tree_plugin.h revision 6303b9c87d52eaedc82968d3ff59c471e7682afc
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27#include <linux/delay.h>
28#include <linux/gfp.h>
29#include <linux/oom.h>
30#include <linux/smpboot.h>
31#include "../time/tick-internal.h"
32
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
36#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37#else
38#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39#endif
40
41#ifdef CONFIG_RCU_NOCB_CPU
42static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
44static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
45static char __initdata nocb_buf[NR_CPUS * 5];
46#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47
48/*
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary.  If you like #ifdef, you
51 * will love this function.
52 */
53static void __init rcu_bootup_announce_oddness(void)
54{
55#ifdef CONFIG_RCU_TRACE
56	pr_info("\tRCU debugfs-based tracing is enabled.\n");
57#endif
58#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60	       CONFIG_RCU_FANOUT);
61#endif
62#ifdef CONFIG_RCU_FANOUT_EXACT
63	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64#endif
65#ifdef CONFIG_RCU_FAST_NO_HZ
66	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67#endif
68#ifdef CONFIG_PROVE_RCU
69	pr_info("\tRCU lockdep checking is enabled.\n");
70#endif
71#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72	pr_info("\tRCU torture testing starts during boot.\n");
73#endif
74#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76#endif
77#if defined(CONFIG_RCU_CPU_STALL_INFO)
78	pr_info("\tAdditional per-CPU info printed with stalls.\n");
79#endif
80#if NUM_RCU_LVL_4 != 0
81	pr_info("\tFour-level hierarchy is enabled.\n");
82#endif
83	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85	if (nr_cpu_ids != NR_CPUS)
86		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
87#ifdef CONFIG_RCU_NOCB_CPU
88#ifndef CONFIG_RCU_NOCB_CPU_NONE
89	if (!have_rcu_nocb_mask) {
90		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91		have_rcu_nocb_mask = true;
92	}
93#ifdef CONFIG_RCU_NOCB_CPU_ZERO
94	pr_info("\tOffload RCU callbacks from CPU 0\n");
95	cpumask_set_cpu(0, rcu_nocb_mask);
96#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97#ifdef CONFIG_RCU_NOCB_CPU_ALL
98	pr_info("\tOffload RCU callbacks from all CPUs\n");
99	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
102	if (have_rcu_nocb_mask) {
103		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106				    rcu_nocb_mask);
107		}
108		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
110		if (rcu_nocb_poll)
111			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
112	}
113#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114}
115
116#ifdef CONFIG_TREE_PREEMPT_RCU
117
118RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119static struct rcu_state *rcu_state = &rcu_preempt_state;
120
121static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122
123/*
124 * Tell them what RCU they are running.
125 */
126static void __init rcu_bootup_announce(void)
127{
128	pr_info("Preemptible hierarchical RCU implementation.\n");
129	rcu_bootup_announce_oddness();
130}
131
132/*
133 * Return the number of RCU-preempt batches processed thus far
134 * for debug and statistics.
135 */
136long rcu_batches_completed_preempt(void)
137{
138	return rcu_preempt_state.completed;
139}
140EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141
142/*
143 * Return the number of RCU batches processed thus far for debug & stats.
144 */
145long rcu_batches_completed(void)
146{
147	return rcu_batches_completed_preempt();
148}
149EXPORT_SYMBOL_GPL(rcu_batches_completed);
150
151/*
152 * Force a quiescent state for preemptible RCU.
153 */
154void rcu_force_quiescent_state(void)
155{
156	force_quiescent_state(&rcu_preempt_state);
157}
158EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
159
160/*
161 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
162 * that this just means that the task currently running on the CPU is
163 * not in a quiescent state.  There might be any number of tasks blocked
164 * while in an RCU read-side critical section.
165 *
166 * Unlike the other rcu_*_qs() functions, callers to this function
167 * must disable irqs in order to protect the assignment to
168 * ->rcu_read_unlock_special.
169 */
170static void rcu_preempt_qs(int cpu)
171{
172	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
173
174	if (rdp->passed_quiesce == 0)
175		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
176	rdp->passed_quiesce = 1;
177	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
178}
179
180/*
181 * We have entered the scheduler, and the current task might soon be
182 * context-switched away from.  If this task is in an RCU read-side
183 * critical section, we will no longer be able to rely on the CPU to
184 * record that fact, so we enqueue the task on the blkd_tasks list.
185 * The task will dequeue itself when it exits the outermost enclosing
186 * RCU read-side critical section.  Therefore, the current grace period
187 * cannot be permitted to complete until the blkd_tasks list entries
188 * predating the current grace period drain, in other words, until
189 * rnp->gp_tasks becomes NULL.
190 *
191 * Caller must disable preemption.
192 */
193static void rcu_preempt_note_context_switch(int cpu)
194{
195	struct task_struct *t = current;
196	unsigned long flags;
197	struct rcu_data *rdp;
198	struct rcu_node *rnp;
199
200	if (t->rcu_read_lock_nesting > 0 &&
201	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
202
203		/* Possibly blocking in an RCU read-side critical section. */
204		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
205		rnp = rdp->mynode;
206		raw_spin_lock_irqsave(&rnp->lock, flags);
207		smp_mb__after_unlock_lock();
208		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
209		t->rcu_blocked_node = rnp;
210
211		/*
212		 * If this CPU has already checked in, then this task
213		 * will hold up the next grace period rather than the
214		 * current grace period.  Queue the task accordingly.
215		 * If the task is queued for the current grace period
216		 * (i.e., this CPU has not yet passed through a quiescent
217		 * state for the current grace period), then as long
218		 * as that task remains queued, the current grace period
219		 * cannot end.  Note that there is some uncertainty as
220		 * to exactly when the current grace period started.
221		 * We take a conservative approach, which can result
222		 * in unnecessarily waiting on tasks that started very
223		 * slightly after the current grace period began.  C'est
224		 * la vie!!!
225		 *
226		 * But first, note that the current CPU must still be
227		 * on line!
228		 */
229		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
230		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
231		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
232			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
233			rnp->gp_tasks = &t->rcu_node_entry;
234#ifdef CONFIG_RCU_BOOST
235			if (rnp->boost_tasks != NULL)
236				rnp->boost_tasks = rnp->gp_tasks;
237#endif /* #ifdef CONFIG_RCU_BOOST */
238		} else {
239			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
240			if (rnp->qsmask & rdp->grpmask)
241				rnp->gp_tasks = &t->rcu_node_entry;
242		}
243		trace_rcu_preempt_task(rdp->rsp->name,
244				       t->pid,
245				       (rnp->qsmask & rdp->grpmask)
246				       ? rnp->gpnum
247				       : rnp->gpnum + 1);
248		raw_spin_unlock_irqrestore(&rnp->lock, flags);
249	} else if (t->rcu_read_lock_nesting < 0 &&
250		   t->rcu_read_unlock_special) {
251
252		/*
253		 * Complete exit from RCU read-side critical section on
254		 * behalf of preempted instance of __rcu_read_unlock().
255		 */
256		rcu_read_unlock_special(t);
257	}
258
259	/*
260	 * Either we were not in an RCU read-side critical section to
261	 * begin with, or we have now recorded that critical section
262	 * globally.  Either way, we can now note a quiescent state
263	 * for this CPU.  Again, if we were in an RCU read-side critical
264	 * section, and if that critical section was blocking the current
265	 * grace period, then the fact that the task has been enqueued
266	 * means that we continue to block the current grace period.
267	 */
268	local_irq_save(flags);
269	rcu_preempt_qs(cpu);
270	local_irq_restore(flags);
271}
272
273/*
274 * Check for preempted RCU readers blocking the current grace period
275 * for the specified rcu_node structure.  If the caller needs a reliable
276 * answer, it must hold the rcu_node's ->lock.
277 */
278static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
279{
280	return rnp->gp_tasks != NULL;
281}
282
283/*
284 * Record a quiescent state for all tasks that were previously queued
285 * on the specified rcu_node structure and that were blocking the current
286 * RCU grace period.  The caller must hold the specified rnp->lock with
287 * irqs disabled, and this lock is released upon return, but irqs remain
288 * disabled.
289 */
290static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
291	__releases(rnp->lock)
292{
293	unsigned long mask;
294	struct rcu_node *rnp_p;
295
296	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
297		raw_spin_unlock_irqrestore(&rnp->lock, flags);
298		return;  /* Still need more quiescent states! */
299	}
300
301	rnp_p = rnp->parent;
302	if (rnp_p == NULL) {
303		/*
304		 * Either there is only one rcu_node in the tree,
305		 * or tasks were kicked up to root rcu_node due to
306		 * CPUs going offline.
307		 */
308		rcu_report_qs_rsp(&rcu_preempt_state, flags);
309		return;
310	}
311
312	/* Report up the rest of the hierarchy. */
313	mask = rnp->grpmask;
314	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
315	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
316	smp_mb__after_unlock_lock();
317	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
318}
319
320/*
321 * Advance a ->blkd_tasks-list pointer to the next entry, instead
322 * returning NULL if at the end of the list.
323 */
324static struct list_head *rcu_next_node_entry(struct task_struct *t,
325					     struct rcu_node *rnp)
326{
327	struct list_head *np;
328
329	np = t->rcu_node_entry.next;
330	if (np == &rnp->blkd_tasks)
331		np = NULL;
332	return np;
333}
334
335/*
336 * Handle special cases during rcu_read_unlock(), such as needing to
337 * notify RCU core processing or task having blocked during the RCU
338 * read-side critical section.
339 */
340void rcu_read_unlock_special(struct task_struct *t)
341{
342	int empty;
343	int empty_exp;
344	int empty_exp_now;
345	unsigned long flags;
346	struct list_head *np;
347#ifdef CONFIG_RCU_BOOST
348	struct rt_mutex *rbmp = NULL;
349#endif /* #ifdef CONFIG_RCU_BOOST */
350	struct rcu_node *rnp;
351	int special;
352
353	/* NMI handlers cannot block and cannot safely manipulate state. */
354	if (in_nmi())
355		return;
356
357	local_irq_save(flags);
358
359	/*
360	 * If RCU core is waiting for this CPU to exit critical section,
361	 * let it know that we have done so.
362	 */
363	special = t->rcu_read_unlock_special;
364	if (special & RCU_READ_UNLOCK_NEED_QS) {
365		rcu_preempt_qs(smp_processor_id());
366	}
367
368	/* Hardware IRQ handlers cannot block. */
369	if (in_irq() || in_serving_softirq()) {
370		local_irq_restore(flags);
371		return;
372	}
373
374	/* Clean up if blocked during RCU read-side critical section. */
375	if (special & RCU_READ_UNLOCK_BLOCKED) {
376		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
377
378		/*
379		 * Remove this task from the list it blocked on.  The
380		 * task can migrate while we acquire the lock, but at
381		 * most one time.  So at most two passes through loop.
