tree_plugin.h revision 79a62f957e0b37c59610a96d018cc341aebb48f4
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27#include <linux/delay.h>
28#include <linux/gfp.h>
29#include <linux/oom.h>
30#include <linux/smpboot.h>
31#include "../time/tick-internal.h"
32
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
36#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37#else
38#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39#endif
40
41#ifdef CONFIG_RCU_NOCB_CPU
42static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
44static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
45static char __initdata nocb_buf[NR_CPUS * 5];
46#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47
48/*
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary.  If you like #ifdef, you
51 * will love this function.
52 */
53static void __init rcu_bootup_announce_oddness(void)
54{
55#ifdef CONFIG_RCU_TRACE
56	pr_info("\tRCU debugfs-based tracing is enabled.\n");
57#endif
58#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
59	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
60	       CONFIG_RCU_FANOUT);
61#endif
62#ifdef CONFIG_RCU_FANOUT_EXACT
63	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
64#endif
65#ifdef CONFIG_RCU_FAST_NO_HZ
66	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
67#endif
68#ifdef CONFIG_PROVE_RCU
69	pr_info("\tRCU lockdep checking is enabled.\n");
70#endif
71#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
72	pr_info("\tRCU torture testing starts during boot.\n");
73#endif
74#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
75	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
76#endif
77#if defined(CONFIG_RCU_CPU_STALL_INFO)
78	pr_info("\tAdditional per-CPU info printed with stalls.\n");
79#endif
80#if NUM_RCU_LVL_4 != 0
81	pr_info("\tFour-level hierarchy is enabled.\n");
82#endif
83	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
84		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
85	if (nr_cpu_ids != NR_CPUS)
86		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
87#ifdef CONFIG_RCU_NOCB_CPU
88#ifndef CONFIG_RCU_NOCB_CPU_NONE
89	if (!have_rcu_nocb_mask) {
90		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
91		have_rcu_nocb_mask = true;
92	}
93#ifdef CONFIG_RCU_NOCB_CPU_ZERO
94	pr_info("\tOffload RCU callbacks from CPU 0\n");
95	cpumask_set_cpu(0, rcu_nocb_mask);
96#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97#ifdef CONFIG_RCU_NOCB_CPU_ALL
98	pr_info("\tOffload RCU callbacks from all CPUs\n");
99	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
100#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
102	if (have_rcu_nocb_mask) {
103		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106				    rcu_nocb_mask);
107		}
108		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
109		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
110		if (rcu_nocb_poll)
111			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
112	}
113#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
114}
115
116#ifdef CONFIG_TREE_PREEMPT_RCU
117
118RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
119static struct rcu_state *rcu_state = &rcu_preempt_state;
120
121static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122
123/*
124 * Tell them what RCU they are running.
125 */
126static void __init rcu_bootup_announce(void)
127{
128	pr_info("Preemptible hierarchical RCU implementation.\n");
129	rcu_bootup_announce_oddness();
130}
131
132/*
133 * Return the number of RCU-preempt batches processed thus far
134 * for debug and statistics.
135 */
136long rcu_batches_completed_preempt(void)
137{
138	return rcu_preempt_state.completed;
139}
140EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141
142/*
143 * Return the number of RCU batches processed thus far for debug & stats.
144 */
145long rcu_batches_completed(void)
146{
147	return rcu_batches_completed_preempt();
148}
149EXPORT_SYMBOL_GPL(rcu_batches_completed);
150
151/*
152 * Force a quiescent state for preemptible RCU.
153 */
154void rcu_force_quiescent_state(void)
155{
156	force_quiescent_state(&rcu_preempt_state);
157}
158EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
159
160/*
161 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
162 * that this just means that the task currently running on the CPU is
163 * not in a quiescent state.  There might be any number of tasks blocked
164 * while in an RCU read-side critical section.
165 *
166 * Unlike the other rcu_*_qs() functions, callers to this function
167 * must disable irqs in order to protect the assignment to
168 * ->rcu_read_unlock_special.
169 */
170static void rcu_preempt_qs(int cpu)
171{
172	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
173
174	if (rdp->passed_quiesce == 0)
175		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
176	rdp->passed_quiesce = 1;
177	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
178}
179
180/*
181 * We have entered the scheduler, and the current task might soon be
182 * context-switched away from.  If this task is in an RCU read-side
183 * critical section, we will no longer be able to rely on the CPU to
184 * record that fact, so we enqueue the task on the blkd_tasks list.
185 * The task will dequeue itself when it exits the outermost enclosing
186 * RCU read-side critical section.  Therefore, the current grace period
187 * cannot be permitted to complete until the blkd_tasks list entries
188 * predating the current grace period drain, in other words, until
189 * rnp->gp_tasks becomes NULL.
190 *
191 * Caller must disable preemption.
192 */
193static void rcu_preempt_note_context_switch(int cpu)
194{
195	struct task_struct *t = current;
196	unsigned long flags;
197	struct rcu_data *rdp;
198	struct rcu_node *rnp;
199
200	if (t->rcu_read_lock_nesting > 0 &&
201	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
202
203		/* Possibly blocking in an RCU read-side critical section. */
204		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
205		rnp = rdp->mynode;
206		raw_spin_lock_irqsave(&rnp->lock, flags);
207		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
208		t->rcu_blocked_node = rnp;
209
210		/*
211		 * If this CPU has already checked in, then this task
212		 * will hold up the next grace period rather than the
213		 * current grace period.  Queue the task accordingly.
214		 * If the task is queued for the current grace period
215		 * (i.e., this CPU has not yet passed through a quiescent
216		 * state for the current grace period), then as long
217		 * as that task remains queued, the current grace period
218		 * cannot end.  Note that there is some uncertainty as
219		 * to exactly when the current grace period started.
220		 * We take a conservative approach, which can result
221		 * in unnecessarily waiting on tasks that started very
222		 * slightly after the current grace period began.  C'est
223		 * la vie!!!
224		 *
225		 * But first, note that the current CPU must still be
226		 * on line!
227		 */
228		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
229		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
230		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
231			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
232			rnp->gp_tasks = &t->rcu_node_entry;
233#ifdef CONFIG_RCU_BOOST
234			if (rnp->boost_tasks != NULL)
235				rnp->boost_tasks = rnp->gp_tasks;
236#endif /* #ifdef CONFIG_RCU_BOOST */
237		} else {
238			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
239			if (rnp->qsmask & rdp->grpmask)
240				rnp->gp_tasks = &t->rcu_node_entry;
241		}
242		trace_rcu_preempt_task(rdp->rsp->name,
243				       t->pid,
244				       (rnp->qsmask & rdp->grpmask)
245				       ? rnp->gpnum
246				       : rnp->gpnum + 1);
247		raw_spin_unlock_irqrestore(&rnp->lock, flags);
248	} else if (t->rcu_read_lock_nesting < 0 &&
249		   t->rcu_read_unlock_special) {
250
251		/*
252		 * Complete exit from RCU read-side critical section on
253		 * behalf of preempted instance of __rcu_read_unlock().
254		 */
255		rcu_read_unlock_special(t);
256	}
257
258	/*
259	 * Either we were not in an RCU read-side critical section to
260	 * begin with, or we have now recorded that critical section
261	 * globally.  Either way, we can now note a quiescent state
262	 * for this CPU.  Again, if we were in an RCU read-side critical
263	 * section, and if that critical section was blocking the current
264	 * grace period, then the fact that the task has been enqueued
265	 * means that we continue to block the current grace period.
266	 */
267	local_irq_save(flags);
268	rcu_preempt_qs(cpu);
269	local_irq_restore(flags);
270}
271
272/*
273 * Check for preempted RCU readers blocking the current grace period
274 * for the specified rcu_node structure.  If the caller needs a reliable
275 * answer, it must hold the rcu_node's ->lock.
276 */
277static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
278{
279	return rnp->gp_tasks != NULL;
280}
281
282/*
283 * Record a quiescent state for all tasks that were previously queued
284 * on the specified rcu_node structure and that were blocking the current
285 * RCU grace period.  The caller must hold the specified rnp->lock with
286 * irqs disabled, and this lock is released upon return, but irqs remain
287 * disabled.
288 */
289static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
290	__releases(rnp->lock)
291{
292	unsigned long mask;
293	struct rcu_node *rnp_p;
294
295	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
296		raw_spin_unlock_irqrestore(&rnp->lock, flags);
297		return;  /* Still need more quiescent states! */
298	}
299
300	rnp_p = rnp->parent;
301	if (rnp_p == NULL) {
302		/*
303		 * Either there is only one rcu_node in the tree,
304		 * or tasks were kicked up to root rcu_node due to
305		 * CPUs going offline.
306		 */
307		rcu_report_qs_rsp(&rcu_preempt_state, flags);
308		return;
309	}
310
311	/* Report up the rest of the hierarchy. */
312	mask = rnp->grpmask;
313	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
314	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
315	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
316}
317
318/*
319 * Advance a ->blkd_tasks-list pointer to the next entry, instead
320 * returning NULL if at the end of the list.
321 */
322static struct list_head *rcu_next_node_entry(struct task_struct *t,
323					     struct rcu_node *rnp)
324{
325	struct list_head *np;
326
327	np = t->rcu_node_entry.next;
328	if (np == &rnp->blkd_tasks)
329		np = NULL;
330	return np;
331}
332
333/*
334 * Handle special cases during rcu_read_unlock(), such as needing to
335 * notify RCU core processing or task having blocked during the RCU
336 * read-side critical section.
337 */
338void rcu_read_unlock_special(struct task_struct *t)
339{
340	int empty;
341	int empty_exp;
342	int empty_exp_now;
343	unsigned long flags;
344	struct list_head *np;
345#ifdef CONFIG_RCU_BOOST
346	struct rt_mutex *rbmp = NULL;
347#endif /* #ifdef CONFIG_RCU_BOOST */
348	struct rcu_node *rnp;
349	int special;
350
351	/* NMI handlers cannot block and cannot safely manipulate state. */
352	if (in_nmi())
353		return;
354
355	local_irq_save(flags);
356
357	/*
358	 * If RCU core is waiting for this CPU to exit critical section,
359	 * let it know that we have done so.
360	 */
361	special = t->rcu_read_unlock_special;
362	if (special & RCU_READ_UNLOCK_NEED_QS) {
363		rcu_preempt_qs(smp_processor_id());
364		if (!t->rcu_read_unlock_special) {
365			local_irq_restore(flags);
366			return;
367		}
368	}
369
370	/* Hardware IRQ handlers cannot block, complain if they get here. */
371	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
372		local_irq_restore(flags);
373		return;
374	}
375
376	/* Clean up if blocked during RCU read-side critical section. */
377	if (special & RCU_READ_UNLOCK_BLOCKED) {
378		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
379
380		/*
381		 * Remove this task from the list it blocked on.  The
382		 * task can migrate while we acquire the lock, but at
383		 * most one time.  So at most two passes through loop.
