1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 *  Interactivity improvements by Mike Galbraith
7 *  (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 *  Various enhancements by Dmitry Adamushko.
10 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 *  Group scheduling enhancements by Srivatsa Vaddagiri
13 *  Copyright IBM Corporation, 2007
14 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 *  Scaled math optimizations by Thomas Gleixner
17 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23#include <linux/latencytop.h>
24#include <linux/sched.h>
25#include <linux/cpumask.h>
26#include <linux/cpuidle.h>
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
30#include <linux/mempolicy.h>
31#include <linux/migrate.h>
32#include <linux/task_work.h>
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
37
38/*
39 * Targeted preemption latency for CPU-bound tasks:
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 *
42 * NOTE: this latency value is not the same as the concept of
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
46 *
47 * (to see the precise effective timeslice length of your workload,
48 *  run vmstat and monitor the context-switches (cs) field)
49 */
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63	= SCHED_TUNABLESCALING_LOG;
64
65/*
66 * Minimal preemption granularity for CPU-bound tasks:
67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 */
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71
72/*
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
75static unsigned int sched_nr_latency = 8;
76
77/*
78 * After fork, child runs first. If set to 0 (default) then
79 * parent will (try to) run first.
80 */
81unsigned int sysctl_sched_child_runs_first __read_mostly;
82
83/*
84 * SCHED_OTHER wake-up granularity.
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
96/*
97 * The exponential sliding  window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113  */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119	lw->weight += inc;
120	lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125	lw->weight -= dec;
126	lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131	lw->weight = w;
132	lw->inv_weight = 0;
133}
134
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146	unsigned int cpus = min_t(int, num_online_cpus(), 8);
147	unsigned int factor;
148
149	switch (sysctl_sched_tunable_scaling) {
150	case SCHED_TUNABLESCALING_NONE:
151		factor = 1;
152		break;
153	case SCHED_TUNABLESCALING_LINEAR:
154		factor = cpus;
155		break;
156	case SCHED_TUNABLESCALING_LOG:
157	default:
158		factor = 1 + ilog2(cpus);
159		break;
160	}
161
162	return factor;
163}
164
165static void update_sysctl(void)
166{
167	unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170	(sysctl_##name = (factor) * normalized_sysctl_##name)
171	SET_SYSCTL(sched_min_granularity);
172	SET_SYSCTL(sched_latency);
173	SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179	update_sysctl();
180}
181
182#define WMULT_CONST	(~0U)
183#define WMULT_SHIFT	32
184
185static void __update_inv_weight(struct load_weight *lw)
186{
187	unsigned long w;
188
189	if (likely(lw->inv_weight))
190		return;
191
192	w = scale_load_down(lw->weight);
193
194	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195		lw->inv_weight = 1;
196	else if (unlikely(!w))
197		lw->inv_weight = WMULT_CONST;
198	else
199		lw->inv_weight = WMULT_CONST / w;
200}
201
202/*
203 * delta_exec * weight / lw.weight
204 *   OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
213 */
214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215{
216	u64 fact = scale_load_down(weight);
217	int shift = WMULT_SHIFT;
218
219	__update_inv_weight(lw);
220
221	if (unlikely(fact >> 32)) {
222		while (fact >> 32) {
223			fact >>= 1;
224			shift--;
225		}
226	}
227
228	/* hint to use a 32x32->64 mul */
229	fact = (u64)(u32)fact * lw->inv_weight;
230
231	while (fact >> 32) {
232		fact >>= 1;
233		shift--;
234	}
235
236	return mul_u64_u32_shr(delta_exec, fact, shift);
237}
238
239
240const struct sched_class fair_sched_class;
241
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
246#ifdef CONFIG_FAIR_GROUP_SCHED
247
248/* cpu runqueue to which this cfs_rq is attached */
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
251	return cfs_rq->rq;
252}
253
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se)	(!se->my_q)
256
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260	WARN_ON_ONCE(!entity_is_task(se));
261#endif
262	return container_of(se, struct task_struct, se);
263}
264
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267		for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271	return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277	return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283	return grp->my_q;
284}
285
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287				       int force_update);
288
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291	if (!cfs_rq->on_list) {
292		/*
293		 * Ensure we either appear before our parent (if already
294		 * enqueued) or force our parent to appear after us when it is
295		 * enqueued.  The fact that we always enqueue bottom-up
296		 * reduces this to two cases.
297		 */
298		if (cfs_rq->tg->parent &&
299		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302		} else {
303			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305		}
306
307		cfs_rq->on_list = 1;
308		/* We should have no load, but we need to update last_decay. */
309		update_cfs_rq_blocked_load(cfs_rq, 0);
310	}
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315	if (cfs_rq->on_list) {
316		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317		cfs_rq->on_list = 0;
318	}
319}
320
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
326static inline struct cfs_rq *
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329	if (se->cfs_rq == pse->cfs_rq)
330		return se->cfs_rq;
331
332	return NULL;
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337	return se->parent;
338}
339
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343	int se_depth, pse_depth;
344
345	/*
346	 * preemption test can be made between sibling entities who are in the
347	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348	 * both tasks until we find their ancestors who are siblings of common
349	 * parent.
350	 */
351
352	/* First walk up until both entities are at same depth */
353	se_depth = (*se)->depth;
354	pse_depth = (*pse)->depth;
355
356	while (se_depth > pse_depth) {
357		se_depth--;
358		*se = parent_entity(*se);
359	}
360
361	while (pse_depth > se_depth) {
362		pse_depth--;
363		*pse = parent_entity(*pse);
364	}
365
366	while (!is_same_group(*se, *pse)) {
367		*se = parent_entity(*se);
368		*pse = parent_entity(*pse);
369	}
370}
371
372#else	/* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376	return container_of(se, struct task_struct, se);
377}
378
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381	return container_of(cfs_rq, struct rq, cfs);
382}
383
384#define entity_is_task(se)	1
385
386#define for_each_sched_entity(se) \
387		for (; se; se = NULL)
388
389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390{
391	return &task_rq(p)->cfs;
392}
393
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396	struct task_struct *p = task_of(se);
397	struct rq *rq = task_rq(p);
398
399	return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405	return NULL;
406}
407
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421	return NULL;
422}
423
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
429#endif	/* CONFIG_FAIR_GROUP_SCHED */
430
431static __always_inline
432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439{
440	s64 delta = (s64)(vruntime - max_vruntime);
441	if (delta > 0)
442		max_vruntime = vruntime;
443
444	return max_vruntime;
445}
446
447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448{
449	s64 delta = (s64)(vruntime - min_vruntime);
450	if (delta < 0)
451		min_vruntime = vruntime;
452
453	return min_vruntime;
454}
455
456static inline int entity_before(struct sched_entity *a,
457				struct sched_entity *b)
458{
459	return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464	u64 vruntime = cfs_rq->min_vruntime;
465
466	if (cfs_rq->curr)
467		vruntime = cfs_rq->curr->vruntime;
468
469	if (cfs_rq->rb_leftmost) {
470		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471						   struct sched_entity,
472						   run_node);
473
474		if (!cfs_rq->curr)
475			vruntime = se->vruntime;
476		else
477			vruntime = min_vruntime(vruntime, se->vruntime);
478	}
479
480	/* ensure we never gain time by being placed backwards. */
481	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482#ifndef CONFIG_64BIT
483	smp_wmb();
484	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
486}
487
488/*
489 * Enqueue an entity into the rb-tree:
490 */
491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492{
493	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494	struct rb_node *parent = NULL;
495	struct sched_entity *entry;
496	int leftmost = 1;
497
498	/*
499	 * Find the right place in the rbtree:
500	 */
501	while (*link) {
502		parent = *link;
503		entry = rb_entry(parent, struct sched_entity, run_node);
504		/*
505		 * We dont care about collisions. Nodes with
506		 * the same key stay together.
507		 */
508		if (entity_before(se, entry)) {
509			link = &parent->rb_left;
510		} else {
511			link = &parent->rb_right;
512			leftmost = 0;
513		}
514	}
515
516	/*
517	 * Maintain a cache of leftmost tree entries (it is frequently
518	 * used):
519	 */
520	if (leftmost)
521		cfs_rq->rb_leftmost = &se->run_node;
522
523	rb_link_node(&se->run_node, parent, link);
524	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525}
526
527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528{
529	if (cfs_rq->rb_leftmost == &se->run_node) {
530		struct rb_node *next_node;
531
532		next_node = rb_next(&se->run_node);
533		cfs_rq->rb_leftmost = next_node;
534	}
535
536	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537}
538
539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540{
541	struct rb_node *left = cfs_rq->rb_leftmost;
542
543	if (!left)
544		return NULL;
545
546	return rb_entry(left, struct sched_entity, run_node);
547}
548
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551	struct rb_node *next = rb_next(&se->run_node);
552
553	if (!next)
554		return NULL;
555
556	return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561{
562	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563
564	if (!last)
565		return NULL;
566
567	return rb_entry(last, struct sched_entity, run_node);
568}
569
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
574int sched_proc_update_handler(struct ctl_table *table, int write,
575		void __user *buffer, size_t *lenp,
576		loff_t *ppos)
577{
578	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579	int factor = get_update_sysctl_factor();
580
581	if (ret || !write)
582		return ret;
583
584	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585					sysctl_sched_min_granularity);
586
587#define WRT_SYSCTL(name) \
588	(normalized_sysctl_##name = sysctl_##name / (factor))
589	WRT_SYSCTL(sched_min_granularity);
590	WRT_SYSCTL(sched_latency);
591	WRT_SYSCTL(sched_wakeup_granularity);
592#undef WRT_SYSCTL
593
594	return 0;
595}
596#endif
597
598/*
599 * delta /= w
600 */
601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602{
603	if (unlikely(se->load.weight != NICE_0_LOAD))
604		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605
606	return delta;
607}
608
609/*
610 * The idea is to set a period in which each task runs once.
611 *
612 * When there are too many tasks (sched_nr_latency) we have to stretch
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
617static u64 __sched_period(unsigned long nr_running)
618{
619	u64 period = sysctl_sched_latency;
620	unsigned long nr_latency = sched_nr_latency;
621
622	if (unlikely(nr_running > nr_latency)) {
623		period = sysctl_sched_min_granularity;
624		period *= nr_running;
625	}
626
627	return period;
628}
629
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
634 * s = p*P[w/rw]
635 */
636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637{
638	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639
640	for_each_sched_entity(se) {
641		struct load_weight *load;
642		struct load_weight lw;
643
644		cfs_rq = cfs_rq_of(se);
645		load = &cfs_rq->load;
646
647		if (unlikely(!se->on_rq)) {
648			lw = cfs_rq->load;
649
650			update_load_add(&lw, se->load.weight);
651			load = &lw;
652		}
653		slice = __calc_delta(slice, se->load.weight, load);
654	}
655	return slice;
656}
657
658/*
659 * We calculate the vruntime slice of a to-be-inserted task.
660 *
661 * vs = s/w
662 */
663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664{
665	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666}
667
668#ifdef CONFIG_SMP
669static int select_idle_sibling(struct task_struct *p, int cpu);
670static unsigned long task_h_load(struct task_struct *p);
671
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677	u32 slice;
678
679	p->se.avg.decay_count = 0;
680	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681	p->se.avg.runnable_avg_sum = slice;
682	p->se.avg.runnable_avg_period = slice;
683	__update_task_entity_contrib(&p->se);
684}
685#else
686void init_task_runnable_average(struct task_struct *p)
687{
688}
689#endif
690
691/*
692 * Update the current task's runtime statistics.
693 */
694static void update_curr(struct cfs_rq *cfs_rq)
695{
696	struct sched_entity *curr = cfs_rq->curr;
697	u64 now = rq_clock_task(rq_of(cfs_rq));
698	u64 delta_exec;
699
700	if (unlikely(!curr))
701		return;
702
703	delta_exec = now - curr->exec_start;
704	if (unlikely((s64)delta_exec <= 0))
705		return;
706
707	curr->exec_start = now;
708
709	schedstat_set(curr->statistics.exec_max,
710		      max(delta_exec, curr->statistics.exec_max));
711
712	curr->sum_exec_runtime += delta_exec;
713	schedstat_add(cfs_rq, exec_clock, delta_exec);
714
715	curr->vruntime += calc_delta_fair(delta_exec, curr);
716	update_min_vruntime(cfs_rq);
717
718	if (entity_is_task(curr)) {
719		struct task_struct *curtask = task_of(curr);
720
721		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
722		cpuacct_charge(curtask, delta_exec);
723		account_group_exec_runtime(curtask, delta_exec);
724	}
725
726	account_cfs_rq_runtime(cfs_rq, delta_exec);
727}
728
729static void update_curr_fair(struct rq *rq)
730{
731	update_curr(cfs_rq_of(&rq->curr->se));
732}
733
734static inline void
735update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
736{
737	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
738}
739
740/*
741 * Task is being enqueued - update stats:
742 */
743static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
744{
745	/*
746	 * Are we enqueueing a waiting task? (for current tasks
747	 * a dequeue/enqueue event is a NOP)
748	 */
749	if (se != cfs_rq->curr)
750		update_stats_wait_start(cfs_rq, se);
751}
752
753static void
754update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
755{
756	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
757			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
758	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
759	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
760			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
761#ifdef CONFIG_SCHEDSTATS
762	if (entity_is_task(se)) {
763		trace_sched_stat_wait(task_of(se),
764			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
765	}
766#endif
767	schedstat_set(se->statistics.wait_start, 0);
768}
769
770static inline void
771update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
772{
773	/*
774	 * Mark the end of the wait period if dequeueing a
775	 * waiting task:
776	 */
777	if (se != cfs_rq->curr)
778		update_stats_wait_end(cfs_rq, se);
779}
780
781/*
782 * We are picking a new current task - update its stats:
783 */
784static inline void
785update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
786{
787	/*
788	 * We are starting a new run period:
789	 */
790	se->exec_start = rq_clock_task(rq_of(cfs_rq));
791}
792
793/**************************************************
794 * Scheduling class queueing methods:
795 */
796
797#ifdef CONFIG_NUMA_BALANCING
798/*
799 * Approximate time to scan a full NUMA task in ms. The task scan period is
800 * calculated based on the tasks virtual memory size and
801 * numa_balancing_scan_size.
802 */
803unsigned int sysctl_numa_balancing_scan_period_min = 1000;
804unsigned int sysctl_numa_balancing_scan_period_max = 60000;
805
806/* Portion of address space to scan in MB */
807unsigned int sysctl_numa_balancing_scan_size = 256;
808
809/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
810unsigned int sysctl_numa_balancing_scan_delay = 1000;
811
812static unsigned int task_nr_scan_windows(struct task_struct *p)
813{
814	unsigned long rss = 0;
815	unsigned long nr_scan_pages;
816
817	/*
818	 * Calculations based on RSS as non-present and empty pages are skipped
819	 * by the PTE scanner and NUMA hinting faults should be trapped based
820	 * on resident pages
821	 */
822	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
823	rss = get_mm_rss(p->mm);
824	if (!rss)
825		rss = nr_scan_pages;
826
827	rss = round_up(rss, nr_scan_pages);
828	return rss / nr_scan_pages;
829}
830
831/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
832#define MAX_SCAN_WINDOW 2560
833
834static unsigned int task_scan_min(struct task_struct *p)
835{
836	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
837	unsigned int scan, floor;
838	unsigned int windows = 1;
839
840	if (scan_size < MAX_SCAN_WINDOW)
841		windows = MAX_SCAN_WINDOW / scan_size;
842	floor = 1000 / windows;
843
844	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
845	return max_t(unsigned int, floor, scan);
846}
847
848static unsigned int task_scan_max(struct task_struct *p)
849{
850	unsigned int smin = task_scan_min(p);
851	unsigned int smax;
852
853	/* Watch for min being lower than max due to floor calculations */
854	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
855	return max(smin, smax);
856}
857
858static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
859{
860	rq->nr_numa_running += (p->numa_preferred_nid != -1);
861	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
862}
863
864static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
865{
866	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
867	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
868}
869
870struct numa_group {
871	atomic_t refcount;
872
873	spinlock_t lock; /* nr_tasks, tasks */
874	int nr_tasks;
875	pid_t gid;
876	struct list_head task_list;
877
878	struct rcu_head rcu;
879	nodemask_t active_nodes;
880	unsigned long total_faults;
881	/*
882	 * Faults_cpu is used to decide whether memory should move
883	 * towards the CPU. As a consequence, these stats are weighted
884	 * more by CPU use than by memory faults.
885	 */
886	unsigned long *faults_cpu;
887	unsigned long faults[0];
888};
889
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
899pid_t task_numa_group_id(struct task_struct *p)
900{
901	return p->numa_group ? p->numa_group->gid : 0;
902}
903
904static inline int task_faults_idx(int nid, int priv)
905{
906	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
907}
908
909static inline unsigned long task_faults(struct task_struct *p, int nid)
910{
911	if (!p->numa_faults_memory)
912		return 0;
913
914	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
915		p->numa_faults_memory[task_faults_idx(nid, 1)];
916}
917
918static inline unsigned long group_faults(struct task_struct *p, int nid)
919{
920	if (!p->numa_group)
921		return 0;
922
923	return p->numa_group->faults[task_faults_idx(nid, 0)] +
924		p->numa_group->faults[task_faults_idx(nid, 1)];
925}
926
927static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
928{
929	return group->faults_cpu[task_faults_idx(nid, 0)] +
930		group->faults_cpu[task_faults_idx(nid, 1)];
931}
932
933/*
934 * These return the fraction of accesses done by a particular task, or
935 * task group, on a particular numa node.  The group weight is given a
936 * larger multiplier, in order to group tasks together that are almost
937 * evenly spread out between numa nodes.
938 */
939static inline unsigned long task_weight(struct task_struct *p, int nid)
940{
941	unsigned long total_faults;
942
943	if (!p->numa_faults_memory)
944		return 0;
945
946	total_faults = p->total_numa_faults;
947
948	if (!total_faults)
949		return 0;
950
951	return 1000 * task_faults(p, nid) / total_faults;
952}
953
954static inline unsigned long group_weight(struct task_struct *p, int nid)
955{
956	if (!p->numa_group || !p->numa_group->total_faults)
957		return 0;
958
959	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
960}
961
962bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
963				int src_nid, int dst_cpu)
964{
965	struct numa_group *ng = p->numa_group;
966	int dst_nid = cpu_to_node(dst_cpu);
967	int last_cpupid, this_cpupid;
968
969	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
970
971	/*
972	 * Multi-stage node selection is used in conjunction with a periodic
973	 * migration fault to build a temporal task<->page relation. By using
974	 * a two-stage filter we remove short/unlikely relations.
975	 *
976	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
977	 * a task's usage of a particular page (n_p) per total usage of this
978	 * page (n_t) (in a given time-span) to a probability.
979	 *
980	 * Our periodic faults will sample this probability and getting the
981	 * same result twice in a row, given these samples are fully
982	 * independent, is then given by P(n)^2, provided our sample period
983	 * is sufficiently short compared to the usage pattern.
984	 *
985	 * This quadric squishes small probabilities, making it less likely we
986	 * act on an unlikely task<->page relation.
987	 */
988	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
989	if (!cpupid_pid_unset(last_cpupid) &&
990				cpupid_to_nid(last_cpupid) != dst_nid)
991		return false;
992
993	/* Always allow migrate on private faults */
994	if (cpupid_match_pid(p, last_cpupid))
995		return true;
996
997	/* A shared fault, but p->numa_group has not been set up yet. */
998	if (!ng)
999		return true;
1000
1001	/*
1002	 * Do not migrate if the destination is not a node that
1003	 * is actively used by this numa group.
1004	 */
1005	if (!node_isset(dst_nid, ng->active_nodes))
1006		return false;
1007
1008	/*
1009	 * Source is a node that is not actively used by this
1010	 * numa group, while the destination is. Migrate.
1011	 */
1012	if (!node_isset(src_nid, ng->active_nodes))
1013		return true;
1014
1015	/*
1016	 * Both source and destination are nodes in active
1017	 * use by this numa group. Maximize memory bandwidth
1018	 * by migrating from more heavily used groups, to less
1019	 * heavily used ones, spreading the load around.
1020	 * Use a 1/4 hysteresis to avoid spurious page movement.
1021	 */
1022	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1023}
1024
1025static unsigned long weighted_cpuload(const int cpu);
1026static unsigned long source_load(int cpu, int type);
1027static unsigned long target_load(int cpu, int type);
1028static unsigned long capacity_of(int cpu);
1029static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1030
1031/* Cached statistics for all CPUs within a node */
1032struct numa_stats {
1033	unsigned long nr_running;
1034	unsigned long load;
1035
1036	/* Total compute capacity of CPUs on a node */
1037	unsigned long compute_capacity;
1038
1039	/* Approximate capacity in terms of runnable tasks on a node */
1040	unsigned long task_capacity;
1041	int has_free_capacity;
1042};
1043
1044/*
1045 * XXX borrowed from update_sg_lb_stats
1046 */
1047static void update_numa_stats(struct numa_stats *ns, int nid)
1048{
1049	int smt, cpu, cpus = 0;
1050	unsigned long capacity;
1051
1052	memset(ns, 0, sizeof(*ns));
1053	for_each_cpu(cpu, cpumask_of_node(nid)) {
1054		struct rq *rq = cpu_rq(cpu);
1055
1056		ns->nr_running += rq->nr_running;
1057		ns->load += weighted_cpuload(cpu);
1058		ns->compute_capacity += capacity_of(cpu);
1059
1060		cpus++;
1061	}
1062
1063	/*
1064	 * If we raced with hotplug and there are no CPUs left in our mask
1065	 * the @ns structure is NULL'ed and task_numa_compare() will
1066	 * not find this node attractive.
1067	 *
1068	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1069	 * imbalance and bail there.