382		 */
383		for (;;) {
384			rnp = t->rcu_blocked_node;
385			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
386			smp_mb__after_unlock_lock();
387			if (rnp == t->rcu_blocked_node)
388				break;
389			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
390		}
391		empty = !rcu_preempt_blocked_readers_cgp(rnp);
392		empty_exp = !rcu_preempted_readers_exp(rnp);
393		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
394		np = rcu_next_node_entry(t, rnp);
395		list_del_init(&t->rcu_node_entry);
396		t->rcu_blocked_node = NULL;
397		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
398						rnp->gpnum, t->pid);
399		if (&t->rcu_node_entry == rnp->gp_tasks)
400			rnp->gp_tasks = np;
401		if (&t->rcu_node_entry == rnp->exp_tasks)
402			rnp->exp_tasks = np;
403#ifdef CONFIG_RCU_BOOST
404		if (&t->rcu_node_entry == rnp->boost_tasks)
405			rnp->boost_tasks = np;
406		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
407		if (t->rcu_boost_mutex) {
408			rbmp = t->rcu_boost_mutex;
409			t->rcu_boost_mutex = NULL;
410		}
411#endif /* #ifdef CONFIG_RCU_BOOST */
412
413		/*
414		 * If this was the last task on the current list, and if
415		 * we aren't waiting on any CPUs, report the quiescent state.
416		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
417		 * so we must take a snapshot of the expedited state.
418		 */
419		empty_exp_now = !rcu_preempted_readers_exp(rnp);
420		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
421			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
422							 rnp->gpnum,
423							 0, rnp->qsmask,
424							 rnp->level,
425							 rnp->grplo,
426							 rnp->grphi,
427							 !!rnp->gp_tasks);
428			rcu_report_unblock_qs_rnp(rnp, flags);
429		} else {
430			raw_spin_unlock_irqrestore(&rnp->lock, flags);
431		}
432
433#ifdef CONFIG_RCU_BOOST
434		/* Unboost if we were boosted. */
435		if (rbmp)
436			rt_mutex_unlock(rbmp);
437#endif /* #ifdef CONFIG_RCU_BOOST */
438
439		/*
440		 * If this was the last task on the expedited lists,
441		 * then we need to report up the rcu_node hierarchy.
442		 */
443		if (!empty_exp && empty_exp_now)
444			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
445	} else {
446		local_irq_restore(flags);
447	}
448}
449
450#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
451
452/*
453 * Dump detailed information for all tasks blocking the current RCU
454 * grace period on the specified rcu_node structure.
455 */
456static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
457{
458	unsigned long flags;
459	struct task_struct *t;
460
461	raw_spin_lock_irqsave(&rnp->lock, flags);
462	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
463		raw_spin_unlock_irqrestore(&rnp->lock, flags);
464		return;
465	}
466	t = list_entry(rnp->gp_tasks,
467		       struct task_struct, rcu_node_entry);
468	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
469		sched_show_task(t);
470	raw_spin_unlock_irqrestore(&rnp->lock, flags);
471}
472
473/*
474 * Dump detailed information for all tasks blocking the current RCU
475 * grace period.
476 */
477static void rcu_print_detail_task_stall(struct rcu_state *rsp)
478{
479	struct rcu_node *rnp = rcu_get_root(rsp);
480
481	rcu_print_detail_task_stall_rnp(rnp);
482	rcu_for_each_leaf_node(rsp, rnp)
483		rcu_print_detail_task_stall_rnp(rnp);
484}
485
486#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
487
488static void rcu_print_detail_task_stall(struct rcu_state *rsp)
489{
490}
491
492#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
493
494#ifdef CONFIG_RCU_CPU_STALL_INFO
495
496static void rcu_print_task_stall_begin(struct rcu_node *rnp)
497{
498	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
499	       rnp->level, rnp->grplo, rnp->grphi);
500}
501
502static void rcu_print_task_stall_end(void)
503{
504	pr_cont("\n");
505}
506
507#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
508
509static void rcu_print_task_stall_begin(struct rcu_node *rnp)
510{
511}
512
513static void rcu_print_task_stall_end(void)
514{
515}
516
517#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
518
519/*
520 * Scan the current list of tasks blocked within RCU read-side critical
521 * sections, printing out the tid of each.
522 */
523static int rcu_print_task_stall(struct rcu_node *rnp)
524{
525	struct task_struct *t;
526	int ndetected = 0;
527
528	if (!rcu_preempt_blocked_readers_cgp(rnp))
529		return 0;
530	rcu_print_task_stall_begin(rnp);
531	t = list_entry(rnp->gp_tasks,
532		       struct task_struct, rcu_node_entry);
533	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
534		pr_cont(" P%d", t->pid);
535		ndetected++;
536	}
537	rcu_print_task_stall_end();
538	return ndetected;
539}
540
541/*
542 * Check that the list of blocked tasks for the newly completed grace
543 * period is in fact empty.  It is a serious bug to complete a grace
544 * period that still has RCU readers blocked!  This function must be
545 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
546 * must be held by the caller.
547 *
548 * Also, if there are blocked tasks on the list, they automatically
549 * block the newly created grace period, so set up ->gp_tasks accordingly.
550 */
551static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
552{
553	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
554	if (!list_empty(&rnp->blkd_tasks))
555		rnp->gp_tasks = rnp->blkd_tasks.next;
556	WARN_ON_ONCE(rnp->qsmask);
557}
558
559#ifdef CONFIG_HOTPLUG_CPU
560
561/*
562 * Handle tasklist migration for case in which all CPUs covered by the
563 * specified rcu_node have gone offline.  Move them up to the root
564 * rcu_node.  The reason for not just moving them to the immediate
565 * parent is to remove the need for rcu_read_unlock_special() to
566 * make more than two attempts to acquire the target rcu_node's lock.
567 * Returns true if there were tasks blocking the current RCU grace
568 * period.
569 *
570 * Returns 1 if there was previously a task blocking the current grace
571 * period on the specified rcu_node structure.
572 *
573 * The caller must hold rnp->lock with irqs disabled.
574 */
575static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
576				     struct rcu_node *rnp,
577				     struct rcu_data *rdp)
578{
579	struct list_head *lp;
580	struct list_head *lp_root;
581	int retval = 0;
582	struct rcu_node *rnp_root = rcu_get_root(rsp);
583	struct task_struct *t;
584
585	if (rnp == rnp_root) {
586		WARN_ONCE(1, "Last CPU thought to be offlined?");
587		return 0;  /* Shouldn't happen: at least one CPU online. */
588	}
589
590	/* If we are on an internal node, complain bitterly. */
591	WARN_ON_ONCE(rnp != rdp->mynode);
592
593	/*
594	 * Move tasks up to root rcu_node.  Don't try to get fancy for
595	 * this corner-case operation -- just put this node's tasks
596	 * at the head of the root node's list, and update the root node's
597	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
598	 * if non-NULL.  This might result in waiting for more tasks than
599	 * absolutely necessary, but this is a good performance/complexity
600	 * tradeoff.
601	 */
602	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
603		retval |= RCU_OFL_TASKS_NORM_GP;
604	if (rcu_preempted_readers_exp(rnp))
605		retval |= RCU_OFL_TASKS_EXP_GP;
606	lp = &rnp->blkd_tasks;
607	lp_root = &rnp_root->blkd_tasks;
608	while (!list_empty(lp)) {
609		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
610		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
611		smp_mb__after_unlock_lock();
612		list_del(&t->rcu_node_entry);
613		t->rcu_blocked_node = rnp_root;
614		list_add(&t->rcu_node_entry, lp_root);
615		if (&t->rcu_node_entry == rnp->gp_tasks)
616			rnp_root->gp_tasks = rnp->gp_tasks;
617		if (&t->rcu_node_entry == rnp->exp_tasks)
618			rnp_root->exp_tasks = rnp->exp_tasks;
619#ifdef CONFIG_RCU_BOOST
620		if (&t->rcu_node_entry == rnp->boost_tasks)
621			rnp_root->boost_tasks = rnp->boost_tasks;
622#endif /* #ifdef CONFIG_RCU_BOOST */
623		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
624	}
625
626	rnp->gp_tasks = NULL;
627	rnp->exp_tasks = NULL;
628#ifdef CONFIG_RCU_BOOST
629	rnp->boost_tasks = NULL;
630	/*
631	 * In case root is being boosted and leaf was not.  Make sure
632	 * that we boost the tasks blocking the current grace period
633	 * in this case.
634	 */
635	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
636	smp_mb__after_unlock_lock();
637	if (rnp_root->boost_tasks != NULL &&
638	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
639	    rnp_root->boost_tasks != rnp_root->exp_tasks)
640		rnp_root->boost_tasks = rnp_root->gp_tasks;
641	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
642#endif /* #ifdef CONFIG_RCU_BOOST */
643
644	return retval;
645}
646
647#endif /* #ifdef CONFIG_HOTPLUG_CPU */
648
649/*
650 * Check for a quiescent state from the current CPU.  When a task blocks,
651 * the task is recorded in the corresponding CPU's rcu_node structure,
652 * which is checked elsewhere.
653 *
654 * Caller must disable hard irqs.
655 */
656static void rcu_preempt_check_callbacks(int cpu)
657{
658	struct task_struct *t = current;
659
660	if (t->rcu_read_lock_nesting == 0) {
661		rcu_preempt_qs(cpu);
662		return;
663	}
664	if (t->rcu_read_lock_nesting > 0 &&
665	    per_cpu(rcu_preempt_data, cpu).qs_pending)
666		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
667}
668
669#ifdef CONFIG_RCU_BOOST
670
671static void rcu_preempt_do_callbacks(void)
672{
673	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
674}
675
676#endif /* #ifdef CONFIG_RCU_BOOST */
677
678/*
679 * Queue a preemptible-RCU callback for invocation after a grace period.
680 */
681void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
682{
683	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
684}
685EXPORT_SYMBOL_GPL(call_rcu);
686
687/*
688 * Queue an RCU callback for lazy invocation after a grace period.
689 * This will likely be later named something like "call_rcu_lazy()",
690 * but this change will require some way of tagging the lazy RCU
691 * callbacks in the list of pending callbacks.  Until then, this
692 * function may only be called from __kfree_rcu().