384		 */
385		for (;;) {
386			rnp = t->rcu_blocked_node;
387			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
388			if (rnp == t->rcu_blocked_node)
389				break;
390			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
391		}
392		empty = !rcu_preempt_blocked_readers_cgp(rnp);
393		empty_exp = !rcu_preempted_readers_exp(rnp);
394		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
395		np = rcu_next_node_entry(t, rnp);
396		list_del_init(&t->rcu_node_entry);
397		t->rcu_blocked_node = NULL;
398		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
399						rnp->gpnum, t->pid);
400		if (&t->rcu_node_entry == rnp->gp_tasks)
401			rnp->gp_tasks = np;
402		if (&t->rcu_node_entry == rnp->exp_tasks)
403			rnp->exp_tasks = np;
404#ifdef CONFIG_RCU_BOOST
405		if (&t->rcu_node_entry == rnp->boost_tasks)
406			rnp->boost_tasks = np;
407		/* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
408		if (t->rcu_boost_mutex) {
409			rbmp = t->rcu_boost_mutex;
410			t->rcu_boost_mutex = NULL;
411		}
412#endif /* #ifdef CONFIG_RCU_BOOST */
413
414		/*
415		 * If this was the last task on the current list, and if
416		 * we aren't waiting on any CPUs, report the quiescent state.
417		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
418		 * so we must take a snapshot of the expedited state.
419		 */
420		empty_exp_now = !rcu_preempted_readers_exp(rnp);
421		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
422			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
423							 rnp->gpnum,
424							 0, rnp->qsmask,
425							 rnp->level,
426							 rnp->grplo,
427							 rnp->grphi,
428							 !!rnp->gp_tasks);
429			rcu_report_unblock_qs_rnp(rnp, flags);
430		} else {
431			raw_spin_unlock_irqrestore(&rnp->lock, flags);
432		}
433
434#ifdef CONFIG_RCU_BOOST
435		/* Unboost if we were boosted. */
436		if (rbmp)
437			rt_mutex_unlock(rbmp);
438#endif /* #ifdef CONFIG_RCU_BOOST */
439
440		/*
441		 * If this was the last task on the expedited lists,
442		 * then we need to report up the rcu_node hierarchy.
443		 */
444		if (!empty_exp && empty_exp_now)
445			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
446	} else {
447		local_irq_restore(flags);
448	}
449}
450
451#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
452
453/*
454 * Dump detailed information for all tasks blocking the current RCU
455 * grace period on the specified rcu_node structure.
456 */
457static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
458{
459	unsigned long flags;
460	struct task_struct *t;
461
462	raw_spin_lock_irqsave(&rnp->lock, flags);
463	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
464		raw_spin_unlock_irqrestore(&rnp->lock, flags);
465		return;
466	}
467	t = list_entry(rnp->gp_tasks,
468		       struct task_struct, rcu_node_entry);
469	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
470		sched_show_task(t);
471	raw_spin_unlock_irqrestore(&rnp->lock, flags);
472}
473
474/*
475 * Dump detailed information for all tasks blocking the current RCU
476 * grace period.
477 */
478static void rcu_print_detail_task_stall(struct rcu_state *rsp)
479{
480	struct rcu_node *rnp = rcu_get_root(rsp);
481
482	rcu_print_detail_task_stall_rnp(rnp);
483	rcu_for_each_leaf_node(rsp, rnp)
484		rcu_print_detail_task_stall_rnp(rnp);
485}
486
487#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488
489static void rcu_print_detail_task_stall(struct rcu_state *rsp)
490{
491}
492
493#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
494
495#ifdef CONFIG_RCU_CPU_STALL_INFO
496
497static void rcu_print_task_stall_begin(struct rcu_node *rnp)
498{
499	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
500	       rnp->level, rnp->grplo, rnp->grphi);
501}
502
503static void rcu_print_task_stall_end(void)
504{
505	pr_cont("\n");
506}
507
508#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
509
510static void rcu_print_task_stall_begin(struct rcu_node *rnp)
511{
512}
513
514static void rcu_print_task_stall_end(void)
515{
516}
517
518#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
519
520/*
521 * Scan the current list of tasks blocked within RCU read-side critical
522 * sections, printing out the tid of each.
523 */
524static int rcu_print_task_stall(struct rcu_node *rnp)
525{
526	struct task_struct *t;
527	int ndetected = 0;
528
529	if (!rcu_preempt_blocked_readers_cgp(rnp))
530		return 0;
531	rcu_print_task_stall_begin(rnp);
532	t = list_entry(rnp->gp_tasks,
533		       struct task_struct, rcu_node_entry);
534	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
535		pr_cont(" P%d", t->pid);
536		ndetected++;
537	}
538	rcu_print_task_stall_end();
539	return ndetected;
540}
541
542/*
543 * Check that the list of blocked tasks for the newly completed grace
544 * period is in fact empty.  It is a serious bug to complete a grace
545 * period that still has RCU readers blocked!  This function must be
546 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
547 * must be held by the caller.
548 *
549 * Also, if there are blocked tasks on the list, they automatically
550 * block the newly created grace period, so set up ->gp_tasks accordingly.
551 */
552static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
553{
554	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
555	if (!list_empty(&rnp->blkd_tasks))
556		rnp->gp_tasks = rnp->blkd_tasks.next;
557	WARN_ON_ONCE(rnp->qsmask);
558}
559
560#ifdef CONFIG_HOTPLUG_CPU
561
562/*
563 * Handle tasklist migration for case in which all CPUs covered by the
564 * specified rcu_node have gone offline.  Move them up to the root
565 * rcu_node.  The reason for not just moving them to the immediate
566 * parent is to remove the need for rcu_read_unlock_special() to
567 * make more than two attempts to acquire the target rcu_node's lock.
568 * Returns true if there were tasks blocking the current RCU grace
569 * period.
570 *
571 * Returns 1 if there was previously a task blocking the current grace
572 * period on the specified rcu_node structure.
573 *
574 * The caller must hold rnp->lock with irqs disabled.
575 */
576static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
577				     struct rcu_node *rnp,
578				     struct rcu_data *rdp)
579{
580	struct list_head *lp;
581	struct list_head *lp_root;
582	int retval = 0;
583	struct rcu_node *rnp_root = rcu_get_root(rsp);
584	struct task_struct *t;
585
586	if (rnp == rnp_root) {
587		WARN_ONCE(1, "Last CPU thought to be offlined?");
588		return 0;  /* Shouldn't happen: at least one CPU online. */
589	}
590
591	/* If we are on an internal node, complain bitterly. */
592	WARN_ON_ONCE(rnp != rdp->mynode);
593
594	/*
595	 * Move tasks up to root rcu_node.  Don't try to get fancy for
596	 * this corner-case operation -- just put this node's tasks
597	 * at the head of the root node's list, and update the root node's
598	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
599	 * if non-NULL.  This might result in waiting for more tasks than
600	 * absolutely necessary, but this is a good performance/complexity
601	 * tradeoff.
602	 */
603	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
604		retval |= RCU_OFL_TASKS_NORM_GP;
605	if (rcu_preempted_readers_exp(rnp))
606		retval |= RCU_OFL_TASKS_EXP_GP;
607	lp = &rnp->blkd_tasks;
608	lp_root = &rnp_root->blkd_tasks;
609	while (!list_empty(lp)) {
610		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
611		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
612		list_del(&t->rcu_node_entry);
613		t->rcu_blocked_node = rnp_root;
614		list_add(&t->rcu_node_entry, lp_root);
615		if (&t->rcu_node_entry == rnp->gp_tasks)
616			rnp_root->gp_tasks = rnp->gp_tasks;
617		if (&t->rcu_node_entry == rnp->exp_tasks)
618			rnp_root->exp_tasks = rnp->exp_tasks;
619#ifdef CONFIG_RCU_BOOST
620		if (&t->rcu_node_entry == rnp->boost_tasks)
621			rnp_root->boost_tasks = rnp->boost_tasks;
622#endif /* #ifdef CONFIG_RCU_BOOST */
623		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
624	}
625
626	rnp->gp_tasks = NULL;
627	rnp->exp_tasks = NULL;
628#ifdef CONFIG_RCU_BOOST
629	rnp->boost_tasks = NULL;
630	/*
631	 * In case root is being boosted and leaf was not.  Make sure
632	 * that we boost the tasks blocking the current grace period
633	 * in this case.
634	 */
635	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
636	if (rnp_root->boost_tasks != NULL &&
637	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
638	    rnp_root->boost_tasks != rnp_root->exp_tasks)
639		rnp_root->boost_tasks = rnp_root->gp_tasks;
640	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
641#endif /* #ifdef CONFIG_RCU_BOOST */
642
643	return retval;
644}
645
646#endif /* #ifdef CONFIG_HOTPLUG_CPU */
647
648/*
649 * Check for a quiescent state from the current CPU.  When a task blocks,
650 * the task is recorded in the corresponding CPU's rcu_node structure,
651 * which is checked elsewhere.
652 *
653 * Caller must disable hard irqs.
654 */
655static void rcu_preempt_check_callbacks(int cpu)
656{
657	struct task_struct *t = current;
658
659	if (t->rcu_read_lock_nesting == 0) {
660		rcu_preempt_qs(cpu);
661		return;
662	}
663	if (t->rcu_read_lock_nesting > 0 &&
664	    per_cpu(rcu_preempt_data, cpu).qs_pending)
665		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
666}
667
668#ifdef CONFIG_RCU_BOOST
669
670static void rcu_preempt_do_callbacks(void)
671{
672	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
673}
674
675#endif /* #ifdef CONFIG_RCU_BOOST */
676
677/*
678 * Queue a preemptible-RCU callback for invocation after a grace period.
679 */
680void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
681{
682	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
683}
684EXPORT_SYMBOL_GPL(call_rcu);
685
686/*
687 * Queue an RCU callback for lazy invocation after a grace period.
688 * This will likely be later named something like "call_rcu_lazy()",
689 * but this change will require some way of tagging the lazy RCU
690 * callbacks in the list of pending callbacks.  Until then, this
691 * function may only be called from __kfree_rcu().
692 */
693void kfree_call_rcu(struct rcu_head *head,
694		    void (*func)(struct rcu_head *rcu))
695{
696	__call_rcu(head, func, &rcu_preempt_state, -1, 1);
697}
698EXPORT_SYMBOL_GPL(kfree_call_rcu);
699
700/**
701 * synchronize_rcu - wait until a grace period has elapsed.