1070	 */
1071	if (!cpus)
1072		return;
1073
1074	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1075	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1076	capacity = cpus / smt; /* cores */
1077
1078	ns->task_capacity = min_t(unsigned, capacity,
1079		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1080	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1081}
1082
1083struct task_numa_env {
1084	struct task_struct *p;
1085
1086	int src_cpu, src_nid;
1087	int dst_cpu, dst_nid;
1088
1089	struct numa_stats src_stats, dst_stats;
1090
1091	int imbalance_pct;
1092
1093	struct task_struct *best_task;
1094	long best_imp;
1095	int best_cpu;
1096};
1097
1098static void task_numa_assign(struct task_numa_env *env,
1099			     struct task_struct *p, long imp)
1100{
1101	if (env->best_task)
1102		put_task_struct(env->best_task);
1103	if (p)
1104		get_task_struct(p);
1105
1106	env->best_task = p;
1107	env->best_imp = imp;
1108	env->best_cpu = env->dst_cpu;
1109}
1110
1111static bool load_too_imbalanced(long src_load, long dst_load,
1112				struct task_numa_env *env)
1113{
1114	long imb, old_imb;
1115	long orig_src_load, orig_dst_load;
1116	long src_capacity, dst_capacity;
1117
1118	/*
1119	 * The load is corrected for the CPU capacity available on each node.
1120	 *
1121	 * src_load        dst_load
1122	 * ------------ vs ---------
1123	 * src_capacity    dst_capacity
1124	 */
1125	src_capacity = env->src_stats.compute_capacity;
1126	dst_capacity = env->dst_stats.compute_capacity;
1127
1128	/* We care about the slope of the imbalance, not the direction. */
1129	if (dst_load < src_load)
1130		swap(dst_load, src_load);
1131
1132	/* Is the difference below the threshold? */
1133	imb = dst_load * src_capacity * 100 -
1134	      src_load * dst_capacity * env->imbalance_pct;
1135	if (imb <= 0)
1136		return false;
1137
1138	/*
1139	 * The imbalance is above the allowed threshold.
1140	 * Compare it with the old imbalance.
1141	 */
1142	orig_src_load = env->src_stats.load;
1143	orig_dst_load = env->dst_stats.load;
1144
1145	if (orig_dst_load < orig_src_load)
1146		swap(orig_dst_load, orig_src_load);
1147
1148	old_imb = orig_dst_load * src_capacity * 100 -
1149		  orig_src_load * dst_capacity * env->imbalance_pct;
1150
1151	/* Would this change make things worse? */
1152	return (imb > old_imb);
1153}
1154
1155/*
1156 * This checks if the overall compute and NUMA accesses of the system would
1157 * be improved if the source tasks was migrated to the target dst_cpu taking
1158 * into account that it might be best if task running on the dst_cpu should
1159 * be exchanged with the source task
1160 */
1161static void task_numa_compare(struct task_numa_env *env,
1162			      long taskimp, long groupimp)
1163{
1164	struct rq *src_rq = cpu_rq(env->src_cpu);
1165	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1166	struct task_struct *cur;
1167	long src_load, dst_load;
1168	long load;
1169	long imp = env->p->numa_group ? groupimp : taskimp;
1170	long moveimp = imp;
1171
1172	rcu_read_lock();
1173
1174	raw_spin_lock_irq(&dst_rq->lock);
1175	cur = dst_rq->curr;
1176	/*
1177	 * No need to move the exiting task, and this ensures that ->curr
1178	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1179	 * is safe under RCU read lock.
1180	 * Note that rcu_read_lock() itself can't protect from the final
1181	 * put_task_struct() after the last schedule().
1182	 */
1183	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1184		cur = NULL;
1185	raw_spin_unlock_irq(&dst_rq->lock);
1186
1187	/*
1188	 * Because we have preemption enabled we can get migrated around and
1189	 * end try selecting ourselves (current == env->p) as a swap candidate.
1190	 */
1191	if (cur == env->p)
1192		goto unlock;
1193
1194	/*
1195	 * "imp" is the fault differential for the source task between the
1196	 * source and destination node. Calculate the total differential for
1197	 * the source task and potential destination task. The more negative
1198	 * the value is, the more rmeote accesses that would be expected to
1199	 * be incurred if the tasks were swapped.
1200	 */
1201	if (cur) {
1202		/* Skip this swap candidate if cannot move to the source cpu */
1203		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1204			goto unlock;
1205
1206		/*
1207		 * If dst and source tasks are in the same NUMA group, or not
1208		 * in any group then look only at task weights.
1209		 */
1210		if (cur->numa_group == env->p->numa_group) {
1211			imp = taskimp + task_weight(cur, env->src_nid) -
1212			      task_weight(cur, env->dst_nid);
1213			/*
1214			 * Add some hysteresis to prevent swapping the
1215			 * tasks within a group over tiny differences.
1216			 */
1217			if (cur->numa_group)
1218				imp -= imp/16;
1219		} else {
1220			/*
1221			 * Compare the group weights. If a task is all by
1222			 * itself (not part of a group), use the task weight
1223			 * instead.
1224			 */
1225			if (cur->numa_group)
1226				imp += group_weight(cur, env->src_nid) -
1227				       group_weight(cur, env->dst_nid);
1228			else
1229				imp += task_weight(cur, env->src_nid) -
1230				       task_weight(cur, env->dst_nid);
1231		}
1232	}
1233
1234	if (imp <= env->best_imp && moveimp <= env->best_imp)
1235		goto unlock;
1236
1237	if (!cur) {
1238		/* Is there capacity at our destination? */
1239		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1240		    !env->dst_stats.has_free_capacity)
1241			goto unlock;
1242
1243		goto balance;
1244	}
1245
1246	/* Balance doesn't matter much if we're running a task per cpu */
1247	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1248			dst_rq->nr_running == 1)
1249		goto assign;
1250
1251	/*
1252	 * In the overloaded case, try and keep the load balanced.
1253	 */
1254balance:
1255	load = task_h_load(env->p);
1256	dst_load = env->dst_stats.load + load;
1257	src_load = env->src_stats.load - load;
1258
1259	if (moveimp > imp && moveimp > env->best_imp) {
1260		/*
1261		 * If the improvement from just moving env->p direction is
1262		 * better than swapping tasks around, check if a move is
1263		 * possible. Store a slightly smaller score than moveimp,
1264		 * so an actually idle CPU will win.
1265		 */
1266		if (!load_too_imbalanced(src_load, dst_load, env)) {
1267			imp = moveimp - 1;
1268			cur = NULL;
1269			goto assign;
1270		}
1271	}
1272
1273	if (imp <= env->best_imp)
1274		goto unlock;
1275
1276	if (cur) {
1277		load = task_h_load(cur);
1278		dst_load -= load;
1279		src_load += load;
1280	}
1281
1282	if (load_too_imbalanced(src_load, dst_load, env))
1283		goto unlock;
1284
1285	/*
1286	 * One idle CPU per node is evaluated for a task numa move.
1287	 * Call select_idle_sibling to maybe find a better one.
1288	 */
1289	if (!cur)
1290		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1291
1292assign:
1293	task_numa_assign(env, cur, imp);
1294unlock:
1295	rcu_read_unlock();
1296}
1297
1298static void task_numa_find_cpu(struct task_numa_env *env,
1299				long taskimp, long groupimp)
1300{
1301	int cpu;
1302
1303	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1304		/* Skip this CPU if the source task cannot migrate */
1305		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1306			continue;
1307
1308		env->dst_cpu = cpu;
1309		task_numa_compare(env, taskimp, groupimp);
1310	}
1311}
1312
1313static int task_numa_migrate(struct task_struct *p)
1314{
1315	struct task_numa_env env = {
1316		.p = p,
1317
1318		.src_cpu = task_cpu(p),
1319		.src_nid = task_node(p),
1320
1321		.imbalance_pct = 112,
1322
1323		.best_task = NULL,
1324		.best_imp = 0,
1325		.best_cpu = -1
1326	};
1327	struct sched_domain *sd;
1328	unsigned long taskweight, groupweight;
1329	int nid, ret;
1330	long taskimp, groupimp;
1331
1332	/*
1333	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1334	 * imbalance and would be the first to start moving tasks about.
1335	 *
1336	 * And we want to avoid any moving of tasks about, as that would create
1337	 * random movement of tasks -- counter the numa conditions we're trying
1338	 * to satisfy here.
1339	 */
1340	rcu_read_lock();
1341	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1342	if (sd)
1343		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1344	rcu_read_unlock();
1345
1346	/*
1347	 * Cpusets can break the scheduler domain tree into smaller
1348	 * balance domains, some of which do not cross NUMA boundaries.
1349	 * Tasks that are "trapped" in such domains cannot be migrated
1350	 * elsewhere, so there is no point in (re)trying.
1351	 */
1352	if (unlikely(!sd)) {
1353		p->numa_preferred_nid = task_node(p);
1354		return -EINVAL;
1355	}
1356
1357	taskweight = task_weight(p, env.src_nid);
1358	groupweight = group_weight(p, env.src_nid);
1359	update_numa_stats(&env.src_stats, env.src_nid);
1360	env.dst_nid = p->numa_preferred_nid;
1361	taskimp = task_weight(p, env.dst_nid) - taskweight;
1362	groupimp = group_weight(p, env.dst_nid) - groupweight;
1363	update_numa_stats(&env.dst_stats, env.dst_nid);
1364
1365	/* Try to find a spot on the preferred nid. */
1366	task_numa_find_cpu(&env, taskimp, groupimp);
1367
1368	/* No space available on the preferred nid. Look elsewhere. */
1369	if (env.best_cpu == -1) {
1370		for_each_online_node(nid) {
1371			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1372				continue;
1373
1374			/* Only consider nodes where both task and groups benefit */
1375			taskimp = task_weight(p, nid) - taskweight;
1376			groupimp = group_weight(p, nid) - groupweight;
1377			if (taskimp < 0 && groupimp < 0)
1378				continue;
1379
1380			env.dst_nid = nid;
1381			update_numa_stats(&env.dst_stats, env.dst_nid);
1382			task_numa_find_cpu(&env, taskimp, groupimp);
1383		}
1384	}
1385
1386	/*
1387	 * If the task is part of a workload that spans multiple NUMA nodes,
1388	 * and is migrating into one of the workload's active nodes, remember
1389	 * this node as the task's preferred numa node, so the workload can
1390	 * settle down.
1391	 * A task that migrated to a second choice node will be better off
1392	 * trying for a better one later. Do not set the preferred node here.
1393	 */
1394	if (p->numa_group) {
1395		if (env.best_cpu == -1)
1396			nid = env.src_nid;
1397		else
1398			nid = env.dst_nid;
1399
1400		if (node_isset(nid, p->numa_group->active_nodes))
1401			sched_setnuma(p, env.dst_nid);
1402	}
1403
1404	/* No better CPU than the current one was found. */
1405	if (env.best_cpu == -1)
1406		return -EAGAIN;
1407
1408	/*
1409	 * Reset the scan period if the task is being rescheduled on an
1410	 * alternative node to recheck if the tasks is now properly placed.
1411	 */
1412	p->numa_scan_period = task_scan_min(p);
1413
1414	if (env.best_task == NULL) {
1415		ret = migrate_task_to(p, env.best_cpu);
1416		if (ret != 0)
1417			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1418		return ret;
1419	}
1420
1421	ret = migrate_swap(p, env.best_task);
1422	if (ret != 0)
1423		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1424	put_task_struct(env.best_task);
1425	return ret;
1426}
1427
1428/* Attempt to migrate a task to a CPU on the preferred node. */
1429static void numa_migrate_preferred(struct task_struct *p)
1430{
1431	unsigned long interval = HZ;
1432
1433	/* This task has no NUMA fault statistics yet */
1434	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1435		return;
1436
1437	/* Periodically retry migrating the task to the preferred node */
1438	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1439	p->numa_migrate_retry = jiffies + interval;
1440
1441	/* Success if task is already running on preferred CPU */
1442	if (task_node(p) == p->numa_preferred_nid)
1443		return;
1444
1445	/* Otherwise, try migrate to a CPU on the preferred node */
1446	task_numa_migrate(p);
1447}
1448
1449/*
1450 * Find the nodes on which the workload is actively running. We do this by
1451 * tracking the nodes from which NUMA hinting faults are triggered. This can
1452 * be different from the set of nodes where the workload's memory is currently
1453 * located.
1454 *
1455 * The bitmask is used to make smarter decisions on when to do NUMA page
1456 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1457 * are added when they cause over 6/16 of the maximum number of faults, but
1458 * only removed when they drop below 3/16.
1459 */
1460static void update_numa_active_node_mask(struct numa_group *numa_group)
1461{
1462	unsigned long faults, max_faults = 0;
1463	int nid;
1464
1465	for_each_online_node(nid) {
1466		faults = group_faults_cpu(numa_group, nid);
1467		if (faults > max_faults)
1468			max_faults = faults;
1469	}
1470
1471	for_each_online_node(nid) {
1472		faults = group_faults_cpu(numa_group, nid);
1473		if (!node_isset(nid, numa_group->active_nodes)) {
1474			if (faults > max_faults * 6 / 16)
1475				node_set(nid, numa_group->active_nodes);
1476		} else if (faults < max_faults * 3 / 16)
1477			node_clear(nid, numa_group->active_nodes);
1478	}
1479}
1480
1481/*
1482 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1483 * increments. The more local the fault statistics are, the higher the scan
1484 * period will be for the next scan window. If local/(local+remote) ratio is
1485 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1486 * the scan period will decrease. Aim for 70% local accesses.
1487 */
1488#define NUMA_PERIOD_SLOTS 10
1489#define NUMA_PERIOD_THRESHOLD 7
1490
1491/*
1492 * Increase the scan period (slow down scanning) if the majority of
1493 * our memory is already on our local node, or if the majority of
1494 * the page accesses are shared with other processes.
1495 * Otherwise, decrease the scan period.
1496 */
1497static void update_task_scan_period(struct task_struct *p,
1498			unsigned long shared, unsigned long private)
1499{
1500	unsigned int period_slot;
1501	int ratio;
1502	int diff;
1503
1504	unsigned long remote = p->numa_faults_locality[0];
1505	unsigned long local = p->numa_faults_locality[1];
1506
1507	/*
1508	 * If there were no record hinting faults then either the task is
1509	 * completely idle or all activity is areas that are not of interest
1510	 * to automatic numa balancing. Scan slower
1511	 */
1512	if (local + shared == 0) {
1513		p->numa_scan_period = min(p->numa_scan_period_max,
1514			p->numa_scan_period << 1);
1515
1516		p->mm->numa_next_scan = jiffies +
1517			msecs_to_jiffies(p->numa_scan_period);
1518
1519		return;
1520	}
1521
1522	/*
1523	 * Prepare to scale scan period relative to the current period.
1524	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1525	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1526	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1527	 */
1528	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1529	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1530	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1531		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1532		if (!slot)
1533			slot = 1;
1534		diff = slot * period_slot;
1535	} else {
1536		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1537
1538		/*
1539		 * Scale scan rate increases based on sharing. There is an
1540		 * inverse relationship between the degree of sharing and
1541		 * the adjustment made to the scanning period. Broadly
1542		 * speaking the intent is that there is little point
1543		 * scanning faster if shared accesses dominate as it may
1544		 * simply bounce migrations uselessly
1545		 */
1546		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1547		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1548	}
1549
1550	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1551			task_scan_min(p), task_scan_max(p));
1552	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1553}
1554
1555/*
1556 * Get the fraction of time the task has been running since the last
1557 * NUMA placement cycle. The scheduler keeps similar statistics, but
1558 * decays those on a 32ms period, which is orders of magnitude off
1559 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1560 * stats only if the task is so new there are no NUMA statistics yet.
1561 */
1562static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1563{
1564	u64 runtime, delta, now;
1565	/* Use the start of this time slice to avoid calculations. */
1566	now = p->se.exec_start;
1567	runtime = p->se.sum_exec_runtime;
1568
1569	if (p->last_task_numa_placement) {
1570		delta = runtime - p->last_sum_exec_runtime;
1571		*period = now - p->last_task_numa_placement;
1572	} else {
1573		delta = p->se.avg.runnable_avg_sum;
1574		*period = p->se.avg.runnable_avg_period;
1575	}
1576
1577	p->last_sum_exec_runtime = runtime;
1578	p->last_task_numa_placement = now;
1579
1580	return delta;
1581}
1582
1583static void task_numa_placement(struct task_struct *p)
1584{
1585	int seq, nid, max_nid = -1, max_group_nid = -1;
1586	unsigned long max_faults = 0, max_group_faults = 0;
1587	unsigned long fault_types[2] = { 0, 0 };
1588	unsigned long total_faults;
1589	u64 runtime, period;
1590	spinlock_t *group_lock = NULL;
1591
1592	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1593	if (p->numa_scan_seq == seq)
1594		return;
1595	p->numa_scan_seq = seq;
1596	p->numa_scan_period_max = task_scan_max(p);
1597
1598	total_faults = p->numa_faults_locality[0] +
1599		       p->numa_faults_locality[1];
1600	runtime = numa_get_avg_runtime(p, &period);
1601
1602	/* If the task is part of a group prevent parallel updates to group stats */
1603	if (p->numa_group) {
1604		group_lock = &p->numa_group->lock;
1605		spin_lock_irq(group_lock);
1606	}
1607
1608	/* Find the node with the highest number of faults */
1609	for_each_online_node(nid) {
1610		unsigned long faults = 0, group_faults = 0;
1611		int priv, i;
1612
1613		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1614			long diff, f_diff, f_weight;
1615
1616			i = task_faults_idx(nid, priv);
1617
1618			/* Decay existing window, copy faults since last scan */
1619			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1620			fault_types[priv] += p->numa_faults_buffer_memory[i];
1621			p->numa_faults_buffer_memory[i] = 0;
1622
1623			/*
1624			 * Normalize the faults_from, so all tasks in a group
1625			 * count according to CPU use, instead of by the raw
1626			 * number of faults. Tasks with little runtime have
1627			 * little over-all impact on throughput, and thus their
1628			 * faults are less important.
1629			 */
1630			f_weight = div64_u64(runtime << 16, period + 1);
1631			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1632				   (total_faults + 1);
1633			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1634			p->numa_faults_buffer_cpu[i] = 0;
1635
1636			p->numa_faults_memory[i] += diff;
1637			p->numa_faults_cpu[i] += f_diff;
1638			faults += p->numa_faults_memory[i];
1639			p->total_numa_faults += diff;
1640			if (p->numa_group) {
1641				/* safe because we can only change our own group */
1642				p->numa_group->faults[i] += diff;
1643				p->numa_group->faults_cpu[i] += f_diff;
1644				p->numa_group->total_faults += diff;
1645				group_faults += p->numa_group->faults[i];
1646			}
1647		}
1648
1649		if (faults > max_faults) {
1650			max_faults = faults;
1651			max_nid = nid;
1652		}
1653
1654		if (group_faults > max_group_faults) {
1655			max_group_faults = group_faults;
1656			max_group_nid = nid;
1657		}
1658	}
1659
1660	update_task_scan_period(p, fault_types[0], fault_types[1]);
1661
1662	if (p->numa_group) {
1663		update_numa_active_node_mask(p->numa_group);
1664		spin_unlock_irq(group_lock);
1665		max_nid = max_group_nid;
1666	}
1667
1668	if (max_faults) {
1669		/* Set the new preferred node */
1670		if (max_nid != p->numa_preferred_nid)
1671			sched_setnuma(p, max_nid);
1672
1673		if (task_node(p) != p->numa_preferred_nid)
1674			numa_migrate_preferred(p);
1675	}
1676}
1677
1678static inline int get_numa_group(struct numa_group *grp)
1679{
1680	return atomic_inc_not_zero(&grp->refcount);
1681}
1682
1683static inline void put_numa_group(struct numa_group *grp)
1684{
1685	if (atomic_dec_and_test(&grp->refcount))
1686		kfree_rcu(grp, rcu);
1687}
1688
1689static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1690			int *priv)
1691{
1692	struct numa_group *grp, *my_grp;
1693	struct task_struct *tsk;
1694	bool join = false;
1695	int cpu = cpupid_to_cpu(cpupid);
1696	int i;
1697
1698	if (unlikely(!p->numa_group)) {
1699		unsigned int size = sizeof(struct numa_group) +
1700				    4*nr_node_ids*sizeof(unsigned long);
1701
1702		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1703		if (!grp)
1704			return;
1705
1706		atomic_set(&grp->refcount, 1);
1707		spin_lock_init(&grp->lock);
1708		INIT_LIST_HEAD(&grp->task_list);
1709		grp->gid = p->pid;
1710		/* Second half of the array tracks nids where faults happen */
1711		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1712						nr_node_ids;
1713
1714		node_set(task_node(current), grp->active_nodes);
1715
1716		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1717			grp->faults[i] = p->numa_faults_memory[i];
1718
1719		grp->total_faults = p->total_numa_faults;
1720
1721		list_add(&p->numa_entry, &grp->task_list);
1722		grp->nr_tasks++;
1723		rcu_assign_pointer(p->numa_group, grp);
1724	}
1725
1726	rcu_read_lock();
1727	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1728
1729	if (!cpupid_match_pid(tsk, cpupid))
1730		goto no_join;
1731
1732	grp = rcu_dereference(tsk->numa_group);
1733	if (!grp)
1734		goto no_join;
1735
1736	my_grp = p->numa_group;
1737	if (grp == my_grp)
1738		goto no_join;
1739
1740	/*
1741	 * Only join the other group if its bigger; if we're the bigger group,
1742	 * the other task will join us.
1743	 */
1744	if (my_grp->nr_tasks > grp->nr_tasks)
1745		goto no_join;
1746
1747	/*
1748	 * Tie-break on the grp address.
