tree_plugin.h revision d0bc90fd37e50e4ea22c51c26947fd78c2a7a6c2
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
27#include <linux/delay.h>
28#include <linux/gfp.h>
29#include <linux/oom.h>
30#include <linux/smpboot.h>
31#include "../time/tick-internal.h"
32
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
36#include "../locking/rtmutex_common.h"
37#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38#else
39#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40#endif
41
42#ifdef CONFIG_RCU_NOCB_CPU
43static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
45static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
46static char __initdata nocb_buf[NR_CPUS * 5];
47#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
49/*
50 * Check the RCU kernel configuration parameters and print informative
51 * messages about anything out of the ordinary.  If you like #ifdef, you
52 * will love this function.
53 */
54static void __init rcu_bootup_announce_oddness(void)
55{
56#ifdef CONFIG_RCU_TRACE
57	pr_info("\tRCU debugfs-based tracing is enabled.\n");
58#endif
59#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
60	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
61	       CONFIG_RCU_FANOUT);
62#endif
63#ifdef CONFIG_RCU_FANOUT_EXACT
64	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
65#endif
66#ifdef CONFIG_RCU_FAST_NO_HZ
67	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
68#endif
69#ifdef CONFIG_PROVE_RCU
70	pr_info("\tRCU lockdep checking is enabled.\n");
71#endif
72#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
73	pr_info("\tRCU torture testing starts during boot.\n");
74#endif
75#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
76	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
77#endif
78#if defined(CONFIG_RCU_CPU_STALL_INFO)
79	pr_info("\tAdditional per-CPU info printed with stalls.\n");
80#endif
81#if NUM_RCU_LVL_4 != 0
82	pr_info("\tFour-level hierarchy is enabled.\n");
83#endif
84	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
85		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
86	if (nr_cpu_ids != NR_CPUS)
87		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
88#ifdef CONFIG_RCU_NOCB_CPU
89#ifndef CONFIG_RCU_NOCB_CPU_NONE
90	if (!have_rcu_nocb_mask) {
91		zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
92		have_rcu_nocb_mask = true;
93	}
94#ifdef CONFIG_RCU_NOCB_CPU_ZERO
95	pr_info("\tOffload RCU callbacks from CPU 0\n");
96	cpumask_set_cpu(0, rcu_nocb_mask);
97#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
98#ifdef CONFIG_RCU_NOCB_CPU_ALL
99	pr_info("\tOffload RCU callbacks from all CPUs\n");
100	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
101#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
102#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
103	if (have_rcu_nocb_mask) {
104		if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
105			pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
106			cpumask_and(rcu_nocb_mask, cpu_possible_mask,
107				    rcu_nocb_mask);
108		}
109		cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
110		pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
111		if (rcu_nocb_poll)
112			pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
113	}
114#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
115}
116
117#ifdef CONFIG_TREE_PREEMPT_RCU
118
119RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
120static struct rcu_state *rcu_state_p = &rcu_preempt_state;
121
122static int rcu_preempted_readers_exp(struct rcu_node *rnp);
123
124/*
125 * Tell them what RCU they are running.
126 */
127static void __init rcu_bootup_announce(void)
128{
129	pr_info("Preemptible hierarchical RCU implementation.\n");
130	rcu_bootup_announce_oddness();
131}
132
133/*
134 * Return the number of RCU-preempt batches processed thus far
135 * for debug and statistics.
136 */
137static long rcu_batches_completed_preempt(void)
138{
139	return rcu_preempt_state.completed;
140}
141EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
142
143/*
144 * Return the number of RCU batches processed thus far for debug & stats.
145 */
146long rcu_batches_completed(void)
147{
148	return rcu_batches_completed_preempt();
149}
150EXPORT_SYMBOL_GPL(rcu_batches_completed);
151
152/*
153 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
154 * that this just means that the task currently running on the CPU is
155 * not in a quiescent state.  There might be any number of tasks blocked
156 * while in an RCU read-side critical section.
157 *
158 * Unlike the other rcu_*_qs() functions, callers to this function
159 * must disable irqs in order to protect the assignment to
160 * ->rcu_read_unlock_special.
161 */
162static void rcu_preempt_qs(int cpu)
163{
164	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
165
166	if (rdp->passed_quiesce == 0)
167		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
168	rdp->passed_quiesce = 1;
169	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
170}
171
172/*
173 * We have entered the scheduler, and the current task might soon be
174 * context-switched away from.  If this task is in an RCU read-side
175 * critical section, we will no longer be able to rely on the CPU to
176 * record that fact, so we enqueue the task on the blkd_tasks list.
177 * The task will dequeue itself when it exits the outermost enclosing
178 * RCU read-side critical section.  Therefore, the current grace period
179 * cannot be permitted to complete until the blkd_tasks list entries
180 * predating the current grace period drain, in other words, until
181 * rnp->gp_tasks becomes NULL.
182 *
183 * Caller must disable preemption.
184 */
185static void rcu_preempt_note_context_switch(int cpu)
186{
187	struct task_struct *t = current;
188	unsigned long flags;
189	struct rcu_data *rdp;
190	struct rcu_node *rnp;
191
192	if (t->rcu_read_lock_nesting > 0 &&
193	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
194
195		/* Possibly blocking in an RCU read-side critical section. */
196		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
197		rnp = rdp->mynode;
198		raw_spin_lock_irqsave(&rnp->lock, flags);
199		smp_mb__after_unlock_lock();
200		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
201		t->rcu_blocked_node = rnp;
202
203		/*
204		 * If this CPU has already checked in, then this task
205		 * will hold up the next grace period rather than the
206		 * current grace period.  Queue the task accordingly.
207		 * If the task is queued for the current grace period
208		 * (i.e., this CPU has not yet passed through a quiescent
209		 * state for the current grace period), then as long
210		 * as that task remains queued, the current grace period
211		 * cannot end.  Note that there is some uncertainty as
212		 * to exactly when the current grace period started.
213		 * We take a conservative approach, which can result
214		 * in unnecessarily waiting on tasks that started very
215		 * slightly after the current grace period began.  C'est
216		 * la vie!!!
217		 *
218		 * But first, note that the current CPU must still be
219		 * on line!
220		 */
221		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
222		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
223		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
224			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
225			rnp->gp_tasks = &t->rcu_node_entry;
226#ifdef CONFIG_RCU_BOOST
227			if (rnp->boost_tasks != NULL)
228				rnp->boost_tasks = rnp->gp_tasks;
229#endif /* #ifdef CONFIG_RCU_BOOST */
230		} else {
231			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
232			if (rnp->qsmask & rdp->grpmask)
233				rnp->gp_tasks = &t->rcu_node_entry;
234		}
235		trace_rcu_preempt_task(rdp->rsp->name,
236				       t->pid,
237				       (rnp->qsmask & rdp->grpmask)
238				       ? rnp->gpnum
239				       : rnp->gpnum + 1);
240		raw_spin_unlock_irqrestore(&rnp->lock, flags);
241	} else if (t->rcu_read_lock_nesting < 0 &&
242		   t->rcu_read_unlock_special) {
243
244		/*
245		 * Complete exit from RCU read-side critical section on
246		 * behalf of preempted instance of __rcu_read_unlock().
247		 */
248		rcu_read_unlock_special(t);
249	}
250
251	/*
252	 * Either we were not in an RCU read-side critical section to
253	 * begin with, or we have now recorded that critical section
254	 * globally.  Either way, we can now note a quiescent state
255	 * for this CPU.  Again, if we were in an RCU read-side critical
256	 * section, and if that critical section was blocking the current
257	 * grace period, then the fact that the task has been enqueued
258	 * means that we continue to block the current grace period.
259	 */
260	local_irq_save(flags);
261	rcu_preempt_qs(cpu);
262	local_irq_restore(flags);
263}
264
265/*
266 * Check for preempted RCU readers blocking the current grace period
267 * for the specified rcu_node structure.  If the caller needs a reliable
268 * answer, it must hold the rcu_node's ->lock.
269 */
270static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
271{
272	return rnp->gp_tasks != NULL;
273}
274
275/*
276 * Record a quiescent state for all tasks that were previously queued
277 * on the specified rcu_node structure and that were blocking the current
278 * RCU grace period.  The caller must hold the specified rnp->lock with
279 * irqs disabled, and this lock is released upon return, but irqs remain
280 * disabled.
281 */
282static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
283	__releases(rnp->lock)
284{
285	unsigned long mask;
286	struct rcu_node *rnp_p;
287
288	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
289		raw_spin_unlock_irqrestore(&rnp->lock, flags);
290		return;  /* Still need more quiescent states! */
291	}
292
293	rnp_p = rnp->parent;
294	if (rnp_p == NULL) {
295		/*
296		 * Either there is only one rcu_node in the tree,
297		 * or tasks were kicked up to root rcu_node due to
298		 * CPUs going offline.
299		 */
300		rcu_report_qs_rsp(&rcu_preempt_state, flags);
301		return;
302	}
303
304	/* Report up the rest of the hierarchy. */
305	mask = rnp->grpmask;
306	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
307	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
308	smp_mb__after_unlock_lock();
309	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
310}
311
312/*
313 * Advance a ->blkd_tasks-list pointer to the next entry, instead
314 * returning NULL if at the end of the list.
315 */
316static struct list_head *rcu_next_node_entry(struct task_struct *t,
317					     struct rcu_node *rnp)
318{
319	struct list_head *np;
320
321	np = t->rcu_node_entry.next;
322	if (np == &rnp->blkd_tasks)
323		np = NULL;
324	return np;
325}
326
327/*
328 * Handle special cases during rcu_read_unlock(), such as needing to
329 * notify RCU core processing or task having blocked during the RCU
330 * read-side critical section.
331 */
332void rcu_read_unlock_special(struct task_struct *t)
333{
334	int empty;
335	int empty_exp;
336	int empty_exp_now;
337	unsigned long flags;
338	struct list_head *np;
339#ifdef CONFIG_RCU_BOOST
340	bool drop_boost_mutex = false;
341#endif /* #ifdef CONFIG_RCU_BOOST */
342	struct rcu_node *rnp;
343	int special;
344
345	/* NMI handlers cannot block and cannot safely manipulate state. */
346	if (in_nmi())
347		return;
348
349	local_irq_save(flags);
350
351	/*
352	 * If RCU core is waiting for this CPU to exit critical section,
353	 * let it know that we have done so.
354	 */
355	special = t->rcu_read_unlock_special;
356	if (special & RCU_READ_UNLOCK_NEED_QS) {
357		rcu_preempt_qs(smp_processor_id());
358		if (!t->rcu_read_unlock_special) {
359			local_irq_restore(flags);
360			return;
361		}
362	}
363
364	/* Hardware IRQ handlers cannot block, complain if they get here. */
365	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
366		local_irq_restore(flags);
367		return;
368	}
369
370	/* Clean up if blocked during RCU read-side critical section. */
371	if (special & RCU_READ_UNLOCK_BLOCKED) {
372		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
373
374		/*
375		 * Remove this task from the list it blocked on.  The
376		 * task can migrate while we acquire the lock, but at
377		 * most one time.  So at most two passes through loop.
