tree_plugin.h revision 4afc7e269befc7b6e09a994e48c67e36f4a378e1
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27#include <linux/delay.h>
28#include <linux/gfp.h>
29#include <linux/oom.h>
30#include <linux/smpboot.h>
31#include "../time/tick-internal.h"
32
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
36#include "../locking/rtmutex_common.h"
37#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38#else
39#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40#endif
41
42#ifdef CONFIG_RCU_NOCB_CPU
43static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
45static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
46static char __initdata nocb_buf[NR_CPUS * 5];
47#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
49/*
50 * Check the RCU kernel configuration parameters and print informative
51 * messages about anything out of the ordinary.  If you like #ifdef, you
52 * will love this function.
53 */
54static void __init rcu_bootup_announce_oddness(void)
55{
56#ifdef CONFIG_RCU_TRACE
57	pr_info("\tRCU debugfs-based tracing is enabled.\n");
58#endif
59#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61	       CONFIG_RCU_FANOUT);
62#endif
63#ifdef CONFIG_RCU_FANOUT_EXACT
64	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65#endif
66#ifdef CONFIG_RCU_FAST_NO_HZ
67	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68#endif
69#ifdef CONFIG_PROVE_RCU
70	pr_info("\tRCU lockdep checking is enabled.\n");
71#endif
72#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73	pr_info("\tRCU torture testing starts during boot.\n");
74#endif
75#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77#endif
78#if defined(CONFIG_RCU_CPU_STALL_INFO)
79	pr_info("\tAdditional per-CPU info printed with stalls.\n");
80#endif
81#if NUM_RCU_LVL_4 != 0
82	pr_info("\tFour-level hierarchy is enabled.\n");
83#endif
84	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86	if (nr_cpu_ids != NR_CPUS)
87		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88}
89
90#ifdef CONFIG_TREE_PREEMPT_RCU
91
92RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
93static struct rcu_state *rcu_state_p = &rcu_preempt_state;
94
95static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96
97/*
98 * Tell them what RCU they are running.
99 */
100static void __init rcu_bootup_announce(void)
101{
102	pr_info("Preemptible hierarchical RCU implementation.\n");
103	rcu_bootup_announce_oddness();
104}
105
106/*
107 * Return the number of RCU-preempt batches processed thus far
108 * for debug and statistics.
109 */
110long rcu_batches_completed_preempt(void)
111{
112	return rcu_preempt_state.completed;
113}
114EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
115
116/*
117 * Return the number of RCU batches processed thus far for debug & stats.
118 */
119long rcu_batches_completed(void)
120{
121	return rcu_batches_completed_preempt();
122}
123EXPORT_SYMBOL_GPL(rcu_batches_completed);
124
125/*
126 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
127 * that this just means that the task currently running on the CPU is
128 * not in a quiescent state.  There might be any number of tasks blocked
129 * while in an RCU read-side critical section.
130 *
131 * Unlike the other rcu_*_qs() functions, callers to this function
132 * must disable irqs in order to protect the assignment to
133 * ->rcu_read_unlock_special.
134 */
135static void rcu_preempt_qs(int cpu)
136{
137	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
138
139	if (rdp->passed_quiesce == 0)
140		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
141	rdp->passed_quiesce = 1;
142	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
143}
144
145/*
146 * We have entered the scheduler, and the current task might soon be
147 * context-switched away from.  If this task is in an RCU read-side
148 * critical section, we will no longer be able to rely on the CPU to
149 * record that fact, so we enqueue the task on the blkd_tasks list.
150 * The task will dequeue itself when it exits the outermost enclosing
151 * RCU read-side critical section.  Therefore, the current grace period
152 * cannot be permitted to complete until the blkd_tasks list entries
153 * predating the current grace period drain, in other words, until
154 * rnp->gp_tasks becomes NULL.
155 *
156 * Caller must disable preemption.
157 */
158static void rcu_preempt_note_context_switch(int cpu)
159{
160	struct task_struct *t = current;
161	unsigned long flags;
162	struct rcu_data *rdp;
163	struct rcu_node *rnp;
164
165	if (t->rcu_read_lock_nesting > 0 &&
166	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
167
168		/* Possibly blocking in an RCU read-side critical section. */
169		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
170		rnp = rdp->mynode;
171		raw_spin_lock_irqsave(&rnp->lock, flags);
172		smp_mb__after_unlock_lock();
173		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
174		t->rcu_blocked_node = rnp;
175
176		/*
177		 * If this CPU has already checked in, then this task
178		 * will hold up the next grace period rather than the
179		 * current grace period.  Queue the task accordingly.
180		 * If the task is queued for the current grace period
181		 * (i.e., this CPU has not yet passed through a quiescent
182		 * state for the current grace period), then as long
183		 * as that task remains queued, the current grace period
184		 * cannot end.  Note that there is some uncertainty as
185		 * to exactly when the current grace period started.
186		 * We take a conservative approach, which can result
187		 * in unnecessarily waiting on tasks that started very
188		 * slightly after the current grace period began.  C'est
189		 * la vie!!!
190		 *
191		 * But first, note that the current CPU must still be
192		 * on line!
193		 */
194		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
195		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
196		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
197			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
198			rnp->gp_tasks = &t->rcu_node_entry;
199#ifdef CONFIG_RCU_BOOST
200			if (rnp->boost_tasks != NULL)
201				rnp->boost_tasks = rnp->gp_tasks;
202#endif /* #ifdef CONFIG_RCU_BOOST */
203		} else {
204			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
205			if (rnp->qsmask & rdp->grpmask)
206				rnp->gp_tasks = &t->rcu_node_entry;
207		}
208		trace_rcu_preempt_task(rdp->rsp->name,
209				       t->pid,
210				       (rnp->qsmask & rdp->grpmask)
211				       ? rnp->gpnum
212				       : rnp->gpnum + 1);
213		raw_spin_unlock_irqrestore(&rnp->lock, flags);
214	} else if (t->rcu_read_lock_nesting < 0 &&
215		   t->rcu_read_unlock_special) {
216
217		/*
218		 * Complete exit from RCU read-side critical section on
219		 * behalf of preempted instance of __rcu_read_unlock().
220		 */
221		rcu_read_unlock_special(t);
222	}
223
224	/*
225	 * Either we were not in an RCU read-side critical section to
226	 * begin with, or we have now recorded that critical section
227	 * globally.  Either way, we can now note a quiescent state
228	 * for this CPU.  Again, if we were in an RCU read-side critical
229	 * section, and if that critical section was blocking the current
230	 * grace period, then the fact that the task has been enqueued
231	 * means that we continue to block the current grace period.
232	 */
233	local_irq_save(flags);
234	rcu_preempt_qs(cpu);
235	local_irq_restore(flags);
236}
237
238/*
239 * Check for preempted RCU readers blocking the current grace period
240 * for the specified rcu_node structure.  If the caller needs a reliable
241 * answer, it must hold the rcu_node's ->lock.
242 */
243static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
244{
245	return rnp->gp_tasks != NULL;
246}
247
248/*
249 * Record a quiescent state for all tasks that were previously queued
250 * on the specified rcu_node structure and that were blocking the current
251 * RCU grace period.  The caller must hold the specified rnp->lock with
252 * irqs disabled, and this lock is released upon return, but irqs remain
253 * disabled.
254 */
255static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
256	__releases(rnp->lock)
257{
258	unsigned long mask;
259	struct rcu_node *rnp_p;
260
261	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
262		raw_spin_unlock_irqrestore(&rnp->lock, flags);
263		return;  /* Still need more quiescent states! */
264	}
265
266	rnp_p = rnp->parent;
267	if (rnp_p == NULL) {
268		/*
269		 * Either there is only one rcu_node in the tree,
270		 * or tasks were kicked up to root rcu_node due to
271		 * CPUs going offline.
272		 */
273		rcu_report_qs_rsp(&rcu_preempt_state, flags);
274		return;
275	}
276
277	/* Report up the rest of the hierarchy. */
278	mask = rnp->grpmask;
279	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
280	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
281	smp_mb__after_unlock_lock();
282	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
283}
284
285/*
286 * Advance a ->blkd_tasks-list pointer to the next entry, instead
287 * returning NULL if at the end of the list.
288 */
289static struct list_head *rcu_next_node_entry(struct task_struct *t,
290					     struct rcu_node *rnp)
291{
292	struct list_head *np;
293
294	np = t->rcu_node_entry.next;
295	if (np == &rnp->blkd_tasks)
296		np = NULL;
297	return np;
298}
299
300/*
301 * Handle special cases during rcu_read_unlock(), such as needing to
302 * notify RCU core processing or task having blocked during the RCU
303 * read-side critical section.
304 */
305void rcu_read_unlock_special(struct task_struct *t)
306{
307	int empty;
308	int empty_exp;
309	int empty_exp_now;
310	unsigned long flags;
311	struct list_head *np;
312#ifdef CONFIG_RCU_BOOST
313	bool drop_boost_mutex = false;
314#endif /* #ifdef CONFIG_RCU_BOOST */
315	struct rcu_node *rnp;
316	int special;
317
318	/* NMI handlers cannot block and cannot safely manipulate state. */
319	if (in_nmi())
320		return;
321
322	local_irq_save(flags);
323
324	/*
325	 * If RCU core is waiting for this CPU to exit critical section,
326	 * let it know that we have done so.
327	 */
328	special = t->rcu_read_unlock_special;
329	if (special & RCU_READ_UNLOCK_NEED_QS) {
330		rcu_preempt_qs(smp_processor_id());
331		if (!t->rcu_read_unlock_special) {
332			local_irq_restore(flags);
333			return;
334		}
335	}
336
337	/* Hardware IRQ handlers cannot block, complain if they get here. */
338	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
339		local_irq_restore(flags);
340		return;
341	}
342
343	/* Clean up if blocked during RCU read-side critical section. */
344	if (special & RCU_READ_UNLOCK_BLOCKED) {
345		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
346
347		/*
348		 * Remove this task from the list it blocked on.  The
349		 * task can migrate while we acquire the lock, but at
350		 * most one time.  So at most two passes through loop.
351		 */
352		for (;;) {
353			rnp = t->rcu_blocked_node;
354			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
355			smp_mb__after_unlock_lock();
356			if (rnp == t->rcu_blocked_node)
357				break;
358			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
359		}
360		empty = !rcu_preempt_blocked_readers_cgp(rnp);
361		empty_exp = !rcu_preempted_readers_exp(rnp);
362		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
363		np = rcu_next_node_entry(t, rnp);
364		list_del_init(&t->rcu_node_entry);
365		t->rcu_blocked_node = NULL;
366		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
367						rnp->gpnum, t->pid);
368		if (&t->rcu_node_entry == rnp->gp_tasks)
369			rnp->gp_tasks = np;
370		if (&t->rcu_node_entry == rnp->exp_tasks)
371			rnp->exp_tasks = np;
372#ifdef CONFIG_RCU_BOOST
373		if (&t->rcu_node_entry == rnp->boost_tasks)
374			rnp->boost_tasks = np;
375		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
376		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
377#endif /* #ifdef CONFIG_RCU_BOOST */
378
379		/*
380		 * If this was the last task on the current list, and if
381		 * we aren't waiting on any CPUs, report the quiescent state.
382		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
383		 * so we must take a snapshot of the expedited state.