1749	 */
1750	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1751		goto no_join;
1752
1753	/* Always join threads in the same process. */
1754	if (tsk->mm == current->mm)
1755		join = true;
1756
1757	/* Simple filter to avoid false positives due to PID collisions */
1758	if (flags & TNF_SHARED)
1759		join = true;
1760
1761	/* Update priv based on whether false sharing was detected */
1762	*priv = !join;
1763
1764	if (join && !get_numa_group(grp))
1765		goto no_join;
1766
1767	rcu_read_unlock();
1768
1769	if (!join)
1770		return;
1771
1772	BUG_ON(irqs_disabled());
1773	double_lock_irq(&my_grp->lock, &grp->lock);
1774
1775	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1776		my_grp->faults[i] -= p->numa_faults_memory[i];
1777		grp->faults[i] += p->numa_faults_memory[i];
1778	}
1779	my_grp->total_faults -= p->total_numa_faults;
1780	grp->total_faults += p->total_numa_faults;
1781
1782	list_move(&p->numa_entry, &grp->task_list);
1783	my_grp->nr_tasks--;
1784	grp->nr_tasks++;
1785
1786	spin_unlock(&my_grp->lock);
1787	spin_unlock_irq(&grp->lock);
1788
1789	rcu_assign_pointer(p->numa_group, grp);
1790
1791	put_numa_group(my_grp);
1792	return;
1793
1794no_join:
1795	rcu_read_unlock();
1796	return;
1797}
1798
1799void task_numa_free(struct task_struct *p)
1800{
1801	struct numa_group *grp = p->numa_group;
1802	void *numa_faults = p->numa_faults_memory;
1803	unsigned long flags;
1804	int i;
1805
1806	if (grp) {
1807		spin_lock_irqsave(&grp->lock, flags);
1808		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1809			grp->faults[i] -= p->numa_faults_memory[i];
1810		grp->total_faults -= p->total_numa_faults;
1811
1812		list_del(&p->numa_entry);
1813		grp->nr_tasks--;
1814		spin_unlock_irqrestore(&grp->lock, flags);
1815		RCU_INIT_POINTER(p->numa_group, NULL);
1816		put_numa_group(grp);
1817	}
1818
1819	p->numa_faults_memory = NULL;
1820	p->numa_faults_buffer_memory = NULL;
1821	p->numa_faults_cpu= NULL;
1822	p->numa_faults_buffer_cpu = NULL;
1823	kfree(numa_faults);
1824}
1825
1826/*
1827 * Got a PROT_NONE fault for a page on @node.
1828 */
1829void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1830{
1831	struct task_struct *p = current;
1832	bool migrated = flags & TNF_MIGRATED;
1833	int cpu_node = task_node(current);
1834	int local = !!(flags & TNF_FAULT_LOCAL);
1835	int priv;
1836
1837	if (!numabalancing_enabled)
1838		return;
1839
1840	/* for example, ksmd faulting in a user's mm */
1841	if (!p->mm)
1842		return;
1843
1844	/* Allocate buffer to track faults on a per-node basis */
1845	if (unlikely(!p->numa_faults_memory)) {
1846		int size = sizeof(*p->numa_faults_memory) *
1847			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1848
1849		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1850		if (!p->numa_faults_memory)
1851			return;
1852
1853		BUG_ON(p->numa_faults_buffer_memory);
1854		/*
1855		 * The averaged statistics, shared & private, memory & cpu,
1856		 * occupy the first half of the array. The second half of the
1857		 * array is for current counters, which are averaged into the
1858		 * first set by task_numa_placement.
1859		 */
1860		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1861		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1862		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1863		p->total_numa_faults = 0;
1864		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1865	}
1866
1867	/*
1868	 * First accesses are treated as private, otherwise consider accesses
1869	 * to be private if the accessing pid has not changed
1870	 */
1871	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1872		priv = 1;
1873	} else {
1874		priv = cpupid_match_pid(p, last_cpupid);
1875		if (!priv && !(flags & TNF_NO_GROUP))
1876			task_numa_group(p, last_cpupid, flags, &priv);
1877	}
1878
1879	/*
1880	 * If a workload spans multiple NUMA nodes, a shared fault that
1881	 * occurs wholly within the set of nodes that the workload is
1882	 * actively using should be counted as local. This allows the
1883	 * scan rate to slow down when a workload has settled down.
1884	 */
1885	if (!priv && !local && p->numa_group &&
1886			node_isset(cpu_node, p->numa_group->active_nodes) &&
1887			node_isset(mem_node, p->numa_group->active_nodes))
1888		local = 1;
1889
1890	task_numa_placement(p);
1891
1892	/*
1893	 * Retry task to preferred node migration periodically, in case it
1894	 * case it previously failed, or the scheduler moved us.
1895	 */
1896	if (time_after(jiffies, p->numa_migrate_retry))
1897		numa_migrate_preferred(p);
1898
1899	if (migrated)
1900		p->numa_pages_migrated += pages;
1901
1902	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1903	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1904	p->numa_faults_locality[local] += pages;
1905}
1906
1907static void reset_ptenuma_scan(struct task_struct *p)
1908{
1909	ACCESS_ONCE(p->mm->numa_scan_seq)++;
1910	p->mm->numa_scan_offset = 0;
1911}
1912
1913/*
1914 * The expensive part of numa migration is done from task_work context.
1915 * Triggered from task_tick_numa().
1916 */
1917void task_numa_work(struct callback_head *work)
1918{
1919	unsigned long migrate, next_scan, now = jiffies;
1920	struct task_struct *p = current;
1921	struct mm_struct *mm = p->mm;
1922	struct vm_area_struct *vma;
1923	unsigned long start, end;
1924	unsigned long nr_pte_updates = 0;
1925	long pages;
1926
1927	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1928
1929	work->next = work; /* protect against double add */
1930	/*
1931	 * Who cares about NUMA placement when they're dying.
1932	 *
1933	 * NOTE: make sure not to dereference p->mm before this check,
1934	 * exit_task_work() happens _after_ exit_mm() so we could be called
1935	 * without p->mm even though we still had it when we enqueued this
1936	 * work.
1937	 */
1938	if (p->flags & PF_EXITING)
1939		return;
1940
1941	if (!mm->numa_next_scan) {
1942		mm->numa_next_scan = now +
1943			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1944	}
1945
1946	/*
1947	 * Enforce maximal scan/migration frequency..
1948	 */
1949	migrate = mm->numa_next_scan;
1950	if (time_before(now, migrate))
1951		return;
1952
1953	if (p->numa_scan_period == 0) {
1954		p->numa_scan_period_max = task_scan_max(p);
1955		p->numa_scan_period = task_scan_min(p);
1956	}
1957
1958	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1959	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1960		return;
1961
1962	/*
1963	 * Delay this task enough that another task of this mm will likely win
1964	 * the next time around.
1965	 */
1966	p->node_stamp += 2 * TICK_NSEC;
1967
1968	start = mm->numa_scan_offset;
1969	pages = sysctl_numa_balancing_scan_size;
1970	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1971	if (!pages)
1972		return;
1973
1974	down_read(&mm->mmap_sem);
1975	vma = find_vma(mm, start);
1976	if (!vma) {
1977		reset_ptenuma_scan(p);
1978		start = 0;
1979		vma = mm->mmap;
1980	}
1981	for (; vma; vma = vma->vm_next) {
1982		if (!vma_migratable(vma) || !vma_policy_mof(vma))
1983			continue;
1984
1985		/*
1986		 * Shared library pages mapped by multiple processes are not
1987		 * migrated as it is expected they are cache replicated. Avoid
1988		 * hinting faults in read-only file-backed mappings or the vdso
1989		 * as migrating the pages will be of marginal benefit.
1990		 */
1991		if (!vma->vm_mm ||
1992		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1993			continue;
1994
1995		/*
1996		 * Skip inaccessible VMAs to avoid any confusion between
1997		 * PROT_NONE and NUMA hinting ptes
1998		 */
1999		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2000			continue;
2001
2002		do {
2003			start = max(start, vma->vm_start);
2004			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2005			end = min(end, vma->vm_end);
2006			nr_pte_updates += change_prot_numa(vma, start, end);
2007
2008			/*
2009			 * Scan sysctl_numa_balancing_scan_size but ensure that
2010			 * at least one PTE is updated so that unused virtual
2011			 * address space is quickly skipped.
2012			 */
2013			if (nr_pte_updates)
2014				pages -= (end - start) >> PAGE_SHIFT;
2015
2016			start = end;
2017			if (pages <= 0)
2018				goto out;
2019
2020			cond_resched();
2021		} while (end != vma->vm_end);
2022	}
2023
2024out:
2025	/*
2026	 * It is possible to reach the end of the VMA list but the last few
2027	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2028	 * would find the !migratable VMA on the next scan but not reset the
2029	 * scanner to the start so check it now.
2030	 */
2031	if (vma)
2032		mm->numa_scan_offset = start;
2033	else
2034		reset_ptenuma_scan(p);
2035	up_read(&mm->mmap_sem);
2036}
2037
2038/*
2039 * Drive the periodic memory faults..
2040 */
2041void task_tick_numa(struct rq *rq, struct task_struct *curr)
2042{
2043	struct callback_head *work = &curr->numa_work;
2044	u64 period, now;
2045
2046	/*
2047	 * We don't care about NUMA placement if we don't have memory.
2048	 */
2049	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2050		return;
2051
2052	/*
2053	 * Using runtime rather than walltime has the dual advantage that
2054	 * we (mostly) drive the selection from busy threads and that the
2055	 * task needs to have done some actual work before we bother with
2056	 * NUMA placement.
2057	 */
2058	now = curr->se.sum_exec_runtime;
2059	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2060
2061	if (now - curr->node_stamp > period) {
2062		if (!curr->node_stamp)
2063			curr->numa_scan_period = task_scan_min(curr);
2064		curr->node_stamp += period;
2065
2066		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2067			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2068			task_work_add(curr, work, true);
2069		}
2070	}
2071}
2072#else
2073static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2074{
2075}
2076
2077static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2078{
2079}
2080
2081static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2082{
2083}
2084#endif /* CONFIG_NUMA_BALANCING */
2085
2086static void
2087account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2088{
2089	update_load_add(&cfs_rq->load, se->load.weight);
2090	if (!parent_entity(se))
2091		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2092#ifdef CONFIG_SMP
2093	if (entity_is_task(se)) {
2094		struct rq *rq = rq_of(cfs_rq);
2095
2096		account_numa_enqueue(rq, task_of(se));
2097		list_add(&se->group_node, &rq->cfs_tasks);
2098	}
2099#endif
2100	cfs_rq->nr_running++;
2101}
2102
2103static void
2104account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2105{
2106	update_load_sub(&cfs_rq->load, se->load.weight);
2107	if (!parent_entity(se))
2108		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2109	if (entity_is_task(se)) {
2110		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2111		list_del_init(&se->group_node);
2112	}
2113	cfs_rq->nr_running--;
2114}
2115
2116#ifdef CONFIG_FAIR_GROUP_SCHED
2117# ifdef CONFIG_SMP
2118static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2119{
2120	long tg_weight;
2121
2122	/*
2123	 * Use this CPU's actual weight instead of the last load_contribution
2124	 * to gain a more accurate current total weight. See
2125	 * update_cfs_rq_load_contribution().
2126	 */
2127	tg_weight = atomic_long_read(&tg->load_avg);
2128	tg_weight -= cfs_rq->tg_load_contrib;
2129	tg_weight += cfs_rq->load.weight;
2130
2131	return tg_weight;
2132}
2133
2134static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2135{
2136	long tg_weight, load, shares;
2137
2138	tg_weight = calc_tg_weight(tg, cfs_rq);
2139	load = cfs_rq->load.weight;
2140
2141	shares = (tg->shares * load);
2142	if (tg_weight)
2143		shares /= tg_weight;
2144
2145	if (shares < MIN_SHARES)
2146		shares = MIN_SHARES;
2147	if (shares > tg->shares)
2148		shares = tg->shares;
2149
2150	return shares;
2151}
2152# else /* CONFIG_SMP */
2153static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2154{
2155	return tg->shares;
2156}
2157# endif /* CONFIG_SMP */
2158static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2159			    unsigned long weight)
2160{
2161	if (se->on_rq) {
2162		/* commit outstanding execution time */
2163		if (cfs_rq->curr == se)
2164			update_curr(cfs_rq);
2165		account_entity_dequeue(cfs_rq, se);
2166	}
2167
2168	update_load_set(&se->load, weight);
2169
2170	if (se->on_rq)
2171		account_entity_enqueue(cfs_rq, se);
2172}
2173
2174static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2175
2176static void update_cfs_shares(struct cfs_rq *cfs_rq)
2177{
2178	struct task_group *tg;
2179	struct sched_entity *se;
2180	long shares;
2181
2182	tg = cfs_rq->tg;
2183	se = tg->se[cpu_of(rq_of(cfs_rq))];
2184	if (!se || throttled_hierarchy(cfs_rq))
2185		return;
2186#ifndef CONFIG_SMP
2187	if (likely(se->load.weight == tg->shares))
2188		return;
2189#endif
2190	shares = calc_cfs_shares(cfs_rq, tg);
2191
2192	reweight_entity(cfs_rq_of(se), se, shares);
2193}
2194#else /* CONFIG_FAIR_GROUP_SCHED */
2195static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2196{
2197}
2198#endif /* CONFIG_FAIR_GROUP_SCHED */
2199
2200#ifdef CONFIG_SMP
2201/*
2202 * We choose a half-life close to 1 scheduling period.
2203 * Note: The tables below are dependent on this value.
2204 */
2205#define LOAD_AVG_PERIOD 32
2206#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2207#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2208
2209/* Precomputed fixed inverse multiplies for multiplication by y^n */
2210static const u32 runnable_avg_yN_inv[] = {
2211	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2212	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2213	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2214	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2215	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2216	0x85aac367, 0x82cd8698,
2217};
2218
2219/*
2220 * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2221 * over-estimates when re-combining.
2222 */
2223static const u32 runnable_avg_yN_sum[] = {
2224	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2225	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2226	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2227};
2228
2229/*
2230 * Approximate:
2231 *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2232 */
2233static __always_inline u64 decay_load(u64 val, u64 n)
2234{
2235	unsigned int local_n;
2236
2237	if (!n)
2238		return val;
2239	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2240		return 0;
2241
2242	/* after bounds checking we can collapse to 32-bit */
2243	local_n = n;
2244
2245	/*
2246	 * As y^PERIOD = 1/2, we can combine
2247	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2248	 * With a look-up table which covers y^n (n<PERIOD)
2249	 *
2250	 * To achieve constant time decay_load.
2251	 */
2252	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2253		val >>= local_n / LOAD_AVG_PERIOD;
2254		local_n %= LOAD_AVG_PERIOD;
2255	}
2256
2257	val *= runnable_avg_yN_inv[local_n];
2258	/* We don't use SRR here since we always want to round down. */
2259	return val >> 32;
2260}
2261
2262/*
2263 * For updates fully spanning n periods, the contribution to runnable
2264 * average will be: \Sum 1024*y^n
2265 *
2266 * We can compute this reasonably efficiently by combining:
2267 *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2268 */
2269static u32 __compute_runnable_contrib(u64 n)
2270{
2271	u32 contrib = 0;
2272
2273	if (likely(n <= LOAD_AVG_PERIOD))
2274		return runnable_avg_yN_sum[n];
2275	else if (unlikely(n >= LOAD_AVG_MAX_N))
2276		return LOAD_AVG_MAX;
2277
2278	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2279	do {
2280		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2281		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2282
2283		n -= LOAD_AVG_PERIOD;
2284	} while (n > LOAD_AVG_PERIOD);
2285
2286	contrib = decay_load(contrib, n);
2287	return contrib + runnable_avg_yN_sum[n];
2288}
2289
2290/*
2291 * We can represent the historical contribution to runnable average as the
2292 * coefficients of a geometric series.  To do this we sub-divide our runnable
2293 * history into segments of approximately 1ms (1024us); label the segment that
2294 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2295 *
2296 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2297 *      p0            p1           p2
2298 *     (now)       (~1ms ago)  (~2ms ago)
2299 *
2300 * Let u_i denote the fraction of p_i that the entity was runnable.
2301 *
2302 * We then designate the fractions u_i as our co-efficients, yielding the
2303 * following representation of historical load:
2304 *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2305 *
2306 * We choose y based on the with of a reasonably scheduling period, fixing:
2307 *   y^32 = 0.5
2308 *
2309 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2310 * approximately half as much as the contribution to load within the last ms
2311 * (u_0).
2312 *
2313 * When a period "rolls over" and we have new u_0`, multiplying the previous
2314 * sum again by y is sufficient to update:
2315 *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2316 *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2317 */
2318static __always_inline int __update_entity_runnable_avg(u64 now,
2319							struct sched_avg *sa,
2320							int runnable)
2321{
2322	u64 delta, periods;
2323	u32 runnable_contrib;
2324	int delta_w, decayed = 0;
2325
2326	delta = now - sa->last_runnable_update;
2327	/*
2328	 * This should only happen when time goes backwards, which it
2329	 * unfortunately does during sched clock init when we swap over to TSC.
2330	 */
2331	if ((s64)delta < 0) {
2332		sa->last_runnable_update = now;
2333		return 0;
2334	}
2335
2336	/*
2337	 * Use 1024ns as the unit of measurement since it's a reasonable
2338	 * approximation of 1us and fast to compute.
2339	 */
2340	delta >>= 10;
2341	if (!delta)
2342		return 0;
2343	sa->last_runnable_update = now;
2344
2345	/* delta_w is the amount already accumulated against our next period */
2346	delta_w = sa->runnable_avg_period % 1024;
2347	if (delta + delta_w >= 1024) {
2348		/* period roll-over */
2349		decayed = 1;
2350
2351		/*
2352		 * Now that we know we're crossing a period boundary, figure
2353		 * out how much from delta we need to complete the current
2354		 * period and accrue it.
2355		 */
2356		delta_w = 1024 - delta_w;
2357		if (runnable)
2358			sa->runnable_avg_sum += delta_w;
2359		sa->runnable_avg_period += delta_w;
2360
2361		delta -= delta_w;
2362
2363		/* Figure out how many additional periods this update spans */
2364		periods = delta / 1024;
2365		delta %= 1024;
2366
2367		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2368						  periods + 1);
2369		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2370						     periods + 1);
2371
2372		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2373		runnable_contrib = __compute_runnable_contrib(periods);
2374		if (runnable)
2375			sa->runnable_avg_sum += runnable_contrib;
2376		sa->runnable_avg_period += runnable_contrib;
2377	}
2378
2379	/* Remainder of delta accrued against u_0` */
2380	if (runnable)
2381		sa->runnable_avg_sum += delta;
2382	sa->runnable_avg_period += delta;
2383
2384	return decayed;
2385}
2386
2387/* Synchronize an entity's decay with its parenting cfs_rq.*/
2388static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2389{
2390	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2391	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2392
2393	decays -= se->avg.decay_count;
2394	if (!decays)
2395		return 0;
2396
2397	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2398	se->avg.decay_count = 0;
2399
2400	return decays;
2401}
2402
2403#ifdef CONFIG_FAIR_GROUP_SCHED
2404static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2405						 int force_update)
2406{
2407	struct task_group *tg = cfs_rq->tg;
2408	long tg_contrib;
2409
2410	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2411	tg_contrib -= cfs_rq->tg_load_contrib;
2412
2413	if (!tg_contrib)
2414		return;
2415
2416	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2417		atomic_long_add(tg_contrib, &tg->load_avg);
2418		cfs_rq->tg_load_contrib += tg_contrib;
2419	}
2420}
2421
2422/*
2423 * Aggregate cfs_rq runnable averages into an equivalent task_group
2424 * representation for computing load contributions.
2425 */
2426static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2427						  struct cfs_rq *cfs_rq)
2428{
2429	struct task_group *tg = cfs_rq->tg;
2430	long contrib;
2431
2432	/* The fraction of a cpu used by this cfs_rq */
2433	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2434			  sa->runnable_avg_period + 1);
2435	contrib -= cfs_rq->tg_runnable_contrib;
2436
2437	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2438		atomic_add(contrib, &tg->runnable_avg);
2439		cfs_rq->tg_runnable_contrib += contrib;
2440	}
2441}
2442
2443static inline void __update_group_entity_contrib(struct sched_entity *se)
2444{
2445	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2446	struct task_group *tg = cfs_rq->tg;
2447	int runnable_avg;
2448
2449	u64 contrib;
2450
2451	contrib = cfs_rq->tg_load_contrib * tg->shares;
2452	se->avg.load_avg_contrib = div_u64(contrib,
2453				     atomic_long_read(&tg->load_avg) + 1);
2454
2455	/*
2456	 * For group entities we need to compute a correction term in the case
2457	 * that they are consuming <1 cpu so that we would contribute the same
2458	 * load as a task of equal weight.
2459	 *
2460	 * Explicitly co-ordinating this measurement would be expensive, but
2461	 * fortunately the sum of each cpus contribution forms a usable
2462	 * lower-bound on the true value.
2463	 *
2464	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2465	 * (and the sum represents true value) or they are disjoint and we are
2466	 * understating by the aggregate of their overlap.
2467	 *
2468	 * Extending this to N cpus, for a given overlap, the maximum amount we
2469	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2470	 * cpus that overlap for this interval and w_i is the interval width.
2471	 *
2472	 * On a small machine; the first term is well-bounded which bounds the
2473	 * total error since w_i is a subset of the period.  Whereas on a
2474	 * larger machine, while this first term can be larger, if w_i is the
2475	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2476	 * our upper bound of 1-cpu.