378		 */
379		for (;;) {
380			rnp = t->rcu_blocked_node;
381			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
382			smp_mb__after_unlock_lock();
383			if (rnp == t->rcu_blocked_node)
384				break;
385			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
386		}
387		empty = !rcu_preempt_blocked_readers_cgp(rnp);
388		empty_exp = !rcu_preempted_readers_exp(rnp);
389		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
390		np = rcu_next_node_entry(t, rnp);
391		list_del_init(&t->rcu_node_entry);
392		t->rcu_blocked_node = NULL;
393		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
394						rnp->gpnum, t->pid);
395		if (&t->rcu_node_entry == rnp->gp_tasks)
396			rnp->gp_tasks = np;
397		if (&t->rcu_node_entry == rnp->exp_tasks)
398			rnp->exp_tasks = np;
399#ifdef CONFIG_RCU_BOOST
400		if (&t->rcu_node_entry == rnp->boost_tasks)
401			rnp->boost_tasks = np;
402		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
403		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
404#endif /* #ifdef CONFIG_RCU_BOOST */
405
406		/*
407		 * If this was the last task on the current list, and if
408		 * we aren't waiting on any CPUs, report the quiescent state.
409		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
410		 * so we must take a snapshot of the expedited state.
411		 */
412		empty_exp_now = !rcu_preempted_readers_exp(rnp);
413		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
414			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
415							 rnp->gpnum,
416							 0, rnp->qsmask,
417							 rnp->level,
418							 rnp->grplo,
419							 rnp->grphi,
420							 !!rnp->gp_tasks);
421			rcu_report_unblock_qs_rnp(rnp, flags);
422		} else {
423			raw_spin_unlock_irqrestore(&rnp->lock, flags);
424		}
425
426#ifdef CONFIG_RCU_BOOST
427		/* Unboost if we were boosted. */
428		if (drop_boost_mutex) {
429			rt_mutex_unlock(&rnp->boost_mtx);
430			complete(&rnp->boost_completion);
431		}
432#endif /* #ifdef CONFIG_RCU_BOOST */
433
434		/*
435		 * If this was the last task on the expedited lists,
436		 * then we need to report up the rcu_node hierarchy.
437		 */
438		if (!empty_exp && empty_exp_now)
439			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
440	} else {
441		local_irq_restore(flags);
442	}
443}
444
445#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
446
447/*
448 * Dump detailed information for all tasks blocking the current RCU
449 * grace period on the specified rcu_node structure.
450 */
451static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
452{
453	unsigned long flags;
454	struct task_struct *t;
455
456	raw_spin_lock_irqsave(&rnp->lock, flags);
457	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
458		raw_spin_unlock_irqrestore(&rnp->lock, flags);
459		return;
460	}
461	t = list_entry(rnp->gp_tasks,
462		       struct task_struct, rcu_node_entry);
463	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
464		sched_show_task(t);
465	raw_spin_unlock_irqrestore(&rnp->lock, flags);
466}
467
468/*
469 * Dump detailed information for all tasks blocking the current RCU
470 * grace period.
471 */
472static void rcu_print_detail_task_stall(struct rcu_state *rsp)
473{
474	struct rcu_node *rnp = rcu_get_root(rsp);
475
476	rcu_print_detail_task_stall_rnp(rnp);
477	rcu_for_each_leaf_node(rsp, rnp)
478		rcu_print_detail_task_stall_rnp(rnp);
479}
480
481#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
482
483static void rcu_print_detail_task_stall(struct rcu_state *rsp)
484{
485}
486
487#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
488
489#ifdef CONFIG_RCU_CPU_STALL_INFO
490
491static void rcu_print_task_stall_begin(struct rcu_node *rnp)
492{
493	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
494	       rnp->level, rnp->grplo, rnp->grphi);
495}
496
497static void rcu_print_task_stall_end(void)
498{
499	pr_cont("\n");
500}
501
502#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
503
504static void rcu_print_task_stall_begin(struct rcu_node *rnp)
505{
506}
507
508static void rcu_print_task_stall_end(void)
509{
510}
511
512#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
513
514/*
515 * Scan the current list of tasks blocked within RCU read-side critical
516 * sections, printing out the tid of each.
517 */
518static int rcu_print_task_stall(struct rcu_node *rnp)
519{
520	struct task_struct *t;
521	int ndetected = 0;
522
523	if (!rcu_preempt_blocked_readers_cgp(rnp))
524		return 0;
525	rcu_print_task_stall_begin(rnp);
526	t = list_entry(rnp->gp_tasks,
527		       struct task_struct, rcu_node_entry);
528	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
529		pr_cont(" P%d", t->pid);
530		ndetected++;
531	}
532	rcu_print_task_stall_end();
533	return ndetected;
534}
535
536/*
537 * Check that the list of blocked tasks for the newly completed grace
538 * period is in fact empty.  It is a serious bug to complete a grace
539 * period that still has RCU readers blocked!  This function must be
540 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
541 * must be held by the caller.
542 *
543 * Also, if there are blocked tasks on the list, they automatically
544 * block the newly created grace period, so set up ->gp_tasks accordingly.
545 */
546static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
547{
548	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
549	if (!list_empty(&rnp->blkd_tasks))
550		rnp->gp_tasks = rnp->blkd_tasks.next;
551	WARN_ON_ONCE(rnp->qsmask);
552}
553
554#ifdef CONFIG_HOTPLUG_CPU
555
556/*
557 * Handle tasklist migration for case in which all CPUs covered by the
558 * specified rcu_node have gone offline.  Move them up to the root
559 * rcu_node.  The reason for not just moving them to the immediate
560 * parent is to remove the need for rcu_read_unlock_special() to
561 * make more than two attempts to acquire the target rcu_node's lock.
562 * Returns true if there were tasks blocking the current RCU grace
563 * period.
564 *
565 * Returns 1 if there was previously a task blocking the current grace
566 * period on the specified rcu_node structure.
567 *
568 * The caller must hold rnp->lock with irqs disabled.
569 */
570static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
571				     struct rcu_node *rnp,
572				     struct rcu_data *rdp)
573{
574	struct list_head *lp;
575	struct list_head *lp_root;
576	int retval = 0;
577	struct rcu_node *rnp_root = rcu_get_root(rsp);
578	struct task_struct *t;
579
580	if (rnp == rnp_root) {
581		WARN_ONCE(1, "Last CPU thought to be offlined?");
582		return 0;  /* Shouldn't happen: at least one CPU online. */
583	}
584
585	/* If we are on an internal node, complain bitterly. */
586	WARN_ON_ONCE(rnp != rdp->mynode);
587
588	/*
589	 * Move tasks up to root rcu_node.  Don't try to get fancy for
590	 * this corner-case operation -- just put this node's tasks
591	 * at the head of the root node's list, and update the root node's
592	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
593	 * if non-NULL.  This might result in waiting for more tasks than
594	 * absolutely necessary, but this is a good performance/complexity
595	 * tradeoff.
596	 */
597	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
598		retval |= RCU_OFL_TASKS_NORM_GP;
599	if (rcu_preempted_readers_exp(rnp))
600		retval |= RCU_OFL_TASKS_EXP_GP;
601	lp = &rnp->blkd_tasks;
602	lp_root = &rnp_root->blkd_tasks;
603	while (!list_empty(lp)) {
604		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
605		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
606		smp_mb__after_unlock_lock();
607		list_del(&t->rcu_node_entry);
608		t->rcu_blocked_node = rnp_root;
609		list_add(&t->rcu_node_entry, lp_root);
610		if (&t->rcu_node_entry == rnp->gp_tasks)
611			rnp_root->gp_tasks = rnp->gp_tasks;
612		if (&t->rcu_node_entry == rnp->exp_tasks)
613			rnp_root->exp_tasks = rnp->exp_tasks;
614#ifdef CONFIG_RCU_BOOST
615		if (&t->rcu_node_entry == rnp->boost_tasks)
616			rnp_root->boost_tasks = rnp->boost_tasks;
617#endif /* #ifdef CONFIG_RCU_BOOST */
618		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
619	}
620
621	rnp->gp_tasks = NULL;
622	rnp->exp_tasks = NULL;
623#ifdef CONFIG_RCU_BOOST
624	rnp->boost_tasks = NULL;
625	/*
626	 * In case root is being boosted and leaf was not.  Make sure
627	 * that we boost the tasks blocking the current grace period
628	 * in this case.
629	 */
630	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
631	smp_mb__after_unlock_lock();
632	if (rnp_root->boost_tasks != NULL &&
633	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
634	    rnp_root->boost_tasks != rnp_root->exp_tasks)
635		rnp_root->boost_tasks = rnp_root->gp_tasks;
636	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
637#endif /* #ifdef CONFIG_RCU_BOOST */
638
639	return retval;
640}
641
642#endif /* #ifdef CONFIG_HOTPLUG_CPU */
643
644/*
645 * Check for a quiescent state from the current CPU.  When a task blocks,
646 * the task is recorded in the corresponding CPU's rcu_node structure,
647 * which is checked elsewhere.
648 *
649 * Caller must disable hard irqs.
650 */
651static void rcu_preempt_check_callbacks(int cpu)
652{
653	struct task_struct *t = current;
654
655	if (t->rcu_read_lock_nesting == 0) {
656		rcu_preempt_qs(cpu);
657		return;
658	}
659	if (t->rcu_read_lock_nesting > 0 &&
660	    per_cpu(rcu_preempt_data, cpu).qs_pending)
661		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
662}
663
664#ifdef CONFIG_RCU_BOOST
665
666static void rcu_preempt_do_callbacks(void)
667{
668	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
669}
670
671#endif /* #ifdef CONFIG_RCU_BOOST */
672
673/*
674 * Queue a preemptible-RCU callback for invocation after a grace period.
675 */
676void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
677{
678	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
679}
680EXPORT_SYMBOL_GPL(call_rcu);
681
682/**
683 * synchronize_rcu - wait until a grace period has elapsed.
684 *
685 * Control will return to the caller some time after a full grace
686 * period has elapsed, in other words after all currently executing RCU
687 * read-side critical sections have completed.  Note, however, that
688 * upon return from synchronize_rcu(), the caller might well be executing
689 * concurrently with new RCU read-side critical sections that began while
690 * synchronize_rcu() was waiting.  RCU read-side critical sections are
691 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
692 *
693 * See the description of synchronize_sched() for more detailed information
694 * on memory ordering guarantees.
695 */
696void synchronize_rcu(void)
697{
698	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
699			   !lock_is_held(&rcu_lock_map) &&
700			   !lock_is_held(&rcu_sched_lock_map),
701			   "Illegal synchronize_rcu() in RCU read-side critical section");
702	if (!rcu_scheduler_active)
703		return;
704	if (rcu_expedited)
705		synchronize_rcu_expedited();
706	else
707		wait_rcu_gp(call_rcu);
708}
709EXPORT_SYMBOL_GPL(synchronize_rcu);
710
711static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
712static unsigned long sync_rcu_preempt_exp_count;
713static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
714
715/*
716 * Return non-zero if there are any tasks in RCU read-side critical
717 * sections blocking the current preemptible-RCU expedited grace period.
718 * If there is no preemptible-RCU expedited grace period currently in
719 * progress, returns zero unconditionally.
720 */
721static int rcu_preempted_readers_exp(struct rcu_node *rnp)
722{
723	return rnp->exp_tasks != NULL;
724}
725
726/*
727 * return non-zero if there is no RCU expedited grace period in progress
728 * for the specified rcu_node structure, in other words, if all CPUs and
729 * tasks covered by the specified rcu_node structure have done their bit
730 * for the current expedited grace period.  Works only for preemptible
731 * RCU -- other RCU implementation use other means.
732 *
733 * Caller must hold sync_rcu_preempt_exp_mutex.