693 */
694void kfree_call_rcu(struct rcu_head *head,
695		    void (*func)(struct rcu_head *rcu))
696{
697	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
698}
699EXPORT_SYMBOL_GPL(kfree_call_rcu);
700
701/**
702 * synchronize_rcu - wait until a grace period has elapsed.
703 *
704 * Control will return to the caller some time after a full grace
705 * period has elapsed, in other words after all currently executing RCU
706 * read-side critical sections have completed.  Note, however, that
707 * upon return from synchronize_rcu(), the caller might well be executing
708 * concurrently with new RCU read-side critical sections that began while
709 * synchronize_rcu() was waiting.  RCU read-side critical sections are
710 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
711 *
712 * See the description of synchronize_sched() for more detailed information
713 * on memory ordering guarantees.
714 */
715void synchronize_rcu(void)
716{
717	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
718			   !lock_is_held(&rcu_lock_map) &&
719			   !lock_is_held(&rcu_sched_lock_map),
720			   "Illegal synchronize_rcu() in RCU read-side critical section");
721	if (!rcu_scheduler_active)
722		return;
723	if (rcu_expedited)
724		synchronize_rcu_expedited();
725	else
726		wait_rcu_gp(call_rcu);
727}
728EXPORT_SYMBOL_GPL(synchronize_rcu);
729
730static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
731static unsigned long sync_rcu_preempt_exp_count;
732static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
733
734/*
735 * Return non-zero if there are any tasks in RCU read-side critical
736 * sections blocking the current preemptible-RCU expedited grace period.
737 * If there is no preemptible-RCU expedited grace period currently in
738 * progress, returns zero unconditionally.
739 */
740static int rcu_preempted_readers_exp(struct rcu_node *rnp)
741{
742	return rnp->exp_tasks != NULL;
743}
744
745/*
746 * return non-zero if there is no RCU expedited grace period in progress
747 * for the specified rcu_node structure, in other words, if all CPUs and
748 * tasks covered by the specified rcu_node structure have done their bit
749 * for the current expedited grace period.  Works only for preemptible
750 * RCU -- other RCU implementation use other means.
751 *
752 * Caller must hold sync_rcu_preempt_exp_mutex.
753 */
754static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
755{
756	return !rcu_preempted_readers_exp(rnp) &&
757	       ACCESS_ONCE(rnp->expmask) == 0;
758}
759
760/*
761 * Report the exit from RCU read-side critical section for the last task
762 * that queued itself during or before the current expedited preemptible-RCU
763 * grace period.  This event is reported either to the rcu_node structure on
764 * which the task was queued or to one of that rcu_node structure's ancestors,
765 * recursively up the tree.  (Calm down, calm down, we do the recursion
766 * iteratively!)
767 *
768 * Most callers will set the "wake" flag, but the task initiating the
769 * expedited grace period need not wake itself.
770 *
771 * Caller must hold sync_rcu_preempt_exp_mutex.
772 */
773static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
774			       bool wake)
775{
776	unsigned long flags;
777	unsigned long mask;
778
779	raw_spin_lock_irqsave(&rnp->lock, flags);
780	smp_mb__after_unlock_lock();
781	for (;;) {
782		if (!sync_rcu_preempt_exp_done(rnp)) {
783			raw_spin_unlock_irqrestore(&rnp->lock, flags);
784			break;
785		}
786		if (rnp->parent == NULL) {
787			raw_spin_unlock_irqrestore(&rnp->lock, flags);
788			if (wake)
789				wake_up(&sync_rcu_preempt_exp_wq);
790			break;
791		}
792		mask = rnp->grpmask;
793		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
794		rnp = rnp->parent;
795		raw_spin_lock(&rnp->lock); /* irqs already disabled */
796		smp_mb__after_unlock_lock();
797		rnp->expmask &= ~mask;
798	}
799}
800
801/*
802 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
803 * grace period for the specified rcu_node structure.  If there are no such
804 * tasks, report it up the rcu_node hierarchy.
805 *
806 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
807 * CPU hotplug operations.
808 */
809static void
810sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
811{
812	unsigned long flags;
813	int must_wait = 0;
814
815	raw_spin_lock_irqsave(&rnp->lock, flags);
816	smp_mb__after_unlock_lock();
817	if (list_empty(&rnp->blkd_tasks)) {
818		raw_spin_unlock_irqrestore(&rnp->lock, flags);
819	} else {
820		rnp->exp_tasks = rnp->blkd_tasks.next;
821		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
822		must_wait = 1;
823	}
824	if (!must_wait)
825		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
826}
827
828/**
829 * synchronize_rcu_expedited - Brute-force RCU grace period
830 *
831 * Wait for an RCU-preempt grace period, but expedite it.  The basic
832 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
833 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
834 * significant time on all CPUs and is unfriendly to real-time workloads,
835 * so is thus not recommended for any sort of common-case code.
836 * In fact, if you are using synchronize_rcu_expedited() in a loop,
837 * please restructure your code to batch your updates, and then Use a
838 * single synchronize_rcu() instead.
839 *
840 * Note that it is illegal to call this function while holding any lock
841 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
842 * to call this function from a CPU-hotplug notifier.  Failing to observe
843 * these restriction will result in deadlock.
844 */
845void synchronize_rcu_expedited(void)
846{
847	unsigned long flags;
848	struct rcu_node *rnp;
849	struct rcu_state *rsp = &rcu_preempt_state;
850	unsigned long snap;
851	int trycount = 0;
852
853	smp_mb(); /* Caller's modifications seen first by other CPUs. */
854	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
855	smp_mb(); /* Above access cannot bleed into critical section. */
856
857	/*
858	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
859	 * operation that finds an rcu_node structure with tasks in the
860	 * process of being boosted will know that all tasks blocking
861	 * this expedited grace period will already be in the process of
862	 * being boosted.  This simplifies the process of moving tasks
863	 * from leaf to root rcu_node structures.
864	 */
865	get_online_cpus();
866
867	/*
868	 * Acquire lock, falling back to synchronize_rcu() if too many
869	 * lock-acquisition failures.  Of course, if someone does the
870	 * expedited grace period for us, just leave.
871	 */
872	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
873		if (ULONG_CMP_LT(snap,
874		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
875			put_online_cpus();
876			goto mb_ret; /* Others did our work for us. */
877		}
878		if (trycount++ < 10) {
879			udelay(trycount * num_online_cpus());
880		} else {
881			put_online_cpus();
882			wait_rcu_gp(call_rcu);
883			return;
884		}
885	}
886	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
887		put_online_cpus();
888		goto unlock_mb_ret; /* Others did our work for us. */
889	}
890
891	/* force all RCU readers onto ->blkd_tasks lists. */
892	synchronize_sched_expedited();
893
894	/* Initialize ->expmask for all non-leaf rcu_node structures. */
895	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
896		raw_spin_lock_irqsave(&rnp->lock, flags);
897		smp_mb__after_unlock_lock();
898		rnp->expmask = rnp->qsmaskinit;
899		raw_spin_unlock_irqrestore(&rnp->lock, flags);
900	}
901
902	/* Snapshot current state of ->blkd_tasks lists. */
903	rcu_for_each_leaf_node(rsp, rnp)
904		sync_rcu_preempt_exp_init(rsp, rnp);
905	if (NUM_RCU_NODES > 1)
906		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
907
908	put_online_cpus();
909
910	/* Wait for snapshotted ->blkd_tasks lists to drain. */
911	rnp = rcu_get_root(rsp);
912	wait_event(sync_rcu_preempt_exp_wq,
913		   sync_rcu_preempt_exp_done(rnp));
914
915	/* Clean up and exit. */
916	smp_mb(); /* ensure expedited GP seen before counter increment. */
917	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
918unlock_mb_ret:
919	mutex_unlock(&sync_rcu_preempt_exp_mutex);
920mb_ret:
921	smp_mb(); /* ensure subsequent action seen after grace period. */
922}
923EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
924
925/**
926 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
927 *
928 * Note that this primitive does not necessarily wait for an RCU grace period
929 * to complete.  For example, if there are no RCU callbacks queued anywhere
930 * in the system, then rcu_barrier() is within its rights to return
931 * immediately, without waiting for anything, much less an RCU grace period.
932 */
933void rcu_barrier(void)
934{
935	_rcu_barrier(&rcu_preempt_state);
936}
937EXPORT_SYMBOL_GPL(rcu_barrier);
938
939/*
940 * Initialize preemptible RCU's state structures.
941 */
942static void __init __rcu_init_preempt(void)
943{
944	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
945}
946
947/*
948 * Check for a task exiting while in a preemptible-RCU read-side
949 * critical section, clean up if so.  No need to issue warnings,
950 * as debug_check_no_locks_held() already does this if lockdep
951 * is enabled.
952 */
953void exit_rcu(void)
954{
955	struct task_struct *t = current;
956
957	if (likely(list_empty(&current->rcu_node_entry)))
958		return;
959	t->rcu_read_lock_nesting = 1;
960	barrier();
961	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
962	__rcu_read_unlock();
963}
964
965#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
966
967static struct rcu_state *rcu_state = &rcu_sched_state;
968
969/*
970 * Tell them what RCU they are running.
971 */
972static void __init rcu_bootup_announce(void)
973{
974	pr_info("Hierarchical RCU implementation.\n");
975	rcu_bootup_announce_oddness();
976}
977
978/*
979 * Return the number of RCU batches processed thus far for debug & stats.
980 */
981long rcu_batches_completed(void)
982{
983	return rcu_batches_completed_sched();
984}
985EXPORT_SYMBOL_GPL(rcu_batches_completed);
986
987/*
988 * Force a quiescent state for RCU, which, because there is no preemptible
989 * RCU, becomes the same as rcu-sched.
990 */
991void rcu_force_quiescent_state(void)
992{
993	rcu_sched_force_quiescent_state();
994}
995EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
996
997/*
998 * Because preemptible RCU does not exist, we never have to check for
999 * CPUs being in quiescent states.
1000 */
1001static void rcu_preempt_note_context_switch(int cpu)
1002{
1003}
1004
1005/*
1006 * Because preemptible RCU does not exist, there are never any preempted
1007 * RCU readers.
1008 */
1009static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1010{
1011	return 0;
1012}
1013
1014#ifdef CONFIG_HOTPLUG_CPU
1015
1016/* Because preemptible RCU does not exist, no quieting of tasks. */
1017static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1018{
1019	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1020}
1021
1022#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1023
1024/*
1025 * Because preemptible RCU does not exist, we never have to check for
1026 * tasks blocked within RCU read-side critical sections.
1027 */
1028static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1029{
1030}
1031
1032/*
1033 * Because preemptible RCU does not exist, we never have to check for
1034 * tasks blocked within RCU read-side critical sections.