2477	 */
2478	runnable_avg = atomic_read(&tg->runnable_avg);
2479	if (runnable_avg < NICE_0_LOAD) {
2480		se->avg.load_avg_contrib *= runnable_avg;
2481		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2482	}
2483}
2484
2485static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2486{
2487	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2488	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2489}
2490#else /* CONFIG_FAIR_GROUP_SCHED */
2491static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2492						 int force_update) {}
2493static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2494						  struct cfs_rq *cfs_rq) {}
2495static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2496static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2497#endif /* CONFIG_FAIR_GROUP_SCHED */
2498
2499static inline void __update_task_entity_contrib(struct sched_entity *se)
2500{
2501	u32 contrib;
2502
2503	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2504	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2505	contrib /= (se->avg.runnable_avg_period + 1);
2506	se->avg.load_avg_contrib = scale_load(contrib);
2507}
2508
2509/* Compute the current contribution to load_avg by se, return any delta */
2510static long __update_entity_load_avg_contrib(struct sched_entity *se)
2511{
2512	long old_contrib = se->avg.load_avg_contrib;
2513
2514	if (entity_is_task(se)) {
2515		__update_task_entity_contrib(se);
2516	} else {
2517		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2518		__update_group_entity_contrib(se);
2519	}
2520
2521	return se->avg.load_avg_contrib - old_contrib;
2522}
2523
2524static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2525						 long load_contrib)
2526{
2527	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2528		cfs_rq->blocked_load_avg -= load_contrib;
2529	else
2530		cfs_rq->blocked_load_avg = 0;
2531}
2532
2533static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2534
2535/* Update a sched_entity's runnable average */
2536static inline void update_entity_load_avg(struct sched_entity *se,
2537					  int update_cfs_rq)
2538{
2539	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2540	long contrib_delta;
2541	u64 now;
2542
2543	/*
2544	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2545	 * case they are the parent of a throttled hierarchy.
2546	 */
2547	if (entity_is_task(se))
2548		now = cfs_rq_clock_task(cfs_rq);
2549	else
2550		now = cfs_rq_clock_task(group_cfs_rq(se));
2551
2552	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2553		return;
2554
2555	contrib_delta = __update_entity_load_avg_contrib(se);
2556
2557	if (!update_cfs_rq)
2558		return;
2559
2560	if (se->on_rq)
2561		cfs_rq->runnable_load_avg += contrib_delta;
2562	else
2563		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2564}
2565
2566/*
2567 * Decay the load contributed by all blocked children and account this so that
2568 * their contribution may appropriately discounted when they wake up.
2569 */
2570static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2571{
2572	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2573	u64 decays;
2574
2575	decays = now - cfs_rq->last_decay;
2576	if (!decays && !force_update)
2577		return;
2578
2579	if (atomic_long_read(&cfs_rq->removed_load)) {
2580		unsigned long removed_load;
2581		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2582		subtract_blocked_load_contrib(cfs_rq, removed_load);
2583	}
2584
2585	if (decays) {
2586		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2587						      decays);
2588		atomic64_add(decays, &cfs_rq->decay_counter);
2589		cfs_rq->last_decay = now;
2590	}
2591
2592	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2593}
2594
2595/* Add the load generated by se into cfs_rq's child load-average */
2596static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2597						  struct sched_entity *se,
2598						  int wakeup)
2599{
2600	/*
2601	 * We track migrations using entity decay_count <= 0, on a wake-up
2602	 * migration we use a negative decay count to track the remote decays
2603	 * accumulated while sleeping.
2604	 *
2605	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2606	 * are seen by enqueue_entity_load_avg() as a migration with an already
2607	 * constructed load_avg_contrib.
2608	 */
2609	if (unlikely(se->avg.decay_count <= 0)) {
2610		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2611		if (se->avg.decay_count) {
2612			/*
2613			 * In a wake-up migration we have to approximate the
2614			 * time sleeping.  This is because we can't synchronize
2615			 * clock_task between the two cpus, and it is not
2616			 * guaranteed to be read-safe.  Instead, we can
2617			 * approximate this using our carried decays, which are
2618			 * explicitly atomically readable.
2619			 */
2620			se->avg.last_runnable_update -= (-se->avg.decay_count)
2621							<< 20;
2622			update_entity_load_avg(se, 0);
2623			/* Indicate that we're now synchronized and on-rq */
2624			se->avg.decay_count = 0;
2625		}
2626		wakeup = 0;
2627	} else {
2628		__synchronize_entity_decay(se);
2629	}
2630
2631	/* migrated tasks did not contribute to our blocked load */
2632	if (wakeup) {
2633		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2634		update_entity_load_avg(se, 0);
2635	}
2636
2637	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2638	/* we force update consideration on load-balancer moves */
2639	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2640}
2641
2642/*
2643 * Remove se's load from this cfs_rq child load-average, if the entity is
2644 * transitioning to a blocked state we track its projected decay using
2645 * blocked_load_avg.
2646 */
2647static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2648						  struct sched_entity *se,
2649						  int sleep)
2650{
2651	update_entity_load_avg(se, 1);
2652	/* we force update consideration on load-balancer moves */
2653	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2654
2655	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2656	if (sleep) {
2657		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2658		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2659	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2660}
2661
2662/*
2663 * Update the rq's load with the elapsed running time before entering
2664 * idle. if the last scheduled task is not a CFS task, idle_enter will
2665 * be the only way to update the runnable statistic.
2666 */
2667void idle_enter_fair(struct rq *this_rq)
2668{
2669	update_rq_runnable_avg(this_rq, 1);
2670}
2671
2672/*
2673 * Update the rq's load with the elapsed idle time before a task is
2674 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2675 * be the only way to update the runnable statistic.
2676 */
2677void idle_exit_fair(struct rq *this_rq)
2678{
2679	update_rq_runnable_avg(this_rq, 0);
2680}
2681
2682static int idle_balance(struct rq *this_rq);
2683
2684#else /* CONFIG_SMP */
2685
2686static inline void update_entity_load_avg(struct sched_entity *se,
2687					  int update_cfs_rq) {}
2688static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2689static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2690					   struct sched_entity *se,
2691					   int wakeup) {}
2692static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2693					   struct sched_entity *se,
2694					   int sleep) {}
2695static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2696					      int force_update) {}
2697
2698static inline int idle_balance(struct rq *rq)
2699{
2700	return 0;
2701}
2702
2703#endif /* CONFIG_SMP */
2704
2705static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2706{
2707#ifdef CONFIG_SCHEDSTATS
2708	struct task_struct *tsk = NULL;
2709
2710	if (entity_is_task(se))
2711		tsk = task_of(se);
2712
2713	if (se->statistics.sleep_start) {
2714		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2715
2716		if ((s64)delta < 0)
2717			delta = 0;
2718
2719		if (unlikely(delta > se->statistics.sleep_max))
2720			se->statistics.sleep_max = delta;
2721
2722		se->statistics.sleep_start = 0;
2723		se->statistics.sum_sleep_runtime += delta;
2724
2725		if (tsk) {
2726			account_scheduler_latency(tsk, delta >> 10, 1);
2727			trace_sched_stat_sleep(tsk, delta);
2728		}
2729	}
2730	if (se->statistics.block_start) {
2731		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2732
2733		if ((s64)delta < 0)
2734			delta = 0;
2735
2736		if (unlikely(delta > se->statistics.block_max))
2737			se->statistics.block_max = delta;
2738
2739		se->statistics.block_start = 0;
2740		se->statistics.sum_sleep_runtime += delta;
2741
2742		if (tsk) {
2743			if (tsk->in_iowait) {
2744				se->statistics.iowait_sum += delta;
2745				se->statistics.iowait_count++;
2746				trace_sched_stat_iowait(tsk, delta);
2747			}
2748
2749			trace_sched_stat_blocked(tsk, delta);
2750
2751			/*
2752			 * Blocking time is in units of nanosecs, so shift by
2753			 * 20 to get a milliseconds-range estimation of the
2754			 * amount of time that the task spent sleeping:
2755			 */
2756			if (unlikely(prof_on == SLEEP_PROFILING)) {
2757				profile_hits(SLEEP_PROFILING,
2758						(void *)get_wchan(tsk),
2759						delta >> 20);
2760			}
2761			account_scheduler_latency(tsk, delta >> 10, 0);
2762		}
2763	}
2764#endif
2765}
2766
2767static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2768{
2769#ifdef CONFIG_SCHED_DEBUG
2770	s64 d = se->vruntime - cfs_rq->min_vruntime;
2771
2772	if (d < 0)
2773		d = -d;
2774
2775	if (d > 3*sysctl_sched_latency)
2776		schedstat_inc(cfs_rq, nr_spread_over);
2777#endif
2778}
2779
2780static void
2781place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2782{
2783	u64 vruntime = cfs_rq->min_vruntime;
2784
2785	/*
2786	 * The 'current' period is already promised to the current tasks,
2787	 * however the extra weight of the new task will slow them down a
2788	 * little, place the new task so that it fits in the slot that
2789	 * stays open at the end.
2790	 */
2791	if (initial && sched_feat(START_DEBIT))
2792		vruntime += sched_vslice(cfs_rq, se);
2793
2794	/* sleeps up to a single latency don't count. */
2795	if (!initial) {
2796		unsigned long thresh = sysctl_sched_latency;
2797
2798		/*
2799		 * Halve their sleep time's effect, to allow
2800		 * for a gentler effect of sleepers:
2801		 */
2802		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2803			thresh >>= 1;
2804
2805		vruntime -= thresh;
2806	}
2807
2808	/* ensure we never gain time by being placed backwards. */
2809	se->vruntime = max_vruntime(se->vruntime, vruntime);
2810}
2811
2812static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2813
2814static void
2815enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2816{
2817	/*
2818	 * Update the normalized vruntime before updating min_vruntime
2819	 * through calling update_curr().
2820	 */
2821	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2822		se->vruntime += cfs_rq->min_vruntime;
2823
2824	/*
2825	 * Update run-time statistics of the 'current'.
2826	 */
2827	update_curr(cfs_rq);
2828	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2829	account_entity_enqueue(cfs_rq, se);
2830	update_cfs_shares(cfs_rq);
2831
2832	if (flags & ENQUEUE_WAKEUP) {
2833		place_entity(cfs_rq, se, 0);
2834		enqueue_sleeper(cfs_rq, se);
2835	}
2836
2837	update_stats_enqueue(cfs_rq, se);
2838	check_spread(cfs_rq, se);
2839	if (se != cfs_rq->curr)
2840		__enqueue_entity(cfs_rq, se);
2841	se->on_rq = 1;
2842
2843	if (cfs_rq->nr_running == 1) {
2844		list_add_leaf_cfs_rq(cfs_rq);
2845		check_enqueue_throttle(cfs_rq);
2846	}
2847}
2848
2849static void __clear_buddies_last(struct sched_entity *se)
2850{
2851	for_each_sched_entity(se) {
2852		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2853		if (cfs_rq->last != se)
2854			break;
2855
2856		cfs_rq->last = NULL;
2857	}
2858}
2859
2860static void __clear_buddies_next(struct sched_entity *se)
2861{
2862	for_each_sched_entity(se) {
2863		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2864		if (cfs_rq->next != se)
2865			break;
2866
2867		cfs_rq->next = NULL;
2868	}
2869}
2870
2871static void __clear_buddies_skip(struct sched_entity *se)
2872{
2873	for_each_sched_entity(se) {
2874		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2875		if (cfs_rq->skip != se)
2876			break;
2877
2878		cfs_rq->skip = NULL;
2879	}
2880}
2881
2882static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2883{
2884	if (cfs_rq->last == se)
2885		__clear_buddies_last(se);
2886
2887	if (cfs_rq->next == se)
2888		__clear_buddies_next(se);
2889
2890	if (cfs_rq->skip == se)
2891		__clear_buddies_skip(se);
2892}
2893
2894static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2895
2896static void
2897dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2898{
2899	/*
2900	 * Update run-time statistics of the 'current'.
2901	 */
2902	update_curr(cfs_rq);
2903	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2904
2905	update_stats_dequeue(cfs_rq, se);
2906	if (flags & DEQUEUE_SLEEP) {
2907#ifdef CONFIG_SCHEDSTATS
2908		if (entity_is_task(se)) {
2909			struct task_struct *tsk = task_of(se);
2910
2911			if (tsk->state & TASK_INTERRUPTIBLE)
2912				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2913			if (tsk->state & TASK_UNINTERRUPTIBLE)
2914				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2915		}
2916#endif
2917	}
2918
2919	clear_buddies(cfs_rq, se);
2920
2921	if (se != cfs_rq->curr)
2922		__dequeue_entity(cfs_rq, se);
2923	se->on_rq = 0;
2924	account_entity_dequeue(cfs_rq, se);
2925
2926	/*
2927	 * Normalize the entity after updating the min_vruntime because the
2928	 * update can refer to the ->curr item and we need to reflect this
2929	 * movement in our normalized position.
2930	 */
2931	if (!(flags & DEQUEUE_SLEEP))
2932		se->vruntime -= cfs_rq->min_vruntime;
2933
2934	/* return excess runtime on last dequeue */
2935	return_cfs_rq_runtime(cfs_rq);
2936
2937	update_min_vruntime(cfs_rq);
2938	update_cfs_shares(cfs_rq);
2939}
2940
2941/*
2942 * Preempt the current task with a newly woken task if needed:
2943 */
2944static void
2945check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2946{
2947	unsigned long ideal_runtime, delta_exec;
2948	struct sched_entity *se;
2949	s64 delta;
2950
2951	ideal_runtime = sched_slice(cfs_rq, curr);
2952	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2953	if (delta_exec > ideal_runtime) {
2954		resched_curr(rq_of(cfs_rq));
2955		/*
2956		 * The current task ran long enough, ensure it doesn't get
2957		 * re-elected due to buddy favours.
2958		 */
2959		clear_buddies(cfs_rq, curr);
2960		return;
2961	}
2962
2963	/*
2964	 * Ensure that a task that missed wakeup preemption by a
2965	 * narrow margin doesn't have to wait for a full slice.
2966	 * This also mitigates buddy induced latencies under load.
2967	 */
2968	if (delta_exec < sysctl_sched_min_granularity)
2969		return;
2970
2971	se = __pick_first_entity(cfs_rq);
2972	delta = curr->vruntime - se->vruntime;
2973
2974	if (delta < 0)
2975		return;
2976
2977	if (delta > ideal_runtime)
2978		resched_curr(rq_of(cfs_rq));
2979}
2980
2981static void
2982set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2983{
2984	/* 'current' is not kept within the tree. */
2985	if (se->on_rq) {
2986		/*
2987		 * Any task has to be enqueued before it get to execute on
2988		 * a CPU. So account for the time it spent waiting on the
2989		 * runqueue.
2990		 */
2991		update_stats_wait_end(cfs_rq, se);
2992		__dequeue_entity(cfs_rq, se);
2993	}
2994
2995	update_stats_curr_start(cfs_rq, se);
2996	cfs_rq->curr = se;
2997#ifdef CONFIG_SCHEDSTATS
2998	/*
2999	 * Track our maximum slice length, if the CPU's load is at
3000	 * least twice that of our own weight (i.e. dont track it
3001	 * when there are only lesser-weight tasks around):
3002	 */
3003	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3004		se->statistics.slice_max = max(se->statistics.slice_max,
3005			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3006	}
3007#endif
3008	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3009}
3010
3011static int
3012wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3013
3014/*
3015 * Pick the next process, keeping these things in mind, in this order:
3016 * 1) keep things fair between processes/task groups
3017 * 2) pick the "next" process, since someone really wants that to run
3018 * 3) pick the "last" process, for cache locality
3019 * 4) do not run the "skip" process, if something else is available
3020 */
3021static struct sched_entity *
3022pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3023{
3024	struct sched_entity *left = __pick_first_entity(cfs_rq);
3025	struct sched_entity *se;
3026
3027	/*
3028	 * If curr is set we have to see if its left of the leftmost entity
3029	 * still in the tree, provided there was anything in the tree at all.
3030	 */
3031	if (!left || (curr && entity_before(curr, left)))
3032		left = curr;
3033
3034	se = left; /* ideally we run the leftmost entity */
3035
3036	/*
3037	 * Avoid running the skip buddy, if running something else can
3038	 * be done without getting too unfair.
3039	 */
3040	if (cfs_rq->skip == se) {
3041		struct sched_entity *second;
3042
3043		if (se == curr) {
3044			second = __pick_first_entity(cfs_rq);
3045		} else {
3046			second = __pick_next_entity(se);
3047			if (!second || (curr && entity_before(curr, second)))
3048				second = curr;
3049		}
3050
3051		if (second && wakeup_preempt_entity(second, left) < 1)
3052			se = second;
3053	}
3054
3055	/*
3056	 * Prefer last buddy, try to return the CPU to a preempted task.
3057	 */
3058	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3059		se = cfs_rq->last;
3060
3061	/*
3062	 * Someone really wants this to run. If it's not unfair, run it.
3063	 */
3064	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3065		se = cfs_rq->next;
3066
3067	clear_buddies(cfs_rq, se);
3068
3069	return se;
3070}
3071
3072static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3073
3074static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3075{
3076	/*
3077	 * If still on the runqueue then deactivate_task()
3078	 * was not called and update_curr() has to be done:
3079	 */
3080	if (prev->on_rq)
3081		update_curr(cfs_rq);
3082
3083	/* throttle cfs_rqs exceeding runtime */
3084	check_cfs_rq_runtime(cfs_rq);
3085
3086	check_spread(cfs_rq, prev);
3087	if (prev->on_rq) {
3088		update_stats_wait_start(cfs_rq, prev);
3089		/* Put 'current' back into the tree. */
3090		__enqueue_entity(cfs_rq, prev);
3091		/* in !on_rq case, update occurred at dequeue */
3092		update_entity_load_avg(prev, 1);
3093	}
3094	cfs_rq->curr = NULL;
3095}
3096
3097static void
3098entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3099{
3100	/*
3101	 * Update run-time statistics of the 'current'.
3102	 */
3103	update_curr(cfs_rq);
3104
3105	/*
3106	 * Ensure that runnable average is periodically updated.
3107	 */
3108	update_entity_load_avg(curr, 1);
3109	update_cfs_rq_blocked_load(cfs_rq, 1);
3110	update_cfs_shares(cfs_rq);
3111
3112#ifdef CONFIG_SCHED_HRTICK
3113	/*
3114	 * queued ticks are scheduled to match the slice, so don't bother
3115	 * validating it and just reschedule.
3116	 */
3117	if (queued) {
3118		resched_curr(rq_of(cfs_rq));
3119		return;
3120	}
3121	/*
3122	 * don't let the period tick interfere with the hrtick preemption
3123	 */
3124	if (!sched_feat(DOUBLE_TICK) &&
3125			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3126		return;
3127#endif
3128
3129	if (cfs_rq->nr_running > 1)
3130		check_preempt_tick(cfs_rq, curr);
3131}
3132
3133
3134/**************************************************
3135 * CFS bandwidth control machinery
3136 */
3137
3138#ifdef CONFIG_CFS_BANDWIDTH
3139
3140#ifdef HAVE_JUMP_LABEL
3141static struct static_key __cfs_bandwidth_used;
3142
3143static inline bool cfs_bandwidth_used(void)
3144{
3145	return static_key_false(&__cfs_bandwidth_used);
3146}
3147
3148void cfs_bandwidth_usage_inc(void)
3149{
3150	static_key_slow_inc(&__cfs_bandwidth_used);
3151}
3152
3153void cfs_bandwidth_usage_dec(void)
3154{
3155	static_key_slow_dec(&__cfs_bandwidth_used);
3156}
3157#else /* HAVE_JUMP_LABEL */
3158static bool cfs_bandwidth_used(void)
3159{
3160	return true;
3161}
3162
3163void cfs_bandwidth_usage_inc(void) {}
3164void cfs_bandwidth_usage_dec(void) {}
3165#endif /* HAVE_JUMP_LABEL */
3166
3167/*
3168 * default period for cfs group bandwidth.
3169 * default: 0.1s, units: nanoseconds
3170 */
3171static inline u64 default_cfs_period(void)
3172{
3173	return 100000000ULL;
3174}
3175
3176static inline u64 sched_cfs_bandwidth_slice(void)
3177{
3178	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3179}
3180
3181/*
3182 * Replenish runtime according to assigned quota and update expiration time.
3183 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3184 * additional synchronization around rq->lock.
3185 *
3186 * requires cfs_b->lock
3187 */
3188void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3189{
3190	u64 now;
3191
3192	if (cfs_b->quota == RUNTIME_INF)
3193		return;
3194
3195	now = sched_clock_cpu(smp_processor_id());
3196	cfs_b->runtime = cfs_b->quota;
3197	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3198}
3199
3200static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3201{
3202	return &tg->cfs_bandwidth;
3203}
3204
3205/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3206static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3207{
3208	if (unlikely(cfs_rq->throttle_count))
3209		return cfs_rq->throttled_clock_task;
3210
3211	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3212}
3213
3214/* returns 0 on failure to allocate runtime */
3215static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3216{
3217	struct task_group *tg = cfs_rq->tg;
3218	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3219	u64 amount = 0, min_amount, expires;
3220
3221	/* note: this is a positive sum as runtime_remaining <= 0 */
3222	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3223
3224	raw_spin_lock(&cfs_b->lock);
3225	if (cfs_b->quota == RUNTIME_INF)
3226		amount = min_amount;
3227	else {
3228		/*
3229		 * If the bandwidth pool has become inactive, then at least one
3230		 * period must have elapsed since the last consumption.
3231		 * Refresh the global state and ensure bandwidth timer becomes
3232		 * active.
3233		 */
3234		if (!cfs_b->timer_active) {
3235			__refill_cfs_bandwidth_runtime(cfs_b);
3236			__start_cfs_bandwidth(cfs_b, false);
3237		}
3238
3239		if (cfs_b->runtime > 0) {
3240			amount = min(cfs_b->runtime, min_amount);
3241			cfs_b->runtime -= amount;
3242			cfs_b->idle = 0;
3243		}
3244	}
3245	expires = cfs_b->runtime_expires;
3246	raw_spin_unlock(&cfs_b->lock);
3247
3248	cfs_rq->runtime_remaining += amount;
3249	/*
3250	 * we may have advanced our local expiration to account for allowed
3251	 * spread between our sched_clock and the one on which runtime was
3252	 * issued.
