace(rnp);
1329		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1330	}
1331}
1332
1333/*
1334 * Wake up the per-CPU kthread to invoke RCU callbacks.
1335 */
1336static void invoke_rcu_callbacks_kthread(void)
1337{
1338	unsigned long flags;
1339
1340	local_irq_save(flags);
1341	__this_cpu_write(rcu_cpu_has_work, 1);
1342	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1343	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1344		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1345			      __this_cpu_read(rcu_cpu_kthread_status));
1346	}
1347	local_irq_restore(flags);
1348}
1349
1350/*
1351 * Is the current CPU running the RCU-callbacks kthread?
1352 * Caller must have preemption disabled.
1353 */
1354static bool rcu_is_callbacks_kthread(void)
1355{
1356	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1357}
1358
1359#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1360
1361/*
1362 * Do priority-boost accounting for the start of a new grace period.
1363 */
1364static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1365{
1366	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1367}
1368
1369/*
1370 * Create an RCU-boost kthread for the specified node if one does not
1371 * already exist.  We only create this kthread for preemptible RCU.
1372 * Returns zero if all is well, a negated errno otherwise.
1373 */
1374static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1375						 struct rcu_node *rnp)
1376{
1377	int rnp_index = rnp - &rsp->node[0];
1378	unsigned long flags;
1379	struct sched_param sp;
1380	struct task_struct *t;
1381
1382	if (&rcu_preempt_state != rsp)
1383		return 0;
1384
1385	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1386		return 0;
1387
1388	rsp->boost = 1;
1389	if (rnp->boost_kthread_task != NULL)
1390		return 0;
1391	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1392			   "rcub/%d", rnp_index);
1393	if (IS_ERR(t))
1394		return PTR_ERR(t);
1395	raw_spin_lock_irqsave(&rnp->lock, flags);
1396	smp_mb__after_unlock_lock();
1397	rnp->boost_kthread_task = t;
1398	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1399	sp.sched_priority = RCU_BOOST_PRIO;
1400	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1401	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1402	return 0;
1403}
1404
1405static void rcu_kthread_do_work(void)
1406{
1407	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1408	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1409	rcu_preempt_do_callbacks();
1410}
1411
1412static void rcu_cpu_kthread_setup(unsigned int cpu)
1413{
1414	struct sched_param sp;
1415
1416	sp.sched_priority = RCU_KTHREAD_PRIO;
1417	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1418}
1419
1420static void rcu_cpu_kthread_park(unsigned int cpu)
1421{
1422	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1423}
1424
1425static int rcu_cpu_kthread_should_run(unsigned int cpu)
1426{
1427	return __this_cpu_read(rcu_cpu_has_work);
1428}
1429
1430/*
1431 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1432 * RCU softirq used in flavors and configurations of RCU that do not
1433 * support RCU priority boosting.
1434 */
1435static void rcu_cpu_kthread(unsigned int cpu)
1436{
1437	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1438	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1439	int spincnt;
1440
1441	for (spincnt = 0; spincnt < 10; spincnt++) {
1442		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1443		local_bh_disable();
1444		*statusp = RCU_KTHREAD_RUNNING;
1445		this_cpu_inc(rcu_cpu_kthread_loops);
1446		local_irq_disable();
1447		work = *workp;
1448		*workp = 0;
1449		local_irq_enable();
1450		if (work)
1451			rcu_kthread_do_work();
1452		local_bh_enable();
1453		if (*workp == 0) {
1454			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1455			*statusp = RCU_KTHREAD_WAITING;
1456			return;
1457		}
1458	}
1459	*statusp = RCU_KTHREAD_YIELDING;
1460	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1461	schedule_timeout_interruptible(2);
1462	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1463	*statusp = RCU_KTHREAD_WAITING;
1464}
1465
1466/*
1467 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1468 * served by the rcu_node in question.  The CPU hotplug lock is still
1469 * held, so the value of rnp->qsmaskinit will be stable.
1470 *
1471 * We don't include outgoingcpu in the affinity set, use -1 if there is
1472 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1473 * this function allows the kthread to execute on any CPU.
1474 */
1475static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1476{
1477	struct task_struct *t = rnp->boost_kthread_task;
1478	unsigned long mask = rnp->qsmaskinit;
1479	cpumask_var_t cm;
1480	int cpu;
1481
1482	if (!t)
1483		return;
1484	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1485		return;
1486	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1487		if ((mask & 0x1) && cpu != outgoingcpu)
1488			cpumask_set_cpu(cpu, cm);
1489	if (cpumask_weight(cm) == 0) {
1490		cpumask_setall(cm);
1491		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1492			cpumask_clear_cpu(cpu, cm);
1493		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1494	}
1495	set_cpus_allowed_ptr(t, cm);
1496	free_cpumask_var(cm);
1497}
1498
1499static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1500	.store			= &rcu_cpu_kthread_task,
1501	.thread_should_run	= rcu_cpu_kthread_should_run,
1502	.thread_fn		= rcu_cpu_kthread,
1503	.thread_comm		= "rcuc/%u",
1504	.setup			= rcu_cpu_kthread_setup,
1505	.park			= rcu_cpu_kthread_park,
1506};
1507
1508/*
1509 * Spawn all kthreads -- called as soon as the scheduler is running.