384		 */
385		empty_exp_now = !rcu_preempted_readers_exp(rnp);
386		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
387			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
388							 rnp->gpnum,
389							 0, rnp->qsmask,
390							 rnp->level,
391							 rnp->grplo,
392							 rnp->grphi,
393							 !!rnp->gp_tasks);
394			rcu_report_unblock_qs_rnp(rnp, flags);
395		} else {
396			raw_spin_unlock_irqrestore(&rnp->lock, flags);
397		}
398
399#ifdef CONFIG_RCU_BOOST
400		/* Unboost if we were boosted. */
401		if (drop_boost_mutex) {
402			rt_mutex_unlock(&rnp->boost_mtx);
403			complete(&rnp->boost_completion);
404		}
405#endif /* #ifdef CONFIG_RCU_BOOST */
406
407		/*
408		 * If this was the last task on the expedited lists,
409		 * then we need to report up the rcu_node hierarchy.
410		 */
411		if (!empty_exp && empty_exp_now)
412			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
413	} else {
414		local_irq_restore(flags);
415	}
416}
417
418#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
419
420/*
421 * Dump detailed information for all tasks blocking the current RCU
422 * grace period on the specified rcu_node structure.
423 */
424static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
425{
426	unsigned long flags;
427	struct task_struct *t;
428
429	raw_spin_lock_irqsave(&rnp->lock, flags);
430	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
431		raw_spin_unlock_irqrestore(&rnp->lock, flags);
432		return;
433	}
434	t = list_entry(rnp->gp_tasks,
435		       struct task_struct, rcu_node_entry);
436	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
437		sched_show_task(t);
438	raw_spin_unlock_irqrestore(&rnp->lock, flags);
439}
440
441/*
442 * Dump detailed information for all tasks blocking the current RCU
443 * grace period.
444 */
445static void rcu_print_detail_task_stall(struct rcu_state *rsp)
446{
447	struct rcu_node *rnp = rcu_get_root(rsp);
448
449	rcu_print_detail_task_stall_rnp(rnp);
450	rcu_for_each_leaf_node(rsp, rnp)
451		rcu_print_detail_task_stall_rnp(rnp);
452}
453
454#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
455
456static void rcu_print_detail_task_stall(struct rcu_state *rsp)
457{
458}
459
460#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
461
462#ifdef CONFIG_RCU_CPU_STALL_INFO
463
464static void rcu_print_task_stall_begin(struct rcu_node *rnp)
465{
466	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
467	       rnp->level, rnp->grplo, rnp->grphi);
468}
469
470static void rcu_print_task_stall_end(void)
471{
472	pr_cont("\n");
473}
474
475#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
476
477static void rcu_print_task_stall_begin(struct rcu_node *rnp)
478{
479}
480
481static void rcu_print_task_stall_end(void)
482{
483}
484
485#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
486
487/*
488 * Scan the current list of tasks blocked within RCU read-side critical
489 * sections, printing out the tid of each.
490 */
491static int rcu_print_task_stall(struct rcu_node *rnp)
492{
493	struct task_struct *t;
494	int ndetected = 0;
495
496	if (!rcu_preempt_blocked_readers_cgp(rnp))
497		return 0;
498	rcu_print_task_stall_begin(rnp);
499	t = list_entry(rnp->gp_tasks,
500		       struct task_struct, rcu_node_entry);
501	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
502		pr_cont(" P%d", t->pid);
503		ndetected++;
504	}
505	rcu_print_task_stall_end();
506	return ndetected;
507}
508
509/*
510 * Check that the list of blocked tasks for the newly completed grace
511 * period is in fact empty.  It is a serious bug to complete a grace
512 * period that still has RCU readers blocked!  This function must be
513 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
514 * must be held by the caller.
515 *
516 * Also, if there are blocked tasks on the list, they automatically
517 * block the newly created grace period, so set up ->gp_tasks accordingly.
518 */
519static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
520{
521	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
522	if (!list_empty(&rnp->blkd_tasks))
523		rnp->gp_tasks = rnp->blkd_tasks.next;
524	WARN_ON_ONCE(rnp->qsmask);
525}
526
527#ifdef CONFIG_HOTPLUG_CPU
528
529/*
530 * Handle tasklist migration for case in which all CPUs covered by the
531 * specified rcu_node have gone offline.  Move them up to the root
532 * rcu_node.  The reason for not just moving them to the immediate
533 * parent is to remove the need for rcu_read_unlock_special() to
534 * make more than two attempts to acquire the target rcu_node's lock.
535 * Returns true if there were tasks blocking the current RCU grace
536 * period.
537 *
538 * Returns 1 if there was previously a task blocking the current grace
539 * period on the specified rcu_node structure.
540 *
541 * The caller must hold rnp->lock with irqs disabled.
542 */
543static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
544				     struct rcu_node *rnp,
545				     struct rcu_data *rdp)
546{
547	struct list_head *lp;
548	struct list_head *lp_root;
549	int retval = 0;
550	struct rcu_node *rnp_root = rcu_get_root(rsp);
551	struct task_struct *t;
552
553	if (rnp == rnp_root) {
554		WARN_ONCE(1, "Last CPU thought to be offlined?");
555		return 0;  /* Shouldn't happen: at least one CPU online. */
556	}
557
558	/* If we are on an internal node, complain bitterly. */
559	WARN_ON_ONCE(rnp != rdp->mynode);
560
561	/*
562	 * Move tasks up to root rcu_node.  Don't try to get fancy for
563	 * this corner-case operation -- just put this node's tasks
564	 * at the head of the root node's list, and update the root node's
565	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
566	 * if non-NULL.  This might result in waiting for more tasks than
567	 * absolutely necessary, but this is a good performance/complexity
568	 * tradeoff.
569	 */
570	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
571		retval |= RCU_OFL_TASKS_NORM_GP;
572	if (rcu_preempted_readers_exp(rnp))
573		retval |= RCU_OFL_TASKS_EXP_GP;
574	lp = &rnp->blkd_tasks;
575	lp_root = &rnp_root->blkd_tasks;
576	while (!list_empty(lp)) {
577		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
578		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
579		smp_mb__after_unlock_lock();
580		list_del(&t->rcu_node_entry);
581		t->rcu_blocked_node = rnp_root;
582		list_add(&t->rcu_node_entry, lp_root);
583		if (&t->rcu_node_entry == rnp->gp_tasks)
584			rnp_root->gp_tasks = rnp->gp_tasks;
585		if (&t->rcu_node_entry == rnp->exp_tasks)
586			rnp_root->exp_tasks = rnp->exp_tasks;
587#ifdef CONFIG_RCU_BOOST
588		if (&t->rcu_node_entry == rnp->boost_tasks)
589			rnp_root->boost_tasks = rnp->boost_tasks;
590#endif /* #ifdef CONFIG_RCU_BOOST */
591		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
592	}
593
594	rnp->gp_tasks = NULL;
595	rnp->exp_tasks = NULL;
596#ifdef CONFIG_RCU_BOOST
597	rnp->boost_tasks = NULL;
598	/*
599	 * In case root is being boosted and leaf was not.  Make sure
600	 * that we boost the tasks blocking the current grace period
601	 * in this case.
602	 */
603	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
604	smp_mb__after_unlock_lock();
605	if (rnp_root->boost_tasks != NULL &&
606	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
607	    rnp_root->boost_tasks != rnp_root->exp_tasks)
608		rnp_root->boost_tasks = rnp_root->gp_tasks;
609	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
610#endif /* #ifdef CONFIG_RCU_BOOST */
611
612	return retval;
613}
614
615#endif /* #ifdef CONFIG_HOTPLUG_CPU */
616
617/*
618 * Check for a quiescent state from the current CPU.  When a task blocks,
619 * the task is recorded in the corresponding CPU's rcu_node structure,
620 * which is checked elsewhere.
621 *
622 * Caller must disable hard irqs.
623 */
624static void rcu_preempt_check_callbacks(int cpu)
625{
626	struct task_struct *t = current;
627
628	if (t->rcu_read_lock_nesting == 0) {
629		rcu_preempt_qs(cpu);
630		return;
631	}
632	if (t->rcu_read_lock_nesting > 0 &&
633	    per_cpu(rcu_preempt_data, cpu).qs_pending)
634		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
635}
636
637#ifdef CONFIG_RCU_BOOST
638
639static void rcu_preempt_do_callbacks(void)
640{
641	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
642}
643
644#endif /* #ifdef CONFIG_RCU_BOOST */
645
646/*
647 * Queue a preemptible-RCU callback for invocation after a grace period.
648 */
649void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
650{
651	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
652}
653EXPORT_SYMBOL_GPL(call_rcu);
654
655/**
656 * synchronize_rcu - wait until a grace period has elapsed.
657 *
658 * Control will return to the caller some time after a full grace
659 * period has elapsed, in other words after all currently executing RCU
660 * read-side critical sections have completed.  Note, however, that
661 * upon return from synchronize_rcu(), the caller might well be executing
662 * concurrently with new RCU read-side critical sections that began while
663 * synchronize_rcu() was waiting.  RCU read-side critical sections are
664 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
665 *
666 * See the description of synchronize_sched() for more detailed information
667 * on memory ordering guarantees.
668 */
669void synchronize_rcu(void)
670{
671	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
672			   !lock_is_held(&rcu_lock_map) &&
673			   !lock_is_held(&rcu_sched_lock_map),
674			   "Illegal synchronize_rcu() in RCU read-side critical section");
675	if (!rcu_scheduler_active)
676		return;
677	if (rcu_expedited)
678		synchronize_rcu_expedited();
679	else
680		wait_rcu_gp(call_rcu);
681}
682EXPORT_SYMBOL_GPL(synchronize_rcu);
683
684static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
685static unsigned long sync_rcu_preempt_exp_count;
686static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
687
688/*
689 * Return non-zero if there are any tasks in RCU read-side critical
690 * sections blocking the current preemptible-RCU expedited grace period.
691 * If there is no preemptible-RCU expedited grace period currently in
692 * progress, returns zero unconditionally.
693 */
694static int rcu_preempted_readers_exp(struct rcu_node *rnp)
695{
696	return rnp->exp_tasks != NULL;
697}
698
699/*
700 * return non-zero if there is no RCU expedited grace period in progress
701 * for the specified rcu_node structure, in other words, if all CPUs and
702 * tasks covered by the specified rcu_node structure have done their bit
703 * for the current expedited grace period.  Works only for preemptible
704 * RCU -- other RCU implementation use other means.
705 *
706 * Caller must hold sync_rcu_preempt_exp_mutex.
707 */
708static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
709{
710	return !rcu_preempted_readers_exp(rnp) &&
711	       ACCESS_ONCE(rnp->expmask) == 0;
712}
713
714/*
715 * Report the exit from RCU read-side critical section for the last task
716 * that queued itself during or before the current expedited preemptible-RCU
717 * grace period.  This event is reported either to the rcu_node structure on
718 * which the task was queued or to one of that rcu_node structure's ancestors,
719 * recursively up the tree.  (Calm down, calm down, we do the recursion
720 * iteratively!)
721 *
722 * Most callers will set the "wake" flag, but the task initiating the
723 * expedited grace period need not wake itself.
724 *
725 * Caller must hold sync_rcu_preempt_exp_mutex.