1035 */
1036static int rcu_print_task_stall(struct rcu_node *rnp)
1037{
1038	return 0;
1039}
1040
1041/*
1042 * Because there is no preemptible RCU, there can be no readers blocked,
1043 * so there is no need to check for blocked tasks.  So check only for
1044 * bogus qsmask values.
1045 */
1046static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1047{
1048	WARN_ON_ONCE(rnp->qsmask);
1049}
1050
1051#ifdef CONFIG_HOTPLUG_CPU
1052
1053/*
1054 * Because preemptible RCU does not exist, it never needs to migrate
1055 * tasks that were blocked within RCU read-side critical sections, and
1056 * such non-existent tasks cannot possibly have been blocking the current
1057 * grace period.
1058 */
1059static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1060				     struct rcu_node *rnp,
1061				     struct rcu_data *rdp)
1062{
1063	return 0;
1064}
1065
1066#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1067
1068/*
1069 * Because preemptible RCU does not exist, it never has any callbacks
1070 * to check.
1071 */
1072static void rcu_preempt_check_callbacks(int cpu)
1073{
1074}
1075
1076/*
1077 * Queue an RCU callback for lazy invocation after a grace period.
1078 * This will likely be later named something like "call_rcu_lazy()",
1079 * but this change will require some way of tagging the lazy RCU
1080 * callbacks in the list of pending callbacks.  Until then, this
1081 * function may only be called from __kfree_rcu().
1082 *
1083 * Because there is no preemptible RCU, we use RCU-sched instead.
1084 */
1085void kfree_call_rcu(struct rcu_head *head,
1086		    void (*func)(struct rcu_head *rcu))
1087{
1088	__call_rcu(head, func, &rcu_sched_state, -1, 1);
1089}
1090EXPORT_SYMBOL_GPL(kfree_call_rcu);
1091
1092/*
1093 * Wait for an rcu-preempt grace period, but make it happen quickly.
1094 * But because preemptible RCU does not exist, map to rcu-sched.
1095 */
1096void synchronize_rcu_expedited(void)
1097{
1098	synchronize_sched_expedited();
1099}
1100EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1101
1102#ifdef CONFIG_HOTPLUG_CPU
1103
1104/*
1105 * Because preemptible RCU does not exist, there is never any need to
1106 * report on tasks preempted in RCU read-side critical sections during
1107 * expedited RCU grace periods.
1108 */
1109static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1110			       bool wake)
1111{
1112}
1113
1114#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1115
1116/*
1117 * Because preemptible RCU does not exist, rcu_barrier() is just
1118 * another name for rcu_barrier_sched().
1119 */
1120void rcu_barrier(void)
1121{
1122	rcu_barrier_sched();
1123}
1124EXPORT_SYMBOL_GPL(rcu_barrier);
1125
1126/*
1127 * Because preemptible RCU does not exist, it need not be initialized.
1128 */
1129static void __init __rcu_init_preempt(void)
1130{
1131}
1132
1133/*
1134 * Because preemptible RCU does not exist, tasks cannot possibly exit
1135 * while in preemptible RCU read-side critical sections.
1136 */
1137void exit_rcu(void)
1138{
1139}
1140
1141#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1142
1143#ifdef CONFIG_RCU_BOOST
1144
1145#include "../locking/rtmutex_common.h"
1146
1147#ifdef CONFIG_RCU_TRACE
1148
1149static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1150{
1151	if (list_empty(&rnp->blkd_tasks))
1152		rnp->n_balk_blkd_tasks++;
1153	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1154		rnp->n_balk_exp_gp_tasks++;
1155	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1156		rnp->n_balk_boost_tasks++;
1157	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1158		rnp->n_balk_notblocked++;
1159	else if (rnp->gp_tasks != NULL &&
1160		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1161		rnp->n_balk_notyet++;
1162	else
1163		rnp->n_balk_nos++;
1164}
1165
1166#else /* #ifdef CONFIG_RCU_TRACE */
1167
1168static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1169{
1170}
1171
1172#endif /* #else #ifdef CONFIG_RCU_TRACE */
1173
1174static void rcu_wake_cond(struct task_struct *t, int status)
1175{
1176	/*
1177	 * If the thread is yielding, only wake it when this
1178	 * is invoked from idle
1179	 */
1180	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1181		wake_up_process(t);
1182}
1183
1184/*
1185 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1186 * or ->boost_tasks, advancing the pointer to the next task in the
1187 * ->blkd_tasks list.
1188 *
1189 * Note that irqs must be enabled: boosting the task can block.
1190 * Returns 1 if there are more tasks needing to be boosted.
1191 */
1192static int rcu_boost(struct rcu_node *rnp)
1193{
1194	unsigned long flags;
1195	struct rt_mutex mtx;
1196	struct task_struct *t;
1197	struct list_head *tb;
1198
1199	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1200		return 0;  /* Nothing left to boost. */
1201
1202	raw_spin_lock_irqsave(&rnp->lock, flags);
1203	smp_mb__after_unlock_lock();
1204
1205	/*
1206	 * Recheck under the lock: all tasks in need of boosting
1207	 * might exit their RCU read-side critical sections on their own.
1208	 */
1209	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1210		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1211		return 0;
1212	}
1213
1214	/*
1215	 * Preferentially boost tasks blocking expedited grace periods.
1216	 * This cannot starve the normal grace periods because a second
1217	 * expedited grace period must boost all blocked tasks, including
1218	 * those blocking the pre-existing normal grace period.
1219	 */
1220	if (rnp->exp_tasks != NULL) {
1221		tb = rnp->exp_tasks;
1222		rnp->n_exp_boosts++;
1223	} else {
1224		tb = rnp->boost_tasks;
1225		rnp->n_normal_boosts++;
1226	}
1227	rnp->n_tasks_boosted++;
1228
1229	/*
1230	 * We boost task t by manufacturing an rt_mutex that appears to
1231	 * be held by task t.  We leave a pointer to that rt_mutex where
1232	 * task t can find it, and task t will release the mutex when it
1233	 * exits its outermost RCU read-side critical section.  Then
1234	 * simply acquiring this artificial rt_mutex will boost task
1235	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1236	 *
1237	 * Note that task t must acquire rnp->lock to remove itself from
1238	 * the ->blkd_tasks list, which it will do from exit() if from
1239	 * nowhere else.  We therefore are guaranteed that task t will
1240	 * stay around at least until we drop rnp->lock.  Note that
1241	 * rnp->lock also resolves races between our priority boosting
1242	 * and task t's exiting its outermost RCU read-side critical
1243	 * section.
1244	 */
1245	t = container_of(tb, struct task_struct, rcu_node_entry);
1246	rt_mutex_init_proxy_locked(&mtx, t);
1247	t->rcu_boost_mutex = &mtx;
1248	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1249	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
1250	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
1251
1252	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1253	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1254}
1255
1256/*
1257 * Priority-boosting kthread.  One per leaf rcu_node and one for the
1258 * root rcu_node.
1259 */
1260static int rcu_boost_kthread(void *arg)
1261{
1262	struct rcu_node *rnp = (struct rcu_node *)arg;
1263	int spincnt = 0;
1264	int more2boost;
1265
1266	trace_rcu_utilization(TPS("Start boost kthread@init"));
1267	for (;;) {
1268		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1269		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1270		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1271		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1272		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1273		more2boost = rcu_boost(rnp);
1274		if (more2boost)
1275			spincnt++;
1276		else
1277			spincnt = 0;
1278		if (spincnt > 10) {
1279			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1280			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1281			schedule_timeout_interruptible(2);
1282			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1283			spincnt = 0;
1284		}
1285	}
1286	/* NOTREACHED */
1287	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1288	return 0;
1289}
1290
1291/*
1292 * Check to see if it is time to start boosting RCU readers that are
1293 * blocking the current grace period, and, if so, tell the per-rcu_node
1294 * kthread to start boosting them.  If there is an expedited grace
1295 * period in progress, it is always time to boost.
1296 *
1297 * The caller must hold rnp->lock, which this function releases.
1298 * The ->boost_kthread_task is immortal, so we don't need to worry
1299 * about it going away.
1300 */
1301static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1302{
1303	struct task_struct *t;
1304
1305	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1306		rnp->n_balk_exp_gp_tasks++;
1307		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1308		return;
1309	}
1310	if (rnp->exp_tasks != NULL ||
1311	    (rnp->gp_tasks != NULL &&
1312	     rnp->boost_tasks == NULL &&
1313	     rnp->qsmask == 0 &&
1314	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1315		if (rnp->exp_tasks == NULL)
1316			rnp->boost_tasks = rnp->gp_tasks;
1317		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1318		t = rnp->boost_kthread_task;
1319		if (t)
1320			rcu_wake_cond(t, rnp->boost_kthread_status);
1321	} else {
1322		rcu_initiate_boost_trace(rnp);
1323		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1324	}
1325}
1326
1327/*
1328 * Wake up the per-CPU kthread to invoke RCU callbacks.
1329 */
1330static void invoke_rcu_callbacks_kthread(void)
1331{
1332	unsigned long flags;
1333
1334	local_irq_save(flags);
1335	__this_cpu_write(rcu_cpu_has_work, 1);
1336	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1337	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1338		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1339			      __this_cpu_read(rcu_cpu_kthread_status));
1340	}
1341	local_irq_restore(flags);
1342}
1343
1344/*
1345 * Is the current CPU running the RCU-callbacks kthread?
1346 * Caller must have preemption disabled.
1347 */
1348static bool rcu_is_callbacks_kthread(void)
1349{
1350	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1351}
1352
1353#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1354
1355/*
1356 * Do priority-boost accounting for the start of a new grace period.
1357 */
1358static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1359{
1360	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1361}
1362
1363/*
1364 * Create an RCU-boost kthread for the specified node if one does not
1365 * already exist.  We only create this kthread for preemptible RCU.
1366 * Returns zero if all is well, a negated errno otherwise.