3253	 */
3254	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3255		cfs_rq->runtime_expires = expires;
3256
3257	return cfs_rq->runtime_remaining > 0;
3258}
3259
3260/*
3261 * Note: This depends on the synchronization provided by sched_clock and the
3262 * fact that rq->clock snapshots this value.
3263 */
3264static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3265{
3266	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3267
3268	/* if the deadline is ahead of our clock, nothing to do */
3269	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3270		return;
3271
3272	if (cfs_rq->runtime_remaining < 0)
3273		return;
3274
3275	/*
3276	 * If the local deadline has passed we have to consider the
3277	 * possibility that our sched_clock is 'fast' and the global deadline
3278	 * has not truly expired.
3279	 *
3280	 * Fortunately we can check determine whether this the case by checking
3281	 * whether the global deadline has advanced. It is valid to compare
3282	 * cfs_b->runtime_expires without any locks since we only care about
3283	 * exact equality, so a partial write will still work.
3284	 */
3285
3286	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3287		/* extend local deadline, drift is bounded above by 2 ticks */
3288		cfs_rq->runtime_expires += TICK_NSEC;
3289	} else {
3290		/* global deadline is ahead, expiration has passed */
3291		cfs_rq->runtime_remaining = 0;
3292	}
3293}
3294
3295static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3296{
3297	/* dock delta_exec before expiring quota (as it could span periods) */
3298	cfs_rq->runtime_remaining -= delta_exec;
3299	expire_cfs_rq_runtime(cfs_rq);
3300
3301	if (likely(cfs_rq->runtime_remaining > 0))
3302		return;
3303
3304	/*
3305	 * if we're unable to extend our runtime we resched so that the active
3306	 * hierarchy can be throttled
3307	 */
3308	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3309		resched_curr(rq_of(cfs_rq));
3310}
3311
3312static __always_inline
3313void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3314{
3315	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3316		return;
3317
3318	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3319}
3320
3321static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3322{
3323	return cfs_bandwidth_used() && cfs_rq->throttled;
3324}
3325
3326/* check whether cfs_rq, or any parent, is throttled */
3327static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3328{
3329	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3330}
3331
3332/*
3333 * Ensure that neither of the group entities corresponding to src_cpu or
3334 * dest_cpu are members of a throttled hierarchy when performing group
3335 * load-balance operations.
3336 */
3337static inline int throttled_lb_pair(struct task_group *tg,
3338				    int src_cpu, int dest_cpu)
3339{
3340	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3341
3342	src_cfs_rq = tg->cfs_rq[src_cpu];
3343	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3344
3345	return throttled_hierarchy(src_cfs_rq) ||
3346	       throttled_hierarchy(dest_cfs_rq);
3347}
3348
3349/* updated child weight may affect parent so we have to do this bottom up */
3350static int tg_unthrottle_up(struct task_group *tg, void *data)
3351{
3352	struct rq *rq = data;
3353	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3354
3355	cfs_rq->throttle_count--;
3356#ifdef CONFIG_SMP
3357	if (!cfs_rq->throttle_count) {
3358		/* adjust cfs_rq_clock_task() */
3359		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3360					     cfs_rq->throttled_clock_task;
3361	}
3362#endif
3363
3364	return 0;
3365}
3366
3367static int tg_throttle_down(struct task_group *tg, void *data)
3368{
3369	struct rq *rq = data;
3370	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3371
3372	/* group is entering throttled state, stop time */
3373	if (!cfs_rq->throttle_count)
3374		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3375	cfs_rq->throttle_count++;
3376
3377	return 0;
3378}
3379
3380static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3381{
3382	struct rq *rq = rq_of(cfs_rq);
3383	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3384	struct sched_entity *se;
3385	long task_delta, dequeue = 1;
3386
3387	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3388
3389	/* freeze hierarchy runnable averages while throttled */
3390	rcu_read_lock();
3391	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3392	rcu_read_unlock();
3393
3394	task_delta = cfs_rq->h_nr_running;
3395	for_each_sched_entity(se) {
3396		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3397		/* throttled entity or throttle-on-deactivate */
3398		if (!se->on_rq)
3399			break;
3400
3401		if (dequeue)
3402			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3403		qcfs_rq->h_nr_running -= task_delta;
3404
3405		if (qcfs_rq->load.weight)
3406			dequeue = 0;
3407	}
3408
3409	if (!se)
3410		sub_nr_running(rq, task_delta);
3411
3412	cfs_rq->throttled = 1;
3413	cfs_rq->throttled_clock = rq_clock(rq);
3414	raw_spin_lock(&cfs_b->lock);
3415	/*
3416	 * Add to the _head_ of the list, so that an already-started
3417	 * distribute_cfs_runtime will not see us
3418	 */
3419	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3420	if (!cfs_b->timer_active)
3421		__start_cfs_bandwidth(cfs_b, false);
3422	raw_spin_unlock(&cfs_b->lock);
3423}
3424
3425void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3426{
3427	struct rq *rq = rq_of(cfs_rq);
3428	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3429	struct sched_entity *se;
3430	int enqueue = 1;
3431	long task_delta;
3432
3433	se = cfs_rq->tg->se[cpu_of(rq)];
3434
3435	cfs_rq->throttled = 0;
3436
3437	update_rq_clock(rq);
3438
3439	raw_spin_lock(&cfs_b->lock);
3440	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3441	list_del_rcu(&cfs_rq->throttled_list);
3442	raw_spin_unlock(&cfs_b->lock);
3443
3444	/* update hierarchical throttle state */
3445	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3446
3447	if (!cfs_rq->load.weight)
3448		return;
3449
3450	task_delta = cfs_rq->h_nr_running;
3451	for_each_sched_entity(se) {
3452		if (se->on_rq)
3453			enqueue = 0;
3454
3455		cfs_rq = cfs_rq_of(se);
3456		if (enqueue)
3457			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3458		cfs_rq->h_nr_running += task_delta;
3459
3460		if (cfs_rq_throttled(cfs_rq))
3461			break;
3462	}
3463
3464	if (!se)
3465		add_nr_running(rq, task_delta);
3466
3467	/* determine whether we need to wake up potentially idle cpu */
3468	if (rq->curr == rq->idle && rq->cfs.nr_running)
3469		resched_curr(rq);
3470}
3471
3472static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3473		u64 remaining, u64 expires)
3474{
3475	struct cfs_rq *cfs_rq;
3476	u64 runtime;
3477	u64 starting_runtime = remaining;
3478
3479	rcu_read_lock();
3480	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3481				throttled_list) {
3482		struct rq *rq = rq_of(cfs_rq);
3483
3484		raw_spin_lock(&rq->lock);
3485		if (!cfs_rq_throttled(cfs_rq))
3486			goto next;
3487
3488		runtime = -cfs_rq->runtime_remaining + 1;
3489		if (runtime > remaining)
3490			runtime = remaining;
3491		remaining -= runtime;
3492
3493		cfs_rq->runtime_remaining += runtime;
3494		cfs_rq->runtime_expires = expires;
3495
3496		/* we check whether we're throttled above */
3497		if (cfs_rq->runtime_remaining > 0)
3498			unthrottle_cfs_rq(cfs_rq);
3499
3500next:
3501		raw_spin_unlock(&rq->lock);
3502
3503		if (!remaining)
3504			break;
3505	}
3506	rcu_read_unlock();
3507
3508	return starting_runtime - remaining;
3509}
3510
3511/*
3512 * Responsible for refilling a task_group's bandwidth and unthrottling its
3513 * cfs_rqs as appropriate. If there has been no activity within the last
3514 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3515 * used to track this state.
3516 */
3517static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3518{
3519	u64 runtime, runtime_expires;
3520	int throttled;
3521
3522	/* no need to continue the timer with no bandwidth constraint */
3523	if (cfs_b->quota == RUNTIME_INF)
3524		goto out_deactivate;
3525
3526	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3527	cfs_b->nr_periods += overrun;
3528
3529	/*
3530	 * idle depends on !throttled (for the case of a large deficit), and if
3531	 * we're going inactive then everything else can be deferred
3532	 */
3533	if (cfs_b->idle && !throttled)
3534		goto out_deactivate;
3535
3536	/*
3537	 * if we have relooped after returning idle once, we need to update our
3538	 * status as actually running, so that other cpus doing
3539	 * __start_cfs_bandwidth will stop trying to cancel us.
3540	 */
3541	cfs_b->timer_active = 1;
3542
3543	__refill_cfs_bandwidth_runtime(cfs_b);
3544
3545	if (!throttled) {
3546		/* mark as potentially idle for the upcoming period */
3547		cfs_b->idle = 1;
3548		return 0;
3549	}
3550
3551	/* account preceding periods in which throttling occurred */
3552	cfs_b->nr_throttled += overrun;
3553
3554	runtime_expires = cfs_b->runtime_expires;
3555
3556	/*
3557	 * This check is repeated as we are holding onto the new bandwidth while
3558	 * we unthrottle. This can potentially race with an unthrottled group
3559	 * trying to acquire new bandwidth from the global pool. This can result
3560	 * in us over-using our runtime if it is all used during this loop, but
3561	 * only by limited amounts in that extreme case.
3562	 */
3563	while (throttled && cfs_b->runtime > 0) {
3564		runtime = cfs_b->runtime;
3565		raw_spin_unlock(&cfs_b->lock);
3566		/* we can't nest cfs_b->lock while distributing bandwidth */
3567		runtime = distribute_cfs_runtime(cfs_b, runtime,
3568						 runtime_expires);
3569		raw_spin_lock(&cfs_b->lock);
3570
3571		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3572
3573		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3574	}
3575
3576	/*
3577	 * While we are ensured activity in the period following an
3578	 * unthrottle, this also covers the case in which the new bandwidth is
3579	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3580	 * timer to remain active while there are any throttled entities.)
3581	 */
3582	cfs_b->idle = 0;
3583
3584	return 0;
3585
3586out_deactivate:
3587	cfs_b->timer_active = 0;
3588	return 1;
3589}
3590
3591/* a cfs_rq won't donate quota below this amount */
3592static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3593/* minimum remaining period time to redistribute slack quota */
3594static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3595/* how long we wait to gather additional slack before distributing */
3596static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3597
3598/*
3599 * Are we near the end of the current quota period?
3600 *
3601 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3602 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3603 * migrate_hrtimers, base is never cleared, so we are fine.
3604 */
3605static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3606{
3607	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3608	u64 remaining;
3609
3610	/* if the call-back is running a quota refresh is already occurring */
3611	if (hrtimer_callback_running(refresh_timer))
3612		return 1;
3613
3614	/* is a quota refresh about to occur? */
3615	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3616	if (remaining < min_expire)
3617		return 1;
3618
3619	return 0;
3620}
3621
3622static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3623{
3624	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3625
3626	/* if there's a quota refresh soon don't bother with slack */
3627	if (runtime_refresh_within(cfs_b, min_left))
3628		return;
3629
3630	start_bandwidth_timer(&cfs_b->slack_timer,
3631				ns_to_ktime(cfs_bandwidth_slack_period));
3632}
3633
3634/* we know any runtime found here is valid as update_curr() precedes return */
3635static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3636{
3637	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3638	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3639
3640	if (slack_runtime <= 0)
3641		return;
3642
3643	raw_spin_lock(&cfs_b->lock);
3644	if (cfs_b->quota != RUNTIME_INF &&
3645	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3646		cfs_b->runtime += slack_runtime;
3647
3648		/* we are under rq->lock, defer unthrottling using a timer */
3649		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3650		    !list_empty(&cfs_b->throttled_cfs_rq))
3651			start_cfs_slack_bandwidth(cfs_b);
3652	}
3653	raw_spin_unlock(&cfs_b->lock);
3654
3655	/* even if it's not valid for return we don't want to try again */
3656	cfs_rq->runtime_remaining -= slack_runtime;
3657}
3658
3659static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3660{
3661	if (!cfs_bandwidth_used())
3662		return;
3663
3664	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3665		return;
3666
3667	__return_cfs_rq_runtime(cfs_rq);
3668}
3669
3670/*
3671 * This is done with a timer (instead of inline with bandwidth return) since
3672 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3673 */
3674static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3675{
3676	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3677	u64 expires;
3678
3679	/* confirm we're still not at a refresh boundary */
3680	raw_spin_lock(&cfs_b->lock);
3681	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3682		raw_spin_unlock(&cfs_b->lock);
3683		return;
3684	}
3685
3686	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3687		runtime = cfs_b->runtime;
3688
3689	expires = cfs_b->runtime_expires;
3690	raw_spin_unlock(&cfs_b->lock);
3691
3692	if (!runtime)
3693		return;
3694
3695	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3696
3697	raw_spin_lock(&cfs_b->lock);
3698	if (expires == cfs_b->runtime_expires)
3699		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3700	raw_spin_unlock(&cfs_b->lock);
3701}
3702
3703/*
3704 * When a group wakes up we want to make sure that its quota is not already
3705 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3706 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3707 */
3708static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3709{
3710	if (!cfs_bandwidth_used())
3711		return;
3712
3713	/* an active group must be handled by the update_curr()->put() path */
3714	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3715		return;
3716
3717	/* ensure the group is not already throttled */
3718	if (cfs_rq_throttled(cfs_rq))
3719		return;
3720
3721	/* update runtime allocation */
3722	account_cfs_rq_runtime(cfs_rq, 0);
3723	if (cfs_rq->runtime_remaining <= 0)
3724		throttle_cfs_rq(cfs_rq);
3725}
3726
3727/* conditionally throttle active cfs_rq's from put_prev_entity() */
3728static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3729{
3730	if (!cfs_bandwidth_used())
3731		return false;
3732
3733	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3734		return false;
3735
3736	/*
3737	 * it's possible for a throttled entity to be forced into a running
3738	 * state (e.g. set_curr_task), in this case we're finished.
3739	 */
3740	if (cfs_rq_throttled(cfs_rq))
3741		return true;
3742
3743	throttle_cfs_rq(cfs_rq);
3744	return true;
3745}
3746
3747static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3748{
3749	struct cfs_bandwidth *cfs_b =
3750		container_of(timer, struct cfs_bandwidth, slack_timer);
3751	do_sched_cfs_slack_timer(cfs_b);
3752
3753	return HRTIMER_NORESTART;
3754}
3755
3756static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3757{
3758	struct cfs_bandwidth *cfs_b =
3759		container_of(timer, struct cfs_bandwidth, period_timer);
3760	ktime_t now;
3761	int overrun;
3762	int idle = 0;
3763
3764	raw_spin_lock(&cfs_b->lock);
3765	for (;;) {
3766		now = hrtimer_cb_get_time(timer);
3767		overrun = hrtimer_forward(timer, now, cfs_b->period);
3768
3769		if (!overrun)
3770			break;
3771
3772		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3773	}
3774	raw_spin_unlock(&cfs_b->lock);
3775
3776	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3777}
3778
3779void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3780{
3781	raw_spin_lock_init(&cfs_b->lock);
3782	cfs_b->runtime = 0;
3783	cfs_b->quota = RUNTIME_INF;
3784	cfs_b->period = ns_to_ktime(default_cfs_period());
3785
3786	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3787	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3788	cfs_b->period_timer.function = sched_cfs_period_timer;
3789	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3790	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3791}
3792
3793static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3794{
3795	cfs_rq->runtime_enabled = 0;
3796	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3797}
3798
3799/* requires cfs_b->lock, may release to reprogram timer */
3800void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3801{
3802	/*
3803	 * The timer may be active because we're trying to set a new bandwidth
3804	 * period or because we're racing with the tear-down path
3805	 * (timer_active==0 becomes visible before the hrtimer call-back
3806	 * terminates).  In either case we ensure that it's re-programmed
3807	 */
3808	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3809	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3810		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3811		raw_spin_unlock(&cfs_b->lock);
3812		cpu_relax();
3813		raw_spin_lock(&cfs_b->lock);
3814		/* if someone else restarted the timer then we're done */
3815		if (!force && cfs_b->timer_active)
3816			return;
3817	}
3818
3819	cfs_b->timer_active = 1;
3820	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3821}
3822
3823static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3824{
3825	hrtimer_cancel(&cfs_b->period_timer);
3826	hrtimer_cancel(&cfs_b->slack_timer);
3827}
3828
3829static void __maybe_unused update_runtime_enabled(struct rq *rq)
3830{
3831	struct cfs_rq *cfs_rq;
3832
3833	for_each_leaf_cfs_rq(rq, cfs_rq) {
3834		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3835
3836		raw_spin_lock(&cfs_b->lock);
3837		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3838		raw_spin_unlock(&cfs_b->lock);
3839	}
3840}
3841
3842static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3843{
3844	struct cfs_rq *cfs_rq;
3845
3846	for_each_leaf_cfs_rq(rq, cfs_rq) {
3847		if (!cfs_rq->runtime_enabled)
3848			continue;
3849
3850		/*
3851		 * clock_task is not advancing so we just need to make sure
3852		 * there's some valid quota amount
3853		 */
3854		cfs_rq->runtime_remaining = 1;
3855		/*
3856		 * Offline rq is schedulable till cpu is completely disabled
3857		 * in take_cpu_down(), so we prevent new cfs throttling here.
3858		 */
3859		cfs_rq->runtime_enabled = 0;
3860
3861		if (cfs_rq_throttled(cfs_rq))
3862			unthrottle_cfs_rq(cfs_rq);
3863	}
3864}
3865
3866#else /* CONFIG_CFS_BANDWIDTH */
3867static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3868{
3869	return rq_clock_task(rq_of(cfs_rq));
3870}
3871
3872static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3873static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3874static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3875static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3876
3877static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3878{
3879	return 0;
3880}
3881
3882static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3883{
3884	return 0;
3885}
3886
3887static inline int throttled_lb_pair(struct task_group *tg,
3888				    int src_cpu, int dest_cpu)
3889{
3890	return 0;
3891}
3892
3893void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3894
3895#ifdef CONFIG_FAIR_GROUP_SCHED
3896static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3897#endif
3898
3899static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3900{
3901	return NULL;
3902}
3903static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3904static inline void update_runtime_enabled(struct rq *rq) {}
3905static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3906
3907#endif /* CONFIG_CFS_BANDWIDTH */
3908
3909/**************************************************
3910 * CFS operations on tasks:
3911 */
3912
3913#ifdef CONFIG_SCHED_HRTICK
3914static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3915{
3916	struct sched_entity *se = &p->se;
3917	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3918
3919	WARN_ON(task_rq(p) != rq);
3920
3921	if (cfs_rq->nr_running > 1) {
3922		u64 slice = sched_slice(cfs_rq, se);
3923		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3924		s64 delta = slice - ran;
3925
3926		if (delta < 0) {
3927			if (rq->curr == p)
3928				resched_curr(rq);
3929			return;
3930		}
3931		hrtick_start(rq, delta);
3932	}
3933}
3934
3935/*
3936 * called from enqueue/dequeue and updates the hrtick when the
3937 * current task is from our class and nr_running is low enough
3938 * to matter.
3939 */
3940static void hrtick_update(struct rq *rq)
3941{
3942	struct task_struct *curr = rq->curr;
3943
3944	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3945		return;
3946
3947	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3948		hrtick_start_fair(rq, curr);
3949}
3950#else /* !CONFIG_SCHED_HRTICK */
3951static inline void
3952hrtick_start_fair(struct rq *rq, struct task_struct *p)
3953{
3954}
3955
3956static inline void hrtick_update(struct rq *rq)
3957{
3958}
3959#endif
3960
3961/*
3962 * The enqueue_task method is called before nr_running is
3963 * increased. Here we update the fair scheduling stats and
3964 * then put the task into the rbtree:
3965 */
3966static void
3967enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3968{
3969	struct cfs_rq *cfs_rq;
3970	struct sched_entity *se = &p->se;
3971
3972	for_each_sched_entity(se) {
3973		if (se->on_rq)
3974			break;
3975		cfs_rq = cfs_rq_of(se);
3976		enqueue_entity(cfs_rq, se, flags);
3977
3978		/*
3979		 * end evaluation on encountering a throttled cfs_rq
3980		 *
3981		 * note: in the case of encountering a throttled cfs_rq we will
3982		 * post the final h_nr_running increment below.
3983		*/
3984		if (cfs_rq_throttled(cfs_rq))
3985			break;
3986		cfs_rq->h_nr_running++;
3987
3988		flags = ENQUEUE_WAKEUP;
3989	}
3990
3991	for_each_sched_entity(se) {
3992		cfs_rq = cfs_rq_of(se);
3993		cfs_rq->h_nr_running++;
3994
3995		if (cfs_rq_throttled(cfs_rq))
3996			break;
3997
3998		update_cfs_shares(cfs_rq);
3999		update_entity_load_avg(se, 1);
4000	}
4001
4002	if (!se) {
4003		update_rq_runnable_avg(rq, rq->nr_running);
4004		add_nr_running(rq, 1);
4005	}
4006	hrtick_update(rq);
4007}
4008
4009static void set_next_buddy(struct sched_entity *se);
4010
4011/*
4012 * The dequeue_task method is called before nr_running is
4013 * decreased. We remove the task from the rbtree and
4014 * update the fair scheduling stats:
4015 */
4016static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4017{
4018	struct cfs_rq *cfs_rq;
4019	struct sched_entity *se = &p->se;
4020	int task_sleep = flags & DEQUEUE_SLEEP;
4021
4022	for_each_sched_entity(se) {
4023		cfs_rq = cfs_rq_of(se);
4024		dequeue_entity(cfs_rq, se, flags);
4025
4026		/*
4027		 * end evaluation on encountering a throttled cfs_rq
4028		 *
4029		 * note: in the case of encountering a throttled cfs_rq we will
4030		 * post the final h_nr_running decrement below.