702 *
703 * Control will return to the caller some time after a full grace
704 * period has elapsed, in other words after all currently executing RCU
705 * read-side critical sections have completed.  Note, however, that
706 * upon return from synchronize_rcu(), the caller might well be executing
707 * concurrently with new RCU read-side critical sections that began while
708 * synchronize_rcu() was waiting.  RCU read-side critical sections are
709 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
710 *
711 * See the description of synchronize_sched() for more detailed information
712 * on memory ordering guarantees.
713 */
714void synchronize_rcu(void)
715{
716	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
717			   !lock_is_held(&rcu_lock_map) &&
718			   !lock_is_held(&rcu_sched_lock_map),
719			   "Illegal synchronize_rcu() in RCU read-side critical section");
720	if (!rcu_scheduler_active)
721		return;
722	if (rcu_expedited)
723		synchronize_rcu_expedited();
724	else
725		wait_rcu_gp(call_rcu);
726}
727EXPORT_SYMBOL_GPL(synchronize_rcu);
728
729static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
730static unsigned long sync_rcu_preempt_exp_count;
731static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
732
733/*
734 * Return non-zero if there are any tasks in RCU read-side critical
735 * sections blocking the current preemptible-RCU expedited grace period.
736 * If there is no preemptible-RCU expedited grace period currently in
737 * progress, returns zero unconditionally.
738 */
739static int rcu_preempted_readers_exp(struct rcu_node *rnp)
740{
741	return rnp->exp_tasks != NULL;
742}
743
744/*
745 * return non-zero if there is no RCU expedited grace period in progress
746 * for the specified rcu_node structure, in other words, if all CPUs and
747 * tasks covered by the specified rcu_node structure have done their bit
748 * for the current expedited grace period.  Works only for preemptible
749 * RCU -- other RCU implementation use other means.
750 *
751 * Caller must hold sync_rcu_preempt_exp_mutex.
752 */
753static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
754{
755	return !rcu_preempted_readers_exp(rnp) &&
756	       ACCESS_ONCE(rnp->expmask) == 0;
757}
758
759/*
760 * Report the exit from RCU read-side critical section for the last task
761 * that queued itself during or before the current expedited preemptible-RCU
762 * grace period.  This event is reported either to the rcu_node structure on
763 * which the task was queued or to one of that rcu_node structure's ancestors,
764 * recursively up the tree.  (Calm down, calm down, we do the recursion
765 * iteratively!)
766 *
767 * Most callers will set the "wake" flag, but the task initiating the
768 * expedited grace period need not wake itself.
769 *
770 * Caller must hold sync_rcu_preempt_exp_mutex.
771 */
772static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
773			       bool wake)
774{
775	unsigned long flags;
776	unsigned long mask;
777
778	raw_spin_lock_irqsave(&rnp->lock, flags);
779	for (;;) {
780		if (!sync_rcu_preempt_exp_done(rnp)) {
781			raw_spin_unlock_irqrestore(&rnp->lock, flags);
782			break;
783		}
784		if (rnp->parent == NULL) {
785			raw_spin_unlock_irqrestore(&rnp->lock, flags);
786			if (wake) {
787				smp_mb(); /* EGP done before wake_up(). */
788				wake_up(&sync_rcu_preempt_exp_wq);
789			}
790			break;
791		}
792		mask = rnp->grpmask;
793		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
794		rnp = rnp->parent;
795		raw_spin_lock(&rnp->lock); /* irqs already disabled */
796		rnp->expmask &= ~mask;
797	}
798}
799
800/*
801 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
802 * grace period for the specified rcu_node structure.  If there are no such
803 * tasks, report it up the rcu_node hierarchy.
804 *
805 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
806 * CPU hotplug operations.
807 */
808static void
809sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
810{
811	unsigned long flags;
812	int must_wait = 0;
813
814	raw_spin_lock_irqsave(&rnp->lock, flags);
815	if (list_empty(&rnp->blkd_tasks)) {
816		raw_spin_unlock_irqrestore(&rnp->lock, flags);
817	} else {
818		rnp->exp_tasks = rnp->blkd_tasks.next;
819		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
820		must_wait = 1;
821	}
822	if (!must_wait)
823		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
824}
825
826/**
827 * synchronize_rcu_expedited - Brute-force RCU grace period
828 *
829 * Wait for an RCU-preempt grace period, but expedite it.  The basic
830 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
831 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
832 * significant time on all CPUs and is unfriendly to real-time workloads,
833 * so is thus not recommended for any sort of common-case code.
834 * In fact, if you are using synchronize_rcu_expedited() in a loop,
835 * please restructure your code to batch your updates, and then Use a
836 * single synchronize_rcu() instead.
837 *
838 * Note that it is illegal to call this function while holding any lock
839 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
840 * to call this function from a CPU-hotplug notifier.  Failing to observe
841 * these restriction will result in deadlock.
842 */
843void synchronize_rcu_expedited(void)
844{
845	unsigned long flags;
846	struct rcu_node *rnp;
847	struct rcu_state *rsp = &rcu_preempt_state;
848	unsigned long snap;
849	int trycount = 0;
850
851	smp_mb(); /* Caller's modifications seen first by other CPUs. */
852	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
853	smp_mb(); /* Above access cannot bleed into critical section. */
854
855	/*
856	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
857	 * operation that finds an rcu_node structure with tasks in the
858	 * process of being boosted will know that all tasks blocking
859	 * this expedited grace period will already be in the process of
860	 * being boosted.  This simplifies the process of moving tasks
861	 * from leaf to root rcu_node structures.
862	 */
863	get_online_cpus();
864
865	/*
866	 * Acquire lock, falling back to synchronize_rcu() if too many
867	 * lock-acquisition failures.  Of course, if someone does the
868	 * expedited grace period for us, just leave.
869	 */
870	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
871		if (ULONG_CMP_LT(snap,
872		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
873			put_online_cpus();
874			goto mb_ret; /* Others did our work for us. */
875		}
876		if (trycount++ < 10) {
877			udelay(trycount * num_online_cpus());
878		} else {
879			put_online_cpus();
880			wait_rcu_gp(call_rcu);
881			return;
882		}
883	}
884	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
885		put_online_cpus();
886		goto unlock_mb_ret; /* Others did our work for us. */
887	}
888
889	/* force all RCU readers onto ->blkd_tasks lists. */
890	synchronize_sched_expedited();
891
892	/* Initialize ->expmask for all non-leaf rcu_node structures. */
893	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
894		raw_spin_lock_irqsave(&rnp->lock, flags);
895		rnp->expmask = rnp->qsmaskinit;
896		raw_spin_unlock_irqrestore(&rnp->lock, flags);
897	}
898
899	/* Snapshot current state of ->blkd_tasks lists. */
900	rcu_for_each_leaf_node(rsp, rnp)
901		sync_rcu_preempt_exp_init(rsp, rnp);
902	if (NUM_RCU_NODES > 1)
903		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
904
905	put_online_cpus();
906
907	/* Wait for snapshotted ->blkd_tasks lists to drain. */
908	rnp = rcu_get_root(rsp);
909	wait_event(sync_rcu_preempt_exp_wq,
910		   sync_rcu_preempt_exp_done(rnp));
911
912	/* Clean up and exit. */
913	smp_mb(); /* ensure expedited GP seen before counter increment. */
914	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
915unlock_mb_ret:
916	mutex_unlock(&sync_rcu_preempt_exp_mutex);
917mb_ret:
918	smp_mb(); /* ensure subsequent action seen after grace period. */
919}
920EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
921
922/**
923 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
924 *
925 * Note that this primitive does not necessarily wait for an RCU grace period
926 * to complete.  For example, if there are no RCU callbacks queued anywhere
927 * in the system, then rcu_barrier() is within its rights to return
928 * immediately, without waiting for anything, much less an RCU grace period.
929 */
930void rcu_barrier(void)
931{
932	_rcu_barrier(&rcu_preempt_state);
933}
934EXPORT_SYMBOL_GPL(rcu_barrier);
935
936/*
937 * Initialize preemptible RCU's state structures.
938 */
939static void __init __rcu_init_preempt(void)
940{
941	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
942}
943
944/*
945 * Check for a task exiting while in a preemptible-RCU read-side
946 * critical section, clean up if so.  No need to issue warnings,
947 * as debug_check_no_locks_held() already does this if lockdep
948 * is enabled.
949 */
950void exit_rcu(void)
951{
952	struct task_struct *t = current;
953
954	if (likely(list_empty(&current->rcu_node_entry)))
955		return;
956	t->rcu_read_lock_nesting = 1;
957	barrier();
958	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
959	__rcu_read_unlock();
960}
961
962#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
963
964static struct rcu_state *rcu_state = &rcu_sched_state;
965
966/*
967 * Tell them what RCU they are running.
968 */
969static void __init rcu_bootup_announce(void)
970{
971	pr_info("Hierarchical RCU implementation.\n");
972	rcu_bootup_announce_oddness();
973}
974
975/*
976 * Return the number of RCU batches processed thus far for debug & stats.
977 */
978long rcu_batches_completed(void)
979{
980	return rcu_batches_completed_sched();
981}
982EXPORT_SYMBOL_GPL(rcu_batches_completed);
983
984/*
985 * Force a quiescent state for RCU, which, because there is no preemptible
986 * RCU, becomes the same as rcu-sched.
987 */
988void rcu_force_quiescent_state(void)
989{
990	rcu_sched_force_quiescent_state();
991}
992EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
993
994/*
995 * Because preemptible RCU does not exist, we never have to check for
996 * CPUs being in quiescent states.
997 */
998static void rcu_preempt_note_context_switch(int cpu)
999{
1000}
1001
1002/*
1003 * Because preemptible RCU does not exist, there are never any preempted
1004 * RCU readers.
1005 */
1006static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1007{
1008	return 0;
1009}
1010
1011#ifdef CONFIG_HOTPLUG_CPU
1012
1013/* Because preemptible RCU does not exist, no quieting of tasks. */
1014static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1015{
1016	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1017}
1018
1019#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1020
1021/*
1022 * Because preemptible RCU does not exist, we never have to check for
1023 * tasks blocked within RCU read-side critical sections.
1024 */
1025static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1026{
1027}
1028
1029/*
1030 * Because preemptible RCU does not exist, we never have to check for
1031 * tasks blocked within RCU read-side critical sections.
1032 */
1033static int rcu_print_task_stall(struct rcu_node *rnp)
1034{
1035	return 0;
1036}
1037
1038/*
1039 * Because there is no preemptible RCU, there can be no readers blocked,
1040 * so there is no need to check for blocked tasks.  So check only for
1041 * bogus qsmask values.
1042 */
1043static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1044{
1045	WARN_ON_ONCE(rnp->qsmask);
1046}
1047
1048#ifdef CONFIG_HOTPLUG_CPU
1049
1050/*
1051 * Because preemptible RCU does not exist, it never needs to migrate
1052 * tasks that were blocked within RCU read-side critical sections, and
1053 * such non-existent tasks cannot possibly have been blocking the current
1054 * grace period.