1367 */
1368static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1369						 struct rcu_node *rnp)
1370{
1371	int rnp_index = rnp - &rsp->node[0];
1372	unsigned long flags;
1373	struct sched_param sp;
1374	struct task_struct *t;
1375
1376	if (&rcu_preempt_state != rsp)
1377		return 0;
1378
1379	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1380		return 0;
1381
1382	rsp->boost = 1;
1383	if (rnp->boost_kthread_task != NULL)
1384		return 0;
1385	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1386			   "rcub/%d", rnp_index);
1387	if (IS_ERR(t))
1388		return PTR_ERR(t);
1389	raw_spin_lock_irqsave(&rnp->lock, flags);
1390	smp_mb__after_unlock_lock();
1391	rnp->boost_kthread_task = t;
1392	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1393	sp.sched_priority = RCU_BOOST_PRIO;
1394	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1395	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1396	return 0;
1397}
1398
1399static void rcu_kthread_do_work(void)
1400{
1401	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1402	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1403	rcu_preempt_do_callbacks();
1404}
1405
1406static void rcu_cpu_kthread_setup(unsigned int cpu)
1407{
1408	struct sched_param sp;
1409
1410	sp.sched_priority = RCU_KTHREAD_PRIO;
1411	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1412}
1413
1414static void rcu_cpu_kthread_park(unsigned int cpu)
1415{
1416	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1417}
1418
1419static int rcu_cpu_kthread_should_run(unsigned int cpu)
1420{
1421	return __this_cpu_read(rcu_cpu_has_work);
1422}
1423
1424/*
1425 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1426 * RCU softirq used in flavors and configurations of RCU that do not
1427 * support RCU priority boosting.
1428 */
1429static void rcu_cpu_kthread(unsigned int cpu)
1430{
1431	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1432	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1433	int spincnt;
1434
1435	for (spincnt = 0; spincnt < 10; spincnt++) {
1436		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1437		local_bh_disable();
1438		*statusp = RCU_KTHREAD_RUNNING;
1439		this_cpu_inc(rcu_cpu_kthread_loops);
1440		local_irq_disable();
1441		work = *workp;
1442		*workp = 0;
1443		local_irq_enable();
1444		if (work)
1445			rcu_kthread_do_work();
1446		local_bh_enable();
1447		if (*workp == 0) {
1448			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1449			*statusp = RCU_KTHREAD_WAITING;
1450			return;
1451		}
1452	}
1453	*statusp = RCU_KTHREAD_YIELDING;
1454	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1455	schedule_timeout_interruptible(2);
1456	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1457	*statusp = RCU_KTHREAD_WAITING;
1458}
1459
1460/*
1461 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1462 * served by the rcu_node in question.  The CPU hotplug lock is still
1463 * held, so the value of rnp->qsmaskinit will be stable.
1464 *
1465 * We don't include outgoingcpu in the affinity set, use -1 if there is
1466 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1467 * this function allows the kthread to execute on any CPU.
1468 */
1469static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1470{
1471	struct task_struct *t = rnp->boost_kthread_task;
1472	unsigned long mask = rnp->qsmaskinit;
1473	cpumask_var_t cm;
1474	int cpu;
1475
1476	if (!t)
1477		return;
1478	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1479		return;
1480	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1481		if ((mask & 0x1) && cpu != outgoingcpu)
1482			cpumask_set_cpu(cpu, cm);
1483	if (cpumask_weight(cm) == 0) {
1484		cpumask_setall(cm);
1485		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1486			cpumask_clear_cpu(cpu, cm);
1487		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1488	}
1489	set_cpus_allowed_ptr(t, cm);
1490	free_cpumask_var(cm);
1491}
1492
1493static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1494	.store			= &rcu_cpu_kthread_task,
1495	.thread_should_run	= rcu_cpu_kthread_should_run,
1496	.thread_fn		= rcu_cpu_kthread,
1497	.thread_comm		= "rcuc/%u",
1498	.setup			= rcu_cpu_kthread_setup,
1499	.park			= rcu_cpu_kthread_park,
1500};
1501
1502/*
1503 * Spawn all kthreads -- called as soon as the scheduler is running.
1504 */
1505static int __init rcu_spawn_kthreads(void)
1506{
1507	struct rcu_node *rnp;
1508	int cpu;
1509
1510	rcu_scheduler_fully_active = 1;
1511	for_each_possible_cpu(cpu)
1512		per_cpu(rcu_cpu_has_work, cpu) = 0;
1513	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1514	rnp = rcu_get_root(rcu_state);
1515	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1516	if (NUM_RCU_NODES > 1) {
1517		rcu_for_each_leaf_node(rcu_state, rnp)
1518			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1519	}
1520	return 0;
1521}
1522early_initcall(rcu_spawn_kthreads);
1523
1524static void rcu_prepare_kthreads(int cpu)
1525{
1526	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1527	struct rcu_node *rnp = rdp->mynode;
1528
1529	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1530	if (rcu_scheduler_fully_active)
1531		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1532}
1533
1534#else /* #ifdef CONFIG_RCU_BOOST */
1535
1536static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1537{
1538	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1539}
1540
1541static void invoke_rcu_callbacks_kthread(void)
1542{
1543	WARN_ON_ONCE(1);
1544}
1545
1546static bool rcu_is_callbacks_kthread(void)
1547{
1548	return false;
1549}
1550
1551static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1552{
1553}
1554
1555static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1556{
1557}
1558
1559static int __init rcu_scheduler_really_started(void)
1560{
1561	rcu_scheduler_fully_active = 1;
1562	return 0;
1563}
1564early_initcall(rcu_scheduler_really_started);
1565
1566static void rcu_prepare_kthreads(int cpu)
1567{
1568}
1569
1570#endif /* #else #ifdef CONFIG_RCU_BOOST */
1571
1572#if !defined(CONFIG_RCU_FAST_NO_HZ)
1573
1574/*
1575 * Check to see if any future RCU-related work will need to be done
1576 * by the current CPU, even if none need be done immediately, returning
1577 * 1 if so.  This function is part of the RCU implementation; it is -not-
1578 * an exported member of the RCU API.
1579 *
1580 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1581 * any flavor of RCU.
1582 */
1583int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1584{
1585	*delta_jiffies = ULONG_MAX;
1586	return rcu_cpu_has_callbacks(cpu, NULL);
1587}
1588
1589/*
1590 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1591 * after it.
1592 */
1593static void rcu_cleanup_after_idle(int cpu)
1594{
1595}
1596
1597/*
1598 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1599 * is nothing.
1600 */
1601static void rcu_prepare_for_idle(int cpu)
1602{
1603}
1604
1605/*
1606 * Don't bother keeping a running count of the number of RCU callbacks
1607 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1608 */
1609static void rcu_idle_count_callbacks_posted(void)
1610{
1611}
1612
1613#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1614
1615/*
1616 * This code is invoked when a CPU goes idle, at which point we want
1617 * to have the CPU do everything required for RCU so that it can enter
1618 * the energy-efficient dyntick-idle mode.  This is handled by a
1619 * state machine implemented by rcu_prepare_for_idle() below.
1620 *
1621 * The following three proprocessor symbols control this state machine:
1622 *
1623 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1624 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1625 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1626 *	benchmarkers who might otherwise be tempted to set this to a large
1627 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1628 *	system.  And if you are -that- concerned about energy efficiency,
1629 *	just power the system down and be done with it!
1630 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1631 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1632 *	callbacks pending.  Setting this too high can OOM your system.
1633 *
1634 * The values below work well in practice.  If future workloads require
1635 * adjustment, they can be converted into kernel config parameters, though
1636 * making the state machine smarter might be a better option.
1637 */
1638#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1639#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1640
1641static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1642module_param(rcu_idle_gp_delay, int, 0644);
1643static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1644module_param(rcu_idle_lazy_gp_delay, int, 0644);
1645
1646extern int tick_nohz_enabled;
1647
1648/*
1649 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1650 * only if it has been awhile since the last time we did so.  Afterwards,
1651 * if there are any callbacks ready for immediate invocation, return true.
1652 */
1653static bool rcu_try_advance_all_cbs(void)
1654{
1655	bool cbs_ready = false;
1656	struct rcu_data *rdp;
1657	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1658	struct rcu_node *rnp;
1659	struct rcu_state *rsp;
1660
1661	/* Exit early if we advanced recently. */
1662	if (jiffies == rdtp->last_advance_all)
1663		return 0;
1664	rdtp->last_advance_all = jiffies;
1665
1666	for_each_rcu_flavor(rsp) {
1667		rdp = this_cpu_ptr(rsp->rda);
1668		rnp = rdp->mynode;
1669
1670		/*
1671		 * Don't bother checking unless a grace period has
1672		 * completed since we last checked and there are
1673		 * callbacks not yet ready to invoke.
1674		 */
1675		if (rdp->completed != rnp->completed &&
1676		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1677			note_gp_changes(rsp, rdp);
1678
1679		if (cpu_has_callbacks_ready_to_invoke(rdp))
1680			cbs_ready = true;
1681	}
1682	return cbs_ready;
1683}
1684
1685/*
1686 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1687 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1688 * caller to set the timeout based on whether or not there are non-lazy
1689 * callbacks.
1690 *
1691 * The caller must have disabled interrupts.
1692 */
1693int rcu_needs_cpu(int cpu, unsigned long *dj)
1694{
1695	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1696
1697	/* Snapshot to detect later posting of non-lazy callback. */
1698	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1699
1700	/* If no callbacks, RCU doesn't need the CPU. */
1701	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1702		*dj = ULONG_MAX;
1703		return 0;
1704	}
1705
1706	/* Attempt to advance callbacks. */
1707	if (rcu_try_advance_all_cbs()) {
1708		/* Some ready to invoke, so initiate later invocation. */
1709		invoke_rcu_core();
1710		return 1;
1711	}
1712	rdtp->last_accelerate = jiffies;
1713
1714	/* Request timer delay depending on laziness, and round. */
1715	if (!rdtp->all_lazy) {
1716		*dj = round_up(rcu_idle_gp_delay + jiffies,
1717			       rcu_idle_gp_delay) - jiffies;
1718	} else {
1719		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1720	}
1721	return 0;
1722}
1723
1724/*
1725 * Prepare a CPU for idle from an RCU perspective.  The first major task
1726 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1727 * The second major task is to check to see if a non-lazy callback has
1728 * arrived at a CPU that previously had only lazy callbacks.  The third
1729 * major task is to accelerate (that is, assign grace-period numbers to)
1730 * any recently arrived callbacks.
1731 *
1732 * The caller must have disabled interrupts.
1733 */
1734static void rcu_prepare_for_idle(int cpu)
1735{
1736	struct rcu_data *rdp;
1737	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1738	struct rcu_node *rnp;
1739	struct rcu_state *rsp;
1740	int tne;
1741
1742	/* Handle nohz enablement switches conservatively. */
1743	tne = ACCESS_ONCE(tick_nohz_enabled);
1744	if (tne != rdtp->tick_nohz_enabled_snap) {
1745		if (rcu_cpu_has_callbacks(cpu, NULL))
1746			invoke_rcu_core(); /* force nohz to see update. */
1747		rdtp->tick_nohz_enabled_snap = tne;
1748		return;
1749	}
1750	if (!tne)
1751		return;
1752
1753	/* If this is a no-CBs CPU, no callbacks, just return. */
1754	if (rcu_is_nocb_cpu(cpu))
1755		return;
1756
1757	/*
1758	 * If a non-lazy callback arrived at a CPU having only lazy
1759	 * callbacks, invoke RCU core for the side-effect of recalculating
1760	 * idle duration on re-entry to idle.