734 */
735static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
736{
737	return !rcu_preempted_readers_exp(rnp) &&
738	       ACCESS_ONCE(rnp->expmask) == 0;
739}
740
741/*
742 * Report the exit from RCU read-side critical section for the last task
743 * that queued itself during or before the current expedited preemptible-RCU
744 * grace period.  This event is reported either to the rcu_node structure on
745 * which the task was queued or to one of that rcu_node structure's ancestors,
746 * recursively up the tree.  (Calm down, calm down, we do the recursion
747 * iteratively!)
748 *
749 * Most callers will set the "wake" flag, but the task initiating the
750 * expedited grace period need not wake itself.
751 *
752 * Caller must hold sync_rcu_preempt_exp_mutex.
753 */
754static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
755			       bool wake)
756{
757	unsigned long flags;
758	unsigned long mask;
759
760	raw_spin_lock_irqsave(&rnp->lock, flags);
761	smp_mb__after_unlock_lock();
762	for (;;) {
763		if (!sync_rcu_preempt_exp_done(rnp)) {
764			raw_spin_unlock_irqrestore(&rnp->lock, flags);
765			break;
766		}
767		if (rnp->parent == NULL) {
768			raw_spin_unlock_irqrestore(&rnp->lock, flags);
769			if (wake) {
770				smp_mb(); /* EGP done before wake_up(). */
771				wake_up(&sync_rcu_preempt_exp_wq);
772			}
773			break;
774		}
775		mask = rnp->grpmask;
776		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
777		rnp = rnp->parent;
778		raw_spin_lock(&rnp->lock); /* irqs already disabled */
779		smp_mb__after_unlock_lock();
780		rnp->expmask &= ~mask;
781	}
782}
783
784/*
785 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
786 * grace period for the specified rcu_node structure.  If there are no such
787 * tasks, report it up the rcu_node hierarchy.
788 *
789 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
790 * CPU hotplug operations.
791 */
792static void
793sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
794{
795	unsigned long flags;
796	int must_wait = 0;
797
798	raw_spin_lock_irqsave(&rnp->lock, flags);
799	smp_mb__after_unlock_lock();
800	if (list_empty(&rnp->blkd_tasks)) {
801		raw_spin_unlock_irqrestore(&rnp->lock, flags);
802	} else {
803		rnp->exp_tasks = rnp->blkd_tasks.next;
804		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
805		must_wait = 1;
806	}
807	if (!must_wait)
808		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
809}
810
811/**
812 * synchronize_rcu_expedited - Brute-force RCU grace period
813 *
814 * Wait for an RCU-preempt grace period, but expedite it.  The basic
815 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
816 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
817 * significant time on all CPUs and is unfriendly to real-time workloads,
818 * so is thus not recommended for any sort of common-case code.
819 * In fact, if you are using synchronize_rcu_expedited() in a loop,
820 * please restructure your code to batch your updates, and then Use a
821 * single synchronize_rcu() instead.
822 *
823 * Note that it is illegal to call this function while holding any lock
824 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
825 * to call this function from a CPU-hotplug notifier.  Failing to observe
826 * these restriction will result in deadlock.
827 */
828void synchronize_rcu_expedited(void)
829{
830	unsigned long flags;
831	struct rcu_node *rnp;
832	struct rcu_state *rsp = &rcu_preempt_state;
833	unsigned long snap;
834	int trycount = 0;
835
836	smp_mb(); /* Caller's modifications seen first by other CPUs. */
837	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
838	smp_mb(); /* Above access cannot bleed into critical section. */
839
840	/*
841	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
842	 * operation that finds an rcu_node structure with tasks in the
843	 * process of being boosted will know that all tasks blocking
844	 * this expedited grace period will already be in the process of
845	 * being boosted.  This simplifies the process of moving tasks
846	 * from leaf to root rcu_node structures.
847	 */
848	get_online_cpus();
849
850	/*
851	 * Acquire lock, falling back to synchronize_rcu() if too many
852	 * lock-acquisition failures.  Of course, if someone does the
853	 * expedited grace period for us, just leave.
854	 */
855	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
856		if (ULONG_CMP_LT(snap,
857		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
858			put_online_cpus();
859			goto mb_ret; /* Others did our work for us. */
860		}
861		if (trycount++ < 10) {
862			udelay(trycount * num_online_cpus());
863		} else {
864			put_online_cpus();
865			wait_rcu_gp(call_rcu);
866			return;
867		}
868	}
869	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
870		put_online_cpus();
871		goto unlock_mb_ret; /* Others did our work for us. */
872	}
873
874	/* force all RCU readers onto ->blkd_tasks lists. */
875	synchronize_sched_expedited();
876
877	/* Initialize ->expmask for all non-leaf rcu_node structures. */
878	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
879		raw_spin_lock_irqsave(&rnp->lock, flags);
880		smp_mb__after_unlock_lock();
881		rnp->expmask = rnp->qsmaskinit;
882		raw_spin_unlock_irqrestore(&rnp->lock, flags);
883	}
884
885	/* Snapshot current state of ->blkd_tasks lists. */
886	rcu_for_each_leaf_node(rsp, rnp)
887		sync_rcu_preempt_exp_init(rsp, rnp);
888	if (NUM_RCU_NODES > 1)
889		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
890
891	put_online_cpus();
892
893	/* Wait for snapshotted ->blkd_tasks lists to drain. */
894	rnp = rcu_get_root(rsp);
895	wait_event(sync_rcu_preempt_exp_wq,
896		   sync_rcu_preempt_exp_done(rnp));
897
898	/* Clean up and exit. */
899	smp_mb(); /* ensure expedited GP seen before counter increment. */
900	ACCESS_ONCE(sync_rcu_preempt_exp_count) =
901					sync_rcu_preempt_exp_count + 1;
902unlock_mb_ret:
903	mutex_unlock(&sync_rcu_preempt_exp_mutex);
904mb_ret:
905	smp_mb(); /* ensure subsequent action seen after grace period. */
906}
907EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
908
909/**
910 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
911 *
912 * Note that this primitive does not necessarily wait for an RCU grace period
913 * to complete.  For example, if there are no RCU callbacks queued anywhere
914 * in the system, then rcu_barrier() is within its rights to return
915 * immediately, without waiting for anything, much less an RCU grace period.
916 */
917void rcu_barrier(void)
918{
919	_rcu_barrier(&rcu_preempt_state);
920}
921EXPORT_SYMBOL_GPL(rcu_barrier);
922
923/*
924 * Initialize preemptible RCU's state structures.
925 */
926static void __init __rcu_init_preempt(void)
927{
928	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
929}
930
931/*
932 * Check for a task exiting while in a preemptible-RCU read-side
933 * critical section, clean up if so.  No need to issue warnings,
934 * as debug_check_no_locks_held() already does this if lockdep
935 * is enabled.
936 */
937void exit_rcu(void)
938{
939	struct task_struct *t = current;
940
941	if (likely(list_empty(&current->rcu_node_entry)))
942		return;
943	t->rcu_read_lock_nesting = 1;
944	barrier();
945	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
946	__rcu_read_unlock();
947}
948
949#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
950
951static struct rcu_state *rcu_state_p = &rcu_sched_state;
952
953/*
954 * Tell them what RCU they are running.
955 */
956static void __init rcu_bootup_announce(void)
957{
958	pr_info("Hierarchical RCU implementation.\n");
959	rcu_bootup_announce_oddness();
960}
961
962/*
963 * Return the number of RCU batches processed thus far for debug & stats.
964 */
965long rcu_batches_completed(void)
966{
967	return rcu_batches_completed_sched();
968}
969EXPORT_SYMBOL_GPL(rcu_batches_completed);
970
971/*
972 * Because preemptible RCU does not exist, we never have to check for
973 * CPUs being in quiescent states.
974 */
975static void rcu_preempt_note_context_switch(int cpu)
976{
977}
978
979/*
980 * Because preemptible RCU does not exist, there are never any preempted
981 * RCU readers.
982 */
983static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
984{
985	return 0;
986}
987
988#ifdef CONFIG_HOTPLUG_CPU
989
990/* Because preemptible RCU does not exist, no quieting of tasks. */
991static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
992	__releases(rnp->lock)
993{
994	raw_spin_unlock_irqrestore(&rnp->lock, flags);
995}
996
997#endif /* #ifdef CONFIG_HOTPLUG_CPU */
998
999/*
1000 * Because preemptible RCU does not exist, we never have to check for
1001 * tasks blocked within RCU read-side critical sections.
1002 */
1003static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1004{
1005}
1006
1007/*
1008 * Because preemptible RCU does not exist, we never have to check for
1009 * tasks blocked within RCU read-side critical sections.
1010 */
1011static int rcu_print_task_stall(struct rcu_node *rnp)
1012{
1013	return 0;
1014}
1015
1016/*
1017 * Because there is no preemptible RCU, there can be no readers blocked,
1018 * so there is no need to check for blocked tasks.  So check only for
1019 * bogus qsmask values.
1020 */
1021static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1022{
1023	WARN_ON_ONCE(rnp->qsmask);
1024}
1025
1026#ifdef CONFIG_HOTPLUG_CPU
1027
1028/*
1029 * Because preemptible RCU does not exist, it never needs to migrate
1030 * tasks that were blocked within RCU read-side critical sections, and
1031 * such non-existent tasks cannot possibly have been blocking the current
1032 * grace period.
1033 */
1034static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1035				     struct rcu_node *rnp,
1036				     struct rcu_data *rdp)
1037{
1038	return 0;
1039}
1040
1041#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1042
1043/*
1044 * Because preemptible RCU does not exist, it never has any callbacks
1045 * to check.
1046 */
1047static void rcu_preempt_check_callbacks(int cpu)
1048{
1049}
1050
1051/*
1052 * Wait for an rcu-preempt grace period, but make it happen quickly.
1053 * But because preemptible RCU does not exist, map to rcu-sched.
1054 */
1055void synchronize_rcu_expedited(void)
1056{
1057	synchronize_sched_expedited();
1058}
1059EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1060
1061#ifdef CONFIG_HOTPLUG_CPU
1062
1063/*
1064 * Because preemptible RCU does not exist, there is never any need to
1065 * report on tasks preempted in RCU read-side critical sections during
1066 * expedited RCU grace periods.
1067 */
1068static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1069			       bool wake)
1070{
1071}
1072
1073#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1074
1075/*
1076 * Because preemptible RCU does not exist, rcu_barrier() is just
1077 * another name for rcu_barrier_sched().
1078 */
1079void rcu_barrier(void)
1080{
1081	rcu_barrier_sched();
1082}
1083EXPORT_SYMBOL_GPL(rcu_barrier);
1084
1085/*
1086 * Because preemptible RCU does not exist, it need not be initialized.
1087 */
1088static void __init __rcu_init_preempt(void)
1089{
1090}
1091
1092/*
1093 * Because preemptible RCU does not exist, tasks cannot possibly exit
1094 * while in preemptible RCU read-side critical sections.
1095 */
1096void exit_rcu(void)
1097{
1098}
1099
1100#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
1101
1102#ifdef CONFIG_RCU_BOOST
1103
1104#include "../locking/rtmutex_common.h"
1105
1106#ifdef CONFIG_RCU_TRACE
1107
1108static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1109{
1110	if (list_empty(&rnp->blkd_tasks))
1111		rnp->n_balk_blkd_tasks++;
1112	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1113		rnp->n_balk_exp_gp_tasks++;
1114	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1115		rnp->n_balk_boost_tasks++;
1116	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1117		rnp->n_balk_notblocked++;
1118	else if (rnp->gp_tasks != NULL &&
1119		 ULONG_CMP_LT(jiffies, rnp->boost_time))
1120		rnp->n_balk_notyet++;
1121	else
1122		rnp->n_balk_nos++;
1123}
1124
1125#else /* #ifdef CONFIG_RCU_TRACE */
1126
1127static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1128{
1129}
1130
1131#endif /* #else #ifdef CONFIG_RCU_TRACE */
1132
1133static void rcu_wake_cond(struct task_struct *t, int status)
1134{
1135	/*
1136	 * If the thread is yielding, only wake it when this
1137	 * is invoked from idle
1138	 */
1139	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1140		wake_up_process(t);
1141}
1142
1143/*
1144 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1145 * or ->boost_tasks, advancing the pointer to the next task in the
1146 * ->blkd_tasks list.