726 */
727static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
728			       bool wake)
729{
730	unsigned long flags;
731	unsigned long mask;
732
733	raw_spin_lock_irqsave(&rnp->lock, flags);
734	smp_mb__after_unlock_lock();
735	for (;;) {
736		if (!sync_rcu_preempt_exp_done(rnp)) {
737			raw_spin_unlock_irqrestore(&rnp->lock, flags);
738			break;
739		}
740		if (rnp->parent == NULL) {
741			raw_spin_unlock_irqrestore(&rnp->lock, flags);
742			if (wake) {
743				smp_mb(); /* EGP done before wake_up(). */
744				wake_up(&sync_rcu_preempt_exp_wq);
745			}
746			break;
747		}
748		mask = rnp->grpmask;
749		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
750		rnp = rnp->parent;
751		raw_spin_lock(&rnp->lock); /* irqs already disabled */
752		smp_mb__after_unlock_lock();
753		rnp->expmask &= ~mask;
754	}
755}
756
757/*
758 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
759 * grace period for the specified rcu_node structure.  If there are no such
760 * tasks, report it up the rcu_node hierarchy.
761 *
762 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
763 * CPU hotplug operations.
764 */
765static void
766sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
767{
768	unsigned long flags;
769	int must_wait = 0;
770
771	raw_spin_lock_irqsave(&rnp->lock, flags);
772	smp_mb__after_unlock_lock();
773	if (list_empty(&rnp->blkd_tasks)) {
774		raw_spin_unlock_irqrestore(&rnp->lock, flags);
775	} else {
776		rnp->exp_tasks = rnp->blkd_tasks.next;
777		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
778		must_wait = 1;
779	}
780	if (!must_wait)
781		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
782}
783
784/**
785 * synchronize_rcu_expedited - Brute-force RCU grace period
786 *
787 * Wait for an RCU-preempt grace period, but expedite it.  The basic
788 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
789 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
790 * significant time on all CPUs and is unfriendly to real-time workloads,
791 * so is thus not recommended for any sort of common-case code.
792 * In fact, if you are using synchronize_rcu_expedited() in a loop,
793 * please restructure your code to batch your updates, and then Use a
794 * single synchronize_rcu() instead.
795 *
796 * Note that it is illegal to call this function while holding any lock
797 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
798 * to call this function from a CPU-hotplug notifier.  Failing to observe
799 * these restriction will result in deadlock.
800 */
801void synchronize_rcu_expedited(void)
802{
803	unsigned long flags;
804	struct rcu_node *rnp;
805	struct rcu_state *rsp = &rcu_preempt_state;
806	unsigned long snap;
807	int trycount = 0;
808
809	smp_mb(); /* Caller's modifications seen first by other CPUs. */
810	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
811	smp_mb(); /* Above access cannot bleed into critical section. */
812
813	/*
814	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
815	 * operation that finds an rcu_node structure with tasks in the
816	 * process of being boosted will know that all tasks blocking
817	 * this expedited grace period will already be in the process of
818	 * being boosted.  This simplifies the process of moving tasks
819	 * from leaf to root rcu_node structures.
820	 */
821	get_online_cpus();
822
823	/*
824	 * Acquire lock, falling back to synchronize_rcu() if too many
825	 * lock-acquisition failures.  Of course, if someone does the
826	 * expedited grace period for us, just leave.
827	 */
828	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
829		if (ULONG_CMP_LT(snap,
830		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
831			put_online_cpus();
832			goto mb_ret; /* Others did our work for us. */
833		}
834		if (trycount++ < 10) {
835			udelay(trycount * num_online_cpus());
836		} else {
837			put_online_cpus();
838			wait_rcu_gp(call_rcu);
839			return;
840		}
841	}
842	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
843		put_online_cpus();
844		goto unlock_mb_ret; /* Others did our work for us. */
845	}
846
847	/* force all RCU readers onto ->blkd_tasks lists. */
848	synchronize_sched_expedited();
849
850	/* Initialize ->expmask for all non-leaf rcu_node structures. */
851	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
852		raw_spin_lock_irqsave(&rnp->lock, flags);
853		smp_mb__after_unlock_lock();
854		rnp->expmask = rnp->qsmaskinit;
855		raw_spin_unlock_irqrestore(&rnp->lock, flags);
856	}
857
858	/* Snapshot current state of ->blkd_tasks lists. */
859	rcu_for_each_leaf_node(rsp, rnp)
860		sync_rcu_preempt_exp_init(rsp, rnp);
861	if (NUM_RCU_NODES > 1)
862		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
863
864	put_online_cpus();
865
866	/* Wait for snapshotted ->blkd_tasks lists to drain. */
867	rnp = rcu_get_root(rsp);
868	wait_event(sync_rcu_preempt_exp_wq,
869		   sync_rcu_preempt_exp_done(rnp));
870
871	/* Clean up and exit. */
872	smp_mb(); /* ensure expedited GP seen before counter increment. */
873	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
874unlock_mb_ret:
875	mutex_unlock(&sync_rcu_preempt_exp_mutex);
876mb_ret:
877	smp_mb(); /* ensure subsequent action seen after grace period. */
878}
879EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
880
881/**
882 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
883 *
884 * Note that this primitive does not necessarily wait for an RCU grace period
885 * to complete.  For example, if there are no RCU callbacks queued anywhere
886 * in the system, then rcu_barrier() is within its rights to return
887 * immediately, without waiting for anything, much less an RCU grace period.
888 */
889void rcu_barrier(void)
890{
891	_rcu_barrier(&rcu_preempt_state);
892}
893EXPORT_SYMBOL_GPL(rcu_barrier);
894
895/*
896 * Initialize preemptible RCU's state structures.
897 */
898static void __init __rcu_init_preempt(void)
899{
900	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
901}
902
903/*
904 * Check for a task exiting while in a preemptible-RCU read-side
905 * critical section, clean up if so.  No need to issue warnings,
906 * as debug_check_no_locks_held() already does this if lockdep
907 * is enabled.
908 */
909void exit_rcu(void)
910{
911	struct task_struct *t = current;
912
913	if (likely(list_empty(&current->rcu_node_entry)))
914		return;
915	t->rcu_read_lock_nesting = 1;
916	barrier();
917	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
918	__rcu_read_unlock();
919}
920
921#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
922
923static struct rcu_state *rcu_state_p = &rcu_sched_state;
924
925/*
926 * Tell them what RCU they are running.
927 */
928static void __init rcu_bootup_announce(void)
929{
930	pr_info("Hierarchical RCU implementation.\n");
931	rcu_bootup_announce_oddness();
932}
933
934/*
935 * Return the number of RCU batches processed thus far for debug & stats.
936 */
937long rcu_batches_completed(void)
938{
939	return rcu_batches_completed_sched();
940}
941EXPORT_SYMBOL_GPL(rcu_batches_completed);
942
943/*
944 * Because preemptible RCU does not exist, we never have to check for
945 * CPUs being in quiescent states.
946 */
947static void rcu_preempt_note_context_switch(int cpu)
948{
949}
950
951/*
952 * Because preemptible RCU does not exist, there are never any preempted
953 * RCU readers.
954 */
955static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
956{
957	return 0;
958}
959
960#ifdef CONFIG_HOTPLUG_CPU
961
962/* Because preemptible RCU does not exist, no quieting of tasks. */
963static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
964	__releases(rnp->lock)
965{
966	raw_spin_unlock_irqrestore(&rnp->lock, flags);
967}
968
969#endif /* #ifdef CONFIG_HOTPLUG_CPU */
970
971/*
972 * Because preemptible RCU does not exist, we never have to check for
973 * tasks blocked within RCU read-side critical sections.
974 */
975static void rcu_print_detail_task_stall(struct rcu_state *rsp)
976{
977}
978
979/*
980 * Because preemptible RCU does not exist, we never have to check for
981 * tasks blocked within RCU read-side critical sections.
982 */
983static int rcu_print_task_stall(struct rcu_node *rnp)
984{
985	return 0;
986}
987
988/*
989 * Because there is no preemptible RCU, there can be no readers blocked,
990 * so there is no need to check for blocked tasks.  So check only for
991 * bogus qsmask values.
992 */
993static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
994{
995	WARN_ON_ONCE(rnp->qsmask);
996}
997
998#ifdef CONFIG_HOTPLUG_CPU
999
1000/*
1001 * Because preemptible RCU does not exist, it never needs to migrate
1002 * tasks that were blocked within RCU read-side critical sections, and
1003 * such non-existent tasks cannot possibly have been blocking the current
1004 * grace period.
1005 */
1006static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1007				     struct rcu_node *rnp,
1008				     struct rcu_data *rdp)
1009{
1010	return 0;
1011}
1012
1013#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1014
1015/*
1016 * Because preemptible RCU does not exist, it never has any callbacks
1017 * to check.
1018 */
1019static void rcu_preempt_check_callbacks(int cpu)
1020{
1021}
1022
1023/*
1024 * Wait for an rcu-preempt grace period, but make it happen quickly.
1025 * But because preemptible RCU does not exist, map to rcu-sched.
1026 */
1027void synchronize_rcu_expedited(void)
1028{
1029	synchronize_sched_expedited();
1030}
1031EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1032
1033#ifdef CONFIG_HOTPLUG_CPU
1034
1035/*
1036 * Because preemptible RCU does not exist, there is never any need to
1037 * report on tasks preempted in RCU read-side critical sections during
1038 * expedited RCU grace periods.
1039 */
1040static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1041			       bool wake)
1042{
1043}
1044
1045#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1046
1047/*
1048 * Because preemptible RCU does not exist, rcu_barrier() is just
1049 * another name for rcu_barrier_sched().
1050 */
1051void rcu_barrier(void)
1052{
1053	rcu_barrier_sched();
1054}
1055EXPORT_SYMBOL_GPL(rcu_barrier);
1056
1057/*
1058 * Because preemptible RCU does not exist, it need not be initialized.
1059 */
1060static void __init __rcu_init_preempt(void)
1061{
1062}
1063
1064/*
1065 * Because preemptible RCU does not exist, tasks cannot possibly exit
1066 * while in preemptible RCU read-side critical sections.
1067 */
1068void exit_rcu(void)
1069{
1070}
1071
1072#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1073
1074#ifdef CONFIG_RCU_BOOST
1075
1076#include "../locking/rtmutex_common.h"
1077
1078#ifdef CONFIG_RCU_TRACE
1079
1080static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1081{
1082	if (list_empty(&rnp->blkd_tasks))
1083		rnp->n_balk_blkd_tasks++;
1084	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1085		rnp->n_balk_exp_gp_tasks++;
1086	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1087		rnp->n_balk_boost_tasks++;
1088	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1089		rnp->n_balk_notblocked++;
1090	else if (rnp->gp_tasks != NULL &&
1091		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1092		rnp->n_balk_notyet++;
1093	else
1094		rnp->n_balk_nos++;
1095}
1096
1097#else /* #ifdef CONFIG_RCU_TRACE */
1098
1099static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1100{
1101}
1102
1103#endif /* #else #ifdef CONFIG_RCU_TRACE */
1104
1105static void rcu_wake_cond(struct task_struct *t, int status)
1106{
1107	/*
1108	 * If the thread is yielding, only wake it when this
1109	 * is invoked from idle
1110	 */
1111	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1112		wake_up_process(t);
1113}
1114
1115/*
1116 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1117 * or ->boost_tasks, advancing the pointer to the next task in the
1118 * ->blkd_tasks list.
1119 *
1120 * Note that irqs must be enabled: boosting the task can block.
1121 * Returns 1 if there are more tasks needing to be boosted.