1761	 */
1762	if (rdtp->all_lazy &&
1763	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1764		rdtp->all_lazy = false;
1765		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1766		invoke_rcu_core();
1767		return;
1768	}
1769
1770	/*
1771	 * If we have not yet accelerated this jiffy, accelerate all
1772	 * callbacks on this CPU.
1773	 */
1774	if (rdtp->last_accelerate == jiffies)
1775		return;
1776	rdtp->last_accelerate = jiffies;
1777	for_each_rcu_flavor(rsp) {
1778		rdp = per_cpu_ptr(rsp->rda, cpu);
1779		if (!*rdp->nxttail[RCU_DONE_TAIL])
1780			continue;
1781		rnp = rdp->mynode;
1782		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1783		smp_mb__after_unlock_lock();
1784		rcu_accelerate_cbs(rsp, rnp, rdp);
1785		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1786	}
1787}
1788
1789/*
1790 * Clean up for exit from idle.  Attempt to advance callbacks based on
1791 * any grace periods that elapsed while the CPU was idle, and if any
1792 * callbacks are now ready to invoke, initiate invocation.
1793 */
1794static void rcu_cleanup_after_idle(int cpu)
1795{
1796
1797	if (rcu_is_nocb_cpu(cpu))
1798		return;
1799	if (rcu_try_advance_all_cbs())
1800		invoke_rcu_core();
1801}
1802
1803/*
1804 * Keep a running count of the number of non-lazy callbacks posted
1805 * on this CPU.  This running counter (which is never decremented) allows
1806 * rcu_prepare_for_idle() to detect when something out of the idle loop
1807 * posts a callback, even if an equal number of callbacks are invoked.
1808 * Of course, callbacks should only be posted from within a trace event
1809 * designed to be called from idle or from within RCU_NONIDLE().
1810 */
1811static void rcu_idle_count_callbacks_posted(void)
1812{
1813	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1814}
1815
1816/*
1817 * Data for flushing lazy RCU callbacks at OOM time.
1818 */
1819static atomic_t oom_callback_count;
1820static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1821
1822/*
1823 * RCU OOM callback -- decrement the outstanding count and deliver the
1824 * wake-up if we are the last one.
1825 */
1826static void rcu_oom_callback(struct rcu_head *rhp)
1827{
1828	if (atomic_dec_and_test(&oom_callback_count))
1829		wake_up(&oom_callback_wq);
1830}
1831
1832/*
1833 * Post an rcu_oom_notify callback on the current CPU if it has at
1834 * least one lazy callback.  This will unnecessarily post callbacks
1835 * to CPUs that already have a non-lazy callback at the end of their
1836 * callback list, but this is an infrequent operation, so accept some
1837 * extra overhead to keep things simple.
1838 */
1839static void rcu_oom_notify_cpu(void *unused)
1840{
1841	struct rcu_state *rsp;
1842	struct rcu_data *rdp;
1843
1844	for_each_rcu_flavor(rsp) {
1845		rdp = __this_cpu_ptr(rsp->rda);
1846		if (rdp->qlen_lazy != 0) {
1847			atomic_inc(&oom_callback_count);
1848			rsp->call(&rdp->oom_head, rcu_oom_callback);
1849		}
1850	}
1851}
1852
1853/*
1854 * If low on memory, ensure that each CPU has a non-lazy callback.
1855 * This will wake up CPUs that have only lazy callbacks, in turn
1856 * ensuring that they free up the corresponding memory in a timely manner.
1857 * Because an uncertain amount of memory will be freed in some uncertain
1858 * timeframe, we do not claim to have freed anything.
1859 */
1860static int rcu_oom_notify(struct notifier_block *self,
1861			  unsigned long notused, void *nfreed)
1862{
1863	int cpu;
1864
1865	/* Wait for callbacks from earlier instance to complete. */
1866	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1867
1868	/*
1869	 * Prevent premature wakeup: ensure that all increments happen
1870	 * before there is a chance of the counter reaching zero.
1871	 */
1872	atomic_set(&oom_callback_count, 1);
1873
1874	get_online_cpus();
1875	for_each_online_cpu(cpu) {
1876		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1877		cond_resched();
1878	}
1879	put_online_cpus();
1880
1881	/* Unconditionally decrement: no need to wake ourselves up. */
1882	atomic_dec(&oom_callback_count);
1883
1884	return NOTIFY_OK;
1885}
1886
1887static struct notifier_block rcu_oom_nb = {
1888	.notifier_call = rcu_oom_notify
1889};
1890
1891static int __init rcu_register_oom_notifier(void)
1892{
1893	register_oom_notifier(&rcu_oom_nb);
1894	return 0;
1895}
1896early_initcall(rcu_register_oom_notifier);
1897
1898#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1899
1900#ifdef CONFIG_RCU_CPU_STALL_INFO
1901
1902#ifdef CONFIG_RCU_FAST_NO_HZ
1903
1904static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1905{
1906	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1907	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1908
1909	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1910		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1911		ulong2long(nlpd),
1912		rdtp->all_lazy ? 'L' : '.',
1913		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1914}
1915
1916#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1917
1918static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1919{
1920	*cp = '\0';
1921}
1922
1923#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1924
1925/* Initiate the stall-info list. */
1926static void print_cpu_stall_info_begin(void)
1927{
1928	pr_cont("\n");
1929}
1930
1931/*
1932 * Print out diagnostic information for the specified stalled CPU.
1933 *
1934 * If the specified CPU is aware of the current RCU grace period
1935 * (flavor specified by rsp), then print the number of scheduling
1936 * clock interrupts the CPU has taken during the time that it has
1937 * been aware.  Otherwise, print the number of RCU grace periods
1938 * that this CPU is ignorant of, for example, "1" if the CPU was
1939 * aware of the previous grace period.
1940 *
1941 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1942 */
1943static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1944{
1945	char fast_no_hz[72];
1946	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1947	struct rcu_dynticks *rdtp = rdp->dynticks;
1948	char *ticks_title;
1949	unsigned long ticks_value;
1950
1951	if (rsp->gpnum == rdp->gpnum) {
1952		ticks_title = "ticks this GP";
1953		ticks_value = rdp->ticks_this_gp;
1954	} else {
1955		ticks_title = "GPs behind";
1956		ticks_value = rsp->gpnum - rdp->gpnum;
1957	}
1958	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1959	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1960	       cpu, ticks_value, ticks_title,
1961	       atomic_read(&rdtp->dynticks) & 0xfff,
1962	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1963	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1964	       fast_no_hz);
1965}
1966
1967/* Terminate the stall-info list. */
1968static void print_cpu_stall_info_end(void)
1969{
1970	pr_err("\t");
1971}
1972
1973/* Zero ->ticks_this_gp for all flavors of RCU. */
1974static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1975{
1976	rdp->ticks_this_gp = 0;
1977	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1978}
1979
1980/* Increment ->ticks_this_gp for all flavors of RCU. */
1981static void increment_cpu_stall_ticks(void)
1982{
1983	struct rcu_state *rsp;
1984
1985	for_each_rcu_flavor(rsp)
1986		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
1987}
1988
1989#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1990
1991static void print_cpu_stall_info_begin(void)
1992{
1993	pr_cont(" {");
1994}
1995
1996static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1997{
1998	pr_cont(" %d", cpu);
1999}
2000
2001static void print_cpu_stall_info_end(void)
2002{
2003	pr_cont("} ");
2004}
2005
2006static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2007{
2008}
2009
2010static void increment_cpu_stall_ticks(void)
2011{
2012}
2013
2014#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2015
2016#ifdef CONFIG_RCU_NOCB_CPU
2017
2018/*
2019 * Offload callback processing from the boot-time-specified set of CPUs
2020 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
2021 * kthread created that pulls the callbacks from the corresponding CPU,
2022 * waits for a grace period to elapse, and invokes the callbacks.
2023 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2024 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2025 * has been specified, in which case each kthread actively polls its
2026 * CPU.  (Which isn't so great for energy efficiency, but which does
2027 * reduce RCU's overhead on that CPU.)
2028 *
2029 * This is intended to be used in conjunction with Frederic Weisbecker's
2030 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2031 * running CPU-bound user-mode computations.
2032 *
2033 * Offloading of callback processing could also in theory be used as
2034 * an energy-efficiency measure because CPUs with no RCU callbacks
2035 * queued are more aggressive about entering dyntick-idle mode.
2036 */
2037
2038
2039/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2040static int __init rcu_nocb_setup(char *str)
2041{
2042	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2043	have_rcu_nocb_mask = true;
2044	cpulist_parse(str, rcu_nocb_mask);
2045	return 1;
2046}
2047__setup("rcu_nocbs=", rcu_nocb_setup);
2048
2049static int __init parse_rcu_nocb_poll(char *arg)
2050{
2051	rcu_nocb_poll = 1;
2052	return 0;
2053}
2054early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2055
2056/*
2057 * Do any no-CBs CPUs need another grace period?
2058 *
2059 * Interrupts must be disabled.  If the caller does not hold the root
2060 * rnp_node structure's ->lock, the results are advisory only.
2061 */
2062static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2063{
2064	struct rcu_node *rnp = rcu_get_root(rsp);
2065
2066	return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
2067}
2068
2069/*
2070 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2071 * grace period.
2072 */
2073static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2074{
2075	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2076}
2077
2078/*
2079 * Set the root rcu_node structure's ->need_future_gp field
2080 * based on the sum of those of all rcu_node structures.  This does
2081 * double-count the root rcu_node structure's requests, but this
2082 * is necessary to handle the possibility of a rcu_nocb_kthread()
2083 * having awakened during the time that the rcu_node structures
2084 * were being updated for the end of the previous grace period.
2085 */
2086static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2087{
2088	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2089}
2090
2091static void rcu_init_one_nocb(struct rcu_node *rnp)
2092{
2093	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2094	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2095}
2096
2097/* Is the specified CPU a no-CPUs CPU? */
2098bool rcu_is_nocb_cpu(int cpu)
2099{
2100	if (have_rcu_nocb_mask)
2101		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2102	return false;
2103}
2104
2105/*
2106 * Enqueue the specified string of rcu_head structures onto the specified
2107 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2108 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2109 * counts are supplied by rhcount and rhcount_lazy.
2110 *
2111 * If warranted, also wake up the kthread servicing this CPUs queues.