1055 */
1056static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1057				     struct rcu_node *rnp,
1058				     struct rcu_data *rdp)
1059{
1060	return 0;
1061}
1062
1063#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1064
1065/*
1066 * Because preemptible RCU does not exist, it never has any callbacks
1067 * to check.
1068 */
1069static void rcu_preempt_check_callbacks(int cpu)
1070{
1071}
1072
1073/*
1074 * Queue an RCU callback for lazy invocation after a grace period.
1075 * This will likely be later named something like "call_rcu_lazy()",
1076 * but this change will require some way of tagging the lazy RCU
1077 * callbacks in the list of pending callbacks.  Until then, this
1078 * function may only be called from __kfree_rcu().
1079 *
1080 * Because there is no preemptible RCU, we use RCU-sched instead.
1081 */
1082void kfree_call_rcu(struct rcu_head *head,
1083		    void (*func)(struct rcu_head *rcu))
1084{
1085	__call_rcu(head, func, &rcu_sched_state, -1, 1);
1086}
1087EXPORT_SYMBOL_GPL(kfree_call_rcu);
1088
1089/*
1090 * Wait for an rcu-preempt grace period, but make it happen quickly.
1091 * But because preemptible RCU does not exist, map to rcu-sched.
1092 */
1093void synchronize_rcu_expedited(void)
1094{
1095	synchronize_sched_expedited();
1096}
1097EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1098
1099#ifdef CONFIG_HOTPLUG_CPU
1100
1101/*
1102 * Because preemptible RCU does not exist, there is never any need to
1103 * report on tasks preempted in RCU read-side critical sections during
1104 * expedited RCU grace periods.
1105 */
1106static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1107			       bool wake)
1108{
1109}
1110
1111#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1112
1113/*
1114 * Because preemptible RCU does not exist, rcu_barrier() is just
1115 * another name for rcu_barrier_sched().
1116 */
1117void rcu_barrier(void)
1118{
1119	rcu_barrier_sched();
1120}
1121EXPORT_SYMBOL_GPL(rcu_barrier);
1122
1123/*
1124 * Because preemptible RCU does not exist, it need not be initialized.
1125 */
1126static void __init __rcu_init_preempt(void)
1127{
1128}
1129
1130/*
1131 * Because preemptible RCU does not exist, tasks cannot possibly exit
1132 * while in preemptible RCU read-side critical sections.
1133 */
1134void exit_rcu(void)
1135{
1136}
1137
1138#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1139
1140#ifdef CONFIG_RCU_BOOST
1141
1142#include "../locking/rtmutex_common.h"
1143
1144#ifdef CONFIG_RCU_TRACE
1145
1146static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1147{
1148	if (list_empty(&rnp->blkd_tasks))
1149		rnp->n_balk_blkd_tasks++;
1150	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1151		rnp->n_balk_exp_gp_tasks++;
1152	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1153		rnp->n_balk_boost_tasks++;
1154	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1155		rnp->n_balk_notblocked++;
1156	else if (rnp->gp_tasks != NULL &&
1157		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1158		rnp->n_balk_notyet++;
1159	else
1160		rnp->n_balk_nos++;
1161}
1162
1163#else /* #ifdef CONFIG_RCU_TRACE */
1164
1165static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1166{
1167}
1168
1169#endif /* #else #ifdef CONFIG_RCU_TRACE */
1170
1171static void rcu_wake_cond(struct task_struct *t, int status)
1172{
1173	/*
1174	 * If the thread is yielding, only wake it when this
1175	 * is invoked from idle
1176	 */
1177	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1178		wake_up_process(t);
1179}
1180
1181/*
1182 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1183 * or ->boost_tasks, advancing the pointer to the next task in the
1184 * ->blkd_tasks list.
1185 *
1186 * Note that irqs must be enabled: boosting the task can block.
1187 * Returns 1 if there are more tasks needing to be boosted.
1188 */
1189static int rcu_boost(struct rcu_node *rnp)
1190{
1191	unsigned long flags;
1192	struct rt_mutex mtx;
1193	struct task_struct *t;
1194	struct list_head *tb;
1195
1196	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1197		return 0;  /* Nothing left to boost. */
1198
1199	raw_spin_lock_irqsave(&rnp->lock, flags);
1200
1201	/*
1202	 * Recheck under the lock: all tasks in need of boosting
1203	 * might exit their RCU read-side critical sections on their own.
1204	 */
1205	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1206		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1207		return 0;
1208	}
1209
1210	/*
1211	 * Preferentially boost tasks blocking expedited grace periods.
1212	 * This cannot starve the normal grace periods because a second
1213	 * expedited grace period must boost all blocked tasks, including
1214	 * those blocking the pre-existing normal grace period.
1215	 */
1216	if (rnp->exp_tasks != NULL) {
1217		tb = rnp->exp_tasks;
1218		rnp->n_exp_boosts++;
1219	} else {
1220		tb = rnp->boost_tasks;
1221		rnp->n_normal_boosts++;
1222	}
1223	rnp->n_tasks_boosted++;
1224
1225	/*
1226	 * We boost task t by manufacturing an rt_mutex that appears to
1227	 * be held by task t.  We leave a pointer to that rt_mutex where
1228	 * task t can find it, and task t will release the mutex when it
1229	 * exits its outermost RCU read-side critical section.  Then
1230	 * simply acquiring this artificial rt_mutex will boost task
1231	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1232	 *
1233	 * Note that task t must acquire rnp->lock to remove itself from
1234	 * the ->blkd_tasks list, which it will do from exit() if from
1235	 * nowhere else.  We therefore are guaranteed that task t will
1236	 * stay around at least until we drop rnp->lock.  Note that
1237	 * rnp->lock also resolves races between our priority boosting
1238	 * and task t's exiting its outermost RCU read-side critical
1239	 * section.
1240	 */
1241	t = container_of(tb, struct task_struct, rcu_node_entry);
1242	rt_mutex_init_proxy_locked(&mtx, t);
1243	t->rcu_boost_mutex = &mtx;
1244	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1245	rt_mutex_lock(&mtx);  /* Side effect: boosts task t's priority. */
1246	rt_mutex_unlock(&mtx);  /* Keep lockdep happy. */
1247
1248	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1249	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1250}
1251
1252/*
1253 * Priority-boosting kthread.  One per leaf rcu_node and one for the
1254 * root rcu_node.
1255 */
1256static int rcu_boost_kthread(void *arg)
1257{
1258	struct rcu_node *rnp = (struct rcu_node *)arg;
1259	int spincnt = 0;
1260	int more2boost;
1261
1262	trace_rcu_utilization(TPS("Start boost kthread@init"));
1263	for (;;) {
1264		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1265		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1266		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1267		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1268		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1269		more2boost = rcu_boost(rnp);
1270		if (more2boost)
1271			spincnt++;
1272		else
1273			spincnt = 0;
1274		if (spincnt > 10) {
1275			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1276			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1277			schedule_timeout_interruptible(2);
1278			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1279			spincnt = 0;
1280		}
1281	}
1282	/* NOTREACHED */
1283	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1284	return 0;
1285}
1286
1287/*
1288 * Check to see if it is time to start boosting RCU readers that are
1289 * blocking the current grace period, and, if so, tell the per-rcu_node
1290 * kthread to start boosting them.  If there is an expedited grace
1291 * period in progress, it is always time to boost.
1292 *
1293 * The caller must hold rnp->lock, which this function releases.
1294 * The ->boost_kthread_task is immortal, so we don't need to worry
1295 * about it going away.
1296 */
1297static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1298{
1299	struct task_struct *t;
1300
1301	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1302		rnp->n_balk_exp_gp_tasks++;
1303		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1304		return;
1305	}
1306	if (rnp->exp_tasks != NULL ||
1307	    (rnp->gp_tasks != NULL &&
1308	     rnp->boost_tasks == NULL &&
1309	     rnp->qsmask == 0 &&
1310	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1311		if (rnp->exp_tasks == NULL)
1312			rnp->boost_tasks = rnp->gp_tasks;
1313		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1314		t = rnp->boost_kthread_task;
1315		if (t)
1316			rcu_wake_cond(t, rnp->boost_kthread_status);
1317	} else {
1318		rcu_initiate_boost_trace(rnp);
1319		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1320	}
1321}
1322
1323/*
1324 * Wake up the per-CPU kthread to invoke RCU callbacks.
1325 */
1326static void invoke_rcu_callbacks_kthread(void)
1327{
1328	unsigned long flags;
1329
1330	local_irq_save(flags);
1331	__this_cpu_write(rcu_cpu_has_work, 1);
1332	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1333	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1334		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1335			      __this_cpu_read(rcu_cpu_kthread_status));
1336	}
1337	local_irq_restore(flags);
1338}
1339
1340/*
1341 * Is the current CPU running the RCU-callbacks kthread?
1342 * Caller must have preemption disabled.
1343 */
1344static bool rcu_is_callbacks_kthread(void)
1345{
1346	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1347}
1348
1349#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1350
1351/*
1352 * Do priority-boost accounting for the start of a new grace period.
1353 */
1354static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1355{
1356	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1357}
1358
1359/*
1360 * Create an RCU-boost kthread for the specified node if one does not
1361 * already exist.  We only create this kthread for preemptible RCU.
1362 * Returns zero if all is well, a negated errno otherwise.
1363 */
1364static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1365						 struct rcu_node *rnp)
1366{
1367	int rnp_index = rnp - &rsp->node[0];
1368	unsigned long flags;
1369	struct sched_param sp;
1370	struct task_struct *t;
1371
1372	if (&rcu_preempt_state != rsp)
1373		return 0;
1374
1375	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1376		return 0;
1377
1378	rsp->boost = 1;
1379	if (rnp->boost_kthread_task != NULL)
1380		return 0;
1381	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1382			   "rcub/%d", rnp_index);
1383	if (IS_ERR(t))
1384		return PTR_ERR(t);
1385	raw_spin_lock_irqsave(&rnp->lock, flags);
1386	rnp->boost_kthread_task = t;
1387	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1388	sp.sched_priority = RCU_BOOST_PRIO;
1389	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1390	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1391	return 0;
1392}
1393
1394static void rcu_kthread_do_work(void)
1395{
1396	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1397	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1398	rcu_preempt_do_callbacks();
1399}
1400
1401static void rcu_cpu_kthread_setup(unsigned int cpu)
1402{
1403	struct sched_param sp;
1404
1405	sp.sched_priority = RCU_KTHREAD_PRIO;
1406	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1407}
1408
1409static void rcu_cpu_kthread_park(unsigned int cpu)
1410{
1411	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1412}
1413
1414static int rcu_cpu_kthread_should_run(unsigned int cpu)
1415{
1416	return __this_cpu_read(rcu_cpu_has_work);
1417}
1418
1419/*
1420 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1421 * RCU softirq used in flavors and configurations of RCU that do not
1422 * support RCU priority boosting.