1122 */
1123static int rcu_boost(struct rcu_node *rnp)
1124{
1125	unsigned long flags;
1126	struct task_struct *t;
1127	struct list_head *tb;
1128
1129	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1130		return 0;  /* Nothing left to boost. */
1131
1132	raw_spin_lock_irqsave(&rnp->lock, flags);
1133	smp_mb__after_unlock_lock();
1134
1135	/*
1136	 * Recheck under the lock: all tasks in need of boosting
1137	 * might exit their RCU read-side critical sections on their own.
1138	 */
1139	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1140		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1141		return 0;
1142	}
1143
1144	/*
1145	 * Preferentially boost tasks blocking expedited grace periods.
1146	 * This cannot starve the normal grace periods because a second
1147	 * expedited grace period must boost all blocked tasks, including
1148	 * those blocking the pre-existing normal grace period.
1149	 */
1150	if (rnp->exp_tasks != NULL) {
1151		tb = rnp->exp_tasks;
1152		rnp->n_exp_boosts++;
1153	} else {
1154		tb = rnp->boost_tasks;
1155		rnp->n_normal_boosts++;
1156	}
1157	rnp->n_tasks_boosted++;
1158
1159	/*
1160	 * We boost task t by manufacturing an rt_mutex that appears to
1161	 * be held by task t.  We leave a pointer to that rt_mutex where
1162	 * task t can find it, and task t will release the mutex when it
1163	 * exits its outermost RCU read-side critical section.  Then
1164	 * simply acquiring this artificial rt_mutex will boost task
1165	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1166	 *
1167	 * Note that task t must acquire rnp->lock to remove itself from
1168	 * the ->blkd_tasks list, which it will do from exit() if from
1169	 * nowhere else.  We therefore are guaranteed that task t will
1170	 * stay around at least until we drop rnp->lock.  Note that
1171	 * rnp->lock also resolves races between our priority boosting
1172	 * and task t's exiting its outermost RCU read-side critical
1173	 * section.
1174	 */
1175	t = container_of(tb, struct task_struct, rcu_node_entry);
1176	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1177	init_completion(&rnp->boost_completion);
1178	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1179	/* Lock only for side effect: boosts task t's priority. */
1180	rt_mutex_lock(&rnp->boost_mtx);
1181	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1182
1183	/* Wait for boostee to be done w/boost_mtx before reinitializing. */
1184	wait_for_completion(&rnp->boost_completion);
1185
1186	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1187	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1188}
1189
1190/*
1191 * Priority-boosting kthread.  One per leaf rcu_node and one for the
1192 * root rcu_node.
1193 */
1194static int rcu_boost_kthread(void *arg)
1195{
1196	struct rcu_node *rnp = (struct rcu_node *)arg;
1197	int spincnt = 0;
1198	int more2boost;
1199
1200	trace_rcu_utilization(TPS("Start boost kthread@init"));
1201	for (;;) {
1202		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1203		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1204		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1205		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1206		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1207		more2boost = rcu_boost(rnp);
1208		if (more2boost)
1209			spincnt++;
1210		else
1211			spincnt = 0;
1212		if (spincnt > 10) {
1213			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1214			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1215			schedule_timeout_interruptible(2);
1216			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1217			spincnt = 0;
1218		}
1219	}
1220	/* NOTREACHED */
1221	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1222	return 0;
1223}
1224
1225/*
1226 * Check to see if it is time to start boosting RCU readers that are
1227 * blocking the current grace period, and, if so, tell the per-rcu_node
1228 * kthread to start boosting them.  If there is an expedited grace
1229 * period in progress, it is always time to boost.
1230 *
1231 * The caller must hold rnp->lock, which this function releases.
1232 * The ->boost_kthread_task is immortal, so we don't need to worry
1233 * about it going away.
1234 */
1235static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1236	__releases(rnp->lock)
1237{
1238	struct task_struct *t;
1239
1240	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1241		rnp->n_balk_exp_gp_tasks++;
1242		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1243		return;
1244	}
1245	if (rnp->exp_tasks != NULL ||
1246	    (rnp->gp_tasks != NULL &&
1247	     rnp->boost_tasks == NULL &&
1248	     rnp->qsmask == 0 &&
1249	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1250		if (rnp->exp_tasks == NULL)
1251			rnp->boost_tasks = rnp->gp_tasks;
1252		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1253		t = rnp->boost_kthread_task;
1254		if (t)
1255			rcu_wake_cond(t, rnp->boost_kthread_status);
1256	} else {
1257		rcu_initiate_boost_trace(rnp);
1258		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1259	}
1260}
1261
1262/*
1263 * Wake up the per-CPU kthread to invoke RCU callbacks.
1264 */
1265static void invoke_rcu_callbacks_kthread(void)
1266{
1267	unsigned long flags;
1268
1269	local_irq_save(flags);
1270	__this_cpu_write(rcu_cpu_has_work, 1);
1271	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1272	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1273		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1274			      __this_cpu_read(rcu_cpu_kthread_status));
1275	}
1276	local_irq_restore(flags);
1277}
1278
1279/*
1280 * Is the current CPU running the RCU-callbacks kthread?
1281 * Caller must have preemption disabled.
1282 */
1283static bool rcu_is_callbacks_kthread(void)
1284{
1285	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1286}
1287
1288#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1289
1290/*
1291 * Do priority-boost accounting for the start of a new grace period.
1292 */
1293static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1294{
1295	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1296}
1297
1298/*
1299 * Create an RCU-boost kthread for the specified node if one does not
1300 * already exist.  We only create this kthread for preemptible RCU.
1301 * Returns zero if all is well, a negated errno otherwise.
1302 */
1303static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1304						 struct rcu_node *rnp)
1305{
1306	int rnp_index = rnp - &rsp->node[0];
1307	unsigned long flags;
1308	struct sched_param sp;
1309	struct task_struct *t;
1310
1311	if (&rcu_preempt_state != rsp)
1312		return 0;
1313
1314	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1315		return 0;
1316
1317	rsp->boost = 1;
1318	if (rnp->boost_kthread_task != NULL)
1319		return 0;
1320	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1321			   "rcub/%d", rnp_index);
1322	if (IS_ERR(t))
1323		return PTR_ERR(t);
1324	raw_spin_lock_irqsave(&rnp->lock, flags);
1325	smp_mb__after_unlock_lock();
1326	rnp->boost_kthread_task = t;
1327	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1328	sp.sched_priority = RCU_BOOST_PRIO;
1329	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1330	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1331	return 0;
1332}
1333
1334static void rcu_kthread_do_work(void)
1335{
1336	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1337	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1338	rcu_preempt_do_callbacks();
1339}
1340
1341static void rcu_cpu_kthread_setup(unsigned int cpu)
1342{
1343	struct sched_param sp;
1344
1345	sp.sched_priority = RCU_KTHREAD_PRIO;
1346	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1347}
1348
1349static void rcu_cpu_kthread_park(unsigned int cpu)
1350{
1351	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1352}
1353
1354static int rcu_cpu_kthread_should_run(unsigned int cpu)
1355{
1356	return __this_cpu_read(rcu_cpu_has_work);
1357}
1358
1359/*
1360 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1361 * RCU softirq used in flavors and configurations of RCU that do not
1362 * support RCU priority boosting.
1363 */
1364static void rcu_cpu_kthread(unsigned int cpu)
1365{
1366	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1367	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1368	int spincnt;
1369
1370	for (spincnt = 0; spincnt < 10; spincnt++) {
1371		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1372		local_bh_disable();
1373		*statusp = RCU_KTHREAD_RUNNING;
1374		this_cpu_inc(rcu_cpu_kthread_loops);
1375		local_irq_disable();
1376		work = *workp;
1377		*workp = 0;
1378		local_irq_enable();
1379		if (work)
1380			rcu_kthread_do_work();
1381		local_bh_enable();
1382		if (*workp == 0) {
1383			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1384			*statusp = RCU_KTHREAD_WAITING;
1385			return;
1386		}
1387	}
1388	*statusp = RCU_KTHREAD_YIELDING;
1389	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1390	schedule_timeout_interruptible(2);
1391	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1392	*statusp = RCU_KTHREAD_WAITING;
1393}
1394
1395/*
1396 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1397 * served by the rcu_node in question.  The CPU hotplug lock is still
1398 * held, so the value of rnp->qsmaskinit will be stable.
1399 *
1400 * We don't include outgoingcpu in the affinity set, use -1 if there is
1401 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1402 * this function allows the kthread to execute on any CPU.
1403 */
1404static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1405{
1406	struct task_struct *t = rnp->boost_kthread_task;
1407	unsigned long mask = rnp->qsmaskinit;
1408	cpumask_var_t cm;
1409	int cpu;
1410
1411	if (!t)
1412		return;
1413	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1414		return;
1415	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1416		if ((mask & 0x1) && cpu != outgoingcpu)
1417			cpumask_set_cpu(cpu, cm);
1418	if (cpumask_weight(cm) == 0) {
1419		cpumask_setall(cm);
1420		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1421			cpumask_clear_cpu(cpu, cm);
1422		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1423	}
1424	set_cpus_allowed_ptr(t, cm);
1425	free_cpumask_var(cm);
1426}
1427
1428static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1429	.store			= &rcu_cpu_kthread_task,
1430	.thread_should_run	= rcu_cpu_kthread_should_run,
1431	.thread_fn		= rcu_cpu_kthread,
1432	.thread_comm		= "rcuc/%u",
1433	.setup			= rcu_cpu_kthread_setup,
1434	.park			= rcu_cpu_kthread_park,
1435};
1436
1437/*
1438 * Spawn all kthreads -- called as soon as the scheduler is running.
1439 */
1440static int __init rcu_spawn_kthreads(void)
1441{
1442	struct rcu_node *rnp;
1443	int cpu;
1444
1445	rcu_scheduler_fully_active = 1;
1446	for_each_possible_cpu(cpu)
1447		per_cpu(rcu_cpu_has_work, cpu) = 0;
1448	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1449	rnp = rcu_get_root(rcu_state_p);
1450	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1451	if (NUM_RCU_NODES > 1) {
1452		rcu_for_each_leaf_node(rcu_state_p, rnp)
1453			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1454	}
1455	return 0;
1456}
1457early_initcall(rcu_spawn_kthreads);
1458
1459static void rcu_prepare_kthreads(int cpu)
1460{
1461	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1462	struct rcu_node *rnp = rdp->mynode;
1463
1464	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1465	if (rcu_scheduler_fully_active)
1466		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1467}
1468
1469#else /* #ifdef CONFIG_RCU_BOOST */
1470
1471static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1472	__releases(rnp->lock)
1473{
1474	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1475}
1476
1477static void invoke_rcu_callbacks_kthread(void)
1478{
1479	WARN_ON_ONCE(1);
1480}
1481
1482static bool rcu_is_callbacks_kthread(void)
1483{
1484	return false;
1485}
1486
1487static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1488{
1489}
1490
1491static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1492{
1493}
1494
1495static int __init rcu_scheduler_really_started(void)
1496{
1497	rcu_scheduler_fully_active = 1;
1498	return 0;
1499}
1500early_initcall(rcu_scheduler_really_started);
1501
1502static void rcu_prepare_kthreads(int cpu)
1503{
1504}
1505
1506#endif /* #else #ifdef CONFIG_RCU_BOOST */
1507
1508#if !defined(CONFIG_RCU_FAST_NO_HZ)
1509
1510/*
1511 * Check to see if any future RCU-related work will need to be done
1512 * by the current CPU, even if none need be done immediately, returning
1513 * 1 if so.  This function is part of the RCU implementation; it is -not-
1514 * an exported member of the RCU API.
1515 *
1516 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1517 * any flavor of RCU.