2112 */
2113static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2114				    struct rcu_head *rhp,
2115				    struct rcu_head **rhtp,
2116				    int rhcount, int rhcount_lazy)
2117{
2118	int len;
2119	struct rcu_head **old_rhpp;
2120	struct task_struct *t;
2121
2122	/* Enqueue the callback on the nocb list and update counts. */
2123	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2124	ACCESS_ONCE(*old_rhpp) = rhp;
2125	atomic_long_add(rhcount, &rdp->nocb_q_count);
2126	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2127
2128	/* If we are not being polled and there is a kthread, awaken it ... */
2129	t = ACCESS_ONCE(rdp->nocb_kthread);
2130	if (rcu_nocb_poll || !t) {
2131		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2132				    TPS("WakeNotPoll"));
2133		return;
2134	}
2135	len = atomic_long_read(&rdp->nocb_q_count);
2136	if (old_rhpp == &rdp->nocb_head) {
2137		wake_up(&rdp->nocb_wq); /* ... only if queue was empty ... */
2138		rdp->qlen_last_fqs_check = 0;
2139		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeEmpty"));
2140	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2141		wake_up_process(t); /* ... or if many callbacks queued. */
2142		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2143		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2144	} else {
2145		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2146	}
2147	return;
2148}
2149
2150/*
2151 * This is a helper for __call_rcu(), which invokes this when the normal
2152 * callback queue is inoperable.  If this is not a no-CBs CPU, this
2153 * function returns failure back to __call_rcu(), which can complain
2154 * appropriately.
2155 *
2156 * Otherwise, this function queues the callback where the corresponding
2157 * "rcuo" kthread can find it.
2158 */
2159static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2160			    bool lazy)
2161{
2162
2163	if (!rcu_is_nocb_cpu(rdp->cpu))
2164		return 0;
2165	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy);
2166	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2167		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2168					 (unsigned long)rhp->func,
2169					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2170					 -atomic_long_read(&rdp->nocb_q_count));
2171	else
2172		trace_rcu_callback(rdp->rsp->name, rhp,
2173				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2174				   -atomic_long_read(&rdp->nocb_q_count));
2175	return 1;
2176}
2177
2178/*
2179 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2180 * not a no-CBs CPU.
2181 */
2182static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2183						     struct rcu_data *rdp)
2184{
2185	long ql = rsp->qlen;
2186	long qll = rsp->qlen_lazy;
2187
2188	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2189	if (!rcu_is_nocb_cpu(smp_processor_id()))
2190		return 0;
2191	rsp->qlen = 0;
2192	rsp->qlen_lazy = 0;
2193
2194	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2195	if (rsp->orphan_donelist != NULL) {
2196		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2197					rsp->orphan_donetail, ql, qll);
2198		ql = qll = 0;
2199		rsp->orphan_donelist = NULL;
2200		rsp->orphan_donetail = &rsp->orphan_donelist;
2201	}
2202	if (rsp->orphan_nxtlist != NULL) {
2203		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2204					rsp->orphan_nxttail, ql, qll);
2205		ql = qll = 0;
2206		rsp->orphan_nxtlist = NULL;
2207		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2208	}
2209	return 1;
2210}
2211
2212/*
2213 * If necessary, kick off a new grace period, and either way wait
2214 * for a subsequent grace period to complete.
2215 */
2216static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2217{
2218	unsigned long c;
2219	bool d;
2220	unsigned long flags;
2221	struct rcu_node *rnp = rdp->mynode;
2222
2223	raw_spin_lock_irqsave(&rnp->lock, flags);
2224	smp_mb__after_unlock_lock();
2225	c = rcu_start_future_gp(rnp, rdp);
2226	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2227
2228	/*
2229	 * Wait for the grace period.  Do so interruptibly to avoid messing
2230	 * up the load average.
2231	 */
2232	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2233	for (;;) {
2234		wait_event_interruptible(
2235			rnp->nocb_gp_wq[c & 0x1],
2236			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2237		if (likely(d))
2238			break;
2239		flush_signals(current);
2240		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2241	}
2242	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2243	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2244}
2245
2246/*
2247 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2248 * callbacks queued by the corresponding no-CBs CPU.
2249 */
2250static int rcu_nocb_kthread(void *arg)
2251{
2252	int c, cl;
2253	bool firsttime = 1;
2254	struct rcu_head *list;
2255	struct rcu_head *next;
2256	struct rcu_head **tail;
2257	struct rcu_data *rdp = arg;
2258
2259	/* Each pass through this loop invokes one batch of callbacks */
2260	for (;;) {
2261		/* If not polling, wait for next batch of callbacks. */
2262		if (!rcu_nocb_poll) {
2263			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2264					    TPS("Sleep"));
2265			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2266		} else if (firsttime) {
2267			firsttime = 0;
2268			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2269					    TPS("Poll"));
2270		}
2271		list = ACCESS_ONCE(rdp->nocb_head);
2272		if (!list) {
2273			if (!rcu_nocb_poll)
2274				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2275						    TPS("WokeEmpty"));
2276			schedule_timeout_interruptible(1);
2277			flush_signals(current);
2278			continue;
2279		}
2280		firsttime = 1;
2281		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2282				    TPS("WokeNonEmpty"));
2283
2284		/*
2285		 * Extract queued callbacks, update counts, and wait
2286		 * for a grace period to elapse.
2287		 */
2288		ACCESS_ONCE(rdp->nocb_head) = NULL;
2289		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2290		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2291		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2292		ACCESS_ONCE(rdp->nocb_p_count) += c;
2293		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2294		rcu_nocb_wait_gp(rdp);
2295
2296		/* Each pass through the following loop invokes a callback. */
2297		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2298		c = cl = 0;
2299		while (list) {
2300			next = list->next;
2301			/* Wait for enqueuing to complete, if needed. */
2302			while (next == NULL && &list->next != tail) {
2303				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2304						    TPS("WaitQueue"));
2305				schedule_timeout_interruptible(1);
2306				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2307						    TPS("WokeQueue"));
2308				next = list->next;
2309			}
2310			debug_rcu_head_unqueue(list);
2311			local_bh_disable();
2312			if (__rcu_reclaim(rdp->rsp->name, list))
2313				cl++;
2314			c++;
2315			local_bh_enable();
2316			list = next;
2317		}
2318		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2319		ACCESS_ONCE(rdp->nocb_p_count) -= c;
2320		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2321		rdp->n_nocbs_invoked += c;
2322	}
2323	return 0;
2324}
2325
2326/* Initialize per-rcu_data variables for no-CBs CPUs. */
2327static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2328{
2329	rdp->nocb_tail = &rdp->nocb_head;
2330	init_waitqueue_head(&rdp->nocb_wq);
2331}
2332
2333/* Create a kthread for each RCU flavor for each no-CBs CPU. */
2334static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2335{
2336	int cpu;
2337	struct rcu_data *rdp;
2338	struct task_struct *t;
2339
2340	if (rcu_nocb_mask == NULL)
2341		return;
2342	for_each_cpu(cpu, rcu_nocb_mask) {
2343		rdp = per_cpu_ptr(rsp->rda, cpu);
2344		t = kthread_run(rcu_nocb_kthread, rdp,
2345				"rcuo%c/%d", rsp->abbr, cpu);
2346		BUG_ON(IS_ERR(t));
2347		ACCESS_ONCE(rdp->nocb_kthread) = t;
2348	}
2349}
2350
2351/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2352static bool init_nocb_callback_list(struct rcu_data *rdp)
2353{
2354	if (rcu_nocb_mask == NULL ||
2355	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2356		return false;
2357	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2358	return true;
2359}
2360
2361#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2362
2363static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2364{
2365	return 0;
2366}
2367
2368static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2369{
2370}
2371
2372static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2373{
2374}
2375
2376static void rcu_init_one_nocb(struct rcu_node *rnp)
2377{
2378}
2379
2380static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2381			    bool lazy)
2382{
2383	return 0;
2384}
2385
2386static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2387						     struct rcu_data *rdp)
2388{
2389	return 0;
2390}
2391
2392static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2393{
2394}
2395
2396static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2397{
2398}
2399
2400static bool init_nocb_callback_list(struct rcu_data *rdp)
2401{
2402	return false;
2403}
2404
2405#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2406
2407/*
2408 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2409 * arbitrarily long period of time with the scheduling-clock tick turned
2410 * off.  RCU will be paying attention to this CPU because it is in the
2411 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2412 * machine because the scheduling-clock tick has been disabled.  Therefore,
2413 * if an adaptive-ticks CPU is failing to respond to the current grace
2414 * period and has not be idle from an RCU perspective, kick it.
2415 */
2416static void rcu_kick_nohz_cpu(int cpu)
2417{
2418#ifdef CONFIG_NO_HZ_FULL
2419	if (tick_nohz_full_cpu(cpu))
2420		smp_send_reschedule(cpu);
2421#endif /* #ifdef CONFIG_NO_HZ_FULL */
2422}
2423
2424
2425#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2426
2427/*
2428 * Define RCU flavor that holds sysidle state.  This needs to be the
2429 * most active flavor of RCU.
2430 */
2431#ifdef CONFIG_PREEMPT_RCU
2432static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2433#else /* #ifdef CONFIG_PREEMPT_RCU */
2434static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2435#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2436
2437static int full_sysidle_state;		/* Current system-idle state. */
2438#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2439#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2440#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2441#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2442#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2443
2444/*
2445 * Invoked to note exit from irq or task transition to idle.  Note that
2446 * usermode execution does -not- count as idle here!  After all, we want
2447 * to detect full-system idle states, not RCU quiescent states and grace
2448 * periods.  The caller must have disabled interrupts.
2449 */
2450static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2451{
2452	unsigned long j;
2453
2454	/* Adjust nesting, check for fully idle. */
2455	if (irq) {
2456		rdtp->dynticks_idle_nesting--;
2457		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2458		if (rdtp->dynticks_idle_nesting != 0)
2459			return;  /* Still not fully idle. */
2460	} else {
2461		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2462		    DYNTICK_TASK_NEST_VALUE) {
2463			rdtp->dynticks_idle_nesting = 0;
2464		} else {
2465			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2466			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2467			return;  /* Still not fully idle. */
2468		}
2469	}
2470
2471	/* Record start of fully idle period. */
2472	j = jiffies;
2473	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2474	smp_mb__before_atomic_inc();
2475	atomic_inc(&rdtp->dynticks_idle);
2476	smp_mb__after_atomic_inc();
2477	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2478}
2479
2480/*
2481 * Unconditionally force exit from full system-idle state.  This is
2482 * invoked when a normal CPU exits idle, but must be called separately
2483 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2484 * is that the timekeeping CPU is permitted to take scheduling-clock
2485 * interrupts while the system is in system-idle state, and of course
2486 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2487 * interrupt from any other type of interrupt.