1510 */
1511static int __init rcu_spawn_kthreads(void)
1512{
1513	struct rcu_node *rnp;
1514	int cpu;
1515
1516	rcu_scheduler_fully_active = 1;
1517	for_each_possible_cpu(cpu)
1518		per_cpu(rcu_cpu_has_work, cpu) = 0;
1519	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1520	rnp = rcu_get_root(rcu_state);
1521	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1522	if (NUM_RCU_NODES > 1) {
1523		rcu_for_each_leaf_node(rcu_state, rnp)
1524			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1525	}
1526	return 0;
1527}
1528early_initcall(rcu_spawn_kthreads);
1529
1530static void rcu_prepare_kthreads(int cpu)
1531{
1532	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1533	struct rcu_node *rnp = rdp->mynode;
1534
1535	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1536	if (rcu_scheduler_fully_active)
1537		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1538}
1539
1540#else /* #ifdef CONFIG_RCU_BOOST */
1541
1542static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1543{
1544	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1545}
1546
1547static void invoke_rcu_callbacks_kthread(void)
1548{
1549	WARN_ON_ONCE(1);
1550}
1551
1552static bool rcu_is_callbacks_kthread(void)
1553{
1554	return false;
1555}
1556
1557static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1558{
1559}
1560
1561static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1562{
1563}
1564
1565static int __init rcu_scheduler_really_started(void)
1566{
1567	rcu_scheduler_fully_active = 1;
1568	return 0;
1569}
1570early_initcall(rcu_scheduler_really_started);
1571
1572static void rcu_prepare_kthreads(int cpu)
1573{
1574}
1575
1576#endif /* #else #ifdef CONFIG_RCU_BOOST */
1577
1578#if !defined(CONFIG_RCU_FAST_NO_HZ)
1579
1580/*
1581 * Check to see if any future RCU-related work will need to be done
1582 * by the current CPU, even if none need be done immediately, returning
1583 * 1 if so.  This function is part of the RCU implementation; it is -not-
1584 * an exported member of the RCU API.
1585 *
1586 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1587 * any flavor of RCU.
1588 */
1589#ifndef CONFIG_RCU_NOCB_CPU_ALL
1590int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1591{
1592	*delta_jiffies = ULONG_MAX;
1593	return rcu_cpu_has_callbacks(cpu, NULL);
1594}
1595#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1596
1597/*
1598 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1599 * after it.
1600 */
1601static void rcu_cleanup_after_idle(int cpu)
1602{
1603}
1604
1605/*
1606 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1607 * is nothing.
1608 */
1609static void rcu_prepare_for_idle(int cpu)
1610{
1611}
1612
1613/*
1614 * Don't bother keeping a running count of the number of RCU callbacks
1615 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1616 */
1617static void rcu_idle_count_callbacks_posted(void)
1618{
1619}
1620
1621#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1622
1623/*
1624 * This code is invoked when a CPU goes idle, at which point we want
1625 * to have the CPU do everything required for RCU so that it can enter
1626 * the energy-efficient dyntick-idle mode.  This is handled by a
1627 * state machine implemented by rcu_prepare_for_idle() below.
1628 *
1629 * The following three proprocessor symbols control this state machine:
1630 *
1631 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1632 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1633 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1634 *	benchmarkers who might otherwise be tempted to set this to a large
1635 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1636 *	system.  And if you are -that- concerned about energy efficiency,
1637 *	just power the system down and be done with it!
1638 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1639 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1640 *	callbacks pending.  Setting this too high can OOM your system.
1641 *
1642 * The values below work well in practice.  If future workloads require
1643 * adjustment, they can be converted into kernel config parameters, though
1644 * making the state machine smarter might be a better option.
1645 */
1646#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1647#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1648
1649static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1650module_param(rcu_idle_gp_delay, int, 0644);
1651static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1652module_param(rcu_idle_lazy_gp_delay, int, 0644);
1653
1654extern int tick_nohz_active;
1655
1656/*
1657 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1658 * only if it has been awhile since the last time we did so.  Afterwards,
1659 * if there are any callbacks ready for immediate invocation, return true.
1660 */
1661static bool __maybe_unused rcu_try_advance_all_cbs(void)
1662{
1663	bool cbs_ready = false;
1664	struct rcu_data *rdp;
1665	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1666	struct rcu_node *rnp;
1667	struct rcu_state *rsp;
1668
1669	/* Exit early if we advanced recently. */
1670	if (jiffies == rdtp->last_advance_all)
1671		return 0;
1672	rdtp->last_advance_all = jiffies;
1673
1674	for_each_rcu_flavor(rsp) {
1675		rdp = this_cpu_ptr(rsp->rda);
1676		rnp = rdp->mynode;
1677
1678		/*
1679		 * Don't bother checking unless a grace period has
1680		 * completed since we last checked and there are
1681		 * callbacks not yet ready to invoke.
1682		 */
1683		if (rdp->completed != rnp->completed &&
1684		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1685			note_gp_changes(rsp, rdp);
1686
1687		if (cpu_has_callbacks_ready_to_invoke(rdp))
1688			cbs_ready = true;
1689	}
1690	return cbs_ready;
1691}
1692
1693/*
1694 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1695 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1696 * caller to set the timeout based on whether or not there are non-lazy
1697 * callbacks.
1698 *
1699 * The caller must have disabled interrupts.
1700 */
1701#ifndef CONFIG_RCU_NOCB_CPU_ALL
1702int rcu_needs_cpu(int cpu, unsigned long *dj)
1703{
1704	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1705
1706	/* Snapshot to detect later posting of non-lazy callback. */
1707	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1708
1709	/* If no callbacks, RCU doesn't need the CPU. */
1710	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1711		*dj = ULONG_MAX;
1712		return 0;
1713	}
1714
1715	/* Attempt to advance callbacks. */
1716	if (rcu_try_advance_all_cbs()) {
1717		/* Some ready to invoke, so initiate later invocation. */
1718		invoke_rcu_core();
1719		return 1;
1720	}
1721	rdtp->last_accelerate = jiffies;
1722
1723	/* Request timer delay depending on laziness, and round. */
1724	if (!rdtp->all_lazy) {
1725		*dj = round_up(rcu_idle_gp_delay + jiffies,
1726			       rcu_idle_gp_delay) - jiffies;
1727	} else {
1728		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1729	}
1730	return 0;
1731}
1732#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1733
1734/*
1735 * Prepare a CPU for idle from an RCU perspective.  The first major task
1736 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1737 * The second major task is to check to see if a non-lazy callback has
1738 * arrived at a CPU that previously had only lazy callbacks.  The third
1739 * major task is to accelerate (that is, assign grace-period numbers to)
1740 * any recently arrived callbacks.