1518 */
1519#ifndef CONFIG_RCU_NOCB_CPU_ALL
1520int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1521{
1522	*delta_jiffies = ULONG_MAX;
1523	return rcu_cpu_has_callbacks(cpu, NULL);
1524}
1525#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1526
1527/*
1528 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1529 * after it.
1530 */
1531static void rcu_cleanup_after_idle(int cpu)
1532{
1533}
1534
1535/*
1536 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1537 * is nothing.
1538 */
1539static void rcu_prepare_for_idle(int cpu)
1540{
1541}
1542
1543/*
1544 * Don't bother keeping a running count of the number of RCU callbacks
1545 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1546 */
1547static void rcu_idle_count_callbacks_posted(void)
1548{
1549}
1550
1551#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1552
1553/*
1554 * This code is invoked when a CPU goes idle, at which point we want
1555 * to have the CPU do everything required for RCU so that it can enter
1556 * the energy-efficient dyntick-idle mode.  This is handled by a
1557 * state machine implemented by rcu_prepare_for_idle() below.
1558 *
1559 * The following three proprocessor symbols control this state machine:
1560 *
1561 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1562 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1563 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1564 *	benchmarkers who might otherwise be tempted to set this to a large
1565 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1566 *	system.  And if you are -that- concerned about energy efficiency,
1567 *	just power the system down and be done with it!
1568 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1569 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1570 *	callbacks pending.  Setting this too high can OOM your system.
1571 *
1572 * The values below work well in practice.  If future workloads require
1573 * adjustment, they can be converted into kernel config parameters, though
1574 * making the state machine smarter might be a better option.
1575 */
1576#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1577#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1578
1579static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1580module_param(rcu_idle_gp_delay, int, 0644);
1581static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1582module_param(rcu_idle_lazy_gp_delay, int, 0644);
1583
1584extern int tick_nohz_active;
1585
1586/*
1587 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1588 * only if it has been awhile since the last time we did so.  Afterwards,
1589 * if there are any callbacks ready for immediate invocation, return true.
1590 */
1591static bool __maybe_unused rcu_try_advance_all_cbs(void)
1592{
1593	bool cbs_ready = false;
1594	struct rcu_data *rdp;
1595	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1596	struct rcu_node *rnp;
1597	struct rcu_state *rsp;
1598
1599	/* Exit early if we advanced recently. */
1600	if (jiffies == rdtp->last_advance_all)
1601		return 0;
1602	rdtp->last_advance_all = jiffies;
1603
1604	for_each_rcu_flavor(rsp) {
1605		rdp = this_cpu_ptr(rsp->rda);
1606		rnp = rdp->mynode;
1607
1608		/*
1609		 * Don't bother checking unless a grace period has
1610		 * completed since we last checked and there are
1611		 * callbacks not yet ready to invoke.
1612		 */
1613		if (rdp->completed != rnp->completed &&
1614		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1615			note_gp_changes(rsp, rdp);
1616
1617		if (cpu_has_callbacks_ready_to_invoke(rdp))
1618			cbs_ready = true;
1619	}
1620	return cbs_ready;
1621}
1622
1623/*
1624 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1625 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1626 * caller to set the timeout based on whether or not there are non-lazy
1627 * callbacks.
1628 *
1629 * The caller must have disabled interrupts.
1630 */
1631#ifndef CONFIG_RCU_NOCB_CPU_ALL
1632int rcu_needs_cpu(int cpu, unsigned long *dj)
1633{
1634	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1635
1636	/* Snapshot to detect later posting of non-lazy callback. */
1637	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1638
1639	/* If no callbacks, RCU doesn't need the CPU. */
1640	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1641		*dj = ULONG_MAX;
1642		return 0;
1643	}
1644
1645	/* Attempt to advance callbacks. */
1646	if (rcu_try_advance_all_cbs()) {
1647		/* Some ready to invoke, so initiate later invocation. */
1648		invoke_rcu_core();
1649		return 1;
1650	}
1651	rdtp->last_accelerate = jiffies;
1652
1653	/* Request timer delay depending on laziness, and round. */
1654	if (!rdtp->all_lazy) {
1655		*dj = round_up(rcu_idle_gp_delay + jiffies,
1656			       rcu_idle_gp_delay) - jiffies;
1657	} else {
1658		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1659	}
1660	return 0;
1661}
1662#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1663
1664/*
1665 * Prepare a CPU for idle from an RCU perspective.  The first major task
1666 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1667 * The second major task is to check to see if a non-lazy callback has
1668 * arrived at a CPU that previously had only lazy callbacks.  The third
1669 * major task is to accelerate (that is, assign grace-period numbers to)
1670 * any recently arrived callbacks.
1671 *
1672 * The caller must have disabled interrupts.
1673 */
1674static void rcu_prepare_for_idle(int cpu)
1675{
1676#ifndef CONFIG_RCU_NOCB_CPU_ALL
1677	bool needwake;
1678	struct rcu_data *rdp;
1679	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1680	struct rcu_node *rnp;
1681	struct rcu_state *rsp;
1682	int tne;
1683
1684	/* Handle nohz enablement switches conservatively. */
1685	tne = ACCESS_ONCE(tick_nohz_active);
1686	if (tne != rdtp->tick_nohz_enabled_snap) {
1687		if (rcu_cpu_has_callbacks(cpu, NULL))
1688			invoke_rcu_core(); /* force nohz to see update. */
1689		rdtp->tick_nohz_enabled_snap = tne;
1690		return;
1691	}
1692	if (!tne)
1693		return;
1694
1695	/* If this is a no-CBs CPU, no callbacks, just return. */
1696	if (rcu_is_nocb_cpu(cpu))
1697		return;
1698
1699	/*
1700	 * If a non-lazy callback arrived at a CPU having only lazy
1701	 * callbacks, invoke RCU core for the side-effect of recalculating
1702	 * idle duration on re-entry to idle.
1703	 */
1704	if (rdtp->all_lazy &&
1705	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1706		rdtp->all_lazy = false;
1707		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1708		invoke_rcu_core();
1709		return;
1710	}
1711
1712	/*
1713	 * If we have not yet accelerated this jiffy, accelerate all
1714	 * callbacks on this CPU.
1715	 */
1716	if (rdtp->last_accelerate == jiffies)
1717		return;
1718	rdtp->last_accelerate = jiffies;
1719	for_each_rcu_flavor(rsp) {
1720		rdp = per_cpu_ptr(rsp->rda, cpu);
1721		if (!*rdp->nxttail[RCU_DONE_TAIL])
1722			continue;
1723		rnp = rdp->mynode;
1724		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1725		smp_mb__after_unlock_lock();
1726		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1727		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1728		if (needwake)
1729			rcu_gp_kthread_wake(rsp);
1730	}
1731#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1732}
1733
1734/*
1735 * Clean up for exit from idle.  Attempt to advance callbacks based on
1736 * any grace periods that elapsed while the CPU was idle, and if any
1737 * callbacks are now ready to invoke, initiate invocation.
1738 */
1739static void rcu_cleanup_after_idle(int cpu)
1740{
1741#ifndef CONFIG_RCU_NOCB_CPU_ALL
1742	if (rcu_is_nocb_cpu(cpu))
1743		return;
1744	if (rcu_try_advance_all_cbs())
1745		invoke_rcu_core();
1746#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1747}
1748
1749/*
1750 * Keep a running count of the number of non-lazy callbacks posted
1751 * on this CPU.  This running counter (which is never decremented) allows
1752 * rcu_prepare_for_idle() to detect when something out of the idle loop
1753 * posts a callback, even if an equal number of callbacks are invoked.
1754 * Of course, callbacks should only be posted from within a trace event
1755 * designed to be called from idle or from within RCU_NONIDLE().
1756 */
1757static void rcu_idle_count_callbacks_posted(void)
1758{
1759	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1760}
1761
1762/*
1763 * Data for flushing lazy RCU callbacks at OOM time.
1764 */
1765static atomic_t oom_callback_count;
1766static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1767
1768/*
1769 * RCU OOM callback -- decrement the outstanding count and deliver the
1770 * wake-up if we are the last one.
1771 */
1772static void rcu_oom_callback(struct rcu_head *rhp)
1773{
1774	if (atomic_dec_and_test(&oom_callback_count))
1775		wake_up(&oom_callback_wq);
1776}
1777
1778/*
1779 * Post an rcu_oom_notify callback on the current CPU if it has at
1780 * least one lazy callback.  This will unnecessarily post callbacks
1781 * to CPUs that already have a non-lazy callback at the end of their
1782 * callback list, but this is an infrequent operation, so accept some
1783 * extra overhead to keep things simple.
1784 */
1785static void rcu_oom_notify_cpu(void *unused)
1786{
1787	struct rcu_state *rsp;
1788	struct rcu_data *rdp;
1789
1790	for_each_rcu_flavor(rsp) {
1791		rdp = raw_cpu_ptr(rsp->rda);
1792		if (rdp->qlen_lazy != 0) {
1793			atomic_inc(&oom_callback_count);
1794			rsp->call(&rdp->oom_head, rcu_oom_callback);
1795		}
1796	}
1797}
1798
1799/*
1800 * If low on memory, ensure that each CPU has a non-lazy callback.
1801 * This will wake up CPUs that have only lazy callbacks, in turn
1802 * ensuring that they free up the corresponding memory in a timely manner.
1803 * Because an uncertain amount of memory will be freed in some uncertain
1804 * timeframe, we do not claim to have freed anything.
1805 */
1806static int rcu_oom_notify(struct notifier_block *self,
1807			  unsigned long notused, void *nfreed)
1808{
1809	int cpu;
1810
1811	/* Wait for callbacks from earlier instance to complete. */
1812	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1813	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1814
1815	/*
1816	 * Prevent premature wakeup: ensure that all increments happen
1817	 * before there is a chance of the counter reaching zero.
1818	 */
1819	atomic_set(&oom_callback_count, 1);
1820
1821	get_online_cpus();
1822	for_each_online_cpu(cpu) {
1823		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1824		cond_resched();
1825	}
1826	put_online_cpus();
1827
1828	/* Unconditionally decrement: no need to wake ourselves up. */
1829	atomic_dec(&oom_callback_count);
1830
1831	return NOTIFY_OK;
1832}
1833
1834static struct notifier_block rcu_oom_nb = {
1835	.notifier_call = rcu_oom_notify
1836};
1837
1838static int __init rcu_register_oom_notifier(void)
1839{
1840	register_oom_notifier(&rcu_oom_nb);
1841	return 0;
1842}
1843early_initcall(rcu_register_oom_notifier);
1844
1845#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1846
1847#ifdef CONFIG_RCU_CPU_STALL_INFO
1848
1849#ifdef CONFIG_RCU_FAST_NO_HZ
1850
1851static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1852{
1853	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1854	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1855
1856	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1857		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1858		ulong2long(nlpd),
1859		rdtp->all_lazy ? 'L' : '.',
1860		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1861}
1862
1863#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1864
1865static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1866{
1867	*cp = '\0';
1868}
1869
1870#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1871
1872/* Initiate the stall-info list. */
1873static void print_cpu_stall_info_begin(void)
1874{
1875	pr_cont("\n");
1876}
1877
1878/*
1879 * Print out diagnostic information for the specified stalled CPU.
1880 *
1881 * If the specified CPU is aware of the current RCU grace period
1882 * (flavor specified by rsp), then print the number of scheduling
1883 * clock interrupts the CPU has taken during the time that it has
1884 * been aware.  Otherwise, print the number of RCU grace periods
1885 * that this CPU is ignorant of, for example, "1" if the CPU was
1886 * aware of the previous grace period.