1423 */
1424static void rcu_cpu_kthread(unsigned int cpu)
1425{
1426	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1427	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1428	int spincnt;
1429
1430	for (spincnt = 0; spincnt < 10; spincnt++) {
1431		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1432		local_bh_disable();
1433		*statusp = RCU_KTHREAD_RUNNING;
1434		this_cpu_inc(rcu_cpu_kthread_loops);
1435		local_irq_disable();
1436		work = *workp;
1437		*workp = 0;
1438		local_irq_enable();
1439		if (work)
1440			rcu_kthread_do_work();
1441		local_bh_enable();
1442		if (*workp == 0) {
1443			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1444			*statusp = RCU_KTHREAD_WAITING;
1445			return;
1446		}
1447	}
1448	*statusp = RCU_KTHREAD_YIELDING;
1449	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1450	schedule_timeout_interruptible(2);
1451	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1452	*statusp = RCU_KTHREAD_WAITING;
1453}
1454
1455/*
1456 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1457 * served by the rcu_node in question.  The CPU hotplug lock is still
1458 * held, so the value of rnp->qsmaskinit will be stable.
1459 *
1460 * We don't include outgoingcpu in the affinity set, use -1 if there is
1461 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1462 * this function allows the kthread to execute on any CPU.
1463 */
1464static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1465{
1466	struct task_struct *t = rnp->boost_kthread_task;
1467	unsigned long mask = rnp->qsmaskinit;
1468	cpumask_var_t cm;
1469	int cpu;
1470
1471	if (!t)
1472		return;
1473	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1474		return;
1475	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1476		if ((mask & 0x1) && cpu != outgoingcpu)
1477			cpumask_set_cpu(cpu, cm);
1478	if (cpumask_weight(cm) == 0) {
1479		cpumask_setall(cm);
1480		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1481			cpumask_clear_cpu(cpu, cm);
1482		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1483	}
1484	set_cpus_allowed_ptr(t, cm);
1485	free_cpumask_var(cm);
1486}
1487
1488static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1489	.store			= &rcu_cpu_kthread_task,
1490	.thread_should_run	= rcu_cpu_kthread_should_run,
1491	.thread_fn		= rcu_cpu_kthread,
1492	.thread_comm		= "rcuc/%u",
1493	.setup			= rcu_cpu_kthread_setup,
1494	.park			= rcu_cpu_kthread_park,
1495};
1496
1497/*
1498 * Spawn all kthreads -- called as soon as the scheduler is running.
1499 */
1500static int __init rcu_spawn_kthreads(void)
1501{
1502	struct rcu_node *rnp;
1503	int cpu;
1504
1505	rcu_scheduler_fully_active = 1;
1506	for_each_possible_cpu(cpu)
1507		per_cpu(rcu_cpu_has_work, cpu) = 0;
1508	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1509	rnp = rcu_get_root(rcu_state);
1510	(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1511	if (NUM_RCU_NODES > 1) {
1512		rcu_for_each_leaf_node(rcu_state, rnp)
1513			(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1514	}
1515	return 0;
1516}
1517early_initcall(rcu_spawn_kthreads);
1518
1519static void rcu_prepare_kthreads(int cpu)
1520{
1521	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1522	struct rcu_node *rnp = rdp->mynode;
1523
1524	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1525	if (rcu_scheduler_fully_active)
1526		(void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
1527}
1528
1529#else /* #ifdef CONFIG_RCU_BOOST */
1530
1531static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1532{
1533	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1534}
1535
1536static void invoke_rcu_callbacks_kthread(void)
1537{
1538	WARN_ON_ONCE(1);
1539}
1540
1541static bool rcu_is_callbacks_kthread(void)
1542{
1543	return false;
1544}
1545
1546static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1547{
1548}
1549
1550static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1551{
1552}
1553
1554static int __init rcu_scheduler_really_started(void)
1555{
1556	rcu_scheduler_fully_active = 1;
1557	return 0;
1558}
1559early_initcall(rcu_scheduler_really_started);
1560
1561static void rcu_prepare_kthreads(int cpu)
1562{
1563}
1564
1565#endif /* #else #ifdef CONFIG_RCU_BOOST */
1566
1567#if !defined(CONFIG_RCU_FAST_NO_HZ)
1568
1569/*
1570 * Check to see if any future RCU-related work will need to be done
1571 * by the current CPU, even if none need be done immediately, returning
1572 * 1 if so.  This function is part of the RCU implementation; it is -not-
1573 * an exported member of the RCU API.
1574 *
1575 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1576 * any flavor of RCU.
1577 */
1578int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1579{
1580	*delta_jiffies = ULONG_MAX;
1581	return rcu_cpu_has_callbacks(cpu, NULL);
1582}
1583
1584/*
1585 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1586 * after it.
1587 */
1588static void rcu_cleanup_after_idle(int cpu)
1589{
1590}
1591
1592/*
1593 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1594 * is nothing.
1595 */
1596static void rcu_prepare_for_idle(int cpu)
1597{
1598}
1599
1600/*
1601 * Don't bother keeping a running count of the number of RCU callbacks
1602 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1603 */
1604static void rcu_idle_count_callbacks_posted(void)
1605{
1606}
1607
1608#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1609
1610/*
1611 * This code is invoked when a CPU goes idle, at which point we want
1612 * to have the CPU do everything required for RCU so that it can enter
1613 * the energy-efficient dyntick-idle mode.  This is handled by a
1614 * state machine implemented by rcu_prepare_for_idle() below.
1615 *
1616 * The following three proprocessor symbols control this state machine:
1617 *
1618 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1619 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1620 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1621 *	benchmarkers who might otherwise be tempted to set this to a large
1622 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1623 *	system.  And if you are -that- concerned about energy efficiency,
1624 *	just power the system down and be done with it!
1625 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1626 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1627 *	callbacks pending.  Setting this too high can OOM your system.
1628 *
1629 * The values below work well in practice.  If future workloads require
1630 * adjustment, they can be converted into kernel config parameters, though
1631 * making the state machine smarter might be a better option.
1632 */
1633#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1634#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1635
1636static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1637module_param(rcu_idle_gp_delay, int, 0644);
1638static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1639module_param(rcu_idle_lazy_gp_delay, int, 0644);
1640
1641extern int tick_nohz_enabled;
1642
1643/*
1644 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1645 * only if it has been awhile since the last time we did so.  Afterwards,
1646 * if there are any callbacks ready for immediate invocation, return true.
1647 */
1648static bool rcu_try_advance_all_cbs(void)
1649{
1650	bool cbs_ready = false;
1651	struct rcu_data *rdp;
1652	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1653	struct rcu_node *rnp;
1654	struct rcu_state *rsp;
1655
1656	/* Exit early if we advanced recently. */
1657	if (jiffies == rdtp->last_advance_all)
1658		return 0;
1659	rdtp->last_advance_all = jiffies;
1660
1661	for_each_rcu_flavor(rsp) {
1662		rdp = this_cpu_ptr(rsp->rda);
1663		rnp = rdp->mynode;
1664
1665		/*
1666		 * Don't bother checking unless a grace period has
1667		 * completed since we last checked and there are
1668		 * callbacks not yet ready to invoke.
1669		 */
1670		if (rdp->completed != rnp->completed &&
1671		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1672			note_gp_changes(rsp, rdp);
1673
1674		if (cpu_has_callbacks_ready_to_invoke(rdp))
1675			cbs_ready = true;
1676	}
1677	return cbs_ready;
1678}
1679
1680/*
1681 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1682 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1683 * caller to set the timeout based on whether or not there are non-lazy
1684 * callbacks.
1685 *
1686 * The caller must have disabled interrupts.
1687 */
1688int rcu_needs_cpu(int cpu, unsigned long *dj)
1689{
1690	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1691
1692	/* Snapshot to detect later posting of non-lazy callback. */
1693	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1694
1695	/* If no callbacks, RCU doesn't need the CPU. */
1696	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1697		*dj = ULONG_MAX;
1698		return 0;
1699	}
1700
1701	/* Attempt to advance callbacks. */
1702	if (rcu_try_advance_all_cbs()) {
1703		/* Some ready to invoke, so initiate later invocation. */
1704		invoke_rcu_core();
1705		return 1;
1706	}
1707	rdtp->last_accelerate = jiffies;
1708
1709	/* Request timer delay depending on laziness, and round. */
1710	if (!rdtp->all_lazy) {
1711		*dj = round_up(rcu_idle_gp_delay + jiffies,
1712			       rcu_idle_gp_delay) - jiffies;
1713	} else {
1714		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1715	}
1716	return 0;
1717}
1718
1719/*
1720 * Prepare a CPU for idle from an RCU perspective.  The first major task
1721 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1722 * The second major task is to check to see if a non-lazy callback has
1723 * arrived at a CPU that previously had only lazy callbacks.  The third
1724 * major task is to accelerate (that is, assign grace-period numbers to)
1725 * any recently arrived callbacks.
1726 *
1727 * The caller must have disabled interrupts.
1728 */
1729static void rcu_prepare_for_idle(int cpu)
1730{
1731	struct rcu_data *rdp;
1732	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1733	struct rcu_node *rnp;
1734	struct rcu_state *rsp;
1735	int tne;
1736
1737	/* Handle nohz enablement switches conservatively. */
1738	tne = ACCESS_ONCE(tick_nohz_enabled);
1739	if (tne != rdtp->tick_nohz_enabled_snap) {
1740		if (rcu_cpu_has_callbacks(cpu, NULL))
1741			invoke_rcu_core(); /* force nohz to see update. */
1742		rdtp->tick_nohz_enabled_snap = tne;
1743		return;
1744	}
1745	if (!tne)
1746		return;
1747
1748	/* If this is a no-CBs CPU, no callbacks, just return. */
1749	if (rcu_is_nocb_cpu(cpu))
1750		return;
1751
1752	/*
1753	 * If a non-lazy callback arrived at a CPU having only lazy
1754	 * callbacks, invoke RCU core for the side-effect of recalculating
1755	 * idle duration on re-entry to idle.
1756	 */
1757	if (rdtp->all_lazy &&
1758	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1759		rdtp->all_lazy = false;
1760		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1761		invoke_rcu_core();
1762		return;
1763	}
1764
1765	/*
1766	 * If we have not yet accelerated this jiffy, accelerate all
1767	 * callbacks on this CPU.