1741 *
1742 * The caller must have disabled interrupts.
1743 */
1744static void rcu_prepare_for_idle(int cpu)
1745{
1746#ifndef CONFIG_RCU_NOCB_CPU_ALL
1747	bool needwake;
1748	struct rcu_data *rdp;
1749	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1750	struct rcu_node *rnp;
1751	struct rcu_state *rsp;
1752	int tne;
1753
1754	/* Handle nohz enablement switches conservatively. */
1755	tne = ACCESS_ONCE(tick_nohz_active);
1756	if (tne != rdtp->tick_nohz_enabled_snap) {
1757		if (rcu_cpu_has_callbacks(cpu, NULL))
1758			invoke_rcu_core(); /* force nohz to see update. */
1759		rdtp->tick_nohz_enabled_snap = tne;
1760		return;
1761	}
1762	if (!tne)
1763		return;
1764
1765	/* If this is a no-CBs CPU, no callbacks, just return. */
1766	if (rcu_is_nocb_cpu(cpu))
1767		return;
1768
1769	/*
1770	 * If a non-lazy callback arrived at a CPU having only lazy
1771	 * callbacks, invoke RCU core for the side-effect of recalculating
1772	 * idle duration on re-entry to idle.
1773	 */
1774	if (rdtp->all_lazy &&
1775	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1776		rdtp->all_lazy = false;
1777		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1778		invoke_rcu_core();
1779		return;
1780	}
1781
1782	/*
1783	 * If we have not yet accelerated this jiffy, accelerate all
1784	 * callbacks on this CPU.
1785	 */
1786	if (rdtp->last_accelerate == jiffies)
1787		return;
1788	rdtp->last_accelerate = jiffies;
1789	for_each_rcu_flavor(rsp) {
1790		rdp = per_cpu_ptr(rsp->rda, cpu);
1791		if (!*rdp->nxttail[RCU_DONE_TAIL])
1792			continue;
1793		rnp = rdp->mynode;
1794		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1795		smp_mb__after_unlock_lock();
1796		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1797		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1798		if (needwake)
1799			rcu_gp_kthread_wake(rsp);
1800	}
1801#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1802}
1803
1804/*
1805 * Clean up for exit from idle.  Attempt to advance callbacks based on
1806 * any grace periods that elapsed while the CPU was idle, and if any
1807 * callbacks are now ready to invoke, initiate invocation.
1808 */
1809static void rcu_cleanup_after_idle(int cpu)
1810{
1811#ifndef CONFIG_RCU_NOCB_CPU_ALL
1812	if (rcu_is_nocb_cpu(cpu))
1813		return;
1814	if (rcu_try_advance_all_cbs())
1815		invoke_rcu_core();
1816#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1817}
1818
1819/*
1820 * Keep a running count of the number of non-lazy callbacks posted
1821 * on this CPU.  This running counter (which is never decremented) allows
1822 * rcu_prepare_for_idle() to detect when something out of the idle loop
1823 * posts a callback, even if an equal number of callbacks are invoked.
1824 * Of course, callbacks should only be posted from within a trace event
1825 * designed to be called from idle or from within RCU_NONIDLE().
1826 */
1827static void rcu_idle_count_callbacks_posted(void)
1828{
1829	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1830}
1831
1832/*
1833 * Data for flushing lazy RCU callbacks at OOM time.
1834 */
1835static atomic_t oom_callback_count;
1836static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1837
1838/*
1839 * RCU OOM callback -- decrement the outstanding count and deliver the
1840 * wake-up if we are the last one.
1841 */
1842static void rcu_oom_callback(struct rcu_head *rhp)
1843{
1844	if (atomic_dec_and_test(&oom_callback_count))
1845		wake_up(&oom_callback_wq);
1846}
1847
1848/*
1849 * Post an rcu_oom_notify callback on the current CPU if it has at
1850 * least one lazy callback.  This will unnecessarily post callbacks
1851 * to CPUs that already have a non-lazy callback at the end of their
1852 * callback list, but this is an infrequent operation, so accept some
1853 * extra overhead to keep things simple.
1854 */
1855static void rcu_oom_notify_cpu(void *unused)
1856{
1857	struct rcu_state *rsp;
1858	struct rcu_data *rdp;
1859
1860	for_each_rcu_flavor(rsp) {
1861		rdp = __this_cpu_ptr(rsp->rda);
1862		if (rdp->qlen_lazy != 0) {
1863			atomic_inc(&oom_callback_count);
1864			rsp->call(&rdp->oom_head, rcu_oom_callback);
1865		}
1866	}
1867}
1868
1869/*
1870 * If low on memory, ensure that each CPU has a non-lazy callback.
1871 * This will wake up CPUs that have only lazy callbacks, in turn
1872 * ensuring that they free up the corresponding memory in a timely manner.
1873 * Because an uncertain amount of memory will be freed in some uncertain
1874 * timeframe, we do not claim to have freed anything.
1875 */
1876static int rcu_oom_notify(struct notifier_block *self,
1877			  unsigned long notused, void *nfreed)
1878{
1879	int cpu;
1880
1881	/* Wait for callbacks from earlier instance to complete. */
1882	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1883	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1884
1885	/*
1886	 * Prevent premature wakeup: ensure that all increments happen
1887	 * before there is a chance of the counter reaching zero.