1147 *
1148 * Note that irqs must be enabled: boosting the task can block.
1149 * Returns 1 if there are more tasks needing to be boosted.
1150 */
1151static int rcu_boost(struct rcu_node *rnp)
1152{
1153	unsigned long flags;
1154	struct task_struct *t;
1155	struct list_head *tb;
1156
1157	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1158		return 0;  /* Nothing left to boost. */
1159
1160	raw_spin_lock_irqsave(&rnp->lock, flags);
1161	smp_mb__after_unlock_lock();
1162
1163	/*
1164	 * Recheck under the lock: all tasks in need of boosting
1165	 * might exit their RCU read-side critical sections on their own.
1166	 */
1167	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1168		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1169		return 0;
1170	}
1171
1172	/*
1173	 * Preferentially boost tasks blocking expedited grace periods.
1174	 * This cannot starve the normal grace periods because a second
1175	 * expedited grace period must boost all blocked tasks, including
1176	 * those blocking the pre-existing normal grace period.
1177	 */
1178	if (rnp->exp_tasks != NULL) {
1179		tb = rnp->exp_tasks;
1180		rnp->n_exp_boosts++;
1181	} else {
1182		tb = rnp->boost_tasks;
1183		rnp->n_normal_boosts++;
1184	}
1185	rnp->n_tasks_boosted++;
1186
1187	/*
1188	 * We boost task t by manufacturing an rt_mutex that appears to
1189	 * be held by task t.  We leave a pointer to that rt_mutex where
1190	 * task t can find it, and task t will release the mutex when it
1191	 * exits its outermost RCU read-side critical section.  Then
1192	 * simply acquiring this artificial rt_mutex will boost task
1193	 * t's priority.  (Thanks to tglx for suggesting this approach!)
1194	 *
1195	 * Note that task t must acquire rnp->lock to remove itself from
1196	 * the ->blkd_tasks list, which it will do from exit() if from
1197	 * nowhere else.  We therefore are guaranteed that task t will
1198	 * stay around at least until we drop rnp->lock.  Note that
1199	 * rnp->lock also resolves races between our priority boosting
1200	 * and task t's exiting its outermost RCU read-side critical
1201	 * section.
1202	 */
1203	t = container_of(tb, struct task_struct, rcu_node_entry);
1204	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1205	init_completion(&rnp->boost_completion);
1206	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1207	/* Lock only for side effect: boosts task t's priority. */
1208	rt_mutex_lock(&rnp->boost_mtx);
1209	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1210
1211	/* Wait for boostee to be done w/boost_mtx before reinitializing. */
1212	wait_for_completion(&rnp->boost_completion);
1213
1214	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1215	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
1216}
1217
1218/*
1219 * Priority-boosting kthread.  One per leaf rcu_node and one for the
1220 * root rcu_node.
1221 */
1222static int rcu_boost_kthread(void *arg)
1223{
1224	struct rcu_node *rnp = (struct rcu_node *)arg;
1225	int spincnt = 0;
1226	int more2boost;
1227
1228	trace_rcu_utilization(TPS("Start boost kthread@init"));
1229	for (;;) {
1230		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1231		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1232		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1233		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1234		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1235		more2boost = rcu_boost(rnp);
1236		if (more2boost)
1237			spincnt++;
1238		else
1239			spincnt = 0;
1240		if (spincnt > 10) {
1241			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1242			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1243			schedule_timeout_interruptible(2);
1244			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1245			spincnt = 0;
1246		}
1247	}
1248	/* NOTREACHED */
1249	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1250	return 0;
1251}
1252
1253/*
1254 * Check to see if it is time to start boosting RCU readers that are
1255 * blocking the current grace period, and, if so, tell the per-rcu_node
1256 * kthread to start boosting them.  If there is an expedited grace
1257 * period in progress, it is always time to boost.
1258 *
1259 * The caller must hold rnp->lock, which this function releases.
1260 * The ->boost_kthread_task is immortal, so we don't need to worry
1261 * about it going away.
1262 */
1263static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1264	__releases(rnp->lock)
1265{
1266	struct task_struct *t;
1267
1268	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1269		rnp->n_balk_exp_gp_tasks++;
1270		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1271		return;
1272	}
1273	if (rnp->exp_tasks != NULL ||
1274	    (rnp->gp_tasks != NULL &&
1275	     rnp->boost_tasks == NULL &&
1276	     rnp->qsmask == 0 &&
1277	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1278		if (rnp->exp_tasks == NULL)
1279			rnp->boost_tasks = rnp->gp_tasks;
1280		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1281		t = rnp->boost_kthread_task;
1282		if (t)
1283			rcu_wake_cond(t, rnp->boost_kthread_status);
1284	} else {
1285		rcu_initiate_boost_trace(rnp);
1286		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1287	}
1288}
1289
1290/*
1291 * Wake up the per-CPU kthread to invoke RCU callbacks.
1292 */
1293static void invoke_rcu_callbacks_kthread(void)
1294{
1295	unsigned long flags;
1296
1297	local_irq_save(flags);
1298	__this_cpu_write(rcu_cpu_has_work, 1);
1299	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1300	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1301		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1302			      __this_cpu_read(rcu_cpu_kthread_status));
1303	}
1304	local_irq_restore(flags);
1305}
1306
1307/*
1308 * Is the current CPU running the RCU-callbacks kthread?
1309 * Caller must have preemption disabled.
1310 */
1311static bool rcu_is_callbacks_kthread(void)
1312{
1313	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1314}
1315
1316#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1317
1318/*
1319 * Do priority-boost accounting for the start of a new grace period.
1320 */
1321static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1322{
1323	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1324}
1325
1326/*
1327 * Create an RCU-boost kthread for the specified node if one does not
1328 * already exist.  We only create this kthread for preemptible RCU.
1329 * Returns zero if all is well, a negated errno otherwise.
1330 */
1331static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1332						 struct rcu_node *rnp)
1333{
1334	int rnp_index = rnp - &rsp->node[0];
1335	unsigned long flags;
1336	struct sched_param sp;
1337	struct task_struct *t;
1338
1339	if (&rcu_preempt_state != rsp)
1340		return 0;
1341
1342	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1343		return 0;
1344
1345	rsp->boost = 1;
1346	if (rnp->boost_kthread_task != NULL)
1347		return 0;
1348	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1349			   "rcub/%d", rnp_index);
1350	if (IS_ERR(t))
1351		return PTR_ERR(t);
1352	raw_spin_lock_irqsave(&rnp->lock, flags);
1353	smp_mb__after_unlock_lock();
1354	rnp->boost_kthread_task = t;
1355	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1356	sp.sched_priority = RCU_BOOST_PRIO;
1357	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1358	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1359	return 0;
1360}
1361
1362static void rcu_kthread_do_work(void)
1363{
1364	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1365	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1366	rcu_preempt_do_callbacks();
1367}
1368
1369static void rcu_cpu_kthread_setup(unsigned int cpu)
1370{
1371	struct sched_param sp;
1372
1373	sp.sched_priority = RCU_KTHREAD_PRIO;
1374	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1375}
1376
1377static void rcu_cpu_kthread_park(unsigned int cpu)
1378{
1379	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1380}
1381
1382static int rcu_cpu_kthread_should_run(unsigned int cpu)
1383{
1384	return __this_cpu_read(rcu_cpu_has_work);
1385}
1386
1387/*
1388 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1389 * RCU softirq used in flavors and configurations of RCU that do not
1390 * support RCU priority boosting.
1391 */
1392static void rcu_cpu_kthread(unsigned int cpu)
1393{
1394	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1395	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1396	int spincnt;
1397
1398	for (spincnt = 0; spincnt < 10; spincnt++) {
1399		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1400		local_bh_disable();
1401		*statusp = RCU_KTHREAD_RUNNING;
1402		this_cpu_inc(rcu_cpu_kthread_loops);
1403		local_irq_disable();
1404		work = *workp;
1405		*workp = 0;
1406		local_irq_enable();
1407		if (work)
1408			rcu_kthread_do_work();
1409		local_bh_enable();
1410		if (*workp == 0) {
1411			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1412			*statusp = RCU_KTHREAD_WAITING;
1413			return;
1414		}
1415	}
1416	*statusp = RCU_KTHREAD_YIELDING;
1417	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1418	schedule_timeout_interruptible(2);
1419	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1420	*statusp = RCU_KTHREAD_WAITING;
1421}
1422
1423/*
1424 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1425 * served by the rcu_node in question.  The CPU hotplug lock is still
1426 * held, so the value of rnp->qsmaskinit will be stable.
1427 *
1428 * We don't include outgoingcpu in the affinity set, use -1 if there is
1429 * no outgoing CPU.  If there are no CPUs left in the affinity set,
1430 * this function allows the kthread to execute on any CPU.
1431 */
1432static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1433{
1434	struct task_struct *t = rnp->boost_kthread_task;
1435	unsigned long mask = rnp->qsmaskinit;
1436	cpumask_var_t cm;
1437	int cpu;
1438
1439	if (!t)
1440		return;
1441	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1442		return;
1443	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1444		if ((mask & 0x1) && cpu != outgoingcpu)
1445			cpumask_set_cpu(cpu, cm);
1446	if (cpumask_weight(cm) == 0) {
1447		cpumask_setall(cm);
1448		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1449			cpumask_clear_cpu(cpu, cm);
1450		WARN_ON_ONCE(cpumask_weight(cm) == 0);
1451	}
1452	set_cpus_allowed_ptr(t, cm);
1453	free_cpumask_var(cm);
1454}
1455
1456static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1457	.store			= &rcu_cpu_kthread_task,
1458	.thread_should_run	= rcu_cpu_kthread_should_run,
1459	.thread_fn		= rcu_cpu_kthread,
1460	.thread_comm		= "rcuc/%u",
1461	.setup			= rcu_cpu_kthread_setup,
1462	.park			= rcu_cpu_kthread_park,
1463};
1464
1465/*
1466 * Spawn all kthreads -- called as soon as the scheduler is running.