1887 *
1888 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1889 */
1890static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1891{
1892	char fast_no_hz[72];
1893	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1894	struct rcu_dynticks *rdtp = rdp->dynticks;
1895	char *ticks_title;
1896	unsigned long ticks_value;
1897
1898	if (rsp->gpnum == rdp->gpnum) {
1899		ticks_title = "ticks this GP";
1900		ticks_value = rdp->ticks_this_gp;
1901	} else {
1902		ticks_title = "GPs behind";
1903		ticks_value = rsp->gpnum - rdp->gpnum;
1904	}
1905	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1906	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1907	       cpu, ticks_value, ticks_title,
1908	       atomic_read(&rdtp->dynticks) & 0xfff,
1909	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1910	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1911	       fast_no_hz);
1912}
1913
1914/* Terminate the stall-info list. */
1915static void print_cpu_stall_info_end(void)
1916{
1917	pr_err("\t");
1918}
1919
1920/* Zero ->ticks_this_gp for all flavors of RCU. */
1921static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1922{
1923	rdp->ticks_this_gp = 0;
1924	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1925}
1926
1927/* Increment ->ticks_this_gp for all flavors of RCU. */
1928static void increment_cpu_stall_ticks(void)
1929{
1930	struct rcu_state *rsp;
1931
1932	for_each_rcu_flavor(rsp)
1933		raw_cpu_inc(rsp->rda->ticks_this_gp);
1934}
1935
1936#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1937
1938static void print_cpu_stall_info_begin(void)
1939{
1940	pr_cont(" {");
1941}
1942
1943static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1944{
1945	pr_cont(" %d", cpu);
1946}
1947
1948static void print_cpu_stall_info_end(void)
1949{
1950	pr_cont("} ");
1951}
1952
1953static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1954{
1955}
1956
1957static void increment_cpu_stall_ticks(void)
1958{
1959}
1960
1961#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1962
1963#ifdef CONFIG_RCU_NOCB_CPU
1964
1965/*
1966 * Offload callback processing from the boot-time-specified set of CPUs
1967 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1968 * kthread created that pulls the callbacks from the corresponding CPU,
1969 * waits for a grace period to elapse, and invokes the callbacks.
1970 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1971 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1972 * has been specified, in which case each kthread actively polls its
1973 * CPU.  (Which isn't so great for energy efficiency, but which does
1974 * reduce RCU's overhead on that CPU.)
1975 *
1976 * This is intended to be used in conjunction with Frederic Weisbecker's
1977 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1978 * running CPU-bound user-mode computations.
1979 *
1980 * Offloading of callback processing could also in theory be used as
1981 * an energy-efficiency measure because CPUs with no RCU callbacks
1982 * queued are more aggressive about entering dyntick-idle mode.
1983 */
1984
1985
1986/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1987static int __init rcu_nocb_setup(char *str)
1988{
1989	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1990	have_rcu_nocb_mask = true;
1991	cpulist_parse(str, rcu_nocb_mask);
1992	return 1;
1993}
1994__setup("rcu_nocbs=", rcu_nocb_setup);
1995
1996static int __init parse_rcu_nocb_poll(char *arg)
1997{
1998	rcu_nocb_poll = 1;
1999	return 0;
2000}
2001early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2002
2003/*
2004 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2005 * grace period.
2006 */
2007static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2008{
2009	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2010}
2011
2012/*
2013 * Set the root rcu_node structure's ->need_future_gp field
2014 * based on the sum of those of all rcu_node structures.  This does
2015 * double-count the root rcu_node structure's requests, but this
2016 * is necessary to handle the possibility of a rcu_nocb_kthread()
2017 * having awakened during the time that the rcu_node structures
2018 * were being updated for the end of the previous grace period.
2019 */
2020static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2021{
2022	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2023}
2024
2025static void rcu_init_one_nocb(struct rcu_node *rnp)
2026{
2027	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2028	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2029}
2030
2031#ifndef CONFIG_RCU_NOCB_CPU_ALL
2032/* Is the specified CPU a no-CBs CPU? */
2033bool rcu_is_nocb_cpu(int cpu)
2034{
2035	if (have_rcu_nocb_mask)
2036		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2037	return false;
2038}
2039#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2040
2041/*
2042 * Kick the leader kthread for this NOCB group.
2043 */
2044static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2045{
2046	struct rcu_data *rdp_leader = rdp->nocb_leader;
2047
2048	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2049		return;
2050	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2051		/* Prior xchg orders against prior callback enqueue. */
2052		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2053		wake_up(&rdp_leader->nocb_wq);
2054	}
2055}
2056
2057/*
2058 * Enqueue the specified string of rcu_head structures onto the specified
2059 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2060 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2061 * counts are supplied by rhcount and rhcount_lazy.
2062 *
2063 * If warranted, also wake up the kthread servicing this CPUs queues.
2064 */
2065static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2066				    struct rcu_head *rhp,
2067				    struct rcu_head **rhtp,
2068				    int rhcount, int rhcount_lazy,
2069				    unsigned long flags)
2070{
2071	int len;
2072	struct rcu_head **old_rhpp;
2073	struct task_struct *t;
2074
2075	/* Enqueue the callback on the nocb list and update counts. */
2076	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2077	ACCESS_ONCE(*old_rhpp) = rhp;
2078	atomic_long_add(rhcount, &rdp->nocb_q_count);
2079	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2080
2081	/* If we are not being polled and there is a kthread, awaken it ... */
2082	t = ACCESS_ONCE(rdp->nocb_kthread);
2083	if (rcu_nocb_poll || !t) {
2084		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2085				    TPS("WakeNotPoll"));
2086		return;
2087	}
2088	len = atomic_long_read(&rdp->nocb_q_count);
2089	if (old_rhpp == &rdp->nocb_head) {
2090		if (!irqs_disabled_flags(flags)) {
2091			/* ... if queue was empty ... */
2092			wake_nocb_leader(rdp, false);
2093			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2094					    TPS("WakeEmpty"));
2095		} else {
2096			rdp->nocb_defer_wakeup = true;
2097			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2098					    TPS("WakeEmptyIsDeferred"));
2099		}
2100		rdp->qlen_last_fqs_check = 0;
2101	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2102		/* ... or if many callbacks queued. */
2103		wake_nocb_leader(rdp, true);
2104		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2105		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2106	} else {
2107		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2108	}
2109	return;
2110}
2111
2112/*
2113 * This is a helper for __call_rcu(), which invokes this when the normal
2114 * callback queue is inoperable.  If this is not a no-CBs CPU, this
2115 * function returns failure back to __call_rcu(), which can complain
2116 * appropriately.
2117 *
2118 * Otherwise, this function queues the callback where the corresponding
2119 * "rcuo" kthread can find it.
2120 */
2121static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2122			    bool lazy, unsigned long flags)
2123{
2124
2125	if (!rcu_is_nocb_cpu(rdp->cpu))
2126		return false;
2127	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2128	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2129		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2130					 (unsigned long)rhp->func,
2131					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2132					 -atomic_long_read(&rdp->nocb_q_count));
2133	else
2134		trace_rcu_callback(rdp->rsp->name, rhp,
2135				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2136				   -atomic_long_read(&rdp->nocb_q_count));
2137	return true;
2138}
2139
2140/*
2141 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2142 * not a no-CBs CPU.
2143 */
2144static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2145						     struct rcu_data *rdp,
2146						     unsigned long flags)
2147{
2148	long ql = rsp->qlen;
2149	long qll = rsp->qlen_lazy;
2150
2151	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2152	if (!rcu_is_nocb_cpu(smp_processor_id()))
2153		return false;
2154	rsp->qlen = 0;
2155	rsp->qlen_lazy = 0;
2156
2157	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2158	if (rsp->orphan_donelist != NULL) {
2159		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2160					rsp->orphan_donetail, ql, qll, flags);
2161		ql = qll = 0;
2162		rsp->orphan_donelist = NULL;
2163		rsp->orphan_donetail = &rsp->orphan_donelist;
2164	}
2165	if (rsp->orphan_nxtlist != NULL) {
2166		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2167					rsp->orphan_nxttail, ql, qll, flags);
2168		ql = qll = 0;
2169		rsp->orphan_nxtlist = NULL;
2170		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2171	}
2172	return true;
2173}
2174
2175/*
2176 * If necessary, kick off a new grace period, and either way wait
2177 * for a subsequent grace period to complete.
2178 */
2179static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2180{
2181	unsigned long c;
2182	bool d;
2183	unsigned long flags;
2184	bool needwake;
2185	struct rcu_node *rnp = rdp->mynode;
2186
2187	raw_spin_lock_irqsave(&rnp->lock, flags);
2188	smp_mb__after_unlock_lock();
2189	needwake = rcu_start_future_gp(rnp, rdp, &c);
2190	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2191	if (needwake)
2192		rcu_gp_kthread_wake(rdp->rsp);
2193
2194	/*
2195	 * Wait for the grace period.  Do so interruptibly to avoid messing
2196	 * up the load average.
2197	 */
2198	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2199	for (;;) {
2200		wait_event_interruptible(
2201			rnp->nocb_gp_wq[c & 0x1],
2202			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2203		if (likely(d))
2204			break;
2205		flush_signals(current);
2206		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2207	}
2208	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2209	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2210}
2211
2212/*
2213 * Leaders come here to wait for additional callbacks to show up.
2214 * This function does not return until callbacks appear.
2215 */
2216static void nocb_leader_wait(struct rcu_data *my_rdp)
2217{
2218	bool firsttime = true;
2219	bool gotcbs;
2220	struct rcu_data *rdp;
2221	struct rcu_head **tail;
2222
2223wait_again:
2224
2225	/* Wait for callbacks to appear. */
2226	if (!rcu_nocb_poll) {
2227		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2228		wait_event_interruptible(my_rdp->nocb_wq,
2229				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2230		/* Memory barrier handled by smp_mb() calls below and repoll. */
2231	} else if (firsttime) {
2232		firsttime = false; /* Don't drown trace log with "Poll"! */
2233		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2234	}
2235
2236	/*
2237	 * Each pass through the following loop checks a follower for CBs.
2238	 * We are our own first follower.  Any CBs found are moved to
2239	 * nocb_gp_head, where they await a grace period.
2240	 */
2241	gotcbs = false;
2242	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2243		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2244		if (!rdp->nocb_gp_head)
2245			continue;  /* No CBs here, try next follower. */
2246
2247		/* Move callbacks to wait-for-GP list, which is empty. */
2248		ACCESS_ONCE(rdp->nocb_head) = NULL;
2249		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2250		rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2251		rdp->nocb_gp_count_lazy =
2252			atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2253		gotcbs = true;
2254	}
2255
2256	/*
2257	 * If there were no callbacks, sleep a bit, rescan after a
2258	 * memory barrier, and go retry.
2259	 */
2260	if (unlikely(!gotcbs)) {
2261		if (!rcu_nocb_poll)
2262			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2263					    "WokeEmpty");
2264		flush_signals(current);
2265		schedule_timeout_interruptible(1);
2266
2267		/* Rescan in case we were a victim of memory ordering. */
2268		my_rdp->nocb_leader_sleep = true;
2269		smp_mb();  /* Ensure _sleep true before scan. */
2270		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2271			if (ACCESS_ONCE(rdp->nocb_head)) {
2272				/* Found CB, so short-circuit next wait. */
2273				my_rdp->nocb_leader_sleep = false;
2274				break;
2275			}
2276		goto wait_again;
2277	}
2278
2279	/* Wait for one grace period. */
2280	rcu_nocb_wait_gp(my_rdp);
2281
2282	/*
2283	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2284	 * We set it now, but recheck for new callbacks while
2285	 * traversing our follower list.