1888	 */
1889	atomic_set(&oom_callback_count, 1);
1890
1891	get_online_cpus();
1892	for_each_online_cpu(cpu) {
1893		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1894		cond_resched();
1895	}
1896	put_online_cpus();
1897
1898	/* Unconditionally decrement: no need to wake ourselves up. */
1899	atomic_dec(&oom_callback_count);
1900
1901	return NOTIFY_OK;
1902}
1903
1904static struct notifier_block rcu_oom_nb = {
1905	.notifier_call = rcu_oom_notify
1906};
1907
1908static int __init rcu_register_oom_notifier(void)
1909{
1910	register_oom_notifier(&rcu_oom_nb);
1911	return 0;
1912}
1913early_initcall(rcu_register_oom_notifier);
1914
1915#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1916
1917#ifdef CONFIG_RCU_CPU_STALL_INFO
1918
1919#ifdef CONFIG_RCU_FAST_NO_HZ
1920
1921static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1922{
1923	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1924	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1925
1926	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1927		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1928		ulong2long(nlpd),
1929		rdtp->all_lazy ? 'L' : '.',
1930		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1931}
1932
1933#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1934
1935static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1936{
1937	*cp = '\0';
1938}
1939
1940#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1941
1942/* Initiate the stall-info list. */
1943static void print_cpu_stall_info_begin(void)
1944{
1945	pr_cont("\n");
1946}
1947
1948/*
1949 * Print out diagnostic information for the specified stalled CPU.
1950 *
1951 * If the specified CPU is aware of the current RCU grace period
1952 * (flavor specified by rsp), then print the number of scheduling
1953 * clock interrupts the CPU has taken during the time that it has
1954 * been aware.  Otherwise, print the number of RCU grace periods
1955 * that this CPU is ignorant of, for example, "1" if the CPU was
1956 * aware of the previous grace period.
1957 *
1958 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1959 */
1960static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1961{
1962	char fast_no_hz[72];
1963	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1964	struct rcu_dynticks *rdtp = rdp->dynticks;
1965	char *ticks_title;
1966	unsigned long ticks_value;
1967
1968	if (rsp->gpnum == rdp->gpnum) {
1969		ticks_title = "ticks this GP";
1970		ticks_value = rdp->ticks_this_gp;
1971	} else {
1972		ticks_title = "GPs behind";
1973		ticks_value = rsp->gpnum - rdp->gpnum;
1974	}
1975	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1976	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1977	       cpu, ticks_value, ticks_title,
1978	       atomic_read(&rdtp->dynticks) & 0xfff,
1979	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1980	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1981	       fast_no_hz);
1982}
1983
1984/* Terminate the stall-info list. */
1985static void print_cpu_stall_info_end(void)
1986{
1987	pr_err("\t");
1988}
1989
1990/* Zero ->ticks_this_gp for all flavors of RCU. */
1991static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1992{
1993	rdp->ticks_this_gp = 0;
1994	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1995}
1996
1997/* Increment ->ticks_this_gp for all flavors of RCU. */
1998static void increment_cpu_stall_ticks(void)
1999{
2000	struct rcu_state *rsp;
2001
2002	for_each_rcu_flavor(rsp)
2003		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
2004}
2005
2006#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2007
2008static void print_cpu_stall_info_begin(void)
2009{
2010	pr_cont(" {");
2011}
2012
2013static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2014{
2015	pr_cont(" %d", cpu);
2016}
2017
2018static void print_cpu_stall_info_end(void)
2019{
2020	pr_cont("} ");
2021}
2022
2023static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2024{
2025}
2026
2027static void increment_cpu_stall_ticks(void)
2028{
2029}
2030
2031#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2032
2033#ifdef CONFIG_RCU_NOCB_CPU
2034
2035/*
2036 * Offload callback processing from the boot-time-specified set of CPUs
2037 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
2038 * kthread created that pulls the callbacks from the corresponding CPU,
2039 * waits for a grace period to elapse, and invokes the callbacks.
2040 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2041 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2042 * has been specified, in which case each kthread actively polls its
2043 * CPU.  (Which isn't so great for energy efficiency, but which does
2044 * reduce RCU's overhead on that CPU.)
2045 *
2046 * This is intended to be used in conjunction with Frederic Weisbecker's
2047 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2048 * running CPU-bound user-mode computations.
2049 *
2050 * Offloading of callback processing could also in theory be used as
2051 * an energy-efficiency measure because CPUs with no RCU callbacks
2052 * queued are more aggressive about entering dyntick-idle mode.
2053 */
2054
2055
2056/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2057static int __init rcu_nocb_setup(char *str)
2058{
2059	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2060	have_rcu_nocb_mask = true;
2061	cpulist_parse(str, rcu_nocb_mask);
2062	return 1;
2063}
2064__setup("rcu_nocbs=", rcu_nocb_setup);
2065
2066static int __init parse_rcu_nocb_poll(char *arg)
2067{
2068	rcu_nocb_poll = 1;
2069	return 0;
2070}
2071early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2072
2073/*
2074 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2075 * grace period.
2076 */
2077static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2078{
2079	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2080}
2081
2082/*
2083 * Set the root rcu_node structure's ->need_future_gp field
2084 * based on the sum of those of all rcu_node structures.  This does
2085 * double-count the root rcu_node structure's requests, but this
2086 * is necessary to handle the possibility of a rcu_nocb_kthread()
2087 * having awakened during the time that the rcu_node structures
2088 * were being updated for the end of the previous grace period.
2089 */
2090static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2091{
2092	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2093}
2094
2095static void rcu_init_one_nocb(struct rcu_node *rnp)
2096{
2097	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2098	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2099}
2100
2101#ifndef CONFIG_RCU_NOCB_CPU_ALL
2102/* Is the specified CPU a no-CBs CPU? */
2103bool rcu_is_nocb_cpu(int cpu)
2104{
2105	if (have_rcu_nocb_mask)
2106		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2107	return false;
2108}
2109#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2110
2111/*
2112 * Enqueue the specified string of rcu_head structures onto the specified
2113 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2114 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2115 * counts are supplied by rhcount and rhcount_lazy.