1768	 */
1769	if (rdtp->last_accelerate == jiffies)
1770		return;
1771	rdtp->last_accelerate = jiffies;
1772	for_each_rcu_flavor(rsp) {
1773		rdp = per_cpu_ptr(rsp->rda, cpu);
1774		if (!*rdp->nxttail[RCU_DONE_TAIL])
1775			continue;
1776		rnp = rdp->mynode;
1777		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1778		rcu_accelerate_cbs(rsp, rnp, rdp);
1779		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1780	}
1781}
1782
1783/*
1784 * Clean up for exit from idle.  Attempt to advance callbacks based on
1785 * any grace periods that elapsed while the CPU was idle, and if any
1786 * callbacks are now ready to invoke, initiate invocation.
1787 */
1788static void rcu_cleanup_after_idle(int cpu)
1789{
1790
1791	if (rcu_is_nocb_cpu(cpu))
1792		return;
1793	if (rcu_try_advance_all_cbs())
1794		invoke_rcu_core();
1795}
1796
1797/*
1798 * Keep a running count of the number of non-lazy callbacks posted
1799 * on this CPU.  This running counter (which is never decremented) allows
1800 * rcu_prepare_for_idle() to detect when something out of the idle loop
1801 * posts a callback, even if an equal number of callbacks are invoked.
1802 * Of course, callbacks should only be posted from within a trace event
1803 * designed to be called from idle or from within RCU_NONIDLE().
1804 */
1805static void rcu_idle_count_callbacks_posted(void)
1806{
1807	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1808}
1809
1810/*
1811 * Data for flushing lazy RCU callbacks at OOM time.
1812 */
1813static atomic_t oom_callback_count;
1814static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1815
1816/*
1817 * RCU OOM callback -- decrement the outstanding count and deliver the
1818 * wake-up if we are the last one.
1819 */
1820static void rcu_oom_callback(struct rcu_head *rhp)
1821{
1822	if (atomic_dec_and_test(&oom_callback_count))
1823		wake_up(&oom_callback_wq);
1824}
1825
1826/*
1827 * Post an rcu_oom_notify callback on the current CPU if it has at
1828 * least one lazy callback.  This will unnecessarily post callbacks
1829 * to CPUs that already have a non-lazy callback at the end of their
1830 * callback list, but this is an infrequent operation, so accept some
1831 * extra overhead to keep things simple.
1832 */
1833static void rcu_oom_notify_cpu(void *unused)
1834{
1835	struct rcu_state *rsp;
1836	struct rcu_data *rdp;
1837
1838	for_each_rcu_flavor(rsp) {
1839		rdp = __this_cpu_ptr(rsp->rda);
1840		if (rdp->qlen_lazy != 0) {
1841			atomic_inc(&oom_callback_count);
1842			rsp->call(&rdp->oom_head, rcu_oom_callback);
1843		}
1844	}
1845}
1846
1847/*
1848 * If low on memory, ensure that each CPU has a non-lazy callback.
1849 * This will wake up CPUs that have only lazy callbacks, in turn
1850 * ensuring that they free up the corresponding memory in a timely manner.
1851 * Because an uncertain amount of memory will be freed in some uncertain
1852 * timeframe, we do not claim to have freed anything.
1853 */
1854static int rcu_oom_notify(struct notifier_block *self,
1855			  unsigned long notused, void *nfreed)
1856{
1857	int cpu;
1858
1859	/* Wait for callbacks from earlier instance to complete. */
1860	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1861	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1862
1863	/*
1864	 * Prevent premature wakeup: ensure that all increments happen
1865	 * before there is a chance of the counter reaching zero.
1866	 */
1867	atomic_set(&oom_callback_count, 1);
1868
1869	get_online_cpus();
1870	for_each_online_cpu(cpu) {
1871		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1872		cond_resched();
1873	}
1874	put_online_cpus();
1875
1876	/* Unconditionally decrement: no need to wake ourselves up. */
1877	atomic_dec(&oom_callback_count);
1878
1879	return NOTIFY_OK;
1880}
1881
1882static struct notifier_block rcu_oom_nb = {
1883	.notifier_call = rcu_oom_notify
1884};
1885
1886static int __init rcu_register_oom_notifier(void)
1887{
1888	register_oom_notifier(&rcu_oom_nb);
1889	return 0;
1890}
1891early_initcall(rcu_register_oom_notifier);
1892
1893#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1894
1895#ifdef CONFIG_RCU_CPU_STALL_INFO
1896
1897#ifdef CONFIG_RCU_FAST_NO_HZ
1898
1899static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1900{
1901	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1902	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1903
1904	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1905		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1906		ulong2long(nlpd),
1907		rdtp->all_lazy ? 'L' : '.',
1908		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1909}
1910
1911#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1912
1913static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1914{
1915	*cp = '\0';
1916}
1917
1918#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1919
1920/* Initiate the stall-info list. */
1921static void print_cpu_stall_info_begin(void)
1922{
1923	pr_cont("\n");
1924}
1925
1926/*
1927 * Print out diagnostic information for the specified stalled CPU.
1928 *
1929 * If the specified CPU is aware of the current RCU grace period
1930 * (flavor specified by rsp), then print the number of scheduling
1931 * clock interrupts the CPU has taken during the time that it has
1932 * been aware.  Otherwise, print the number of RCU grace periods
1933 * that this CPU is ignorant of, for example, "1" if the CPU was
1934 * aware of the previous grace period.
1935 *
1936 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1937 */
1938static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1939{
1940	char fast_no_hz[72];
1941	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1942	struct rcu_dynticks *rdtp = rdp->dynticks;
1943	char *ticks_title;
1944	unsigned long ticks_value;
1945
1946	if (rsp->gpnum == rdp->gpnum) {
1947		ticks_title = "ticks this GP";
1948		ticks_value = rdp->ticks_this_gp;
1949	} else {
1950		ticks_title = "GPs behind";
1951		ticks_value = rsp->gpnum - rdp->gpnum;
1952	}
1953	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1954	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1955	       cpu, ticks_value, ticks_title,
1956	       atomic_read(&rdtp->dynticks) & 0xfff,
1957	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1958	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1959	       fast_no_hz);
1960}
1961
1962/* Terminate the stall-info list. */
1963static void print_cpu_stall_info_end(void)
1964{
1965	pr_err("\t");
1966}
1967
1968/* Zero ->ticks_this_gp for all flavors of RCU. */
1969static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1970{
1971	rdp->ticks_this_gp = 0;
1972	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1973}
1974
1975/* Increment ->ticks_this_gp for all flavors of RCU. */
1976static void increment_cpu_stall_ticks(void)
1977{
1978	struct rcu_state *rsp;
1979
1980	for_each_rcu_flavor(rsp)
1981		__this_cpu_ptr(rsp->rda)->ticks_this_gp++;
1982}
1983
1984#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1985
1986static void print_cpu_stall_info_begin(void)
1987{
1988	pr_cont(" {");
1989}
1990
1991static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1992{
1993	pr_cont(" %d", cpu);
1994}
1995
1996static void print_cpu_stall_info_end(void)
1997{
1998	pr_cont("} ");
1999}
2000
2001static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2002{
2003}
2004
2005static void increment_cpu_stall_ticks(void)
2006{
2007}
2008
2009#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
2010
2011#ifdef CONFIG_RCU_NOCB_CPU
2012
2013/*
2014 * Offload callback processing from the boot-time-specified set of CPUs
2015 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
2016 * kthread created that pulls the callbacks from the corresponding CPU,
2017 * waits for a grace period to elapse, and invokes the callbacks.
2018 * The no-CBs CPUs do a wake_up() on their kthread when they insert
2019 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2020 * has been specified, in which case each kthread actively polls its
2021 * CPU.  (Which isn't so great for energy efficiency, but which does
2022 * reduce RCU's overhead on that CPU.)
2023 *
2024 * This is intended to be used in conjunction with Frederic Weisbecker's
2025 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2026 * running CPU-bound user-mode computations.
2027 *
2028 * Offloading of callback processing could also in theory be used as
2029 * an energy-efficiency measure because CPUs with no RCU callbacks
2030 * queued are more aggressive about entering dyntick-idle mode.
2031 */
2032
2033
2034/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2035static int __init rcu_nocb_setup(char *str)
2036{
2037	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2038	have_rcu_nocb_mask = true;
2039	cpulist_parse(str, rcu_nocb_mask);
2040	return 1;
2041}
2042__setup("rcu_nocbs=", rcu_nocb_setup);
2043
2044static int __init parse_rcu_nocb_poll(char *arg)
2045{
2046	rcu_nocb_poll = 1;
2047	return 0;
2048}
2049early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2050
2051/*
2052 * Do any no-CBs CPUs need another grace period?
2053 *
2054 * Interrupts must be disabled.  If the caller does not hold the root
2055 * rnp_node structure's ->lock, the results are advisory only.
2056 */
2057static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2058{
2059	struct rcu_node *rnp = rcu_get_root(rsp);
2060
2061	return rnp->need_future_gp[(ACCESS_ONCE(rnp->completed) + 1) & 0x1];
2062}
2063
2064/*
2065 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2066 * grace period.
2067 */
2068static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2069{
2070	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2071}
2072
2073/*
2074 * Set the root rcu_node structure's ->need_future_gp field
2075 * based on the sum of those of all rcu_node structures.  This does
2076 * double-count the root rcu_node structure's requests, but this
2077 * is necessary to handle the possibility of a rcu_nocb_kthread()
2078 * having awakened during the time that the rcu_node structures
2079 * were being updated for the end of the previous grace period.
2080 */
2081static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2082{
2083	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2084}
2085
2086static void rcu_init_one_nocb(struct rcu_node *rnp)
2087{
2088	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2089	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2090}
2091
2092/* Is the specified CPU a no-CPUs CPU? */
2093bool rcu_is_nocb_cpu(int cpu)
2094{
2095	if (have_rcu_nocb_mask)
2096		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2097	return false;
2098}
2099
2100/*
2101 * Enqueue the specified string of rcu_head structures onto the specified
2102 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2103 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2104 * counts are supplied by rhcount and rhcount_lazy.
2105 *
2106 * If warranted, also wake up the kthread servicing this CPUs queues.