2286	 */
2287	my_rdp->nocb_leader_sleep = true;
2288	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2289
2290	/* Each pass through the following loop wakes a follower, if needed. */
2291	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2292		if (ACCESS_ONCE(rdp->nocb_head))
2293			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2294		if (!rdp->nocb_gp_head)
2295			continue; /* No CBs, so no need to wake follower. */
2296
2297		/* Append callbacks to follower's "done" list. */
2298		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2299		*tail = rdp->nocb_gp_head;
2300		atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2301		atomic_long_add(rdp->nocb_gp_count_lazy,
2302				&rdp->nocb_follower_count_lazy);
2303		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2304			/*
2305			 * List was empty, wake up the follower.
2306			 * Memory barriers supplied by atomic_long_add().
2307			 */
2308			wake_up(&rdp->nocb_wq);
2309		}
2310	}
2311
2312	/* If we (the leader) don't have CBs, go wait some more. */
2313	if (!my_rdp->nocb_follower_head)
2314		goto wait_again;
2315}
2316
2317/*
2318 * Followers come here to wait for additional callbacks to show up.
2319 * This function does not return until callbacks appear.
2320 */
2321static void nocb_follower_wait(struct rcu_data *rdp)
2322{
2323	bool firsttime = true;
2324
2325	for (;;) {
2326		if (!rcu_nocb_poll) {
2327			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2328					    "FollowerSleep");
2329			wait_event_interruptible(rdp->nocb_wq,
2330						 ACCESS_ONCE(rdp->nocb_follower_head));
2331		} else if (firsttime) {
2332			/* Don't drown trace log with "Poll"! */
2333			firsttime = false;
2334			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2335		}
2336		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2337			/* ^^^ Ensure CB invocation follows _head test. */
2338			return;
2339		}
2340		if (!rcu_nocb_poll)
2341			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2342					    "WokeEmpty");
2343		flush_signals(current);
2344		schedule_timeout_interruptible(1);
2345	}
2346}
2347
2348/*
2349 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2350 * callbacks queued by the corresponding no-CBs CPU, however, there is
2351 * an optional leader-follower relationship so that the grace-period
2352 * kthreads don't have to do quite so many wakeups.
2353 */
2354static int rcu_nocb_kthread(void *arg)
2355{
2356	int c, cl;
2357	struct rcu_head *list;
2358	struct rcu_head *next;
2359	struct rcu_head **tail;
2360	struct rcu_data *rdp = arg;
2361
2362	/* Each pass through this loop invokes one batch of callbacks */
2363	for (;;) {
2364		/* Wait for callbacks. */
2365		if (rdp->nocb_leader == rdp)
2366			nocb_leader_wait(rdp);
2367		else
2368			nocb_follower_wait(rdp);
2369
2370		/* Pull the ready-to-invoke callbacks onto local list. */
2371		list = ACCESS_ONCE(rdp->nocb_follower_head);
2372		BUG_ON(!list);
2373		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2374		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2375		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2376		c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2377		cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2378		rdp->nocb_p_count += c;
2379		rdp->nocb_p_count_lazy += cl;
2380
2381		/* Each pass through the following loop invokes a callback. */
2382		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2383		c = cl = 0;
2384		while (list) {
2385			next = list->next;
2386			/* Wait for enqueuing to complete, if needed. */
2387			while (next == NULL && &list->next != tail) {
2388				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2389						    TPS("WaitQueue"));
2390				schedule_timeout_interruptible(1);
2391				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2392						    TPS("WokeQueue"));
2393				next = list->next;
2394			}
2395			debug_rcu_head_unqueue(list);
2396			local_bh_disable();
2397			if (__rcu_reclaim(rdp->rsp->name, list))
2398				cl++;
2399			c++;
2400			local_bh_enable();
2401			list = next;
2402		}
2403		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2404		ACCESS_ONCE(rdp->nocb_p_count) -= c;
2405		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2406		rdp->n_nocbs_invoked += c;
2407	}
2408	return 0;
2409}
2410
2411/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2412static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2413{
2414	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2415}
2416
2417/* Do a deferred wakeup of rcu_nocb_kthread(). */
2418static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2419{
2420	if (!rcu_nocb_need_deferred_wakeup(rdp))
2421		return;
2422	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2423	wake_nocb_leader(rdp, false);
2424	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2425}
2426
2427void __init rcu_init_nohz(void)
2428{
2429	int cpu;
2430	bool need_rcu_nocb_mask = true;
2431	struct rcu_state *rsp;
2432
2433#ifdef CONFIG_RCU_NOCB_CPU_NONE
2434	need_rcu_nocb_mask = false;
2435#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2436
2437#if defined(CONFIG_NO_HZ_FULL)
2438	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2439		need_rcu_nocb_mask = true;
2440#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2441
2442	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2443		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2444			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2445			return;
2446		}
2447		have_rcu_nocb_mask = true;
2448	}
2449	if (!have_rcu_nocb_mask)
2450		return;
2451
2452#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2453	pr_info("\tOffload RCU callbacks from CPU 0\n");
2454	cpumask_set_cpu(0, rcu_nocb_mask);
2455#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2456#ifdef CONFIG_RCU_NOCB_CPU_ALL
2457	pr_info("\tOffload RCU callbacks from all CPUs\n");
2458	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2459#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2460#if defined(CONFIG_NO_HZ_FULL)
2461	if (tick_nohz_full_running)
2462		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2463#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2464
2465	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2466		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2467		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2468			    rcu_nocb_mask);
2469	}
2470	cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2471	pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2472	if (rcu_nocb_poll)
2473		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2474
2475	for_each_rcu_flavor(rsp) {
2476		for_each_cpu(cpu, rcu_nocb_mask) {
2477			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2478
2479			/*
2480			 * If there are early callbacks, they will need
2481			 * to be moved to the nocb lists.
2482			 */
2483			WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2484				     &rdp->nxtlist &&
2485				     rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2486			init_nocb_callback_list(rdp);
2487		}
2488	}
2489}
2490
2491/* Initialize per-rcu_data variables for no-CBs CPUs. */
2492static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2493{
2494	rdp->nocb_tail = &rdp->nocb_head;
2495	init_waitqueue_head(&rdp->nocb_wq);
2496	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2497}
2498
2499/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2500static int rcu_nocb_leader_stride = -1;
2501module_param(rcu_nocb_leader_stride, int, 0444);
2502
2503/*
2504 * Create a kthread for each RCU flavor for each no-CBs CPU.
2505 * Also initialize leader-follower relationships.
2506 */
2507static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2508{
2509	int cpu;
2510	int ls = rcu_nocb_leader_stride;
2511	int nl = 0;  /* Next leader. */
2512	struct rcu_data *rdp;
2513	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2514	struct rcu_data *rdp_prev = NULL;
2515	struct task_struct *t;
2516
2517	if (rcu_nocb_mask == NULL)
2518		return;
2519	if (ls == -1) {
2520		ls = int_sqrt(nr_cpu_ids);
2521		rcu_nocb_leader_stride = ls;
2522	}
2523
2524	/*
2525	 * Each pass through this loop sets up one rcu_data structure and
2526	 * spawns one rcu_nocb_kthread().
2527	 */
2528	for_each_cpu(cpu, rcu_nocb_mask) {
2529		rdp = per_cpu_ptr(rsp->rda, cpu);
2530		if (rdp->cpu >= nl) {
2531			/* New leader, set up for followers & next leader. */
2532			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2533			rdp->nocb_leader = rdp;
2534			rdp_leader = rdp;
2535		} else {
2536			/* Another follower, link to previous leader. */
2537			rdp->nocb_leader = rdp_leader;
2538			rdp_prev->nocb_next_follower = rdp;
2539		}
2540		rdp_prev = rdp;
2541
2542		/* Spawn the kthread for this CPU. */
2543		t = kthread_run(rcu_nocb_kthread, rdp,
2544				"rcuo%c/%d", rsp->abbr, cpu);
2545		BUG_ON(IS_ERR(t));
2546		ACCESS_ONCE(rdp->nocb_kthread) = t;
2547	}
2548}
2549
2550/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2551static bool init_nocb_callback_list(struct rcu_data *rdp)
2552{
2553	if (rcu_nocb_mask == NULL ||
2554	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2555		return false;
2556	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2557	return true;
2558}
2559
2560#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2561
2562static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2563{
2564}
2565
2566static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2567{
2568}
2569
2570static void rcu_init_one_nocb(struct rcu_node *rnp)
2571{
2572}
2573
2574static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2575			    bool lazy, unsigned long flags)
2576{
2577	return false;
2578}
2579
2580static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2581						     struct rcu_data *rdp,
2582						     unsigned long flags)
2583{
2584	return 0;
2585}
2586
2587static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2588{
2589}
2590
2591static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2592{
2593	return false;
2594}
2595
2596static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2597{
2598}
2599
2600static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2601{
2602}
2603
2604static bool init_nocb_callback_list(struct rcu_data *rdp)
2605{
2606	return false;
2607}
2608
2609#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2610
2611/*
2612 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2613 * arbitrarily long period of time with the scheduling-clock tick turned
2614 * off.  RCU will be paying attention to this CPU because it is in the
2615 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2616 * machine because the scheduling-clock tick has been disabled.  Therefore,
2617 * if an adaptive-ticks CPU is failing to respond to the current grace
2618 * period and has not be idle from an RCU perspective, kick it.
2619 */
2620static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2621{
2622#ifdef CONFIG_NO_HZ_FULL
2623	if (tick_nohz_full_cpu(cpu))
2624		smp_send_reschedule(cpu);
2625#endif /* #ifdef CONFIG_NO_HZ_FULL */
2626}
2627
2628
2629#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2630
2631/*
2632 * Define RCU flavor that holds sysidle state.  This needs to be the
2633 * most active flavor of RCU.
2634 */
2635#ifdef CONFIG_PREEMPT_RCU
2636static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2637#else /* #ifdef CONFIG_PREEMPT_RCU */
2638static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2639#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2640
2641static int full_sysidle_state;		/* Current system-idle state. */
2642#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2643#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2644#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2645#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2646#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2647
2648/*
2649 * Invoked to note exit from irq or task transition to idle.  Note that
2650 * usermode execution does -not- count as idle here!  After all, we want
2651 * to detect full-system idle states, not RCU quiescent states and grace
2652 * periods.  The caller must have disabled interrupts.
2653 */
2654static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2655{
2656	unsigned long j;
2657
2658	/* Adjust nesting, check for fully idle. */
2659	if (irq) {
2660		rdtp->dynticks_idle_nesting--;
2661		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2662		if (rdtp->dynticks_idle_nesting != 0)
2663			return;  /* Still not fully idle. */
2664	} else {
2665		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2666		    DYNTICK_TASK_NEST_VALUE) {
2667			rdtp->dynticks_idle_nesting = 0;
2668		} else {
2669			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2670			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2671			return;  /* Still not fully idle. */
2672		}
2673	}
2674
2675	/* Record start of fully idle period. */
2676	j = jiffies;
2677	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2678	smp_mb__before_atomic();
2679	atomic_inc(&rdtp->dynticks_idle);
2680	smp_mb__after_atomic();
2681	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2682}
2683
2684/*
2685 * Unconditionally force exit from full system-idle state.  This is
2686 * invoked when a normal CPU exits idle, but must be called separately
2687 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2688 * is that the timekeeping CPU is permitted to take scheduling-clock
2689 * interrupts while the system is in system-idle state, and of course
2690 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2691 * interrupt from any other type of interrupt.