4031		*/
4032		if (cfs_rq_throttled(cfs_rq))
4033			break;
4034		cfs_rq->h_nr_running--;
4035
4036		/* Don't dequeue parent if it has other entities besides us */
4037		if (cfs_rq->load.weight) {
4038			/*
4039			 * Bias pick_next to pick a task from this cfs_rq, as
4040			 * p is sleeping when it is within its sched_slice.
4041			 */
4042			if (task_sleep && parent_entity(se))
4043				set_next_buddy(parent_entity(se));
4044
4045			/* avoid re-evaluating load for this entity */
4046			se = parent_entity(se);
4047			break;
4048		}
4049		flags |= DEQUEUE_SLEEP;
4050	}
4051
4052	for_each_sched_entity(se) {
4053		cfs_rq = cfs_rq_of(se);
4054		cfs_rq->h_nr_running--;
4055
4056		if (cfs_rq_throttled(cfs_rq))
4057			break;
4058
4059		update_cfs_shares(cfs_rq);
4060		update_entity_load_avg(se, 1);
4061	}
4062
4063	if (!se) {
4064		sub_nr_running(rq, 1);
4065		update_rq_runnable_avg(rq, 1);
4066	}
4067	hrtick_update(rq);
4068}
4069
4070#ifdef CONFIG_SMP
4071/* Used instead of source_load when we know the type == 0 */
4072static unsigned long weighted_cpuload(const int cpu)
4073{
4074	return cpu_rq(cpu)->cfs.runnable_load_avg;
4075}
4076
4077/*
4078 * Return a low guess at the load of a migration-source cpu weighted
4079 * according to the scheduling class and "nice" value.
4080 *
4081 * We want to under-estimate the load of migration sources, to
4082 * balance conservatively.
4083 */
4084static unsigned long source_load(int cpu, int type)
4085{
4086	struct rq *rq = cpu_rq(cpu);
4087	unsigned long total = weighted_cpuload(cpu);
4088
4089	if (type == 0 || !sched_feat(LB_BIAS))
4090		return total;
4091
4092	return min(rq->cpu_load[type-1], total);
4093}
4094
4095/*
4096 * Return a high guess at the load of a migration-target cpu weighted
4097 * according to the scheduling class and "nice" value.
4098 */
4099static unsigned long target_load(int cpu, int type)
4100{
4101	struct rq *rq = cpu_rq(cpu);
4102	unsigned long total = weighted_cpuload(cpu);
4103
4104	if (type == 0 || !sched_feat(LB_BIAS))
4105		return total;
4106
4107	return max(rq->cpu_load[type-1], total);
4108}
4109
4110static unsigned long capacity_of(int cpu)
4111{
4112	return cpu_rq(cpu)->cpu_capacity;
4113}
4114
4115static unsigned long cpu_avg_load_per_task(int cpu)
4116{
4117	struct rq *rq = cpu_rq(cpu);
4118	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4119	unsigned long load_avg = rq->cfs.runnable_load_avg;
4120
4121	if (nr_running)
4122		return load_avg / nr_running;
4123
4124	return 0;
4125}
4126
4127static void record_wakee(struct task_struct *p)
4128{
4129	/*
4130	 * Rough decay (wiping) for cost saving, don't worry
4131	 * about the boundary, really active task won't care
4132	 * about the loss.
4133	 */
4134	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4135		current->wakee_flips >>= 1;
4136		current->wakee_flip_decay_ts = jiffies;
4137	}
4138
4139	if (current->last_wakee != p) {
4140		current->last_wakee = p;
4141		current->wakee_flips++;
4142	}
4143}
4144
4145static void task_waking_fair(struct task_struct *p)
4146{
4147	struct sched_entity *se = &p->se;
4148	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4149	u64 min_vruntime;
4150
4151#ifndef CONFIG_64BIT
4152	u64 min_vruntime_copy;
4153
4154	do {
4155		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4156		smp_rmb();
4157		min_vruntime = cfs_rq->min_vruntime;
4158	} while (min_vruntime != min_vruntime_copy);
4159#else
4160	min_vruntime = cfs_rq->min_vruntime;
4161#endif
4162
4163	se->vruntime -= min_vruntime;
4164	record_wakee(p);
4165}
4166
4167#ifdef CONFIG_FAIR_GROUP_SCHED
4168/*
4169 * effective_load() calculates the load change as seen from the root_task_group
4170 *
4171 * Adding load to a group doesn't make a group heavier, but can cause movement
4172 * of group shares between cpus. Assuming the shares were perfectly aligned one
4173 * can calculate the shift in shares.
4174 *
4175 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4176 * on this @cpu and results in a total addition (subtraction) of @wg to the
4177 * total group weight.
4178 *
4179 * Given a runqueue weight distribution (rw_i) we can compute a shares
4180 * distribution (s_i) using:
4181 *
4182 *   s_i = rw_i / \Sum rw_j						(1)
4183 *
4184 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4185 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4186 * shares distribution (s_i):
4187 *
4188 *   rw_i = {   2,   4,   1,   0 }
4189 *   s_i  = { 2/7, 4/7, 1/7,   0 }
4190 *
4191 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4192 * task used to run on and the CPU the waker is running on), we need to
4193 * compute the effect of waking a task on either CPU and, in case of a sync
4194 * wakeup, compute the effect of the current task going to sleep.
4195 *
4196 * So for a change of @wl to the local @cpu with an overall group weight change
4197 * of @wl we can compute the new shares distribution (s'_i) using:
4198 *
4199 *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4200 *
4201 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4202 * differences in waking a task to CPU 0. The additional task changes the
4203 * weight and shares distributions like:
4204 *
4205 *   rw'_i = {   3,   4,   1,   0 }
4206 *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4207 *
4208 * We can then compute the difference in effective weight by using:
4209 *
4210 *   dw_i = S * (s'_i - s_i)						(3)
4211 *
4212 * Where 'S' is the group weight as seen by its parent.
4213 *
4214 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4215 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4216 * 4/7) times the weight of the group.
4217 */
4218static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4219{
4220	struct sched_entity *se = tg->se[cpu];
4221
4222	if (!tg->parent)	/* the trivial, non-cgroup case */
4223		return wl;
4224
4225	for_each_sched_entity(se) {
4226		long w, W;
4227
4228		tg = se->my_q->tg;
4229
4230		/*
4231		 * W = @wg + \Sum rw_j
4232		 */
4233		W = wg + calc_tg_weight(tg, se->my_q);
4234
4235		/*
4236		 * w = rw_i + @wl
4237		 */
4238		w = se->my_q->load.weight + wl;
4239
4240		/*
4241		 * wl = S * s'_i; see (2)
4242		 */
4243		if (W > 0 && w < W)
4244			wl = (w * tg->shares) / W;
4245		else
4246			wl = tg->shares;
4247
4248		/*
4249		 * Per the above, wl is the new se->load.weight value; since
4250		 * those are clipped to [MIN_SHARES, ...) do so now. See
4251		 * calc_cfs_shares().
4252		 */
4253		if (wl < MIN_SHARES)
4254			wl = MIN_SHARES;
4255
4256		/*
4257		 * wl = dw_i = S * (s'_i - s_i); see (3)
4258		 */
4259		wl -= se->load.weight;
4260
4261		/*
4262		 * Recursively apply this logic to all parent groups to compute
4263		 * the final effective load change on the root group. Since
4264		 * only the @tg group gets extra weight, all parent groups can
4265		 * only redistribute existing shares. @wl is the shift in shares
4266		 * resulting from this level per the above.
4267		 */
4268		wg = 0;
4269	}
4270
4271	return wl;
4272}
4273#else
4274
4275static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4276{
4277	return wl;
4278}
4279
4280#endif
4281
4282static int wake_wide(struct task_struct *p)
4283{
4284	int factor = this_cpu_read(sd_llc_size);
4285
4286	/*
4287	 * Yeah, it's the switching-frequency, could means many wakee or
4288	 * rapidly switch, use factor here will just help to automatically
4289	 * adjust the loose-degree, so bigger node will lead to more pull.
4290	 */
4291	if (p->wakee_flips > factor) {
4292		/*
4293		 * wakee is somewhat hot, it needs certain amount of cpu
4294		 * resource, so if waker is far more hot, prefer to leave
4295		 * it alone.
4296		 */
4297		if (current->wakee_flips > (factor * p->wakee_flips))
4298			return 1;
4299	}
4300
4301	return 0;
4302}
4303
4304static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4305{
4306	s64 this_load, load;
4307	s64 this_eff_load, prev_eff_load;
4308	int idx, this_cpu, prev_cpu;
4309	struct task_group *tg;
4310	unsigned long weight;
4311	int balanced;
4312
4313	/*
4314	 * If we wake multiple tasks be careful to not bounce
4315	 * ourselves around too much.
4316	 */
4317	if (wake_wide(p))
4318		return 0;
4319
4320	idx	  = sd->wake_idx;
4321	this_cpu  = smp_processor_id();
4322	prev_cpu  = task_cpu(p);
4323	load	  = source_load(prev_cpu, idx);
4324	this_load = target_load(this_cpu, idx);
4325
4326	/*
4327	 * If sync wakeup then subtract the (maximum possible)
4328	 * effect of the currently running task from the load
4329	 * of the current CPU:
4330	 */
4331	if (sync) {
4332		tg = task_group(current);
4333		weight = current->se.load.weight;
4334
4335		this_load += effective_load(tg, this_cpu, -weight, -weight);
4336		load += effective_load(tg, prev_cpu, 0, -weight);
4337	}
4338
4339	tg = task_group(p);
4340	weight = p->se.load.weight;
4341
4342	/*
4343	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4344	 * due to the sync cause above having dropped this_load to 0, we'll
4345	 * always have an imbalance, but there's really nothing you can do
4346	 * about that, so that's good too.
4347	 *
4348	 * Otherwise check if either cpus are near enough in load to allow this
4349	 * task to be woken on this_cpu.
4350	 */
4351	this_eff_load = 100;
4352	this_eff_load *= capacity_of(prev_cpu);
4353
4354	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4355	prev_eff_load *= capacity_of(this_cpu);
4356
4357	if (this_load > 0) {
4358		this_eff_load *= this_load +
4359			effective_load(tg, this_cpu, weight, weight);
4360
4361		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4362	}
4363
4364	balanced = this_eff_load <= prev_eff_load;
4365
4366	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4367
4368	if (!balanced)
4369		return 0;
4370
4371	schedstat_inc(sd, ttwu_move_affine);
4372	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4373
4374	return 1;
4375}
4376
4377/*
4378 * find_idlest_group finds and returns the least busy CPU group within the
4379 * domain.
4380 */
4381static struct sched_group *
4382find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4383		  int this_cpu, int sd_flag)
4384{
4385	struct sched_group *idlest = NULL, *group = sd->groups;
4386	unsigned long min_load = ULONG_MAX, this_load = 0;
4387	int load_idx = sd->forkexec_idx;
4388	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4389
4390	if (sd_flag & SD_BALANCE_WAKE)
4391		load_idx = sd->wake_idx;
4392
4393	do {
4394		unsigned long load, avg_load;
4395		int local_group;
4396		int i;
4397
4398		/* Skip over this group if it has no CPUs allowed */
4399		if (!cpumask_intersects(sched_group_cpus(group),
4400					tsk_cpus_allowed(p)))
4401			continue;
4402
4403		local_group = cpumask_test_cpu(this_cpu,
4404					       sched_group_cpus(group));
4405
4406		/* Tally up the load of all CPUs in the group */
4407		avg_load = 0;
4408
4409		for_each_cpu(i, sched_group_cpus(group)) {
4410			/* Bias balancing toward cpus of our domain */
4411			if (local_group)
4412				load = source_load(i, load_idx);
4413			else
4414				load = target_load(i, load_idx);
4415
4416			avg_load += load;
4417		}
4418
4419		/* Adjust by relative CPU capacity of the group */
4420		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4421
4422		if (local_group) {
4423			this_load = avg_load;
4424		} else if (avg_load < min_load) {
4425			min_load = avg_load;
4426			idlest = group;
4427		}
4428	} while (group = group->next, group != sd->groups);
4429
4430	if (!idlest || 100*this_load < imbalance*min_load)
4431		return NULL;
4432	return idlest;
4433}
4434
4435/*
4436 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4437 */
4438static int
4439find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4440{
4441	unsigned long load, min_load = ULONG_MAX;
4442	unsigned int min_exit_latency = UINT_MAX;
4443	u64 latest_idle_timestamp = 0;
4444	int least_loaded_cpu = this_cpu;
4445	int shallowest_idle_cpu = -1;
4446	int i;
4447
4448	/* Traverse only the allowed CPUs */
4449	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4450		if (idle_cpu(i)) {
4451			struct rq *rq = cpu_rq(i);
4452			struct cpuidle_state *idle = idle_get_state(rq);
4453			if (idle && idle->exit_latency < min_exit_latency) {
4454				/*
4455				 * We give priority to a CPU whose idle state
4456				 * has the smallest exit latency irrespective
4457				 * of any idle timestamp.
4458				 */
4459				min_exit_latency = idle->exit_latency;
4460				latest_idle_timestamp = rq->idle_stamp;
4461				shallowest_idle_cpu = i;
4462			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4463				   rq->idle_stamp > latest_idle_timestamp) {
4464				/*
4465				 * If equal or no active idle state, then
4466				 * the most recently idled CPU might have
4467				 * a warmer cache.
4468				 */
4469				latest_idle_timestamp = rq->idle_stamp;
4470				shallowest_idle_cpu = i;
4471			}
4472		} else {
4473			load = weighted_cpuload(i);
4474			if (load < min_load || (load == min_load && i == this_cpu)) {
4475				min_load = load;
4476				least_loaded_cpu = i;
4477			}
4478		}
4479	}
4480
4481	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4482}
4483
4484/*
4485 * Try and locate an idle CPU in the sched_domain.
4486 */
4487static int select_idle_sibling(struct task_struct *p, int target)
4488{
4489	struct sched_domain *sd;
4490	struct sched_group *sg;
4491	int i = task_cpu(p);
4492
4493	if (idle_cpu(target))
4494		return target;
4495
4496	/*
4497	 * If the prevous cpu is cache affine and idle, don't be stupid.
4498	 */
4499	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4500		return i;
4501
4502	/*
4503	 * Otherwise, iterate the domains and find an elegible idle cpu.
4504	 */
4505	sd = rcu_dereference(per_cpu(sd_llc, target));
4506	for_each_lower_domain(sd) {
4507		sg = sd->groups;
4508		do {
4509			if (!cpumask_intersects(sched_group_cpus(sg),
4510						tsk_cpus_allowed(p)))
4511				goto next;
4512
4513			for_each_cpu(i, sched_group_cpus(sg)) {
4514				if (i == target || !idle_cpu(i))
4515					goto next;
4516			}
4517
4518			target = cpumask_first_and(sched_group_cpus(sg),
4519					tsk_cpus_allowed(p));
4520			goto done;
4521next:
4522			sg = sg->next;
4523		} while (sg != sd->groups);
4524	}
4525done:
4526	return target;
4527}
4528
4529/*
4530 * select_task_rq_fair: Select target runqueue for the waking task in domains
4531 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4532 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4533 *
4534 * Balances load by selecting the idlest cpu in the idlest group, or under
4535 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4536 *
4537 * Returns the target cpu number.
4538 *
4539 * preempt must be disabled.
4540 */
4541static int
4542select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4543{
4544	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4545	int cpu = smp_processor_id();
4546	int new_cpu = cpu;
4547	int want_affine = 0;
4548	int sync = wake_flags & WF_SYNC;
4549
4550	if (p->nr_cpus_allowed == 1)
4551		return prev_cpu;
4552
4553	if (sd_flag & SD_BALANCE_WAKE)
4554		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4555
4556	rcu_read_lock();
4557	for_each_domain(cpu, tmp) {
4558		if (!(tmp->flags & SD_LOAD_BALANCE))
4559			continue;
4560
4561		/*
4562		 * If both cpu and prev_cpu are part of this domain,
4563		 * cpu is a valid SD_WAKE_AFFINE target.
4564		 */
4565		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4566		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4567			affine_sd = tmp;
4568			break;
4569		}
4570
4571		if (tmp->flags & sd_flag)
4572			sd = tmp;
4573	}
4574
4575	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4576		prev_cpu = cpu;
4577
4578	if (sd_flag & SD_BALANCE_WAKE) {
4579		new_cpu = select_idle_sibling(p, prev_cpu);
4580		goto unlock;
4581	}
4582
4583	while (sd) {
4584		struct sched_group *group;
4585		int weight;
4586
4587		if (!(sd->flags & sd_flag)) {
4588			sd = sd->child;
4589			continue;
4590		}
4591
4592		group = find_idlest_group(sd, p, cpu, sd_flag);
4593		if (!group) {
4594			sd = sd->child;
4595			continue;
4596		}
4597
4598		new_cpu = find_idlest_cpu(group, p, cpu);
4599		if (new_cpu == -1 || new_cpu == cpu) {
4600			/* Now try balancing at a lower domain level of cpu */
4601			sd = sd->child;
4602			continue;
4603		}
4604
4605		/* Now try balancing at a lower domain level of new_cpu */
4606		cpu = new_cpu;
4607		weight = sd->span_weight;
4608		sd = NULL;
4609		for_each_domain(cpu, tmp) {
4610			if (weight <= tmp->span_weight)
4611				break;
4612			if (tmp->flags & sd_flag)
4613				sd = tmp;
4614		}
4615		/* while loop will break here if sd == NULL */
4616	}
4617unlock:
4618	rcu_read_unlock();
4619
4620	return new_cpu;
4621}
4622
4623/*
4624 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4625 * cfs_rq_of(p) references at time of call are still valid and identify the
4626 * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4627 * other assumptions, including the state of rq->lock, should be made.
4628 */
4629static void
4630migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4631{
4632	struct sched_entity *se = &p->se;
4633	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4634
4635	/*
4636	 * Load tracking: accumulate removed load so that it can be processed
4637	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4638	 * to blocked load iff they have a positive decay-count.  It can never
4639	 * be negative here since on-rq tasks have decay-count == 0.
4640	 */
4641	if (se->avg.decay_count) {
4642		se->avg.decay_count = -__synchronize_entity_decay(se);
4643		atomic_long_add(se->avg.load_avg_contrib,
4644						&cfs_rq->removed_load);
4645	}
4646
4647	/* We have migrated, no longer consider this task hot */
4648	se->exec_start = 0;
4649}
4650#endif /* CONFIG_SMP */
4651
4652static unsigned long
4653wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4654{
4655	unsigned long gran = sysctl_sched_wakeup_granularity;
4656
4657	/*
4658	 * Since its curr running now, convert the gran from real-time
4659	 * to virtual-time in his units.
4660	 *
4661	 * By using 'se' instead of 'curr' we penalize light tasks, so
4662	 * they get preempted easier. That is, if 'se' < 'curr' then
4663	 * the resulting gran will be larger, therefore penalizing the
4664	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4665	 * be smaller, again penalizing the lighter task.
4666	 *
4667	 * This is especially important for buddies when the leftmost
4668	 * task is higher priority than the buddy.
4669	 */
4670	return calc_delta_fair(gran, se);
4671}
4672
4673/*
4674 * Should 'se' preempt 'curr'.
4675 *
4676 *             |s1
4677 *        |s2
4678 *   |s3
4679 *         g
4680 *      |<--->|c
4681 *
4682 *  w(c, s1) = -1
4683 *  w(c, s2) =  0
4684 *  w(c, s3) =  1
4685 *
4686 */
4687static int
4688wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4689{
4690	s64 gran, vdiff = curr->vruntime - se->vruntime;
4691
4692	if (vdiff <= 0)
4693		return -1;
4694
4695	gran = wakeup_gran(curr, se);
4696	if (vdiff > gran)
4697		return 1;
4698
4699	return 0;
4700}
4701
4702static void set_last_buddy(struct sched_entity *se)
4703{
4704	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4705		return;
4706
4707	for_each_sched_entity(se)
4708		cfs_rq_of(se)->last = se;
4709}
4710
4711static void set_next_buddy(struct sched_entity *se)
4712{
4713	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4714		return;
4715
4716	for_each_sched_entity(se)
4717		cfs_rq_of(se)->next = se;
4718}
4719
4720static void set_skip_buddy(struct sched_entity *se)
4721{
4722	for_each_sched_entity(se)
4723		cfs_rq_of(se)->skip = se;
4724}
4725
4726/*
4727 * Preempt the current task with a newly woken task if needed:
4728 */
4729static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4730{
4731	struct task_struct *curr = rq->curr;
4732	struct sched_entity *se = &curr->se, *pse = &p->se;
4733	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4734	int scale = cfs_rq->nr_running >= sched_nr_latency;
4735	int next_buddy_marked = 0;
4736
4737	if (unlikely(se == pse))
4738		return;
4739
4740	/*
4741	 * This is possible from callers such as attach_tasks(), in which we
4742	 * unconditionally check_prempt_curr() after an enqueue (which may have
4743	 * lead to a throttle).  This both saves work and prevents false
4744	 * next-buddy nomination below.
4745	 */
4746	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4747		return;
4748
4749	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4750		set_next_buddy(pse);
4751		next_buddy_marked = 1;
4752	}
4753
4754	/*
4755	 * We can come here with TIF_NEED_RESCHED already set from new task
4756	 * wake up path.
4757	 *
4758	 * Note: this also catches the edge-case of curr being in a throttled
4759	 * group (e.g. via set_curr_task), since update_curr() (in the
4760	 * enqueue of curr) will have resulted in resched being set.  This
4761	 * prevents us from potentially nominating it as a false LAST_BUDDY
4762	 * below.