2116 *
2117 * If warranted, also wake up the kthread servicing this CPUs queues.
2118 */
2119static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2120				    struct rcu_head *rhp,
2121				    struct rcu_head **rhtp,
2122				    int rhcount, int rhcount_lazy,
2123				    unsigned long flags)
2124{
2125	int len;
2126	struct rcu_head **old_rhpp;
2127	struct task_struct *t;
2128
2129	/* Enqueue the callback on the nocb list and update counts. */
2130	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2131	ACCESS_ONCE(*old_rhpp) = rhp;
2132	atomic_long_add(rhcount, &rdp->nocb_q_count);
2133	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2134
2135	/* If we are not being polled and there is a kthread, awaken it ... */
2136	t = ACCESS_ONCE(rdp->nocb_kthread);
2137	if (rcu_nocb_poll || !t) {
2138		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2139				    TPS("WakeNotPoll"));
2140		return;
2141	}
2142	len = atomic_long_read(&rdp->nocb_q_count);
2143	if (old_rhpp == &rdp->nocb_head) {
2144		if (!irqs_disabled_flags(flags)) {
2145			wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
2146			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2147					    TPS("WakeEmpty"));
2148		} else {
2149			rdp->nocb_defer_wakeup = true;
2150			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2151					    TPS("WakeEmptyIsDeferred"));
2152		}
2153		rdp->qlen_last_fqs_check = 0;
2154	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2155		wake_up_process(t); /* ... or if many callbacks queued. */
2156		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2157		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2158	} else {
2159		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2160	}
2161	return;
2162}
2163
2164/*
2165 * This is a helper for __call_rcu(), which invokes this when the normal
2166 * callback queue is inoperable.  If this is not a no-CBs CPU, this
2167 * function returns failure back to __call_rcu(), which can complain
2168 * appropriately.
2169 *
2170 * Otherwise, this function queues the callback where the corresponding
2171 * "rcuo" kthread can find it.
2172 */
2173static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2174			    bool lazy, unsigned long flags)
2175{
2176
2177	if (!rcu_is_nocb_cpu(rdp->cpu))
2178		return 0;
2179	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2180	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2181		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2182					 (unsigned long)rhp->func,
2183					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2184					 -atomic_long_read(&rdp->nocb_q_count));
2185	else
2186		trace_rcu_callback(rdp->rsp->name, rhp,
2187				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2188				   -atomic_long_read(&rdp->nocb_q_count));
2189	return 1;
2190}
2191
2192/*
2193 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2194 * not a no-CBs CPU.
2195 */
2196static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2197						     struct rcu_data *rdp,
2198						     unsigned long flags)
2199{
2200	long ql = rsp->qlen;
2201	long qll = rsp->qlen_lazy;
2202
2203	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2204	if (!rcu_is_nocb_cpu(smp_processor_id()))
2205		return 0;
2206	rsp->qlen = 0;
2207	rsp->qlen_lazy = 0;
2208
2209	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2210	if (rsp->orphan_donelist != NULL) {
2211		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2212					rsp->orphan_donetail, ql, qll, flags);
2213		ql = qll = 0;
2214		rsp->orphan_donelist = NULL;
2215		rsp->orphan_donetail = &rsp->orphan_donelist;
2216	}
2217	if (rsp->orphan_nxtlist != NULL) {
2218		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2219					rsp->orphan_nxttail, ql, qll, flags);
2220		ql = qll = 0;
2221		rsp->orphan_nxtlist = NULL;
2222		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2223	}
2224	return 1;
2225}
2226
2227/*
2228 * If necessary, kick off a new grace period, and either way wait
2229 * for a subsequent grace period to complete.
2230 */
2231static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2232{
2233	unsigned long c;
2234	bool d;
2235	unsigned long flags;
2236	bool needwake;
2237	struct rcu_node *rnp = rdp->mynode;
2238
2239	raw_spin_lock_irqsave(&rnp->lock, flags);
2240	smp_mb__after_unlock_lock();
2241	needwake = rcu_start_future_gp(rnp, rdp, &c);
2242	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2243	if (needwake)
2244		rcu_gp_kthread_wake(rdp->rsp);
2245
2246	/*
2247	 * Wait for the grace period.  Do so interruptibly to avoid messing
2248	 * up the load average.
2249	 */
2250	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2251	for (;;) {
2252		wait_event_interruptible(
2253			rnp->nocb_gp_wq[c & 0x1],
2254			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2255		if (likely(d))
2256			break;
2257		flush_signals(current);
2258		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2259	}
2260	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2261	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2262}
2263
2264/*
2265 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2266 * callbacks queued by the corresponding no-CBs CPU.
2267 */
2268static int rcu_nocb_kthread(void *arg)
2269{
2270	int c, cl;
2271	bool firsttime = 1;
2272	struct rcu_head *list;
2273	struct rcu_head *next;
2274	struct rcu_head **tail;
2275	struct rcu_data *rdp = arg;
2276
2277	/* Each pass through this loop invokes one batch of callbacks */
2278	for (;;) {
2279		/* If not polling, wait for next batch of callbacks. */
2280		if (!rcu_nocb_poll) {
2281			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2282					    TPS("Sleep"));
2283			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2284			/* Memory barrier provide by xchg() below. */
2285		} else if (firsttime) {
2286			firsttime = 0;
2287			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2288					    TPS("Poll"));
2289		}
2290		list = ACCESS_ONCE(rdp->nocb_head);
2291		if (!list) {
2292			if (!rcu_nocb_poll)
2293				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2294						    TPS("WokeEmpty"));
2295			schedule_timeout_interruptible(1);
2296			flush_signals(current);
2297			continue;
2298		}
2299		firsttime = 1;
2300		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2301				    TPS("WokeNonEmpty"));
2302
2303		/*
2304		 * Extract queued callbacks, update counts, and wait
2305		 * for a grace period to elapse.