2107 */
2108static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2109				    struct rcu_head *rhp,
2110				    struct rcu_head **rhtp,
2111				    int rhcount, int rhcount_lazy,
2112				    unsigned long flags)
2113{
2114	int len;
2115	struct rcu_head **old_rhpp;
2116	struct task_struct *t;
2117
2118	/* Enqueue the callback on the nocb list and update counts. */
2119	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2120	ACCESS_ONCE(*old_rhpp) = rhp;
2121	atomic_long_add(rhcount, &rdp->nocb_q_count);
2122	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2123
2124	/* If we are not being polled and there is a kthread, awaken it ... */
2125	t = ACCESS_ONCE(rdp->nocb_kthread);
2126	if (rcu_nocb_poll || !t) {
2127		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2128				    TPS("WakeNotPoll"));
2129		return;
2130	}
2131	len = atomic_long_read(&rdp->nocb_q_count);
2132	if (old_rhpp == &rdp->nocb_head) {
2133		if (!irqs_disabled_flags(flags)) {
2134			wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
2135			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2136					    TPS("WakeEmpty"));
2137		} else {
2138			rdp->nocb_defer_wakeup = true;
2139			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2140					    TPS("WakeEmptyIsDeferred"));
2141		}
2142		rdp->qlen_last_fqs_check = 0;
2143	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2144		wake_up_process(t); /* ... or if many callbacks queued. */
2145		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2146		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2147	} else {
2148		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2149	}
2150	return;
2151}
2152
2153/*
2154 * This is a helper for __call_rcu(), which invokes this when the normal
2155 * callback queue is inoperable.  If this is not a no-CBs CPU, this
2156 * function returns failure back to __call_rcu(), which can complain
2157 * appropriately.
2158 *
2159 * Otherwise, this function queues the callback where the corresponding
2160 * "rcuo" kthread can find it.
2161 */
2162static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2163			    bool lazy, unsigned long flags)
2164{
2165
2166	if (!rcu_is_nocb_cpu(rdp->cpu))
2167		return 0;
2168	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2169	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2170		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2171					 (unsigned long)rhp->func,
2172					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2173					 -atomic_long_read(&rdp->nocb_q_count));
2174	else
2175		trace_rcu_callback(rdp->rsp->name, rhp,
2176				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2177				   -atomic_long_read(&rdp->nocb_q_count));
2178	return 1;
2179}
2180
2181/*
2182 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2183 * not a no-CBs CPU.
2184 */
2185static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2186						     struct rcu_data *rdp,
2187						     unsigned long flags)
2188{
2189	long ql = rsp->qlen;
2190	long qll = rsp->qlen_lazy;
2191
2192	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2193	if (!rcu_is_nocb_cpu(smp_processor_id()))
2194		return 0;
2195	rsp->qlen = 0;
2196	rsp->qlen_lazy = 0;
2197
2198	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2199	if (rsp->orphan_donelist != NULL) {
2200		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2201					rsp->orphan_donetail, ql, qll, flags);
2202		ql = qll = 0;
2203		rsp->orphan_donelist = NULL;
2204		rsp->orphan_donetail = &rsp->orphan_donelist;
2205	}
2206	if (rsp->orphan_nxtlist != NULL) {
2207		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2208					rsp->orphan_nxttail, ql, qll, flags);
2209		ql = qll = 0;
2210		rsp->orphan_nxtlist = NULL;
2211		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2212	}
2213	return 1;
2214}
2215
2216/*
2217 * If necessary, kick off a new grace period, and either way wait
2218 * for a subsequent grace period to complete.
2219 */
2220static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2221{
2222	unsigned long c;
2223	bool d;
2224	unsigned long flags;
2225	struct rcu_node *rnp = rdp->mynode;
2226
2227	raw_spin_lock_irqsave(&rnp->lock, flags);
2228	c = rcu_start_future_gp(rnp, rdp);
2229	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2230
2231	/*
2232	 * Wait for the grace period.  Do so interruptibly to avoid messing
2233	 * up the load average.
2234	 */
2235	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2236	for (;;) {
2237		wait_event_interruptible(
2238			rnp->nocb_gp_wq[c & 0x1],
2239			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2240		if (likely(d))
2241			break;
2242		flush_signals(current);
2243		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2244	}
2245	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2246	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2247}
2248
2249/*
2250 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2251 * callbacks queued by the corresponding no-CBs CPU.
2252 */
2253static int rcu_nocb_kthread(void *arg)
2254{
2255	int c, cl;
2256	bool firsttime = 1;
2257	struct rcu_head *list;
2258	struct rcu_head *next;
2259	struct rcu_head **tail;
2260	struct rcu_data *rdp = arg;
2261
2262	/* Each pass through this loop invokes one batch of callbacks */
2263	for (;;) {
2264		/* If not polling, wait for next batch of callbacks. */
2265		if (!rcu_nocb_poll) {
2266			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2267					    TPS("Sleep"));
2268			wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
2269			/* Memory barrier provide by xchg() below. */
2270		} else if (firsttime) {
2271			firsttime = 0;
2272			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2273					    TPS("Poll"));
2274		}
2275		list = ACCESS_ONCE(rdp->nocb_head);
2276		if (!list) {
2277			if (!rcu_nocb_poll)
2278				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2279						    TPS("WokeEmpty"));
2280			schedule_timeout_interruptible(1);
2281			flush_signals(current);
2282			continue;
2283		}
2284		firsttime = 1;
2285		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2286				    TPS("WokeNonEmpty"));
2287
2288		/*
2289		 * Extract queued callbacks, update counts, and wait
2290		 * for a grace period to elapse.
2291		 */
2292		ACCESS_ONCE(rdp->nocb_head) = NULL;
2293		tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2294		c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2295		cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2296		ACCESS_ONCE(rdp->nocb_p_count) += c;
2297		ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
2298		rcu_nocb_wait_gp(rdp);
2299
2300		/* Each pass through the following loop invokes a callback. */
2301		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2302		c = cl = 0;
2303		while (list) {
2304			next = list->next;
2305			/* Wait for enqueuing to complete, if needed. */
2306			while (next == NULL && &list->next != tail) {
2307				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2308						    TPS("WaitQueue"));
2309				schedule_timeout_interruptible(1);
2310				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2311						    TPS("WokeQueue"));
2312				next = list->next;
2313			}
2314			debug_rcu_head_unqueue(list);
2315			local_bh_disable();
2316			if (__rcu_reclaim(rdp->rsp->name, list))
2317				cl++;
2318			c++;
2319			local_bh_enable();
2320			list = next;
2321		}
2322		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2323		ACCESS_ONCE(rdp->nocb_p_count) -= c;
2324		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
2325		rdp->n_nocbs_invoked += c;
2326	}
2327	return 0;
2328}
2329
2330/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2331static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2332{
2333	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2334}
2335
2336/* Do a deferred wakeup of rcu_nocb_kthread(). */
2337static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2338{
2339	if (!rcu_nocb_need_deferred_wakeup(rdp))
2340		return;
2341	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2342	wake_up(&rdp->nocb_wq);
2343	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2344}
2345
2346/* Initialize per-rcu_data variables for no-CBs CPUs. */
2347static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2348{
2349	rdp->nocb_tail = &rdp->nocb_head;
2350	init_waitqueue_head(&rdp->nocb_wq);
2351}
2352
2353/* Create a kthread for each RCU flavor for each no-CBs CPU. */
2354static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2355{
2356	int cpu;
2357	struct rcu_data *rdp;
2358	struct task_struct *t;
2359
2360	if (rcu_nocb_mask == NULL)
2361		return;
2362	for_each_cpu(cpu, rcu_nocb_mask) {
2363		rdp = per_cpu_ptr(rsp->rda, cpu);
2364		t = kthread_run(rcu_nocb_kthread, rdp,
2365				"rcuo%c/%d", rsp->abbr, cpu);
2366		BUG_ON(IS_ERR(t));
2367		ACCESS_ONCE(rdp->nocb_kthread) = t;
2368	}
2369}
2370
2371/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2372static bool init_nocb_callback_list(struct rcu_data *rdp)
2373{
2374	if (rcu_nocb_mask == NULL ||
2375	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2376		return false;
2377	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2378	return true;
2379}
2380
2381#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2382
2383static int rcu_nocb_needs_gp(struct rcu_state *rsp)
2384{
2385	return 0;
2386}
2387
2388static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2389{
2390}
2391
2392static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2393{
2394}
2395
2396static void rcu_init_one_nocb(struct rcu_node *rnp)
2397{
2398}
2399
2400static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2401			    bool lazy, unsigned long flags)
2402{
2403	return 0;
2404}
2405
2406static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2407						     struct rcu_data *rdp,
2408						     unsigned long flags)
2409{
2410	return 0;
2411}
2412
2413static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2414{
2415}
2416
2417static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2418{
2419	return false;
2420}
2421
2422static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2423{
2424}
2425
2426static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2427{
2428}
2429
2430static bool init_nocb_callback_list(struct rcu_data *rdp)
2431{
2432	return false;
2433}
2434
2435#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2436
2437/*
2438 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2439 * arbitrarily long period of time with the scheduling-clock tick turned
2440 * off.  RCU will be paying attention to this CPU because it is in the
2441 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2442 * machine because the scheduling-clock tick has been disabled.  Therefore,
2443 * if an adaptive-ticks CPU is failing to respond to the current grace
2444 * period and has not be idle from an RCU perspective, kick it.
2445 */
2446static void rcu_kick_nohz_cpu(int cpu)
2447{
2448#ifdef CONFIG_NO_HZ_FULL
2449	if (tick_nohz_full_cpu(cpu))
2450		smp_send_reschedule(cpu);
2451#endif /* #ifdef CONFIG_NO_HZ_FULL */
2452}
2453
2454
2455#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2456
2457/*
2458 * Define RCU flavor that holds sysidle state.  This needs to be the
2459 * most active flavor of RCU.
2460 */
2461#ifdef CONFIG_PREEMPT_RCU
2462static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2463#else /* #ifdef CONFIG_PREEMPT_RCU */
2464static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2465#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2466
2467static int full_sysidle_state;		/* Current system-idle state. */
2468#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2469#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2470#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2471#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2472#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2473
2474/*
2475 * Invoked to note exit from irq or task transition to idle.  Note that
2476 * usermode execution does -not- count as idle here!  After all, we want
2477 * to detect full-system idle states, not RCU quiescent states and grace
2478 * periods.  The caller must have disabled interrupts.
2479 */
2480static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2481{
2482	unsigned long j;
2483
2484	/* Adjust nesting, check for fully idle. */
2485	if (irq) {
2486		rdtp->dynticks_idle_nesting--;
2487		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2488		if (rdtp->dynticks_idle_nesting != 0)
2489			return;  /* Still not fully idle. */
2490	} else {
2491		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2492		    DYNTICK_TASK_NEST_VALUE) {
2493			rdtp->dynticks_idle_nesting = 0;
2494		} else {
2495			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2496			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2497			return;  /* Still not fully idle. */
2498		}
2499	}
2500
2501	/* Record start of fully idle period. */
2502	j = jiffies;
2503	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2504	smp_mb__before_atomic_inc();
2505	atomic_inc(&rdtp->dynticks_idle);
2506	smp_mb__after_atomic_inc();
2507	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2508}
2509
2510/*
2511 * Unconditionally force exit from full system-idle state.  This is
2512 * invoked when a normal CPU exits idle, but must be called separately
2513 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2514 * is that the timekeeping CPU is permitted to take scheduling-clock
2515 * interrupts while the system is in system-idle state, and of course
2516 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2517 * interrupt from any other type of interrupt.