4763	 */
4764	if (test_tsk_need_resched(curr))
4765		return;
4766
4767	/* Idle tasks are by definition preempted by non-idle tasks. */
4768	if (unlikely(curr->policy == SCHED_IDLE) &&
4769	    likely(p->policy != SCHED_IDLE))
4770		goto preempt;
4771
4772	/*
4773	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4774	 * is driven by the tick):
4775	 */
4776	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4777		return;
4778
4779	find_matching_se(&se, &pse);
4780	update_curr(cfs_rq_of(se));
4781	BUG_ON(!pse);
4782	if (wakeup_preempt_entity(se, pse) == 1) {
4783		/*
4784		 * Bias pick_next to pick the sched entity that is
4785		 * triggering this preemption.
4786		 */
4787		if (!next_buddy_marked)
4788			set_next_buddy(pse);
4789		goto preempt;
4790	}
4791
4792	return;
4793
4794preempt:
4795	resched_curr(rq);
4796	/*
4797	 * Only set the backward buddy when the current task is still
4798	 * on the rq. This can happen when a wakeup gets interleaved
4799	 * with schedule on the ->pre_schedule() or idle_balance()
4800	 * point, either of which can * drop the rq lock.
4801	 *
4802	 * Also, during early boot the idle thread is in the fair class,
4803	 * for obvious reasons its a bad idea to schedule back to it.
4804	 */
4805	if (unlikely(!se->on_rq || curr == rq->idle))
4806		return;
4807
4808	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4809		set_last_buddy(se);
4810}
4811
4812static struct task_struct *
4813pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4814{
4815	struct cfs_rq *cfs_rq = &rq->cfs;
4816	struct sched_entity *se;
4817	struct task_struct *p;
4818	int new_tasks;
4819
4820again:
4821#ifdef CONFIG_FAIR_GROUP_SCHED
4822	if (!cfs_rq->nr_running)
4823		goto idle;
4824
4825	if (prev->sched_class != &fair_sched_class)
4826		goto simple;
4827
4828	/*
4829	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4830	 * likely that a next task is from the same cgroup as the current.
4831	 *
4832	 * Therefore attempt to avoid putting and setting the entire cgroup
4833	 * hierarchy, only change the part that actually changes.
4834	 */
4835
4836	do {
4837		struct sched_entity *curr = cfs_rq->curr;
4838
4839		/*
4840		 * Since we got here without doing put_prev_entity() we also
4841		 * have to consider cfs_rq->curr. If it is still a runnable
4842		 * entity, update_curr() will update its vruntime, otherwise
4843		 * forget we've ever seen it.
4844		 */
4845		if (curr && curr->on_rq)
4846			update_curr(cfs_rq);
4847		else
4848			curr = NULL;
4849
4850		/*
4851		 * This call to check_cfs_rq_runtime() will do the throttle and
4852		 * dequeue its entity in the parent(s). Therefore the 'simple'
4853		 * nr_running test will indeed be correct.
4854		 */
4855		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4856			goto simple;
4857
4858		se = pick_next_entity(cfs_rq, curr);
4859		cfs_rq = group_cfs_rq(se);
4860	} while (cfs_rq);
4861
4862	p = task_of(se);
4863
4864	/*
4865	 * Since we haven't yet done put_prev_entity and if the selected task
4866	 * is a different task than we started out with, try and touch the
4867	 * least amount of cfs_rqs.
4868	 */
4869	if (prev != p) {
4870		struct sched_entity *pse = &prev->se;
4871
4872		while (!(cfs_rq = is_same_group(se, pse))) {
4873			int se_depth = se->depth;
4874			int pse_depth = pse->depth;
4875
4876			if (se_depth <= pse_depth) {
4877				put_prev_entity(cfs_rq_of(pse), pse);
4878				pse = parent_entity(pse);
4879			}
4880			if (se_depth >= pse_depth) {
4881				set_next_entity(cfs_rq_of(se), se);
4882				se = parent_entity(se);
4883			}
4884		}
4885
4886		put_prev_entity(cfs_rq, pse);
4887		set_next_entity(cfs_rq, se);
4888	}
4889
4890	if (hrtick_enabled(rq))
4891		hrtick_start_fair(rq, p);
4892
4893	return p;
4894simple:
4895	cfs_rq = &rq->cfs;
4896#endif
4897
4898	if (!cfs_rq->nr_running)
4899		goto idle;
4900
4901	put_prev_task(rq, prev);
4902
4903	do {
4904		se = pick_next_entity(cfs_rq, NULL);
4905		set_next_entity(cfs_rq, se);
4906		cfs_rq = group_cfs_rq(se);
4907	} while (cfs_rq);
4908
4909	p = task_of(se);
4910
4911	if (hrtick_enabled(rq))
4912		hrtick_start_fair(rq, p);
4913
4914	return p;
4915
4916idle:
4917	new_tasks = idle_balance(rq);
4918	/*
4919	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4920	 * possible for any higher priority task to appear. In that case we
4921	 * must re-start the pick_next_entity() loop.
4922	 */
4923	if (new_tasks < 0)
4924		return RETRY_TASK;
4925
4926	if (new_tasks > 0)
4927		goto again;
4928
4929	return NULL;
4930}
4931
4932/*
4933 * Account for a descheduled task:
4934 */
4935static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4936{
4937	struct sched_entity *se = &prev->se;
4938	struct cfs_rq *cfs_rq;
4939
4940	for_each_sched_entity(se) {
4941		cfs_rq = cfs_rq_of(se);
4942		put_prev_entity(cfs_rq, se);
4943	}
4944}
4945
4946/*
4947 * sched_yield() is very simple
4948 *
4949 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4950 */
4951static void yield_task_fair(struct rq *rq)
4952{
4953	struct task_struct *curr = rq->curr;
4954	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4955	struct sched_entity *se = &curr->se;
4956
4957	/*
4958	 * Are we the only task in the tree?
4959	 */
4960	if (unlikely(rq->nr_running == 1))
4961		return;
4962
4963	clear_buddies(cfs_rq, se);
4964
4965	if (curr->policy != SCHED_BATCH) {
4966		update_rq_clock(rq);
4967		/*
4968		 * Update run-time statistics of the 'current'.
4969		 */
4970		update_curr(cfs_rq);
4971		/*
4972		 * Tell update_rq_clock() that we've just updated,
4973		 * so we don't do microscopic update in schedule()
4974		 * and double the fastpath cost.
4975		 */
4976		 rq->skip_clock_update = 1;
4977	}
4978
4979	set_skip_buddy(se);
4980}
4981
4982static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4983{
4984	struct sched_entity *se = &p->se;
4985
4986	/* throttled hierarchies are not runnable */
4987	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4988		return false;
4989
4990	/* Tell the scheduler that we'd really like pse to run next. */
4991	set_next_buddy(se);
4992
4993	yield_task_fair(rq);
4994
4995	return true;
4996}
4997
4998#ifdef CONFIG_SMP
4999/**************************************************
5000 * Fair scheduling class load-balancing methods.
5001 *
5002 * BASICS
5003 *
5004 * The purpose of load-balancing is to achieve the same basic fairness the
5005 * per-cpu scheduler provides, namely provide a proportional amount of compute
5006 * time to each task. This is expressed in the following equation:
5007 *
5008 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5009 *
5010 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5011 * W_i,0 is defined as:
5012 *
5013 *   W_i,0 = \Sum_j w_i,j                                             (2)
5014 *
5015 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5016 * is derived from the nice value as per prio_to_weight[].
5017 *
5018 * The weight average is an exponential decay average of the instantaneous
5019 * weight:
5020 *
5021 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5022 *
5023 * C_i is the compute capacity of cpu i, typically it is the
5024 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5025 * can also include other factors [XXX].
5026 *
5027 * To achieve this balance we define a measure of imbalance which follows
5028 * directly from (1):
5029 *
5030 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5031 *
5032 * We them move tasks around to minimize the imbalance. In the continuous
5033 * function space it is obvious this converges, in the discrete case we get
5034 * a few fun cases generally called infeasible weight scenarios.
5035 *
5036 * [XXX expand on:
5037 *     - infeasible weights;
5038 *     - local vs global optima in the discrete case. ]
5039 *
5040 *
5041 * SCHED DOMAINS
5042 *
5043 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5044 * for all i,j solution, we create a tree of cpus that follows the hardware
5045 * topology where each level pairs two lower groups (or better). This results
5046 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5047 * tree to only the first of the previous level and we decrease the frequency
5048 * of load-balance at each level inv. proportional to the number of cpus in
5049 * the groups.
5050 *
5051 * This yields:
5052 *
5053 *     log_2 n     1     n
5054 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5055 *     i = 0      2^i   2^i
5056 *                               `- size of each group
5057 *         |         |     `- number of cpus doing load-balance
5058 *         |         `- freq
5059 *         `- sum over all levels
5060 *
5061 * Coupled with a limit on how many tasks we can migrate every balance pass,
5062 * this makes (5) the runtime complexity of the balancer.
5063 *
5064 * An important property here is that each CPU is still (indirectly) connected
5065 * to every other cpu in at most O(log n) steps:
5066 *
5067 * The adjacency matrix of the resulting graph is given by:
5068 *
5069 *             log_2 n
5070 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5071 *             k = 0
5072 *
5073 * And you'll find that:
5074 *
5075 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5076 *
5077 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5078 * The task movement gives a factor of O(m), giving a convergence complexity
5079 * of:
5080 *
5081 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5082 *
5083 *
5084 * WORK CONSERVING
5085 *
5086 * In order to avoid CPUs going idle while there's still work to do, new idle
5087 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5088 * tree itself instead of relying on other CPUs to bring it work.
5089 *
5090 * This adds some complexity to both (5) and (8) but it reduces the total idle
5091 * time.
5092 *
5093 * [XXX more?]
5094 *
5095 *
5096 * CGROUPS
5097 *
5098 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5099 *
5100 *                                s_k,i
5101 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5102 *                                 S_k
5103 *
5104 * Where
5105 *
5106 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5107 *
5108 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5109 *
5110 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5111 * property.
5112 *
5113 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5114 *      rewrite all of this once again.]
5115 */
5116
5117static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5118
5119enum fbq_type { regular, remote, all };
5120
5121#define LBF_ALL_PINNED	0x01
5122#define LBF_NEED_BREAK	0x02
5123#define LBF_DST_PINNED  0x04
5124#define LBF_SOME_PINNED	0x08
5125
5126struct lb_env {
5127	struct sched_domain	*sd;
5128
5129	struct rq		*src_rq;
5130	int			src_cpu;
5131
5132	int			dst_cpu;
5133	struct rq		*dst_rq;
5134
5135	struct cpumask		*dst_grpmask;
5136	int			new_dst_cpu;
5137	enum cpu_idle_type	idle;
5138	long			imbalance;
5139	/* The set of CPUs under consideration for load-balancing */
5140	struct cpumask		*cpus;
5141
5142	unsigned int		flags;
5143
5144	unsigned int		loop;
5145	unsigned int		loop_break;
5146	unsigned int		loop_max;
5147
5148	enum fbq_type		fbq_type;
5149	struct list_head	tasks;
5150};
5151
5152/*
5153 * Is this task likely cache-hot:
5154 */
5155static int task_hot(struct task_struct *p, struct lb_env *env)
5156{
5157	s64 delta;
5158
5159	lockdep_assert_held(&env->src_rq->lock);
5160
5161	if (p->sched_class != &fair_sched_class)
5162		return 0;
5163
5164	if (unlikely(p->policy == SCHED_IDLE))
5165		return 0;
5166
5167	/*
5168	 * Buddy candidates are cache hot:
5169	 */
5170	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5171			(&p->se == cfs_rq_of(&p->se)->next ||
5172			 &p->se == cfs_rq_of(&p->se)->last))
5173		return 1;
5174
5175	if (sysctl_sched_migration_cost == -1)
5176		return 1;
5177	if (sysctl_sched_migration_cost == 0)
5178		return 0;
5179
5180	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5181
5182	return delta < (s64)sysctl_sched_migration_cost;
5183}
5184
5185#ifdef CONFIG_NUMA_BALANCING
5186/* Returns true if the destination node has incurred more faults */
5187static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5188{
5189	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5190	int src_nid, dst_nid;
5191
5192	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5193	    !(env->sd->flags & SD_NUMA)) {
5194		return false;
5195	}
5196
5197	src_nid = cpu_to_node(env->src_cpu);
5198	dst_nid = cpu_to_node(env->dst_cpu);
5199
5200	if (src_nid == dst_nid)
5201		return false;
5202
5203	if (numa_group) {
5204		/* Task is already in the group's interleave set. */
5205		if (node_isset(src_nid, numa_group->active_nodes))
5206			return false;
5207
5208		/* Task is moving into the group's interleave set. */
5209		if (node_isset(dst_nid, numa_group->active_nodes))
5210			return true;
5211
5212		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5213	}
5214
5215	/* Encourage migration to the preferred node. */
5216	if (dst_nid == p->numa_preferred_nid)
5217		return true;
5218
5219	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5220}
5221
5222
5223static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5224{
5225	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5226	int src_nid, dst_nid;
5227
5228	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5229		return false;
5230
5231	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5232		return false;
5233
5234	src_nid = cpu_to_node(env->src_cpu);
5235	dst_nid = cpu_to_node(env->dst_cpu);
5236
5237	if (src_nid == dst_nid)
5238		return false;
5239
5240	if (numa_group) {
5241		/* Task is moving within/into the group's interleave set. */
5242		if (node_isset(dst_nid, numa_group->active_nodes))
5243			return false;
5244
5245		/* Task is moving out of the group's interleave set. */
5246		if (node_isset(src_nid, numa_group->active_nodes))
5247			return true;
5248
5249		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5250	}
5251
5252	/* Migrating away from the preferred node is always bad. */
5253	if (src_nid == p->numa_preferred_nid)
5254		return true;
5255
5256	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5257}
5258
5259#else
5260static inline bool migrate_improves_locality(struct task_struct *p,
5261					     struct lb_env *env)
5262{
5263	return false;
5264}
5265
5266static inline bool migrate_degrades_locality(struct task_struct *p,
5267					     struct lb_env *env)
5268{
5269	return false;
5270}
5271#endif
5272
5273/*
5274 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5275 */
5276static
5277int can_migrate_task(struct task_struct *p, struct lb_env *env)
5278{
5279	int tsk_cache_hot = 0;
5280
5281	lockdep_assert_held(&env->src_rq->lock);
5282
5283	/*
5284	 * We do not migrate tasks that are:
5285	 * 1) throttled_lb_pair, or
5286	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5287	 * 3) running (obviously), or
5288	 * 4) are cache-hot on their current CPU.
5289	 */
5290	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5291		return 0;
5292
5293	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5294		int cpu;
5295
5296		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5297
5298		env->flags |= LBF_SOME_PINNED;
5299
5300		/*
5301		 * Remember if this task can be migrated to any other cpu in
5302		 * our sched_group. We may want to revisit it if we couldn't
5303		 * meet load balance goals by pulling other tasks on src_cpu.
5304		 *
5305		 * Also avoid computing new_dst_cpu if we have already computed
5306		 * one in current iteration.
5307		 */
5308		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5309			return 0;
5310
5311		/* Prevent to re-select dst_cpu via env's cpus */
5312		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5313			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5314				env->flags |= LBF_DST_PINNED;
5315				env->new_dst_cpu = cpu;
5316				break;
5317			}
5318		}
5319
5320		return 0;
5321	}
5322
5323	/* Record that we found atleast one task that could run on dst_cpu */
5324	env->flags &= ~LBF_ALL_PINNED;
5325
5326	if (task_running(env->src_rq, p)) {
5327		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5328		return 0;
5329	}
5330
5331	/*
5332	 * Aggressive migration if:
5333	 * 1) destination numa is preferred
5334	 * 2) task is cache cold, or
5335	 * 3) too many balance attempts have failed.
5336	 */
5337	tsk_cache_hot = task_hot(p, env);
5338	if (!tsk_cache_hot)
5339		tsk_cache_hot = migrate_degrades_locality(p, env);
5340
5341	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5342	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5343		if (tsk_cache_hot) {
5344			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5345			schedstat_inc(p, se.statistics.nr_forced_migrations);
5346		}
5347		return 1;
5348	}
5349
5350	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5351	return 0;
5352}
5353
5354/*
5355 * detach_task() -- detach the task for the migration specified in env
5356 */
5357static void detach_task(struct task_struct *p, struct lb_env *env)
5358{
5359	lockdep_assert_held(&env->src_rq->lock);
5360
5361	deactivate_task(env->src_rq, p, 0);
5362	p->on_rq = TASK_ON_RQ_MIGRATING;
5363	set_task_cpu(p, env->dst_cpu);
5364}
5365
5366/*
5367 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5368 * part of active balancing operations within "domain".
5369 *
5370 * Returns a task if successful and NULL otherwise.
5371 */
5372static struct task_struct *detach_one_task(struct lb_env *env)
5373{
5374	struct task_struct *p, *n;
5375
5376	lockdep_assert_held(&env->src_rq->lock);
5377
5378	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5379		if (!can_migrate_task(p, env))
5380			continue;
5381
5382		detach_task(p, env);
5383
5384		/*
5385		 * Right now, this is only the second place where
5386		 * lb_gained[env->idle] is updated (other is detach_tasks)
5387		 * so we can safely collect stats here rather than
5388		 * inside detach_tasks().
5389		 */
5390		schedstat_inc(env->sd, lb_gained[env->idle]);
5391		return p;
5392	}
5393	return NULL;
5394}
5395
5396static const unsigned int sched_nr_migrate_break = 32;
5397
5398/*
5399 * detach_tasks() -- tries to detach up to imbalance weighted load from
5400 * busiest_rq, as part of a balancing operation within domain "sd".
5401 *
5402 * Returns number of detached tasks if successful and 0 otherwise.
5403 */
5404static int detach_tasks(struct lb_env *env)
5405{
5406	struct list_head *tasks = &env->src_rq->cfs_tasks;
5407	struct task_struct *p;
5408	unsigned long load;
5409	int detached = 0;
5410
5411	lockdep_assert_held(&env->src_rq->lock);
5412
5413	if (env->imbalance <= 0)
5414		return 0;
5415
5416	while (!list_empty(tasks)) {
5417		p = list_first_entry(tasks, struct task_struct, se.group_node);
5418
5419		env->loop++;
5420		/* We've more or less seen every task there is, call it quits */
5421		if (env->loop > env->loop_max)
5422			break;
5423
5424		/* take a breather every nr_migrate tasks */
5425		if (env->loop > env->loop_break) {
5426			env->loop_break += sched_nr_migrate_break;
5427			env->flags |= LBF_NEED_BREAK;
5428			break;
5429		}
5430
5431		if (!can_migrate_task(p, env))
5432			goto next;
5433
5434		load = task_h_load(p);
5435
5436		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5437			goto next;
5438
5439		if ((load / 2) > env->imbalance)
5440			goto next;
5441
5442		detach_task(p, env);
5443		list_add(&p->se.group_node, &env->tasks);
5444
5445		detached++;
5446		env->imbalance -= load;
5447
5448#ifdef CONFIG_PREEMPT
5449		/*
5450		 * NEWIDLE balancing is a source of latency, so preemptible
5451		 * kernels will stop after the first task is detached to minimize
5452		 * the critical section.
5453		 */
5454		if (env->idle == CPU_NEWLY_IDLE)
5455			break;
5456#endif
5457
5458		/*
5459		 * We only want to steal up to the prescribed amount of
5460		 * weighted load.
5461		 */
5462		if (env->imbalance <= 0)
5463			break;
5464
5465		continue;
5466next:
5467		list_move_tail(&p->se.group_node, tasks);
5468	}
5469
5470	/*
5471	 * Right now, this is one of only two places we collect this stat
5472	 * so we can safely collect detach_one_task() stats here rather
5473	 * than inside detach_one_task().
5474	 */
5475	schedstat_add(env->sd, lb_gained[env->idle], detached);
5476
5477	return detached;
5478}
5479
5480/*
5481 * attach_task() -- attach the task detached by detach_task() to its new rq.
5482 */
5483static void attach_task(struct rq *rq, struct task_struct *p)
5484{
5485	lockdep_assert_held(&rq->lock);
5486
5487	BUG_ON(task_rq(p) != rq);
5488	p->on_rq = TASK_ON_RQ_QUEUED;
5489	activate_task(rq, p, 0);
5490	check_preempt_curr(rq, p, 0);
5491}
5492
5493/*
5494 * attach_one_task() -- attaches the task returned from detach_one_task() to
5495 * its new rq.
5496 */
5497static void attach_one_task(struct rq *rq, struct task_struct *p)
5498{
5499	raw_spin_lock(&rq->lock);
5500	attach_task(rq, p);
5501	raw_spin_unlock(&rq->lock);
5502}
5503
5504/*
5505 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5506 * new rq.
5507 */
5508static void attach_tasks(struct lb_env *env)
5509{
5510	struct list_head *tasks = &env->tasks;
5511	struct task_struct *p;
5512
5513	raw_spin_lock(&env->dst_rq->lock);
5514
5515	while (!list_empty(tasks)) {
5516		p = list_first_entry(tasks, struct task_struct, se.group_node);
5517		list_del_init(&p->se.group_node);
5518
5519		attach_task(env->dst_rq, p);
5520	}
5521
5522	raw_spin_unlock(&env->dst_rq->lock);
5523}
5524
5525#ifdef CONFIG_FAIR_GROUP_SCHED
5526/*
5527 * update tg->load_weight by folding this cpu's load_avg
5528 */
5529static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5530{
5531	struct sched_entity *se = tg->se[cpu];
5532	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5533
5534	/* throttled entities do not contribute to load */
5535	if (throttled_hierarchy(cfs_rq))
5536		return;
5537
5538	update_cfs_rq_blocked_load(cfs_rq, 1);
5539
5540	if (se) {
5541		update_entity_load_avg(se, 1);
5542		/*
5543		 * We pivot on our runnable average having decayed to zero for
5544		 * list removal.  This generally implies that all our children
5545		 * have also been removed (modulo rounding error or bandwidth
5546		 * control); however, such cases are rare and we can fix these
5547		 * at enqueue.