1467 */
1468static int __init rcu_spawn_kthreads(void)
1469{
1470	struct rcu_node *rnp;
1471	int cpu;
1472
1473	rcu_scheduler_fully_active = 1;
1474	for_each_possible_cpu(cpu)
1475		per_cpu(rcu_cpu_has_work, cpu) = 0;
1476	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1477	rnp = rcu_get_root(rcu_state_p);
1478	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1479	if (NUM_RCU_NODES > 1) {
1480		rcu_for_each_leaf_node(rcu_state_p, rnp)
1481			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1482	}
1483	return 0;
1484}
1485early_initcall(rcu_spawn_kthreads);
1486
1487static void rcu_prepare_kthreads(int cpu)
1488{
1489	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1490	struct rcu_node *rnp = rdp->mynode;
1491
1492	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1493	if (rcu_scheduler_fully_active)
1494		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1495}
1496
1497#else /* #ifdef CONFIG_RCU_BOOST */
1498
1499static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1500	__releases(rnp->lock)
1501{
1502	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1503}
1504
1505static void invoke_rcu_callbacks_kthread(void)
1506{
1507	WARN_ON_ONCE(1);
1508}
1509
1510static bool rcu_is_callbacks_kthread(void)
1511{
1512	return false;
1513}
1514
1515static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1516{
1517}
1518
1519static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1520{
1521}
1522
1523static int __init rcu_scheduler_really_started(void)
1524{
1525	rcu_scheduler_fully_active = 1;
1526	return 0;
1527}
1528early_initcall(rcu_scheduler_really_started);
1529
1530static void rcu_prepare_kthreads(int cpu)
1531{
1532}
1533
1534#endif /* #else #ifdef CONFIG_RCU_BOOST */
1535
1536#if !defined(CONFIG_RCU_FAST_NO_HZ)
1537
1538/*
1539 * Check to see if any future RCU-related work will need to be done
1540 * by the current CPU, even if none need be done immediately, returning
1541 * 1 if so.  This function is part of the RCU implementation; it is -not-
1542 * an exported member of the RCU API.
1543 *
1544 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1545 * any flavor of RCU.
1546 */
1547#ifndef CONFIG_RCU_NOCB_CPU_ALL
1548int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1549{
1550	*delta_jiffies = ULONG_MAX;
1551	return rcu_cpu_has_callbacks(cpu, NULL);
1552}
1553#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1554
1555/*
1556 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1557 * after it.
1558 */
1559static void rcu_cleanup_after_idle(int cpu)
1560{
1561}
1562
1563/*
1564 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1565 * is nothing.
1566 */
1567static void rcu_prepare_for_idle(int cpu)
1568{
1569}
1570
1571/*
1572 * Don't bother keeping a running count of the number of RCU callbacks
1573 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1574 */
1575static void rcu_idle_count_callbacks_posted(void)
1576{
1577}
1578
1579#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1580
1581/*
1582 * This code is invoked when a CPU goes idle, at which point we want
1583 * to have the CPU do everything required for RCU so that it can enter
1584 * the energy-efficient dyntick-idle mode.  This is handled by a
1585 * state machine implemented by rcu_prepare_for_idle() below.
1586 *
1587 * The following three proprocessor symbols control this state machine:
1588 *
1589 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1590 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1591 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1592 *	benchmarkers who might otherwise be tempted to set this to a large
1593 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1594 *	system.  And if you are -that- concerned about energy efficiency,
1595 *	just power the system down and be done with it!
1596 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1597 *	permitted to sleep in dyntick-idle mode with only lazy RCU
1598 *	callbacks pending.  Setting this too high can OOM your system.
1599 *
1600 * The values below work well in practice.  If future workloads require
1601 * adjustment, they can be converted into kernel config parameters, though
1602 * making the state machine smarter might be a better option.
1603 */
1604#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1605#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1606
1607static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1608module_param(rcu_idle_gp_delay, int, 0644);
1609static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1610module_param(rcu_idle_lazy_gp_delay, int, 0644);
1611
1612extern int tick_nohz_active;
1613
1614/*
1615 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1616 * only if it has been awhile since the last time we did so.  Afterwards,
1617 * if there are any callbacks ready for immediate invocation, return true.
1618 */
1619static bool __maybe_unused rcu_try_advance_all_cbs(void)
1620{
1621	bool cbs_ready = false;
1622	struct rcu_data *rdp;
1623	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1624	struct rcu_node *rnp;
1625	struct rcu_state *rsp;
1626
1627	/* Exit early if we advanced recently. */
1628	if (jiffies == rdtp->last_advance_all)
1629		return false;
1630	rdtp->last_advance_all = jiffies;
1631
1632	for_each_rcu_flavor(rsp) {
1633		rdp = this_cpu_ptr(rsp->rda);
1634		rnp = rdp->mynode;
1635
1636		/*
1637		 * Don't bother checking unless a grace period has
1638		 * completed since we last checked and there are
1639		 * callbacks not yet ready to invoke.
1640		 */
1641		if (rdp->completed != rnp->completed &&
1642		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
1643			note_gp_changes(rsp, rdp);
1644
1645		if (cpu_has_callbacks_ready_to_invoke(rdp))
1646			cbs_ready = true;
1647	}
1648	return cbs_ready;
1649}
1650
1651/*
1652 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1653 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1654 * caller to set the timeout based on whether or not there are non-lazy
1655 * callbacks.
1656 *
1657 * The caller must have disabled interrupts.
1658 */
1659#ifndef CONFIG_RCU_NOCB_CPU_ALL
1660int rcu_needs_cpu(int cpu, unsigned long *dj)
1661{
1662	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1663
1664	/* Snapshot to detect later posting of non-lazy callback. */
1665	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1666
1667	/* If no callbacks, RCU doesn't need the CPU. */
1668	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1669		*dj = ULONG_MAX;
1670		return 0;
1671	}
1672
1673	/* Attempt to advance callbacks. */
1674	if (rcu_try_advance_all_cbs()) {
1675		/* Some ready to invoke, so initiate later invocation. */
1676		invoke_rcu_core();
1677		return 1;
1678	}
1679	rdtp->last_accelerate = jiffies;
1680
1681	/* Request timer delay depending on laziness, and round. */
1682	if (!rdtp->all_lazy) {
1683		*dj = round_up(rcu_idle_gp_delay + jiffies,
1684			       rcu_idle_gp_delay) - jiffies;
1685	} else {
1686		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1687	}
1688	return 0;
1689}
1690#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1691
1692/*
1693 * Prepare a CPU for idle from an RCU perspective.  The first major task
1694 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1695 * The second major task is to check to see if a non-lazy callback has
1696 * arrived at a CPU that previously had only lazy callbacks.  The third
1697 * major task is to accelerate (that is, assign grace-period numbers to)
1698 * any recently arrived callbacks.
1699 *
1700 * The caller must have disabled interrupts.
1701 */
1702static void rcu_prepare_for_idle(int cpu)
1703{
1704#ifndef CONFIG_RCU_NOCB_CPU_ALL
1705	bool needwake;
1706	struct rcu_data *rdp;
1707	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1708	struct rcu_node *rnp;
1709	struct rcu_state *rsp;
1710	int tne;
1711
1712	/* Handle nohz enablement switches conservatively. */
1713	tne = ACCESS_ONCE(tick_nohz_active);
1714	if (tne != rdtp->tick_nohz_enabled_snap) {
1715		if (rcu_cpu_has_callbacks(cpu, NULL))
1716			invoke_rcu_core(); /* force nohz to see update. */
1717		rdtp->tick_nohz_enabled_snap = tne;
1718		return;
1719	}
1720	if (!tne)
1721		return;
1722
1723	/* If this is a no-CBs CPU, no callbacks, just return. */
1724	if (rcu_is_nocb_cpu(cpu))
1725		return;
1726
1727	/*
1728	 * If a non-lazy callback arrived at a CPU having only lazy
1729	 * callbacks, invoke RCU core for the side-effect of recalculating
1730	 * idle duration on re-entry to idle.
1731	 */
1732	if (rdtp->all_lazy &&
1733	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1734		rdtp->all_lazy = false;
1735		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1736		invoke_rcu_core();
1737		return;
1738	}
1739
1740	/*
1741	 * If we have not yet accelerated this jiffy, accelerate all
1742	 * callbacks on this CPU.
1743	 */
1744	if (rdtp->last_accelerate == jiffies)
1745		return;
1746	rdtp->last_accelerate = jiffies;
1747	for_each_rcu_flavor(rsp) {
1748		rdp = per_cpu_ptr(rsp->rda, cpu);
1749		if (!*rdp->nxttail[RCU_DONE_TAIL])
1750			continue;
1751		rnp = rdp->mynode;
1752		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1753		smp_mb__after_unlock_lock();
1754		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1755		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1756		if (needwake)
1757			rcu_gp_kthread_wake(rsp);
1758	}
1759#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1760}
1761
1762/*
1763 * Clean up for exit from idle.  Attempt to advance callbacks based on
1764 * any grace periods that elapsed while the CPU was idle, and if any
1765 * callbacks are now ready to invoke, initiate invocation.
1766 */
1767static void rcu_cleanup_after_idle(int cpu)
1768{
1769#ifndef CONFIG_RCU_NOCB_CPU_ALL
1770	if (rcu_is_nocb_cpu(cpu))
1771		return;
1772	if (rcu_try_advance_all_cbs())
1773		invoke_rcu_core();
1774#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
1775}
1776
1777/*
1778 * Keep a running count of the number of non-lazy callbacks posted
1779 * on this CPU.  This running counter (which is never decremented) allows
1780 * rcu_prepare_for_idle() to detect when something out of the idle loop
1781 * posts a callback, even if an equal number of callbacks are invoked.
1782 * Of course, callbacks should only be posted from within a trace event
1783 * designed to be called from idle or from within RCU_NONIDLE().
1784 */
1785static void rcu_idle_count_callbacks_posted(void)
1786{
1787	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1788}
1789
1790/*
1791 * Data for flushing lazy RCU callbacks at OOM time.
1792 */
1793static atomic_t oom_callback_count;
1794static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1795
1796/*
1797 * RCU OOM callback -- decrement the outstanding count and deliver the
1798 * wake-up if we are the last one.
1799 */
1800static void rcu_oom_callback(struct rcu_head *rhp)
1801{
1802	if (atomic_dec_and_test(&oom_callback_count))
1803		wake_up(&oom_callback_wq);
1804}
1805
1806/*
1807 * Post an rcu_oom_notify callback on the current CPU if it has at
1808 * least one lazy callback.  This will unnecessarily post callbacks
1809 * to CPUs that already have a non-lazy callback at the end of their
1810 * callback list, but this is an infrequent operation, so accept some
1811 * extra overhead to keep things simple.
1812 */
1813static void rcu_oom_notify_cpu(void *unused)
1814{
1815	struct rcu_state *rsp;
1816	struct rcu_data *rdp;
1817
1818	for_each_rcu_flavor(rsp) {
1819		rdp = raw_cpu_ptr(rsp->rda);
1820		if (rdp->qlen_lazy != 0) {
1821			atomic_inc(&oom_callback_count);
1822			rsp->call(&rdp->oom_head, rcu_oom_callback);
1823		}
1824	}
1825}
1826
1827/*
1828 * If low on memory, ensure that each CPU has a non-lazy callback.
1829 * This will wake up CPUs that have only lazy callbacks, in turn
1830 * ensuring that they free up the corresponding memory in a timely manner.
1831 * Because an uncertain amount of memory will be freed in some uncertain
1832 * timeframe, we do not claim to have freed anything.
1833 */
1834static int rcu_oom_notify(struct notifier_block *self,
1835			  unsigned long notused, void *nfreed)
1836{
1837	int cpu;
1838
1839	/* Wait for callbacks from earlier instance to complete. */
1840	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1841	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1842
1843	/*
1844	 * Prevent premature wakeup: ensure that all increments happen
1845	 * before there is a chance of the counter reaching zero.