2692 */
2693void rcu_sysidle_force_exit(void)
2694{
2695	int oldstate = ACCESS_ONCE(full_sysidle_state);
2696	int newoldstate;
2697
2698	/*
2699	 * Each pass through the following loop attempts to exit full
2700	 * system-idle state.  If contention proves to be a problem,
2701	 * a trylock-based contention tree could be used here.
2702	 */
2703	while (oldstate > RCU_SYSIDLE_SHORT) {
2704		newoldstate = cmpxchg(&full_sysidle_state,
2705				      oldstate, RCU_SYSIDLE_NOT);
2706		if (oldstate == newoldstate &&
2707		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2708			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2709			return; /* We cleared it, done! */
2710		}
2711		oldstate = newoldstate;
2712	}
2713	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2714}
2715
2716/*
2717 * Invoked to note entry to irq or task transition from idle.  Note that
2718 * usermode execution does -not- count as idle here!  The caller must
2719 * have disabled interrupts.
2720 */
2721static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2722{
2723	/* Adjust nesting, check for already non-idle. */
2724	if (irq) {
2725		rdtp->dynticks_idle_nesting++;
2726		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2727		if (rdtp->dynticks_idle_nesting != 1)
2728			return; /* Already non-idle. */
2729	} else {
2730		/*
2731		 * Allow for irq misnesting.  Yes, it really is possible
2732		 * to enter an irq handler then never leave it, and maybe
2733		 * also vice versa.  Handle both possibilities.
2734		 */
2735		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2736			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2737			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2738			return; /* Already non-idle. */
2739		} else {
2740			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2741		}
2742	}
2743
2744	/* Record end of idle period. */
2745	smp_mb__before_atomic();
2746	atomic_inc(&rdtp->dynticks_idle);
2747	smp_mb__after_atomic();
2748	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2749
2750	/*
2751	 * If we are the timekeeping CPU, we are permitted to be non-idle
2752	 * during a system-idle state.  This must be the case, because
2753	 * the timekeeping CPU has to take scheduling-clock interrupts
2754	 * during the time that the system is transitioning to full
2755	 * system-idle state.  This means that the timekeeping CPU must
2756	 * invoke rcu_sysidle_force_exit() directly if it does anything
2757	 * more than take a scheduling-clock interrupt.
2758	 */
2759	if (smp_processor_id() == tick_do_timer_cpu)
2760		return;
2761
2762	/* Update system-idle state: We are clearly no longer fully idle! */
2763	rcu_sysidle_force_exit();
2764}
2765
2766/*
2767 * Check to see if the current CPU is idle.  Note that usermode execution
2768 * does not count as idle.  The caller must have disabled interrupts.
2769 */
2770static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2771				  unsigned long *maxj)
2772{
2773	int cur;
2774	unsigned long j;
2775	struct rcu_dynticks *rdtp = rdp->dynticks;
2776
2777	/*
2778	 * If some other CPU has already reported non-idle, if this is
2779	 * not the flavor of RCU that tracks sysidle state, or if this
2780	 * is an offline or the timekeeping CPU, nothing to do.
2781	 */
2782	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2783	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2784		return;
2785	if (rcu_gp_in_progress(rdp->rsp))
2786		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2787
2788	/* Pick up current idle and NMI-nesting counter and check. */
2789	cur = atomic_read(&rdtp->dynticks_idle);
2790	if (cur & 0x1) {
2791		*isidle = false; /* We are not idle! */
2792		return;
2793	}
2794	smp_mb(); /* Read counters before timestamps. */
2795
2796	/* Pick up timestamps. */
2797	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2798	/* If this CPU entered idle more recently, update maxj timestamp. */
2799	if (ULONG_CMP_LT(*maxj, j))
2800		*maxj = j;
2801}
2802
2803/*
2804 * Is this the flavor of RCU that is handling full-system idle?
2805 */
2806static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2807{
2808	return rsp == rcu_sysidle_state;
2809}
2810
2811/*
2812 * Return a delay in jiffies based on the number of CPUs, rcu_node
2813 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2814 * systems more time to transition to full-idle state in order to
2815 * avoid the cache thrashing that otherwise occur on the state variable.
2816 * Really small systems (less than a couple of tens of CPUs) should
2817 * instead use a single global atomically incremented counter, and later
2818 * versions of this will automatically reconfigure themselves accordingly.
2819 */
2820static unsigned long rcu_sysidle_delay(void)
2821{
2822	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2823		return 0;
2824	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2825}
2826
2827/*
2828 * Advance the full-system-idle state.  This is invoked when all of
2829 * the non-timekeeping CPUs are idle.
2830 */
2831static void rcu_sysidle(unsigned long j)
2832{
2833	/* Check the current state. */
2834	switch (ACCESS_ONCE(full_sysidle_state)) {
2835	case RCU_SYSIDLE_NOT:
2836
2837		/* First time all are idle, so note a short idle period. */
2838		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2839		break;
2840
2841	case RCU_SYSIDLE_SHORT:
2842
2843		/*
2844		 * Idle for a bit, time to advance to next state?
2845		 * cmpxchg failure means race with non-idle, let them win.
2846		 */
2847		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2848			(void)cmpxchg(&full_sysidle_state,
2849				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2850		break;
2851
2852	case RCU_SYSIDLE_LONG:
2853
2854		/*
2855		 * Do an additional check pass before advancing to full.
2856		 * cmpxchg failure means race with non-idle, let them win.
2857		 */
2858		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2859			(void)cmpxchg(&full_sysidle_state,
2860				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2861		break;
2862
2863	default:
2864		break;
2865	}
2866}
2867
2868/*
2869 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2870 * back to the beginning.
2871 */
2872static void rcu_sysidle_cancel(void)
2873{
2874	smp_mb();
2875	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2876		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2877}
2878
2879/*
2880 * Update the sysidle state based on the results of a force-quiescent-state
2881 * scan of the CPUs' dyntick-idle state.
2882 */
2883static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2884			       unsigned long maxj, bool gpkt)
2885{
2886	if (rsp != rcu_sysidle_state)
2887		return;  /* Wrong flavor, ignore. */
2888	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2889		return;  /* Running state machine from timekeeping CPU. */
2890	if (isidle)
2891		rcu_sysidle(maxj);    /* More idle! */
2892	else
2893		rcu_sysidle_cancel(); /* Idle is over. */
2894}
2895
2896/*
2897 * Wrapper for rcu_sysidle_report() when called from the grace-period
2898 * kthread's context.
2899 */
2900static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2901				  unsigned long maxj)
2902{
2903	rcu_sysidle_report(rsp, isidle, maxj, true);
2904}
2905
2906/* Callback and function for forcing an RCU grace period. */
2907struct rcu_sysidle_head {
2908	struct rcu_head rh;
2909	int inuse;
2910};
2911
2912static void rcu_sysidle_cb(struct rcu_head *rhp)
2913{
2914	struct rcu_sysidle_head *rshp;
2915
2916	/*
2917	 * The following memory barrier is needed to replace the
2918	 * memory barriers that would normally be in the memory
2919	 * allocator.
2920	 */
2921	smp_mb();  /* grace period precedes setting inuse. */
2922
2923	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2924	ACCESS_ONCE(rshp->inuse) = 0;
2925}
2926
2927/*
2928 * Check to see if the system is fully idle, other than the timekeeping CPU.
2929 * The caller must have disabled interrupts.
2930 */
2931bool rcu_sys_is_idle(void)
2932{
2933	static struct rcu_sysidle_head rsh;
2934	int rss = ACCESS_ONCE(full_sysidle_state);
2935
2936	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2937		return false;
2938
2939	/* Handle small-system case by doing a full scan of CPUs. */
2940	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2941		int oldrss = rss - 1;
2942
2943		/*
2944		 * One pass to advance to each state up to _FULL.
2945		 * Give up if any pass fails to advance the state.
2946		 */
2947		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2948			int cpu;
2949			bool isidle = true;
2950			unsigned long maxj = jiffies - ULONG_MAX / 4;
2951			struct rcu_data *rdp;
2952
2953			/* Scan all the CPUs looking for nonidle CPUs. */
2954			for_each_possible_cpu(cpu) {
2955				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2956				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2957				if (!isidle)
2958					break;
2959			}
2960			rcu_sysidle_report(rcu_sysidle_state,
2961					   isidle, maxj, false);
2962			oldrss = rss;
2963			rss = ACCESS_ONCE(full_sysidle_state);
2964		}
2965	}
2966
2967	/* If this is the first observation of an idle period, record it. */
2968	if (rss == RCU_SYSIDLE_FULL) {
2969		rss = cmpxchg(&full_sysidle_state,
2970			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2971		return rss == RCU_SYSIDLE_FULL;
2972	}
2973
2974	smp_mb(); /* ensure rss load happens before later caller actions. */
2975
2976	/* If already fully idle, tell the caller (in case of races). */
2977	if (rss == RCU_SYSIDLE_FULL_NOTED)
2978		return true;
2979
2980	/*
2981	 * If we aren't there yet, and a grace period is not in flight,
2982	 * initiate a grace period.  Either way, tell the caller that
2983	 * we are not there yet.  We use an xchg() rather than an assignment
2984	 * to make up for the memory barriers that would otherwise be
2985	 * provided by the memory allocator.
2986	 */
2987	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2988	    !rcu_gp_in_progress(rcu_sysidle_state) &&
2989	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2990		call_rcu(&rsh.rh, rcu_sysidle_cb);
2991	return false;
2992}
2993
2994/*
2995 * Initialize dynticks sysidle state for CPUs coming online.
2996 */
2997static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2998{
2999	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3000}
3001
3002#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3003
3004static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
3005{
3006}
3007
3008static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
3009{
3010}
3011
3012static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3013				  unsigned long *maxj)
3014{
3015}
3016
3017static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3018{
3019	return false;
3020}
3021
3022static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3023				  unsigned long maxj)
3024{
3025}
3026
3027static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3028{
3029}
3030
3031#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3032
3033/*
3034 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3035 * grace-period kthread will do force_quiescent_state() processing?
3036 * The idea is to avoid waking up RCU core processing on such a
3037 * CPU unless the grace period has extended for too long.
3038 *
3039 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3040 * CONFIG_RCU_NOCB_CPU CPUs.
3041 */
3042static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3043{
3044#ifdef CONFIG_NO_HZ_FULL
3045	if (tick_nohz_full_cpu(smp_processor_id()) &&
3046	    (!rcu_gp_in_progress(rsp) ||
3047	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3048		return 1;
3049#endif /* #ifdef CONFIG_NO_HZ_FULL */
3050	return 0;
3051}
3052
3053/*
3054 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3055 * timekeeping CPU.
3056 */
3057static void rcu_bind_gp_kthread(void)
3058{
3059	int __maybe_unused cpu;
3060
3061	if (!tick_nohz_full_enabled())
3062		return;
3063#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3064	cpu = tick_do_timer_cpu;
3065	if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3066		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3067#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3068	if (!is_housekeeping_cpu(raw_smp_processor_id()))
3069		housekeeping_affine(current);
3070#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3071}
3072