2488 */
2489void rcu_sysidle_force_exit(void)
2490{
2491	int oldstate = ACCESS_ONCE(full_sysidle_state);
2492	int newoldstate;
2493
2494	/*
2495	 * Each pass through the following loop attempts to exit full
2496	 * system-idle state.  If contention proves to be a problem,
2497	 * a trylock-based contention tree could be used here.
2498	 */
2499	while (oldstate > RCU_SYSIDLE_SHORT) {
2500		newoldstate = cmpxchg(&full_sysidle_state,
2501				      oldstate, RCU_SYSIDLE_NOT);
2502		if (oldstate == newoldstate &&
2503		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2504			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2505			return; /* We cleared it, done! */
2506		}
2507		oldstate = newoldstate;
2508	}
2509	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2510}
2511
2512/*
2513 * Invoked to note entry to irq or task transition from idle.  Note that
2514 * usermode execution does -not- count as idle here!  The caller must
2515 * have disabled interrupts.
2516 */
2517static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2518{
2519	/* Adjust nesting, check for already non-idle. */
2520	if (irq) {
2521		rdtp->dynticks_idle_nesting++;
2522		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2523		if (rdtp->dynticks_idle_nesting != 1)
2524			return; /* Already non-idle. */
2525	} else {
2526		/*
2527		 * Allow for irq misnesting.  Yes, it really is possible
2528		 * to enter an irq handler then never leave it, and maybe
2529		 * also vice versa.  Handle both possibilities.
2530		 */
2531		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2532			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2533			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2534			return; /* Already non-idle. */
2535		} else {
2536			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2537		}
2538	}
2539
2540	/* Record end of idle period. */
2541	smp_mb__before_atomic_inc();
2542	atomic_inc(&rdtp->dynticks_idle);
2543	smp_mb__after_atomic_inc();
2544	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2545
2546	/*
2547	 * If we are the timekeeping CPU, we are permitted to be non-idle
2548	 * during a system-idle state.  This must be the case, because
2549	 * the timekeeping CPU has to take scheduling-clock interrupts
2550	 * during the time that the system is transitioning to full
2551	 * system-idle state.  This means that the timekeeping CPU must
2552	 * invoke rcu_sysidle_force_exit() directly if it does anything
2553	 * more than take a scheduling-clock interrupt.
2554	 */
2555	if (smp_processor_id() == tick_do_timer_cpu)
2556		return;
2557
2558	/* Update system-idle state: We are clearly no longer fully idle! */
2559	rcu_sysidle_force_exit();
2560}
2561
2562/*
2563 * Check to see if the current CPU is idle.  Note that usermode execution
2564 * does not count as idle.  The caller must have disabled interrupts.
2565 */
2566static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2567				  unsigned long *maxj)
2568{
2569	int cur;
2570	unsigned long j;
2571	struct rcu_dynticks *rdtp = rdp->dynticks;
2572
2573	/*
2574	 * If some other CPU has already reported non-idle, if this is
2575	 * not the flavor of RCU that tracks sysidle state, or if this
2576	 * is an offline or the timekeeping CPU, nothing to do.
2577	 */
2578	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2579	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2580		return;
2581	if (rcu_gp_in_progress(rdp->rsp))
2582		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2583
2584	/* Pick up current idle and NMI-nesting counter and check. */
2585	cur = atomic_read(&rdtp->dynticks_idle);
2586	if (cur & 0x1) {
2587		*isidle = false; /* We are not idle! */
2588		return;
2589	}
2590	smp_mb(); /* Read counters before timestamps. */
2591
2592	/* Pick up timestamps. */
2593	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2594	/* If this CPU entered idle more recently, update maxj timestamp. */
2595	if (ULONG_CMP_LT(*maxj, j))
2596		*maxj = j;
2597}
2598
2599/*
2600 * Is this the flavor of RCU that is handling full-system idle?
2601 */
2602static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2603{
2604	return rsp == rcu_sysidle_state;
2605}
2606
2607/*
2608 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2609 * timekeeping CPU.
2610 */
2611static void rcu_bind_gp_kthread(void)
2612{
2613	int cpu = ACCESS_ONCE(tick_do_timer_cpu);
2614
2615	if (cpu < 0 || cpu >= nr_cpu_ids)
2616		return;
2617	if (raw_smp_processor_id() != cpu)
2618		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2619}
2620
2621/*
2622 * Return a delay in jiffies based on the number of CPUs, rcu_node
2623 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2624 * systems more time to transition to full-idle state in order to
2625 * avoid the cache thrashing that otherwise occur on the state variable.
2626 * Really small systems (less than a couple of tens of CPUs) should
2627 * instead use a single global atomically incremented counter, and later
2628 * versions of this will automatically reconfigure themselves accordingly.
2629 */
2630static unsigned long rcu_sysidle_delay(void)
2631{
2632	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2633		return 0;
2634	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2635}
2636
2637/*
2638 * Advance the full-system-idle state.  This is invoked when all of
2639 * the non-timekeeping CPUs are idle.
2640 */
2641static void rcu_sysidle(unsigned long j)
2642{
2643	/* Check the current state. */
2644	switch (ACCESS_ONCE(full_sysidle_state)) {
2645	case RCU_SYSIDLE_NOT:
2646
2647		/* First time all are idle, so note a short idle period. */
2648		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2649		break;
2650
2651	case RCU_SYSIDLE_SHORT:
2652
2653		/*
2654		 * Idle for a bit, time to advance to next state?
2655		 * cmpxchg failure means race with non-idle, let them win.
2656		 */
2657		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2658			(void)cmpxchg(&full_sysidle_state,
2659				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2660		break;
2661
2662	case RCU_SYSIDLE_LONG:
2663
2664		/*
2665		 * Do an additional check pass before advancing to full.
2666		 * cmpxchg failure means race with non-idle, let them win.
2667		 */
2668		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2669			(void)cmpxchg(&full_sysidle_state,
2670				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2671		break;
2672
2673	default:
2674		break;
2675	}
2676}
2677
2678/*
2679 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2680 * back to the beginning.
2681 */
2682static void rcu_sysidle_cancel(void)
2683{
2684	smp_mb();
2685	ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2686}
2687
2688/*
2689 * Update the sysidle state based on the results of a force-quiescent-state
2690 * scan of the CPUs' dyntick-idle state.
2691 */
2692static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2693			       unsigned long maxj, bool gpkt)
2694{
2695	if (rsp != rcu_sysidle_state)
2696		return;  /* Wrong flavor, ignore. */
2697	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2698		return;  /* Running state machine from timekeeping CPU. */
2699	if (isidle)
2700		rcu_sysidle(maxj);    /* More idle! */
2701	else
2702		rcu_sysidle_cancel(); /* Idle is over. */
2703}
2704
2705/*
2706 * Wrapper for rcu_sysidle_report() when called from the grace-period
2707 * kthread's context.
2708 */
2709static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2710				  unsigned long maxj)
2711{
2712	rcu_sysidle_report(rsp, isidle, maxj, true);
2713}
2714
2715/* Callback and function for forcing an RCU grace period. */
2716struct rcu_sysidle_head {
2717	struct rcu_head rh;
2718	int inuse;
2719};
2720
2721static void rcu_sysidle_cb(struct rcu_head *rhp)
2722{
2723	struct rcu_sysidle_head *rshp;
2724
2725	/*
2726	 * The following memory barrier is needed to replace the
2727	 * memory barriers that would normally be in the memory
2728	 * allocator.
2729	 */
2730	smp_mb();  /* grace period precedes setting inuse. */
2731
2732	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2733	ACCESS_ONCE(rshp->inuse) = 0;
2734}
2735
2736/*
2737 * Check to see if the system is fully idle, other than the timekeeping CPU.
2738 * The caller must have disabled interrupts.
2739 */
2740bool rcu_sys_is_idle(void)
2741{
2742	static struct rcu_sysidle_head rsh;
2743	int rss = ACCESS_ONCE(full_sysidle_state);
2744
2745	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2746		return false;
2747
2748	/* Handle small-system case by doing a full scan of CPUs. */
2749	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2750		int oldrss = rss - 1;
2751
2752		/*
2753		 * One pass to advance to each state up to _FULL.
2754		 * Give up if any pass fails to advance the state.
2755		 */
2756		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2757			int cpu;
2758			bool isidle = true;
2759			unsigned long maxj = jiffies - ULONG_MAX / 4;
2760			struct rcu_data *rdp;
2761
2762			/* Scan all the CPUs looking for nonidle CPUs. */
2763			for_each_possible_cpu(cpu) {
2764				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2765				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2766				if (!isidle)
2767					break;
2768			}
2769			rcu_sysidle_report(rcu_sysidle_state,
2770					   isidle, maxj, false);
2771			oldrss = rss;
2772			rss = ACCESS_ONCE(full_sysidle_state);
2773		}
2774	}
2775
2776	/* If this is the first observation of an idle period, record it. */
2777	if (rss == RCU_SYSIDLE_FULL) {
2778		rss = cmpxchg(&full_sysidle_state,
2779			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2780		return rss == RCU_SYSIDLE_FULL;
2781	}
2782
2783	smp_mb(); /* ensure rss load happens before later caller actions. */
2784
2785	/* If already fully idle, tell the caller (in case of races). */
2786	if (rss == RCU_SYSIDLE_FULL_NOTED)
2787		return true;
2788
2789	/*
2790	 * If we aren't there yet, and a grace period is not in flight,
2791	 * initiate a grace period.  Either way, tell the caller that
2792	 * we are not there yet.  We use an xchg() rather than an assignment
2793	 * to make up for the memory barriers that would otherwise be
2794	 * provided by the memory allocator.
2795	 */
2796	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2797	    !rcu_gp_in_progress(rcu_sysidle_state) &&
2798	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2799		call_rcu(&rsh.rh, rcu_sysidle_cb);
2800	return false;
2801}
2802
2803/*
2804 * Initialize dynticks sysidle state for CPUs coming online.
2805 */
2806static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2807{
2808	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2809}
2810
2811#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2812
2813static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2814{
2815}
2816
2817static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2818{
2819}
2820
2821static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2822				  unsigned long *maxj)
2823{
2824}
2825
2826static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2827{
2828	return false;
2829}
2830
2831static void rcu_bind_gp_kthread(void)
2832{
2833}
2834
2835static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2836				  unsigned long maxj)
2837{
2838}
2839
2840static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2841{
2842}
2843
2844#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2845