2306		 */
2307		ACCESS_ONCE(rdp->nocb_head) = NULL;
2308		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2309		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2310		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2311		ACCESS_ONCE(rdp->nocb_p_count) += c;
2312		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2313		rcu_nocb_wait_gp(rdp);
2314
2315		/* Each pass through the following loop invokes a callback. */
2316		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2317		c = cl = 0;
2318		while (list) {
2319			next = list->next;
2320			/* Wait for enqueuing to complete, if needed. */
2321			while (next == NULL && &list->next != tail) {
2322				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2323						    TPS("WaitQueue"));
2324				schedule_timeout_interruptible(1);
2325				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2326						    TPS("WokeQueue"));
2327				next = list->next;
2328			}
2329			debug_rcu_head_unqueue(list);
2330			local_bh_disable();
2331			if (__rcu_reclaim(rdp->rsp->name, list))
2332				cl++;
2333			c++;
2334			local_bh_enable();
2335			list = next;
2336		}
2337		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2338		ACCESS_ONCE(rdp->nocb_p_count) -= c;
2339		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2340		rdp->n_nocbs_invoked += c;
2341	}
2342	return 0;
2343}
2344
2345/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2346static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2347{
2348	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2349}
2350
2351/* Do a deferred wakeup of rcu_nocb_kthread(). */
2352static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2353{
2354	if (!rcu_nocb_need_deferred_wakeup(rdp))
2355		return;
2356	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2357	wake_up(&rdp->nocb_wq);
2358	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2359}
2360
2361/* Initialize per-rcu_data variables for no-CBs CPUs. */
2362static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2363{
2364	rdp->nocb_tail = &rdp->nocb_head;
2365	init_waitqueue_head(&rdp->nocb_wq);
2366}
2367
2368/* Create a kthread for each RCU flavor for each no-CBs CPU. */
2369static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2370{
2371	int cpu;
2372	struct rcu_data *rdp;
2373	struct task_struct *t;
2374
2375	if (rcu_nocb_mask == NULL)
2376		return;
2377	for_each_cpu(cpu, rcu_nocb_mask) {
2378		rdp = per_cpu_ptr(rsp->rda, cpu);
2379		t = kthread_run(rcu_nocb_kthread, rdp,
2380				"rcuo%c/%d", rsp->abbr, cpu);
2381		BUG_ON(IS_ERR(t));
2382		ACCESS_ONCE(rdp->nocb_kthread) = t;
2383	}
2384}
2385
2386/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2387static bool init_nocb_callback_list(struct rcu_data *rdp)
2388{
2389	if (rcu_nocb_mask == NULL ||
2390	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2391		return false;
2392	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2393	return true;
2394}
2395
2396#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2397
2398static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2399{
2400}
2401
2402static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2403{
2404}
2405
2406static void rcu_init_one_nocb(struct rcu_node *rnp)
2407{
2408}
2409
2410static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2411			    bool lazy, unsigned long flags)
2412{
2413	return 0;
2414}
2415
2416static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2417						     struct rcu_data *rdp,
2418						     unsigned long flags)
2419{
2420	return 0;
2421}
2422
2423static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2424{
2425}
2426
2427static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2428{
2429	return false;
2430}
2431
2432static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2433{
2434}
2435
2436static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2437{
2438}
2439
2440static bool init_nocb_callback_list(struct rcu_data *rdp)
2441{
2442	return false;
2443}
2444
2445#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2446
2447/*
2448 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2449 * arbitrarily long period of time with the scheduling-clock tick turned
2450 * off.  RCU will be paying attention to this CPU because it is in the
2451 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2452 * machine because the scheduling-clock tick has been disabled.  Therefore,
2453 * if an adaptive-ticks CPU is failing to respond to the current grace
2454 * period and has not be idle from an RCU perspective, kick it.
2455 */
2456static void rcu_kick_nohz_cpu(int cpu)
2457{
2458#ifdef CONFIG_NO_HZ_FULL
2459	if (tick_nohz_full_cpu(cpu))
2460		smp_send_reschedule(cpu);
2461#endif /* #ifdef CONFIG_NO_HZ_FULL */
2462}
2463
2464
2465#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2466
2467/*
2468 * Define RCU flavor that holds sysidle state.  This needs to be the
2469 * most active flavor of RCU.
2470 */
2471#ifdef CONFIG_PREEMPT_RCU
2472static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2473#else /* #ifdef CONFIG_PREEMPT_RCU */
2474static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2475#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2476
2477static int full_sysidle_state;		/* Current system-idle state. */
2478#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2479#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2480#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2481#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2482#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2483
2484/*
2485 * Invoked to note exit from irq or task transition to idle.  Note that
2486 * usermode execution does -not- count as idle here!  After all, we want
2487 * to detect full-system idle states, not RCU quiescent states and grace
2488 * periods.  The caller must have disabled interrupts.
2489 */
2490static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2491{
2492	unsigned long j;
2493
2494	/* Adjust nesting, check for fully idle. */
2495	if (irq) {
2496		rdtp->dynticks_idle_nesting--;
2497		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2498		if (rdtp->dynticks_idle_nesting != 0)
2499			return;  /* Still not fully idle. */
2500	} else {
2501		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2502		    DYNTICK_TASK_NEST_VALUE) {
2503			rdtp->dynticks_idle_nesting = 0;
2504		} else {
2505			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2506			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2507			return;  /* Still not fully idle. */
2508		}
2509	}
2510
2511	/* Record start of fully idle period. */
2512	j = jiffies;
2513	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2514	smp_mb__before_atomic_inc();
2515	atomic_inc(&rdtp->dynticks_idle);
2516	smp_mb__after_atomic_inc();
2517	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2518}
2519
2520/*
2521 * Unconditionally force exit from full system-idle state.  This is
2522 * invoked when a normal CPU exits idle, but must be called separately
2523 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2524 * is that the timekeeping CPU is permitted to take scheduling-clock
2525 * interrupts while the system is in system-idle state, and of course
2526 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2527 * interrupt from any other type of interrupt.