1846	 */
1847	atomic_set(&oom_callback_count, 1);
1848
1849	get_online_cpus();
1850	for_each_online_cpu(cpu) {
1851		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1852		cond_resched();
1853	}
1854	put_online_cpus();
1855
1856	/* Unconditionally decrement: no need to wake ourselves up. */
1857	atomic_dec(&oom_callback_count);
1858
1859	return NOTIFY_OK;
1860}
1861
1862static struct notifier_block rcu_oom_nb = {
1863	.notifier_call = rcu_oom_notify
1864};
1865
1866static int __init rcu_register_oom_notifier(void)
1867{
1868	register_oom_notifier(&rcu_oom_nb);
1869	return 0;
1870}
1871early_initcall(rcu_register_oom_notifier);
1872
1873#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1874
1875#ifdef CONFIG_RCU_CPU_STALL_INFO
1876
1877#ifdef CONFIG_RCU_FAST_NO_HZ
1878
1879static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1880{
1881	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1882	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1883
1884	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1885		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1886		ulong2long(nlpd),
1887		rdtp->all_lazy ? 'L' : '.',
1888		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1889}
1890
1891#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1892
1893static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1894{
1895	*cp = '\0';
1896}
1897
1898#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1899
1900/* Initiate the stall-info list. */
1901static void print_cpu_stall_info_begin(void)
1902{
1903	pr_cont("\n");
1904}
1905
1906/*
1907 * Print out diagnostic information for the specified stalled CPU.
1908 *
1909 * If the specified CPU is aware of the current RCU grace period
1910 * (flavor specified by rsp), then print the number of scheduling
1911 * clock interrupts the CPU has taken during the time that it has
1912 * been aware.  Otherwise, print the number of RCU grace periods
1913 * that this CPU is ignorant of, for example, "1" if the CPU was
1914 * aware of the previous grace period.
1915 *
1916 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1917 */
1918static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1919{
1920	char fast_no_hz[72];
1921	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1922	struct rcu_dynticks *rdtp = rdp->dynticks;
1923	char *ticks_title;
1924	unsigned long ticks_value;
1925
1926	if (rsp->gpnum == rdp->gpnum) {
1927		ticks_title = "ticks this GP";
1928		ticks_value = rdp->ticks_this_gp;
1929	} else {
1930		ticks_title = "GPs behind";
1931		ticks_value = rsp->gpnum - rdp->gpnum;
1932	}
1933	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1934	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
1935	       cpu, ticks_value, ticks_title,
1936	       atomic_read(&rdtp->dynticks) & 0xfff,
1937	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1938	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1939	       fast_no_hz);
1940}
1941
1942/* Terminate the stall-info list. */
1943static void print_cpu_stall_info_end(void)
1944{
1945	pr_err("\t");
1946}
1947
1948/* Zero ->ticks_this_gp for all flavors of RCU. */
1949static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1950{
1951	rdp->ticks_this_gp = 0;
1952	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1953}
1954
1955/* Increment ->ticks_this_gp for all flavors of RCU. */
1956static void increment_cpu_stall_ticks(void)
1957{
1958	struct rcu_state *rsp;
1959
1960	for_each_rcu_flavor(rsp)
1961		raw_cpu_inc(rsp->rda->ticks_this_gp);
1962}
1963
1964#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1965
1966static void print_cpu_stall_info_begin(void)
1967{
1968	pr_cont(" {");
1969}
1970
1971static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1972{
1973	pr_cont(" %d", cpu);
1974}
1975
1976static void print_cpu_stall_info_end(void)
1977{
1978	pr_cont("} ");
1979}
1980
1981static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1982{
1983}
1984
1985static void increment_cpu_stall_ticks(void)
1986{
1987}
1988
1989#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
1990
1991#ifdef CONFIG_RCU_NOCB_CPU
1992
1993/*
1994 * Offload callback processing from the boot-time-specified set of CPUs
1995 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1996 * kthread created that pulls the callbacks from the corresponding CPU,
1997 * waits for a grace period to elapse, and invokes the callbacks.
1998 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1999 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
2000 * has been specified, in which case each kthread actively polls its
2001 * CPU.  (Which isn't so great for energy efficiency, but which does
2002 * reduce RCU's overhead on that CPU.)
2003 *
2004 * This is intended to be used in conjunction with Frederic Weisbecker's
2005 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2006 * running CPU-bound user-mode computations.
2007 *
2008 * Offloading of callback processing could also in theory be used as
2009 * an energy-efficiency measure because CPUs with no RCU callbacks
2010 * queued are more aggressive about entering dyntick-idle mode.
2011 */
2012
2013
2014/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2015static int __init rcu_nocb_setup(char *str)
2016{
2017	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2018	have_rcu_nocb_mask = true;
2019	cpulist_parse(str, rcu_nocb_mask);
2020	return 1;
2021}
2022__setup("rcu_nocbs=", rcu_nocb_setup);
2023
2024static int __init parse_rcu_nocb_poll(char *arg)
2025{
2026	rcu_nocb_poll = 1;
2027	return 0;
2028}
2029early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2030
2031/*
2032 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2033 * grace period.
2034 */
2035static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2036{
2037	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
2038}
2039
2040/*
2041 * Set the root rcu_node structure's ->need_future_gp field
2042 * based on the sum of those of all rcu_node structures.  This does
2043 * double-count the root rcu_node structure's requests, but this
2044 * is necessary to handle the possibility of a rcu_nocb_kthread()
2045 * having awakened during the time that the rcu_node structures
2046 * were being updated for the end of the previous grace period.
2047 */
2048static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2049{
2050	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
2051}
2052
2053static void rcu_init_one_nocb(struct rcu_node *rnp)
2054{
2055	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2056	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
2057}
2058
2059#ifndef CONFIG_RCU_NOCB_CPU_ALL
2060/* Is the specified CPU a no-CBs CPU? */
2061bool rcu_is_nocb_cpu(int cpu)
2062{
2063	if (have_rcu_nocb_mask)
2064		return cpumask_test_cpu(cpu, rcu_nocb_mask);
2065	return false;
2066}
2067#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
2068
2069/*
2070 * Kick the leader kthread for this NOCB group.
2071 */
2072static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2073{
2074	struct rcu_data *rdp_leader = rdp->nocb_leader;
2075
2076	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2077		return;
2078	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
2079		/* Prior xchg orders against prior callback enqueue. */
2080		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
2081		wake_up(&rdp_leader->nocb_wq);
2082	}
2083}
2084
2085/*
2086 * Enqueue the specified string of rcu_head structures onto the specified
2087 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
2088 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
2089 * counts are supplied by rhcount and rhcount_lazy.
2090 *
2091 * If warranted, also wake up the kthread servicing this CPUs queues.
2092 */
2093static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2094				    struct rcu_head *rhp,
2095				    struct rcu_head **rhtp,
2096				    int rhcount, int rhcount_lazy,
2097				    unsigned long flags)
2098{
2099	int len;
2100	struct rcu_head **old_rhpp;
2101	struct task_struct *t;
2102
2103	/* Enqueue the callback on the nocb list and update counts. */
2104	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2105	ACCESS_ONCE(*old_rhpp) = rhp;
2106	atomic_long_add(rhcount, &rdp->nocb_q_count);
2107	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2108
2109	/* If we are not being polled and there is a kthread, awaken it ... */
2110	t = ACCESS_ONCE(rdp->nocb_kthread);
2111	if (rcu_nocb_poll || !t) {
2112		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2113				    TPS("WakeNotPoll"));
2114		return;
2115	}
2116	len = atomic_long_read(&rdp->nocb_q_count);
2117	if (old_rhpp == &rdp->nocb_head) {
2118		if (!irqs_disabled_flags(flags)) {
2119			/* ... if queue was empty ... */
2120			wake_nocb_leader(rdp, false);
2121			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2122					    TPS("WakeEmpty"));
2123		} else {
2124			rdp->nocb_defer_wakeup = true;
2125			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2126					    TPS("WakeEmptyIsDeferred"));
2127		}
2128		rdp->qlen_last_fqs_check = 0;
2129	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
2130		/* ... or if many callbacks queued. */
2131		wake_nocb_leader(rdp, true);
2132		rdp->qlen_last_fqs_check = LONG_MAX / 2;
2133		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2134	} else {
2135		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
2136	}
2137	return;
2138}
2139
2140/*
2141 * This is a helper for __call_rcu(), which invokes this when the normal
2142 * callback queue is inoperable.  If this is not a no-CBs CPU, this
2143 * function returns failure back to __call_rcu(), which can complain
2144 * appropriately.
2145 *
2146 * Otherwise, this function queues the callback where the corresponding
2147 * "rcuo" kthread can find it.
2148 */
2149static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2150			    bool lazy, unsigned long flags)
2151{
2152
2153	if (!rcu_is_nocb_cpu(rdp->cpu))
2154		return 0;
2155	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2156	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2157		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2158					 (unsigned long)rhp->func,
2159					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2160					 -atomic_long_read(&rdp->nocb_q_count));
2161	else
2162		trace_rcu_callback(rdp->rsp->name, rhp,
2163				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2164				   -atomic_long_read(&rdp->nocb_q_count));
2165	return 1;
2166}
2167
2168/*
2169 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2170 * not a no-CBs CPU.
2171 */
2172static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2173						     struct rcu_data *rdp,
2174						     unsigned long flags)
2175{
2176	long ql = rsp->qlen;
2177	long qll = rsp->qlen_lazy;
2178
2179	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
2180	if (!rcu_is_nocb_cpu(smp_processor_id()))
2181		return 0;
2182	rsp->qlen = 0;
2183	rsp->qlen_lazy = 0;
2184
2185	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
2186	if (rsp->orphan_donelist != NULL) {
2187		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
2188					rsp->orphan_donetail, ql, qll, flags);
2189		ql = qll = 0;
2190		rsp->orphan_donelist = NULL;
2191		rsp->orphan_donetail = &rsp->orphan_donelist;
2192	}
2193	if (rsp->orphan_nxtlist != NULL) {
2194		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
2195					rsp->orphan_nxttail, ql, qll, flags);
2196		ql = qll = 0;
2197		rsp->orphan_nxtlist = NULL;
2198		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2199	}
2200	return 1;
2201}
2202
2203/*
2204 * If necessary, kick off a new grace period, and either way wait
2205 * for a subsequent grace period to complete.
2206 */
2207static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2208{
2209	unsigned long c;
2210	bool d;
2211	unsigned long flags;
2212	bool needwake;
2213	struct rcu_node *rnp = rdp->mynode;
2214
2215	raw_spin_lock_irqsave(&rnp->lock, flags);
2216	smp_mb__after_unlock_lock();
2217	needwake = rcu_start_future_gp(rnp, rdp, &c);
2218	raw_spin_unlock_irqrestore(&rnp->lock, flags);
2219	if (needwake)
2220		rcu_gp_kthread_wake(rdp->rsp);
2221
2222	/*
2223	 * Wait for the grace period.  Do so interruptibly to avoid messing
2224	 * up the load average.
2225	 */
2226	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2227	for (;;) {
2228		wait_event_interruptible(
2229			rnp->nocb_gp_wq[c & 0x1],
2230			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2231		if (likely(d))
2232			break;
2233		flush_signals(current);
2234		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2235	}
2236	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2237	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2238}
2239
2240/*
2241 * Leaders come here to wait for additional callbacks to show up.
2242 * This function does not return until callbacks appear.
2243 */
2244static void nocb_leader_wait(struct rcu_data *my_rdp)
2245{
2246	bool firsttime = true;
2247	bool gotcbs;
2248	struct rcu_data *rdp;
2249	struct rcu_head **tail;
2250
2251wait_again:
2252
2253	/* Wait for callbacks to appear. */
2254	if (!rcu_nocb_poll) {
2255		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2256		wait_event_interruptible(my_rdp->nocb_wq,
2257				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
2258		/* Memory barrier handled by smp_mb() calls below and repoll. */
2259	} else if (firsttime) {
2260		firsttime = false; /* Don't drown trace log with "Poll"! */
2261		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2262	}
2263
2264	/*
2265	 * Each pass through the following loop checks a follower for CBs.