2518 */
2519void rcu_sysidle_force_exit(void)
2520{
2521	int oldstate = ACCESS_ONCE(full_sysidle_state);
2522	int newoldstate;
2523
2524	/*
2525	 * Each pass through the following loop attempts to exit full
2526	 * system-idle state.  If contention proves to be a problem,
2527	 * a trylock-based contention tree could be used here.
2528	 */
2529	while (oldstate > RCU_SYSIDLE_SHORT) {
2530		newoldstate = cmpxchg(&full_sysidle_state,
2531				      oldstate, RCU_SYSIDLE_NOT);
2532		if (oldstate == newoldstate &&
2533		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2534			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2535			return; /* We cleared it, done! */
2536		}
2537		oldstate = newoldstate;
2538	}
2539	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2540}
2541
2542/*
2543 * Invoked to note entry to irq or task transition from idle.  Note that
2544 * usermode execution does -not- count as idle here!  The caller must
2545 * have disabled interrupts.
2546 */
2547static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2548{
2549	/* Adjust nesting, check for already non-idle. */
2550	if (irq) {
2551		rdtp->dynticks_idle_nesting++;
2552		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2553		if (rdtp->dynticks_idle_nesting != 1)
2554			return; /* Already non-idle. */
2555	} else {
2556		/*
2557		 * Allow for irq misnesting.  Yes, it really is possible
2558		 * to enter an irq handler then never leave it, and maybe
2559		 * also vice versa.  Handle both possibilities.
2560		 */
2561		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2562			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2563			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2564			return; /* Already non-idle. */
2565		} else {
2566			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2567		}
2568	}
2569
2570	/* Record end of idle period. */
2571	smp_mb__before_atomic_inc();
2572	atomic_inc(&rdtp->dynticks_idle);
2573	smp_mb__after_atomic_inc();
2574	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2575
2576	/*
2577	 * If we are the timekeeping CPU, we are permitted to be non-idle
2578	 * during a system-idle state.  This must be the case, because
2579	 * the timekeeping CPU has to take scheduling-clock interrupts
2580	 * during the time that the system is transitioning to full
2581	 * system-idle state.  This means that the timekeeping CPU must
2582	 * invoke rcu_sysidle_force_exit() directly if it does anything
2583	 * more than take a scheduling-clock interrupt.
2584	 */
2585	if (smp_processor_id() == tick_do_timer_cpu)
2586		return;
2587
2588	/* Update system-idle state: We are clearly no longer fully idle! */
2589	rcu_sysidle_force_exit();
2590}
2591
2592/*
2593 * Check to see if the current CPU is idle.  Note that usermode execution
2594 * does not count as idle.  The caller must have disabled interrupts.
2595 */
2596static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2597				  unsigned long *maxj)
2598{
2599	int cur;
2600	unsigned long j;
2601	struct rcu_dynticks *rdtp = rdp->dynticks;
2602
2603	/*
2604	 * If some other CPU has already reported non-idle, if this is
2605	 * not the flavor of RCU that tracks sysidle state, or if this
2606	 * is an offline or the timekeeping CPU, nothing to do.
2607	 */
2608	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2609	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2610		return;
2611	if (rcu_gp_in_progress(rdp->rsp))
2612		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2613
2614	/* Pick up current idle and NMI-nesting counter and check. */
2615	cur = atomic_read(&rdtp->dynticks_idle);
2616	if (cur & 0x1) {
2617		*isidle = false; /* We are not idle! */
2618		return;
2619	}
2620	smp_mb(); /* Read counters before timestamps. */
2621
2622	/* Pick up timestamps. */
2623	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2624	/* If this CPU entered idle more recently, update maxj timestamp. */
2625	if (ULONG_CMP_LT(*maxj, j))
2626		*maxj = j;
2627}
2628
2629/*
2630 * Is this the flavor of RCU that is handling full-system idle?
2631 */
2632static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2633{
2634	return rsp == rcu_sysidle_state;
2635}
2636
2637/*
2638 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2639 * timekeeping CPU.
2640 */
2641static void rcu_bind_gp_kthread(void)
2642{
2643	int cpu = ACCESS_ONCE(tick_do_timer_cpu);
2644
2645	if (cpu < 0 || cpu >= nr_cpu_ids)
2646		return;
2647	if (raw_smp_processor_id() != cpu)
2648		set_cpus_allowed_ptr(current, cpumask_of(cpu));
2649}
2650
2651/*
2652 * Return a delay in jiffies based on the number of CPUs, rcu_node
2653 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2654 * systems more time to transition to full-idle state in order to
2655 * avoid the cache thrashing that otherwise occur on the state variable.
2656 * Really small systems (less than a couple of tens of CPUs) should
2657 * instead use a single global atomically incremented counter, and later
2658 * versions of this will automatically reconfigure themselves accordingly.
2659 */
2660static unsigned long rcu_sysidle_delay(void)
2661{
2662	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2663		return 0;
2664	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2665}
2666
2667/*
2668 * Advance the full-system-idle state.  This is invoked when all of
2669 * the non-timekeeping CPUs are idle.
2670 */
2671static void rcu_sysidle(unsigned long j)
2672{
2673	/* Check the current state. */
2674	switch (ACCESS_ONCE(full_sysidle_state)) {
2675	case RCU_SYSIDLE_NOT:
2676
2677		/* First time all are idle, so note a short idle period. */
2678		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2679		break;
2680
2681	case RCU_SYSIDLE_SHORT:
2682
2683		/*
2684		 * Idle for a bit, time to advance to next state?
2685		 * cmpxchg failure means race with non-idle, let them win.
2686		 */
2687		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2688			(void)cmpxchg(&full_sysidle_state,
2689				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2690		break;
2691
2692	case RCU_SYSIDLE_LONG:
2693
2694		/*
2695		 * Do an additional check pass before advancing to full.
2696		 * cmpxchg failure means race with non-idle, let them win.
2697		 */
2698		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2699			(void)cmpxchg(&full_sysidle_state,
2700				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2701		break;
2702
2703	default:
2704		break;
2705	}
2706}
2707
2708/*
2709 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2710 * back to the beginning.
2711 */
2712static void rcu_sysidle_cancel(void)
2713{
2714	smp_mb();
2715	ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2716}
2717
2718/*
2719 * Update the sysidle state based on the results of a force-quiescent-state
2720 * scan of the CPUs' dyntick-idle state.
2721 */
2722static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2723			       unsigned long maxj, bool gpkt)
2724{
2725	if (rsp != rcu_sysidle_state)
2726		return;  /* Wrong flavor, ignore. */
2727	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2728		return;  /* Running state machine from timekeeping CPU. */
2729	if (isidle)
2730		rcu_sysidle(maxj);    /* More idle! */
2731	else
2732		rcu_sysidle_cancel(); /* Idle is over. */
2733}
2734
2735/*
2736 * Wrapper for rcu_sysidle_report() when called from the grace-period
2737 * kthread's context.
2738 */
2739static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2740				  unsigned long maxj)
2741{
2742	rcu_sysidle_report(rsp, isidle, maxj, true);
2743}
2744
2745/* Callback and function for forcing an RCU grace period. */
2746struct rcu_sysidle_head {
2747	struct rcu_head rh;
2748	int inuse;
2749};
2750
2751static void rcu_sysidle_cb(struct rcu_head *rhp)
2752{
2753	struct rcu_sysidle_head *rshp;
2754
2755	/*
2756	 * The following memory barrier is needed to replace the
2757	 * memory barriers that would normally be in the memory
2758	 * allocator.
2759	 */
2760	smp_mb();  /* grace period precedes setting inuse. */
2761
2762	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2763	ACCESS_ONCE(rshp->inuse) = 0;
2764}
2765
2766/*
2767 * Check to see if the system is fully idle, other than the timekeeping CPU.
2768 * The caller must have disabled interrupts.
2769 */
2770bool rcu_sys_is_idle(void)
2771{
2772	static struct rcu_sysidle_head rsh;
2773	int rss = ACCESS_ONCE(full_sysidle_state);
2774
2775	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2776		return false;
2777
2778	/* Handle small-system case by doing a full scan of CPUs. */
2779	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2780		int oldrss = rss - 1;
2781
2782		/*
2783		 * One pass to advance to each state up to _FULL.
2784		 * Give up if any pass fails to advance the state.
2785		 */
2786		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2787			int cpu;
2788			bool isidle = true;
2789			unsigned long maxj = jiffies - ULONG_MAX / 4;
2790			struct rcu_data *rdp;
2791
2792			/* Scan all the CPUs looking for nonidle CPUs. */
2793			for_each_possible_cpu(cpu) {
2794				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2795				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2796				if (!isidle)
2797					break;
2798			}
2799			rcu_sysidle_report(rcu_sysidle_state,
2800					   isidle, maxj, false);
2801			oldrss = rss;
2802			rss = ACCESS_ONCE(full_sysidle_state);
2803		}
2804	}
2805
2806	/* If this is the first observation of an idle period, record it. */
2807	if (rss == RCU_SYSIDLE_FULL) {
2808		rss = cmpxchg(&full_sysidle_state,
2809			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2810		return rss == RCU_SYSIDLE_FULL;
2811	}
2812
2813	smp_mb(); /* ensure rss load happens before later caller actions. */
2814
2815	/* If already fully idle, tell the caller (in case of races). */
2816	if (rss == RCU_SYSIDLE_FULL_NOTED)
2817		return true;
2818
2819	/*
2820	 * If we aren't there yet, and a grace period is not in flight,
2821	 * initiate a grace period.  Either way, tell the caller that
2822	 * we are not there yet.  We use an xchg() rather than an assignment
2823	 * to make up for the memory barriers that would otherwise be
2824	 * provided by the memory allocator.
2825	 */
2826	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2827	    !rcu_gp_in_progress(rcu_sysidle_state) &&
2828	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2829		call_rcu(&rsh.rh, rcu_sysidle_cb);
2830	return false;
2831}
2832
2833/*
2834 * Initialize dynticks sysidle state for CPUs coming online.
2835 */
2836static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2837{
2838	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2839}
2840
2841#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2842
2843static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2844{
2845}
2846
2847static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2848{
2849}
2850
2851static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2852				  unsigned long *maxj)
2853{
2854}
2855
2856static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2857{
2858	return false;
2859}
2860
2861static void rcu_bind_gp_kthread(void)
2862{
2863}
2864
2865static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2866				  unsigned long maxj)
2867{
2868}
2869
2870static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2871{
2872}
2873
2874#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2875