2528 */
2529void rcu_sysidle_force_exit(void)
2530{
2531	int oldstate = ACCESS_ONCE(full_sysidle_state);
2532	int newoldstate;
2533
2534	/*
2535	 * Each pass through the following loop attempts to exit full
2536	 * system-idle state.  If contention proves to be a problem,
2537	 * a trylock-based contention tree could be used here.
2538	 */
2539	while (oldstate > RCU_SYSIDLE_SHORT) {
2540		newoldstate = cmpxchg(&full_sysidle_state,
2541				      oldstate, RCU_SYSIDLE_NOT);
2542		if (oldstate == newoldstate &&
2543		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2544			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2545			return; /* We cleared it, done! */
2546		}
2547		oldstate = newoldstate;
2548	}
2549	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2550}
2551
2552/*
2553 * Invoked to note entry to irq or task transition from idle.  Note that
2554 * usermode execution does -not- count as idle here!  The caller must
2555 * have disabled interrupts.
2556 */
2557static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2558{
2559	/* Adjust nesting, check for already non-idle. */
2560	if (irq) {
2561		rdtp->dynticks_idle_nesting++;
2562		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2563		if (rdtp->dynticks_idle_nesting != 1)
2564			return; /* Already non-idle. */
2565	} else {
2566		/*
2567		 * Allow for irq misnesting.  Yes, it really is possible
2568		 * to enter an irq handler then never leave it, and maybe
2569		 * also vice versa.  Handle both possibilities.
2570		 */
2571		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2572			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2573			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2574			return; /* Already non-idle. */
2575		} else {
2576			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2577		}
2578	}
2579
2580	/* Record end of idle period. */
2581	smp_mb__before_atomic_inc();
2582	atomic_inc(&rdtp->dynticks_idle);
2583	smp_mb__after_atomic_inc();
2584	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2585
2586	/*
2587	 * If we are the timekeeping CPU, we are permitted to be non-idle
2588	 * during a system-idle state.  This must be the case, because
2589	 * the timekeeping CPU has to take scheduling-clock interrupts
2590	 * during the time that the system is transitioning to full
2591	 * system-idle state.  This means that the timekeeping CPU must
2592	 * invoke rcu_sysidle_force_exit() directly if it does anything
2593	 * more than take a scheduling-clock interrupt.
2594	 */
2595	if (smp_processor_id() == tick_do_timer_cpu)
2596		return;
2597
2598	/* Update system-idle state: We are clearly no longer fully idle! */
2599	rcu_sysidle_force_exit();
2600}
2601
2602/*
2603 * Check to see if the current CPU is idle.  Note that usermode execution
2604 * does not count as idle.  The caller must have disabled interrupts.
2605 */
2606static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2607				  unsigned long *maxj)
2608{
2609	int cur;
2610	unsigned long j;
2611	struct rcu_dynticks *rdtp = rdp->dynticks;
2612
2613	/*
2614	 * If some other CPU has already reported non-idle, if this is
2615	 * not the flavor of RCU that tracks sysidle state, or if this
2616	 * is an offline or the timekeeping CPU, nothing to do.
2617	 */
2618	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2619	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2620		return;
2621	if (rcu_gp_in_progress(rdp->rsp))
2622		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2623
2624	/* Pick up current idle and NMI-nesting counter and check. */
2625	cur = atomic_read(&rdtp->dynticks_idle);
2626	if (cur & 0x1) {
2627		*isidle = false; /* We are not idle! */
2628		return;
2629	}
2630	smp_mb(); /* Read counters before timestamps. */
2631
2632	/* Pick up timestamps. */
2633	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2634	/* If this CPU entered idle more recently, update maxj timestamp. */
2635	if (ULONG_CMP_LT(*maxj, j))
2636		*maxj = j;
2637}
2638
2639/*
2640 * Is this the flavor of RCU that is handling full-system idle?
2641 */
2642static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2643{
2644	return rsp == rcu_sysidle_state;
2645}
2646
2647/*
2648 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2649 * timekeeping CPU.
2650 */
2651static void rcu_bind_gp_kthread(void)
2652{
2653	int cpu = ACCESS_ONCE(tick_do_timer_cpu);
2654
2655	if (cpu < 0 || cpu >= nr_cpu_ids)
2656		return;
2657	if (raw_smp_processor_id() != cpu)
2658		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2659}
2660
2661/*
2662 * Return a delay in jiffies based on the number of CPUs, rcu_node
2663 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2664 * systems more time to transition to full-idle state in order to
2665 * avoid the cache thrashing that otherwise occur on the state variable.
2666 * Really small systems (less than a couple of tens of CPUs) should
2667 * instead use a single global atomically incremented counter, and later
2668 * versions of this will automatically reconfigure themselves accordingly.
2669 */
2670static unsigned long rcu_sysidle_delay(void)
2671{
2672	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2673		return 0;
2674	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2675}
2676
2677/*
2678 * Advance the full-system-idle state.  This is invoked when all of
2679 * the non-timekeeping CPUs are idle.
2680 */
2681static void rcu_sysidle(unsigned long j)
2682{
2683	/* Check the current state. */
2684	switch (ACCESS_ONCE(full_sysidle_state)) {
2685	case RCU_SYSIDLE_NOT:
2686
2687		/* First time all are idle, so note a short idle period. */
2688		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2689		break;
2690
2691	case RCU_SYSIDLE_SHORT:
2692
2693		/*
2694		 * Idle for a bit, time to advance to next state?