2266	 * We are our own first follower.  Any CBs found are moved to
2267	 * nocb_gp_head, where they await a grace period.
2268	 */
2269	gotcbs = false;
2270	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2271		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2272		if (!rdp->nocb_gp_head)
2273			continue;  /* No CBs here, try next follower. */
2274
2275		/* Move callbacks to wait-for-GP list, which is empty. */
2276		ACCESS_ONCE(rdp->nocb_head) = NULL;
2277		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2278		rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2279		rdp->nocb_gp_count_lazy =
2280			atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2281		gotcbs = true;
2282	}
2283
2284	/*
2285	 * If there were no callbacks, sleep a bit, rescan after a
2286	 * memory barrier, and go retry.
2287	 */
2288	if (unlikely(!gotcbs)) {
2289		if (!rcu_nocb_poll)
2290			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2291					    "WokeEmpty");
2292		flush_signals(current);
2293		schedule_timeout_interruptible(1);
2294
2295		/* Rescan in case we were a victim of memory ordering. */
2296		my_rdp->nocb_leader_sleep = true;
2297		smp_mb();  /* Ensure _sleep true before scan. */
2298		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2299			if (ACCESS_ONCE(rdp->nocb_head)) {
2300				/* Found CB, so short-circuit next wait. */
2301				my_rdp->nocb_leader_sleep = false;
2302				break;
2303			}
2304		goto wait_again;
2305	}
2306
2307	/* Wait for one grace period. */
2308	rcu_nocb_wait_gp(my_rdp);
2309
2310	/*
2311	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2312	 * We set it now, but recheck for new callbacks while
2313	 * traversing our follower list.
2314	 */
2315	my_rdp->nocb_leader_sleep = true;
2316	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
2317
2318	/* Each pass through the following loop wakes a follower, if needed. */
2319	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2320		if (ACCESS_ONCE(rdp->nocb_head))
2321			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2322		if (!rdp->nocb_gp_head)
2323			continue; /* No CBs, so no need to wake follower. */
2324
2325		/* Append callbacks to follower's "done" list. */
2326		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2327		*tail = rdp->nocb_gp_head;
2328		atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2329		atomic_long_add(rdp->nocb_gp_count_lazy,
2330				&rdp->nocb_follower_count_lazy);
2331		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2332			/*
2333			 * List was empty, wake up the follower.
2334			 * Memory barriers supplied by atomic_long_add().
2335			 */
2336			wake_up(&rdp->nocb_wq);
2337		}
2338	}
2339
2340	/* If we (the leader) don't have CBs, go wait some more. */
2341	if (!my_rdp->nocb_follower_head)
2342		goto wait_again;
2343}
2344
2345/*
2346 * Followers come here to wait for additional callbacks to show up.
2347 * This function does not return until callbacks appear.
2348 */
2349static void nocb_follower_wait(struct rcu_data *rdp)
2350{
2351	bool firsttime = true;
2352
2353	for (;;) {
2354		if (!rcu_nocb_poll) {
2355			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2356					    "FollowerSleep");
2357			wait_event_interruptible(rdp->nocb_wq,
2358						 ACCESS_ONCE(rdp->nocb_follower_head));
2359		} else if (firsttime) {
2360			/* Don't drown trace log with "Poll"! */
2361			firsttime = false;
2362			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2363		}
2364		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2365			/* ^^^ Ensure CB invocation follows _head test. */
2366			return;
2367		}
2368		if (!rcu_nocb_poll)
2369			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2370					    "WokeEmpty");
2371		flush_signals(current);
2372		schedule_timeout_interruptible(1);
2373	}
2374}
2375
2376/*
2377 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2378 * callbacks queued by the corresponding no-CBs CPU, however, there is
2379 * an optional leader-follower relationship so that the grace-period
2380 * kthreads don't have to do quite so many wakeups.
2381 */
2382static int rcu_nocb_kthread(void *arg)
2383{
2384	int c, cl;
2385	struct rcu_head *list;
2386	struct rcu_head *next;
2387	struct rcu_head **tail;
2388	struct rcu_data *rdp = arg;
2389
2390	/* Each pass through this loop invokes one batch of callbacks */
2391	for (;;) {
2392		/* Wait for callbacks. */
2393		if (rdp->nocb_leader == rdp)
2394			nocb_leader_wait(rdp);
2395		else
2396			nocb_follower_wait(rdp);
2397
2398		/* Pull the ready-to-invoke callbacks onto local list. */
2399		list = ACCESS_ONCE(rdp->nocb_follower_head);
2400		BUG_ON(!list);
2401		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2402		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2403		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2404		c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2405		cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2406		rdp->nocb_p_count += c;
2407		rdp->nocb_p_count_lazy += cl;
2408
2409		/* Each pass through the following loop invokes a callback. */
2410		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2411		c = cl = 0;
2412		while (list) {
2413			next = list->next;
2414			/* Wait for enqueuing to complete, if needed. */
2415			while (next == NULL && &list->next != tail) {
2416				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2417						    TPS("WaitQueue"));
2418				schedule_timeout_interruptible(1);
2419				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2420						    TPS("WokeQueue"));
2421				next = list->next;
2422			}
2423			debug_rcu_head_unqueue(list);
2424			local_bh_disable();
2425			if (__rcu_reclaim(rdp->rsp->name, list))
2426				cl++;
2427			c++;
2428			local_bh_enable();
2429			list = next;
2430		}
2431		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2432		ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2433		ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2434						rdp->nocb_p_count_lazy - cl;
2435		rdp->n_nocbs_invoked += c;
2436	}
2437	return 0;
2438}
2439
2440/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2441static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2442{
2443	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2444}
2445
2446/* Do a deferred wakeup of rcu_nocb_kthread(). */
2447static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2448{
2449	if (!rcu_nocb_need_deferred_wakeup(rdp))
2450		return;
2451	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2452	wake_nocb_leader(rdp, false);
2453	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2454}
2455
2456/* Initialize per-rcu_data variables for no-CBs CPUs. */
2457static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2458{
2459	rdp->nocb_tail = &rdp->nocb_head;
2460	init_waitqueue_head(&rdp->nocb_wq);
2461	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2462}
2463
2464/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2465static int rcu_nocb_leader_stride = -1;
2466module_param(rcu_nocb_leader_stride, int, 0444);
2467
2468/*
2469 * Create a kthread for each RCU flavor for each no-CBs CPU.
2470 * Also initialize leader-follower relationships.
2471 */
2472static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2473{
2474	int cpu;
2475	int ls = rcu_nocb_leader_stride;
2476	int nl = 0;  /* Next leader. */
2477	struct rcu_data *rdp;
2478	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2479	struct rcu_data *rdp_prev = NULL;
2480	struct task_struct *t;
2481
2482	if (rcu_nocb_mask == NULL)
2483		return;
2484#if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL)
2485	if (tick_nohz_full_running)
2486		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2487#endif /* #if defined(CONFIG_NO_HZ_FULL) && !defined(CONFIG_NO_HZ_FULL_ALL) */
2488	if (ls == -1) {
2489		ls = int_sqrt(nr_cpu_ids);
2490		rcu_nocb_leader_stride = ls;
2491	}
2492
2493	/*
2494	 * Each pass through this loop sets up one rcu_data structure and
2495	 * spawns one rcu_nocb_kthread().
2496	 */
2497	for_each_cpu(cpu, rcu_nocb_mask) {
2498		rdp = per_cpu_ptr(rsp->rda, cpu);
2499		if (rdp->cpu >= nl) {
2500			/* New leader, set up for followers & next leader. */
2501			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2502			rdp->nocb_leader = rdp;
2503			rdp_leader = rdp;
2504		} else {
2505			/* Another follower, link to previous leader. */
2506			rdp->nocb_leader = rdp_leader;
2507			rdp_prev->nocb_next_follower = rdp;
2508		}
2509		rdp_prev = rdp;
2510
2511		/* Spawn the kthread for this CPU. */
2512		t = kthread_run(rcu_nocb_kthread, rdp,
2513				"rcuo%c/%d", rsp->abbr, cpu);
2514		BUG_ON(IS_ERR(t));
2515		ACCESS_ONCE(rdp->nocb_kthread) = t;
2516	}
2517}
2518
2519/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2520static bool init_nocb_callback_list(struct rcu_data *rdp)
2521{
2522	if (rcu_nocb_mask == NULL ||
2523	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
2524		return false;
2525	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2526	return true;
2527}
2528
2529#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2530
2531static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
2532{
2533}
2534
2535static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2536{
2537}
2538
2539static void rcu_init_one_nocb(struct rcu_node *rnp)
2540{
2541}
2542
2543static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2544			    bool lazy, unsigned long flags)
2545{
2546	return 0;
2547}
2548
2549static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
2550						     struct rcu_data *rdp,
2551						     unsigned long flags)
2552{
2553	return 0;
2554}
2555
2556static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2557{
2558}
2559
2560static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2561{
2562	return false;
2563}
2564
2565static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2566{
2567}
2568
2569static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2570{
2571}
2572
2573static bool init_nocb_callback_list(struct rcu_data *rdp)
2574{
2575	return false;
2576}
2577
2578#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2579
2580/*
2581 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2582 * arbitrarily long period of time with the scheduling-clock tick turned
2583 * off.  RCU will be paying attention to this CPU because it is in the
2584 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2585 * machine because the scheduling-clock tick has been disabled.  Therefore,
2586 * if an adaptive-ticks CPU is failing to respond to the current grace
2587 * period and has not be idle from an RCU perspective, kick it.
2588 */
2589static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2590{
2591#ifdef CONFIG_NO_HZ_FULL
2592	if (tick_nohz_full_cpu(cpu))
2593		smp_send_reschedule(cpu);
2594#endif /* #ifdef CONFIG_NO_HZ_FULL */
2595}
2596
2597
2598#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2599
2600/*
2601 * Define RCU flavor that holds sysidle state.  This needs to be the
2602 * most active flavor of RCU.
2603 */
2604#ifdef CONFIG_PREEMPT_RCU
2605static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
2606#else /* #ifdef CONFIG_PREEMPT_RCU */
2607static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
2608#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2609
2610static int full_sysidle_state;		/* Current system-idle state. */
2611#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
2612#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
2613#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
2614#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
2615#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */
2616
2617/*
2618 * Invoked to note exit from irq or task transition to idle.  Note that
2619 * usermode execution does -not- count as idle here!  After all, we want
2620 * to detect full-system idle states, not RCU quiescent states and grace
2621 * periods.  The caller must have disabled interrupts.
2622 */
2623static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2624{
2625	unsigned long j;
2626
2627	/* Adjust nesting, check for fully idle. */
2628	if (irq) {
2629		rdtp->dynticks_idle_nesting--;
2630		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2631		if (rdtp->dynticks_idle_nesting != 0)
2632			return;  /* Still not fully idle. */
2633	} else {
2634		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2635		    DYNTICK_TASK_NEST_VALUE) {
2636			rdtp->dynticks_idle_nesting = 0;
2637		} else {
2638			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2639			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2640			return;  /* Still not fully idle. */
2641		}
2642	}
2643
2644	/* Record start of fully idle period. */
2645	j = jiffies;
2646	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
2647	smp_mb__before_atomic();
2648	atomic_inc(&rdtp->dynticks_idle);
2649	smp_mb__after_atomic();
2650	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2651}
2652
2653/*
2654 * Unconditionally force exit from full system-idle state.  This is
2655 * invoked when a normal CPU exits idle, but must be called separately
2656 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
2657 * is that the timekeeping CPU is permitted to take scheduling-clock
2658 * interrupts while the system is in system-idle state, and of course
2659 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2660 * interrupt from any other type of interrupt.