2695		 * cmpxchg failure means race with non-idle, let them win.
2696		 */
2697		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2698			(void)cmpxchg(&full_sysidle_state,
2699				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2700		break;
2701
2702	case RCU_SYSIDLE_LONG:
2703
2704		/*
2705		 * Do an additional check pass before advancing to full.
2706		 * cmpxchg failure means race with non-idle, let them win.
2707		 */
2708		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2709			(void)cmpxchg(&full_sysidle_state,
2710				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2711		break;
2712
2713	default:
2714		break;
2715	}
2716}
2717
2718/*
2719 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2720 * back to the beginning.
2721 */
2722static void rcu_sysidle_cancel(void)
2723{
2724	smp_mb();
2725	ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2726}
2727
2728/*
2729 * Update the sysidle state based on the results of a force-quiescent-state
2730 * scan of the CPUs' dyntick-idle state.
2731 */
2732static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2733			       unsigned long maxj, bool gpkt)
2734{
2735	if (rsp != rcu_sysidle_state)
2736		return;  /* Wrong flavor, ignore. */
2737	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2738		return;  /* Running state machine from timekeeping CPU. */
2739	if (isidle)
2740		rcu_sysidle(maxj);    /* More idle! */
2741	else
2742		rcu_sysidle_cancel(); /* Idle is over. */
2743}
2744
2745/*
2746 * Wrapper for rcu_sysidle_report() when called from the grace-period
2747 * kthread's context.
2748 */
2749static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2750				  unsigned long maxj)
2751{
2752	rcu_sysidle_report(rsp, isidle, maxj, true);
2753}
2754
2755/* Callback and function for forcing an RCU grace period. */
2756struct rcu_sysidle_head {
2757	struct rcu_head rh;
2758	int inuse;
2759};
2760
2761static void rcu_sysidle_cb(struct rcu_head *rhp)
2762{
2763	struct rcu_sysidle_head *rshp;
2764
2765	/*
2766	 * The following memory barrier is needed to replace the
2767	 * memory barriers that would normally be in the memory
2768	 * allocator.
2769	 */
2770	smp_mb();  /* grace period precedes setting inuse. */
2771
2772	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2773	ACCESS_ONCE(rshp->inuse) = 0;
2774}
2775
2776/*
2777 * Check to see if the system is fully idle, other than the timekeeping CPU.
2778 * The caller must have disabled interrupts.
2779 */
2780bool rcu_sys_is_idle(void)
2781{
2782	static struct rcu_sysidle_head rsh;
2783	int rss = ACCESS_ONCE(full_sysidle_state);
2784
2785	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2786		return false;
2787
2788	/* Handle small-system case by doing a full scan of CPUs. */
2789	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2790		int oldrss = rss - 1;
2791
2792		/*
2793		 * One pass to advance to each state up to _FULL.
2794		 * Give up if any pass fails to advance the state.
2795		 */
2796		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2797			int cpu;
2798			bool isidle = true;
2799			unsigned long maxj = jiffies - ULONG_MAX / 4;
2800			struct rcu_data *rdp;
2801
2802			/* Scan all the CPUs looking for nonidle CPUs. */
2803			for_each_possible_cpu(cpu) {
2804				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2805				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2806				if (!isidle)
2807					break;
2808			}
2809			rcu_sysidle_report(rcu_sysidle_state,
2810					   isidle, maxj, false);
2811			oldrss = rss;
2812			rss = ACCESS_ONCE(full_sysidle_state);
2813		}
2814	}
2815
2816	/* If this is the first observation of an idle period, record it. */
2817	if (rss == RCU_SYSIDLE_FULL) {
2818		rss = cmpxchg(&full_sysidle_state,
2819			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2820		return rss == RCU_SYSIDLE_FULL;
2821	}
2822
2823	smp_mb(); /* ensure rss load happens before later caller actions. */
2824
2825	/* If already fully idle, tell the caller (in case of races). */
2826	if (rss == RCU_SYSIDLE_FULL_NOTED)
2827		return true;
2828
2829	/*
2830	 * If we aren't there yet, and a grace period is not in flight,
2831	 * initiate a grace period.  Either way, tell the caller that
2832	 * we are not there yet.  We use an xchg() rather than an assignment
2833	 * to make up for the memory barriers that would otherwise be
2834	 * provided by the memory allocator.
2835	 */
2836	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2837	    !rcu_gp_in_progress(rcu_sysidle_state) &&
2838	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2839		call_rcu(&rsh.rh, rcu_sysidle_cb);
2840	return false;
2841}
2842
2843/*
2844 * Initialize dynticks sysidle state for CPUs coming online.
2845 */
2846static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2847{
2848	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2849}
2850
2851#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2852
2853static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2854{
2855}
2856
2857static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2858{
2859}
2860
2861static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2862				  unsigned long *maxj)
2863{
2864}
2865
2866static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2867{
2868	return false;
2869}
2870
2871static void rcu_bind_gp_kthread(void)
2872{
2873}
2874
2875static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2876				  unsigned long maxj)
2877{
2878}
2879
2880static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2881{
2882}
2883
2884#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2885
2886/*
2887 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2888 * grace-period kthread will do force_quiescent_state() processing?
2889 * The idea is to avoid waking up RCU core processing on such a
2890 * CPU unless the grace period has extended for too long.
2891 *
2892 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2893 * CONFIG_RCU_NOCB_CPU CPUs.
2894 */
2895static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2896{
2897#ifdef CONFIG_NO_HZ_FULL
2898	if (tick_nohz_full_cpu(smp_processor_id()) &&
2899	    (!rcu_gp_in_progress(rsp) ||
2900	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
2901		return 1;
2902#endif /* #ifdef CONFIG_NO_HZ_FULL */
2903	return 0;
2904}
2905