2661 */
2662void rcu_sysidle_force_exit(void)
2663{
2664	int oldstate = ACCESS_ONCE(full_sysidle_state);
2665	int newoldstate;
2666
2667	/*
2668	 * Each pass through the following loop attempts to exit full
2669	 * system-idle state.  If contention proves to be a problem,
2670	 * a trylock-based contention tree could be used here.
2671	 */
2672	while (oldstate > RCU_SYSIDLE_SHORT) {
2673		newoldstate = cmpxchg(&full_sysidle_state,
2674				      oldstate, RCU_SYSIDLE_NOT);
2675		if (oldstate == newoldstate &&
2676		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
2677			rcu_kick_nohz_cpu(tick_do_timer_cpu);
2678			return; /* We cleared it, done! */
2679		}
2680		oldstate = newoldstate;
2681	}
2682	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2683}
2684
2685/*
2686 * Invoked to note entry to irq or task transition from idle.  Note that
2687 * usermode execution does -not- count as idle here!  The caller must
2688 * have disabled interrupts.
2689 */
2690static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2691{
2692	/* Adjust nesting, check for already non-idle. */
2693	if (irq) {
2694		rdtp->dynticks_idle_nesting++;
2695		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2696		if (rdtp->dynticks_idle_nesting != 1)
2697			return; /* Already non-idle. */
2698	} else {
2699		/*
2700		 * Allow for irq misnesting.  Yes, it really is possible
2701		 * to enter an irq handler then never leave it, and maybe
2702		 * also vice versa.  Handle both possibilities.
2703		 */
2704		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2705			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2706			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2707			return; /* Already non-idle. */
2708		} else {
2709			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2710		}
2711	}
2712
2713	/* Record end of idle period. */
2714	smp_mb__before_atomic();
2715	atomic_inc(&rdtp->dynticks_idle);
2716	smp_mb__after_atomic();
2717	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
2718
2719	/*
2720	 * If we are the timekeeping CPU, we are permitted to be non-idle
2721	 * during a system-idle state.  This must be the case, because
2722	 * the timekeeping CPU has to take scheduling-clock interrupts
2723	 * during the time that the system is transitioning to full
2724	 * system-idle state.  This means that the timekeeping CPU must
2725	 * invoke rcu_sysidle_force_exit() directly if it does anything
2726	 * more than take a scheduling-clock interrupt.
2727	 */
2728	if (smp_processor_id() == tick_do_timer_cpu)
2729		return;
2730
2731	/* Update system-idle state: We are clearly no longer fully idle! */
2732	rcu_sysidle_force_exit();
2733}
2734
2735/*
2736 * Check to see if the current CPU is idle.  Note that usermode execution
2737 * does not count as idle.  The caller must have disabled interrupts.
2738 */
2739static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2740				  unsigned long *maxj)
2741{
2742	int cur;
2743	unsigned long j;
2744	struct rcu_dynticks *rdtp = rdp->dynticks;
2745
2746	/*
2747	 * If some other CPU has already reported non-idle, if this is
2748	 * not the flavor of RCU that tracks sysidle state, or if this
2749	 * is an offline or the timekeeping CPU, nothing to do.
2750	 */
2751	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2752	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2753		return;
2754	if (rcu_gp_in_progress(rdp->rsp))
2755		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
2756
2757	/* Pick up current idle and NMI-nesting counter and check. */
2758	cur = atomic_read(&rdtp->dynticks_idle);
2759	if (cur & 0x1) {
2760		*isidle = false; /* We are not idle! */
2761		return;
2762	}
2763	smp_mb(); /* Read counters before timestamps. */
2764
2765	/* Pick up timestamps. */
2766	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2767	/* If this CPU entered idle more recently, update maxj timestamp. */
2768	if (ULONG_CMP_LT(*maxj, j))
2769		*maxj = j;
2770}
2771
2772/*
2773 * Is this the flavor of RCU that is handling full-system idle?
2774 */
2775static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2776{
2777	return rsp == rcu_sysidle_state;
2778}
2779
2780/*
2781 * Return a delay in jiffies based on the number of CPUs, rcu_node
2782 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
2783 * systems more time to transition to full-idle state in order to
2784 * avoid the cache thrashing that otherwise occur on the state variable.
2785 * Really small systems (less than a couple of tens of CPUs) should
2786 * instead use a single global atomically incremented counter, and later
2787 * versions of this will automatically reconfigure themselves accordingly.
2788 */
2789static unsigned long rcu_sysidle_delay(void)
2790{
2791	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2792		return 0;
2793	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2794}
2795
2796/*
2797 * Advance the full-system-idle state.  This is invoked when all of
2798 * the non-timekeeping CPUs are idle.
2799 */
2800static void rcu_sysidle(unsigned long j)
2801{
2802	/* Check the current state. */
2803	switch (ACCESS_ONCE(full_sysidle_state)) {
2804	case RCU_SYSIDLE_NOT:
2805
2806		/* First time all are idle, so note a short idle period. */
2807		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2808		break;
2809
2810	case RCU_SYSIDLE_SHORT:
2811
2812		/*
2813		 * Idle for a bit, time to advance to next state?
2814		 * cmpxchg failure means race with non-idle, let them win.
2815		 */
2816		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2817			(void)cmpxchg(&full_sysidle_state,
2818				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2819		break;
2820
2821	case RCU_SYSIDLE_LONG:
2822
2823		/*
2824		 * Do an additional check pass before advancing to full.
2825		 * cmpxchg failure means race with non-idle, let them win.
2826		 */
2827		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2828			(void)cmpxchg(&full_sysidle_state,
2829				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2830		break;
2831
2832	default:
2833		break;
2834	}
2835}
2836
2837/*
2838 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2839 * back to the beginning.
2840 */
2841static void rcu_sysidle_cancel(void)
2842{
2843	smp_mb();
2844	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2845		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
2846}
2847
2848/*
2849 * Update the sysidle state based on the results of a force-quiescent-state
2850 * scan of the CPUs' dyntick-idle state.
2851 */
2852static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2853			       unsigned long maxj, bool gpkt)
2854{
2855	if (rsp != rcu_sysidle_state)
2856		return;  /* Wrong flavor, ignore. */
2857	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2858		return;  /* Running state machine from timekeeping CPU. */
2859	if (isidle)
2860		rcu_sysidle(maxj);    /* More idle! */
2861	else
2862		rcu_sysidle_cancel(); /* Idle is over. */
2863}
2864
2865/*
2866 * Wrapper for rcu_sysidle_report() when called from the grace-period
2867 * kthread's context.
2868 */
2869static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2870				  unsigned long maxj)
2871{
2872	rcu_sysidle_report(rsp, isidle, maxj, true);
2873}
2874
2875/* Callback and function for forcing an RCU grace period. */
2876struct rcu_sysidle_head {
2877	struct rcu_head rh;
2878	int inuse;
2879};
2880
2881static void rcu_sysidle_cb(struct rcu_head *rhp)
2882{
2883	struct rcu_sysidle_head *rshp;
2884
2885	/*
2886	 * The following memory barrier is needed to replace the
2887	 * memory barriers that would normally be in the memory
2888	 * allocator.
2889	 */
2890	smp_mb();  /* grace period precedes setting inuse. */
2891
2892	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2893	ACCESS_ONCE(rshp->inuse) = 0;
2894}
2895
2896/*
2897 * Check to see if the system is fully idle, other than the timekeeping CPU.
2898 * The caller must have disabled interrupts.
2899 */
2900bool rcu_sys_is_idle(void)
2901{
2902	static struct rcu_sysidle_head rsh;
2903	int rss = ACCESS_ONCE(full_sysidle_state);
2904
2905	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2906		return false;
2907
2908	/* Handle small-system case by doing a full scan of CPUs. */
2909	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2910		int oldrss = rss - 1;
2911
2912		/*
2913		 * One pass to advance to each state up to _FULL.
2914		 * Give up if any pass fails to advance the state.
2915		 */
2916		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2917			int cpu;
2918			bool isidle = true;
2919			unsigned long maxj = jiffies - ULONG_MAX / 4;
2920			struct rcu_data *rdp;
2921
2922			/* Scan all the CPUs looking for nonidle CPUs. */
2923			for_each_possible_cpu(cpu) {
2924				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2925				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2926				if (!isidle)
2927					break;
2928			}
2929			rcu_sysidle_report(rcu_sysidle_state,
2930					   isidle, maxj, false);
2931			oldrss = rss;
2932			rss = ACCESS_ONCE(full_sysidle_state);
2933		}
2934	}
2935
2936	/* If this is the first observation of an idle period, record it. */
2937	if (rss == RCU_SYSIDLE_FULL) {
2938		rss = cmpxchg(&full_sysidle_state,
2939			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2940		return rss == RCU_SYSIDLE_FULL;
2941	}
2942
2943	smp_mb(); /* ensure rss load happens before later caller actions. */
2944
2945	/* If already fully idle, tell the caller (in case of races). */
2946	if (rss == RCU_SYSIDLE_FULL_NOTED)
2947		return true;
2948
2949	/*
2950	 * If we aren't there yet, and a grace period is not in flight,
2951	 * initiate a grace period.  Either way, tell the caller that
2952	 * we are not there yet.  We use an xchg() rather than an assignment
2953	 * to make up for the memory barriers that would otherwise be
2954	 * provided by the memory allocator.
2955	 */
2956	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2957	    !rcu_gp_in_progress(rcu_sysidle_state) &&
2958	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2959		call_rcu(&rsh.rh, rcu_sysidle_cb);
2960	return false;
2961}
2962
2963/*
2964 * Initialize dynticks sysidle state for CPUs coming online.
2965 */
2966static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2967{
2968	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2969}
2970
2971#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2972
2973static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2974{
2975}
2976
2977static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2978{
2979}
2980
2981static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2982				  unsigned long *maxj)
2983{
2984}
2985
2986static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2987{
2988	return false;
2989}
2990
2991static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2992				  unsigned long maxj)
2993{
2994}
2995
2996static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2997{
2998}
2999
3000#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3001
3002/*
3003 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3004 * grace-period kthread will do force_quiescent_state() processing?
3005 * The idea is to avoid waking up RCU core processing on such a
3006 * CPU unless the grace period has extended for too long.
3007 *
3008 * This code relies on the fact that all NO_HZ_FULL CPUs are also
3009 * CONFIG_RCU_NOCB_CPU CPUs.
3010 */
3011static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3012{
3013#ifdef CONFIG_NO_HZ_FULL
3014	if (tick_nohz_full_cpu(smp_processor_id()) &&
3015	    (!rcu_gp_in_progress(rsp) ||
3016	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3017		return 1;
3018#endif /* #ifdef CONFIG_NO_HZ_FULL */
3019	return 0;
3020}
3021
3022/*
3023 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3024 * timekeeping CPU.
3025 */
3026static void rcu_bind_gp_kthread(void)
3027{
3028	int __maybe_unused cpu;
3029
3030	if (!tick_nohz_full_enabled())
3031		return;
3032#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3033	cpu = tick_do_timer_cpu;
3034	if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
3035		set_cpus_allowed_ptr(current, cpumask_of(cpu));
3036#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3037	if (!is_housekeeping_cpu(raw_smp_processor_id()))
3038		housekeeping_affine(current);
3039#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3040}
3041