5548		 *
5549		 * TODO: fix up out-of-order children on enqueue.
5550		 */
5551		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5552			list_del_leaf_cfs_rq(cfs_rq);
5553	} else {
5554		struct rq *rq = rq_of(cfs_rq);
5555		update_rq_runnable_avg(rq, rq->nr_running);
5556	}
5557}
5558
5559static void update_blocked_averages(int cpu)
5560{
5561	struct rq *rq = cpu_rq(cpu);
5562	struct cfs_rq *cfs_rq;
5563	unsigned long flags;
5564
5565	raw_spin_lock_irqsave(&rq->lock, flags);
5566	update_rq_clock(rq);
5567	/*
5568	 * Iterates the task_group tree in a bottom up fashion, see
5569	 * list_add_leaf_cfs_rq() for details.
5570	 */
5571	for_each_leaf_cfs_rq(rq, cfs_rq) {
5572		/*
5573		 * Note: We may want to consider periodically releasing
5574		 * rq->lock about these updates so that creating many task
5575		 * groups does not result in continually extending hold time.
5576		 */
5577		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5578	}
5579
5580	raw_spin_unlock_irqrestore(&rq->lock, flags);
5581}
5582
5583/*
5584 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5585 * This needs to be done in a top-down fashion because the load of a child
5586 * group is a fraction of its parents load.
5587 */
5588static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5589{
5590	struct rq *rq = rq_of(cfs_rq);
5591	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5592	unsigned long now = jiffies;
5593	unsigned long load;
5594
5595	if (cfs_rq->last_h_load_update == now)
5596		return;
5597
5598	cfs_rq->h_load_next = NULL;
5599	for_each_sched_entity(se) {
5600		cfs_rq = cfs_rq_of(se);
5601		cfs_rq->h_load_next = se;
5602		if (cfs_rq->last_h_load_update == now)
5603			break;
5604	}
5605
5606	if (!se) {
5607		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5608		cfs_rq->last_h_load_update = now;
5609	}
5610
5611	while ((se = cfs_rq->h_load_next) != NULL) {
5612		load = cfs_rq->h_load;
5613		load = div64_ul(load * se->avg.load_avg_contrib,
5614				cfs_rq->runnable_load_avg + 1);
5615		cfs_rq = group_cfs_rq(se);
5616		cfs_rq->h_load = load;
5617		cfs_rq->last_h_load_update = now;
5618	}
5619}
5620
5621static unsigned long task_h_load(struct task_struct *p)
5622{
5623	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5624
5625	update_cfs_rq_h_load(cfs_rq);
5626	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5627			cfs_rq->runnable_load_avg + 1);
5628}
5629#else
5630static inline void update_blocked_averages(int cpu)
5631{
5632}
5633
5634static unsigned long task_h_load(struct task_struct *p)
5635{
5636	return p->se.avg.load_avg_contrib;
5637}
5638#endif
5639
5640/********** Helpers for find_busiest_group ************************/
5641
5642enum group_type {
5643	group_other = 0,
5644	group_imbalanced,
5645	group_overloaded,
5646};
5647
5648/*
5649 * sg_lb_stats - stats of a sched_group required for load_balancing
5650 */
5651struct sg_lb_stats {
5652	unsigned long avg_load; /*Avg load across the CPUs of the group */
5653	unsigned long group_load; /* Total load over the CPUs of the group */
5654	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5655	unsigned long load_per_task;
5656	unsigned long group_capacity;
5657	unsigned int sum_nr_running; /* Nr tasks running in the group */
5658	unsigned int group_capacity_factor;
5659	unsigned int idle_cpus;
5660	unsigned int group_weight;
5661	enum group_type group_type;
5662	int group_has_free_capacity;
5663#ifdef CONFIG_NUMA_BALANCING
5664	unsigned int nr_numa_running;
5665	unsigned int nr_preferred_running;
5666#endif
5667};
5668
5669/*
5670 * sd_lb_stats - Structure to store the statistics of a sched_domain
5671 *		 during load balancing.
5672 */
5673struct sd_lb_stats {
5674	struct sched_group *busiest;	/* Busiest group in this sd */
5675	struct sched_group *local;	/* Local group in this sd */
5676	unsigned long total_load;	/* Total load of all groups in sd */
5677	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5678	unsigned long avg_load;	/* Average load across all groups in sd */
5679
5680	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5681	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5682};
5683
5684static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5685{
5686	/*
5687	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5688	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5689	 * We must however clear busiest_stat::avg_load because
5690	 * update_sd_pick_busiest() reads this before assignment.
5691	 */
5692	*sds = (struct sd_lb_stats){
5693		.busiest = NULL,
5694		.local = NULL,
5695		.total_load = 0UL,
5696		.total_capacity = 0UL,
5697		.busiest_stat = {
5698			.avg_load = 0UL,
5699			.sum_nr_running = 0,
5700			.group_type = group_other,
5701		},
5702	};
5703}
5704
5705/**
5706 * get_sd_load_idx - Obtain the load index for a given sched domain.
5707 * @sd: The sched_domain whose load_idx is to be obtained.
5708 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5709 *
5710 * Return: The load index.
5711 */
5712static inline int get_sd_load_idx(struct sched_domain *sd,
5713					enum cpu_idle_type idle)
5714{
5715	int load_idx;
5716
5717	switch (idle) {
5718	case CPU_NOT_IDLE:
5719		load_idx = sd->busy_idx;
5720		break;
5721
5722	case CPU_NEWLY_IDLE:
5723		load_idx = sd->newidle_idx;
5724		break;
5725	default:
5726		load_idx = sd->idle_idx;
5727		break;
5728	}
5729
5730	return load_idx;
5731}
5732
5733static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5734{
5735	return SCHED_CAPACITY_SCALE;
5736}
5737
5738unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5739{
5740	return default_scale_capacity(sd, cpu);
5741}
5742
5743static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5744{
5745	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5746		return sd->smt_gain / sd->span_weight;
5747
5748	return SCHED_CAPACITY_SCALE;
5749}
5750
5751unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5752{
5753	return default_scale_cpu_capacity(sd, cpu);
5754}
5755
5756static unsigned long scale_rt_capacity(int cpu)
5757{
5758	struct rq *rq = cpu_rq(cpu);
5759	u64 total, available, age_stamp, avg;
5760	s64 delta;
5761
5762	/*
5763	 * Since we're reading these variables without serialization make sure
5764	 * we read them once before doing sanity checks on them.
5765	 */
5766	age_stamp = ACCESS_ONCE(rq->age_stamp);
5767	avg = ACCESS_ONCE(rq->rt_avg);
5768
5769	delta = rq_clock(rq) - age_stamp;
5770	if (unlikely(delta < 0))
5771		delta = 0;
5772
5773	total = sched_avg_period() + delta;
5774
5775	if (unlikely(total < avg)) {
5776		/* Ensures that capacity won't end up being negative */
5777		available = 0;
5778	} else {
5779		available = total - avg;
5780	}
5781
5782	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5783		total = SCHED_CAPACITY_SCALE;
5784
5785	total >>= SCHED_CAPACITY_SHIFT;
5786
5787	return div_u64(available, total);
5788}
5789
5790static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5791{
5792	unsigned long capacity = SCHED_CAPACITY_SCALE;
5793	struct sched_group *sdg = sd->groups;
5794
5795	if (sched_feat(ARCH_CAPACITY))
5796		capacity *= arch_scale_cpu_capacity(sd, cpu);
5797	else
5798		capacity *= default_scale_cpu_capacity(sd, cpu);
5799
5800	capacity >>= SCHED_CAPACITY_SHIFT;
5801
5802	sdg->sgc->capacity_orig = capacity;
5803
5804	if (sched_feat(ARCH_CAPACITY))
5805		capacity *= arch_scale_freq_capacity(sd, cpu);
5806	else
5807		capacity *= default_scale_capacity(sd, cpu);
5808
5809	capacity >>= SCHED_CAPACITY_SHIFT;
5810
5811	capacity *= scale_rt_capacity(cpu);
5812	capacity >>= SCHED_CAPACITY_SHIFT;
5813
5814	if (!capacity)
5815		capacity = 1;
5816
5817	cpu_rq(cpu)->cpu_capacity = capacity;
5818	sdg->sgc->capacity = capacity;
5819}
5820
5821void update_group_capacity(struct sched_domain *sd, int cpu)
5822{
5823	struct sched_domain *child = sd->child;
5824	struct sched_group *group, *sdg = sd->groups;
5825	unsigned long capacity, capacity_orig;
5826	unsigned long interval;
5827
5828	interval = msecs_to_jiffies(sd->balance_interval);
5829	interval = clamp(interval, 1UL, max_load_balance_interval);
5830	sdg->sgc->next_update = jiffies + interval;
5831
5832	if (!child) {
5833		update_cpu_capacity(sd, cpu);
5834		return;
5835	}
5836
5837	capacity_orig = capacity = 0;
5838
5839	if (child->flags & SD_OVERLAP) {
5840		/*
5841		 * SD_OVERLAP domains cannot assume that child groups
5842		 * span the current group.
5843		 */
5844
5845		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5846			struct sched_group_capacity *sgc;
5847			struct rq *rq = cpu_rq(cpu);
5848
5849			/*
5850			 * build_sched_domains() -> init_sched_groups_capacity()
5851			 * gets here before we've attached the domains to the
5852			 * runqueues.
5853			 *
5854			 * Use capacity_of(), which is set irrespective of domains
5855			 * in update_cpu_capacity().
5856			 *
5857			 * This avoids capacity/capacity_orig from being 0 and
5858			 * causing divide-by-zero issues on boot.
5859			 *
5860			 * Runtime updates will correct capacity_orig.
5861			 */
5862			if (unlikely(!rq->sd)) {
5863				capacity_orig += capacity_of(cpu);
5864				capacity += capacity_of(cpu);
5865				continue;
5866			}
5867
5868			sgc = rq->sd->groups->sgc;
5869			capacity_orig += sgc->capacity_orig;
5870			capacity += sgc->capacity;
5871		}
5872	} else  {
5873		/*
5874		 * !SD_OVERLAP domains can assume that child groups
5875		 * span the current group.
5876		 */
5877
5878		group = child->groups;
5879		do {
5880			capacity_orig += group->sgc->capacity_orig;
5881			capacity += group->sgc->capacity;
5882			group = group->next;
5883		} while (group != child->groups);
5884	}
5885
5886	sdg->sgc->capacity_orig = capacity_orig;
5887	sdg->sgc->capacity = capacity;
5888}
5889
5890/*
5891 * Try and fix up capacity for tiny siblings, this is needed when
5892 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5893 * which on its own isn't powerful enough.
5894 *
5895 * See update_sd_pick_busiest() and check_asym_packing().
5896 */
5897static inline int
5898fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5899{
5900	/*
5901	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5902	 */
5903	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5904		return 0;
5905
5906	/*
5907	 * If ~90% of the cpu_capacity is still there, we're good.
5908	 */
5909	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5910		return 1;
5911
5912	return 0;
5913}
5914
5915/*
5916 * Group imbalance indicates (and tries to solve) the problem where balancing
5917 * groups is inadequate due to tsk_cpus_allowed() constraints.
5918 *
5919 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5920 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5921 * Something like:
5922 *
5923 * 	{ 0 1 2 3 } { 4 5 6 7 }
5924 * 	        *     * * *
5925 *
5926 * If we were to balance group-wise we'd place two tasks in the first group and
5927 * two tasks in the second group. Clearly this is undesired as it will overload
5928 * cpu 3 and leave one of the cpus in the second group unused.
5929 *
5930 * The current solution to this issue is detecting the skew in the first group
5931 * by noticing the lower domain failed to reach balance and had difficulty
5932 * moving tasks due to affinity constraints.
5933 *
5934 * When this is so detected; this group becomes a candidate for busiest; see
5935 * update_sd_pick_busiest(). And calculate_imbalance() and
5936 * find_busiest_group() avoid some of the usual balance conditions to allow it
5937 * to create an effective group imbalance.
5938 *
5939 * This is a somewhat tricky proposition since the next run might not find the
5940 * group imbalance and decide the groups need to be balanced again. A most
5941 * subtle and fragile situation.
5942 */
5943
5944static inline int sg_imbalanced(struct sched_group *group)
5945{
5946	return group->sgc->imbalance;
5947}
5948
5949/*
5950 * Compute the group capacity factor.
5951 *
5952 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5953 * first dividing out the smt factor and computing the actual number of cores
5954 * and limit unit capacity with that.
5955 */
5956static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5957{
5958	unsigned int capacity_factor, smt, cpus;
5959	unsigned int capacity, capacity_orig;
5960
5961	capacity = group->sgc->capacity;
5962	capacity_orig = group->sgc->capacity_orig;
5963	cpus = group->group_weight;
5964
5965	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5966	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5967	capacity_factor = cpus / smt; /* cores */
5968
5969	capacity_factor = min_t(unsigned,
5970		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5971	if (!capacity_factor)
5972		capacity_factor = fix_small_capacity(env->sd, group);
5973
5974	return capacity_factor;
5975}
5976
5977static enum group_type
5978group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5979{
5980	if (sgs->sum_nr_running > sgs->group_capacity_factor)
5981		return group_overloaded;
5982
5983	if (sg_imbalanced(group))
5984		return group_imbalanced;
5985
5986	return group_other;
5987}
5988
5989/**
5990 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5991 * @env: The load balancing environment.
5992 * @group: sched_group whose statistics are to be updated.
5993 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5994 * @local_group: Does group contain this_cpu.
5995 * @sgs: variable to hold the statistics for this group.
5996 * @overload: Indicate more than one runnable task for any CPU.
5997 */
5998static inline void update_sg_lb_stats(struct lb_env *env,
5999			struct sched_group *group, int load_idx,
6000			int local_group, struct sg_lb_stats *sgs,
6001			bool *overload)
6002{
6003	unsigned long load;
6004	int i;
6005
6006	memset(sgs, 0, sizeof(*sgs));
6007
6008	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6009		struct rq *rq = cpu_rq(i);
6010
6011		/* Bias balancing toward cpus of our domain */
6012		if (local_group)
6013			load = target_load(i, load_idx);
6014		else
6015			load = source_load(i, load_idx);
6016
6017		sgs->group_load += load;
6018		sgs->sum_nr_running += rq->cfs.h_nr_running;
6019
6020		if (rq->nr_running > 1)
6021			*overload = true;
6022
6023#ifdef CONFIG_NUMA_BALANCING
6024		sgs->nr_numa_running += rq->nr_numa_running;
6025		sgs->nr_preferred_running += rq->nr_preferred_running;
6026#endif
6027		sgs->sum_weighted_load += weighted_cpuload(i);
6028		if (idle_cpu(i))
6029			sgs->idle_cpus++;
6030	}
6031
6032	/* Adjust by relative CPU capacity of the group */
6033	sgs->group_capacity = group->sgc->capacity;
6034	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6035
6036	if (sgs->sum_nr_running)
6037		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6038
6039	sgs->group_weight = group->group_weight;
6040	sgs->group_capacity_factor = sg_capacity_factor(env, group);
6041	sgs->group_type = group_classify(group, sgs);
6042
6043	if (sgs->group_capacity_factor > sgs->sum_nr_running)
6044		sgs->group_has_free_capacity = 1;
6045}
6046
6047/**
6048 * update_sd_pick_busiest - return 1 on busiest group
6049 * @env: The load balancing environment.
6050 * @sds: sched_domain statistics
6051 * @sg: sched_group candidate to be checked for being the busiest
6052 * @sgs: sched_group statistics
6053 *
6054 * Determine if @sg is a busier group than the previously selected
6055 * busiest group.
6056 *
6057 * Return: %true if @sg is a busier group than the previously selected
6058 * busiest group. %false otherwise.
6059 */
6060static bool update_sd_pick_busiest(struct lb_env *env,
6061				   struct sd_lb_stats *sds,
6062				   struct sched_group *sg,
6063				   struct sg_lb_stats *sgs)
6064{
6065	struct sg_lb_stats *busiest = &sds->busiest_stat;
6066
6067	if (sgs->group_type > busiest->group_type)
6068		return true;
6069
6070	if (sgs->group_type < busiest->group_type)
6071		return false;
6072
6073	if (sgs->avg_load <= busiest->avg_load)
6074		return false;
6075
6076	/* This is the busiest node in its class. */
6077	if (!(env->sd->flags & SD_ASYM_PACKING))
6078		return true;
6079
6080	/*
6081	 * ASYM_PACKING needs to move all the work to the lowest
6082	 * numbered CPUs in the group, therefore mark all groups
6083	 * higher than ourself as busy.
6084	 */
6085	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6086		if (!sds->busiest)
6087			return true;
6088
6089		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6090			return true;
6091	}
6092
6093	return false;
6094}
6095
6096#ifdef CONFIG_NUMA_BALANCING
6097static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6098{
6099	if (sgs->sum_nr_running > sgs->nr_numa_running)
6100		return regular;
6101	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6102		return remote;
6103	return all;
6104}
6105
6106static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6107{
6108	if (rq->nr_running > rq->nr_numa_running)
6109		return regular;
6110	if (rq->nr_running > rq->nr_preferred_running)
6111		return remote;
6112	return all;
6113}
6114#else
6115static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6116{
6117	return all;
6118}
6119
6120static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6121{
6122	return regular;
6123}
6124#endif /* CONFIG_NUMA_BALANCING */
6125
6126/**
6127 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6128 * @env: The load balancing environment.
6129 * @sds: variable to hold the statistics for this sched_domain.
6130 */
6131static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6132{
6133	struct sched_domain *child = env->sd->child;
6134	struct sched_group *sg = env->sd->groups;
6135	struct sg_lb_stats tmp_sgs;
6136	int load_idx, prefer_sibling = 0;
6137	bool overload = false;
6138
6139	if (child && child->flags & SD_PREFER_SIBLING)
6140		prefer_sibling = 1;
6141
6142	load_idx = get_sd_load_idx(env->sd, env->idle);
6143
6144	do {
6145		struct sg_lb_stats *sgs = &tmp_sgs;
6146		int local_group;
6147
6148		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6149		if (local_group) {
6150			sds->local = sg;
6151			sgs = &sds->local_stat;
6152
6153			if (env->idle != CPU_NEWLY_IDLE ||
6154			    time_after_eq(jiffies, sg->sgc->next_update))
6155				update_group_capacity(env->sd, env->dst_cpu);
6156		}
6157
6158		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6159						&overload);
6160
6161		if (local_group)
6162			goto next_group;
6163
6164		/*
6165		 * In case the child domain prefers tasks go to siblings
6166		 * first, lower the sg capacity factor to one so that we'll try
6167		 * and move all the excess tasks away. We lower the capacity
6168		 * of a group only if the local group has the capacity to fit
6169		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6170		 * extra check prevents the case where you always pull from the
6171		 * heaviest group when it is already under-utilized (possible
6172		 * with a large weight task outweighs the tasks on the system).
6173		 */
6174		if (prefer_sibling && sds->local &&
6175		    sds->local_stat.group_has_free_capacity)
6176			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6177
6178		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6179			sds->busiest = sg;
6180			sds->busiest_stat = *sgs;
6181		}
6182
6183next_group:
6184		/* Now, start updating sd_lb_stats */
6185		sds->total_load += sgs->group_load;
6186		sds->total_capacity += sgs->group_capacity;
6187
6188		sg = sg->next;
6189	} while (sg != env->sd->groups);
6190
6191	if (env->sd->flags & SD_NUMA)
6192		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6193
6194	if (!env->sd->parent) {
6195		/* update overload indicator if we are at root domain */
6196		if (env->dst_rq->rd->overload != overload)
6197			env->dst_rq->rd->overload = overload;
6198	}
6199
6200}
6201
6202/**
6203 * check_asym_packing - Check to see if the group is packed into the
6204 *			sched doman.
6205 *
6206 * This is primarily intended to used at the sibling level.  Some
6207 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6208 * case of POWER7, it can move to lower SMT modes only when higher
6209 * threads are idle.  When in lower SMT modes, the threads will
6210 * perform better since they share less core resources.  Hence when we
6211 * have idle threads, we want them to be the higher ones.
6212 *
6213 * This packing function is run on idle threads.  It checks to see if
6214 * the busiest CPU in this domain (core in the P7 case) has a higher
6215 * CPU number than the packing function is being run on.  Here we are
6216 * assuming lower CPU number will be equivalent to lower a SMT thread
6217 * number.
6218 *
6219 * Return: 1 when packing is required and a task should be moved to
6220 * this CPU.  The amount of the imbalance is returned in *imbalance.
6221 *
6222 * @env: The load balancing environment.
6223 * @sds: Statistics of the sched_domain which is to be packed
6224 */
6225static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6226{
6227	int busiest_cpu;
6228
6229	if (!(env->sd->flags & SD_ASYM_PACKING))
6230		return 0;
6231
6232	if (!sds->busiest)
6233		return 0;
6234
6235	busiest_cpu = group_first_cpu(sds->busiest);
6236	if (env->dst_cpu > busiest_cpu)
6237		return 0;
6238
6239	env->imbalance = DIV_ROUND_CLOSEST(
6240		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6241		SCHED_CAPACITY_SCALE);
6242
6243	return 1;
6244}
6245
6246/**
6247 * fix_small_imbalance - Calculate the minor imbalance that exists
6248 *			amongst the groups of a sched_domain, during
6249 *			load balancing.
6250 * @env: The load balancing environment.
6251 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6252 */
6253static inline
6254void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6255{
6256	unsigned long tmp, capa_now = 0, capa_move = 0;
6257	unsigned int imbn = 2;
6258	unsigned long scaled_busy_load_per_task;
6259	struct sg_lb_stats *local, *busiest;
6260
6261	local = &sds->local_stat;
6262	busiest = &sds->busiest_stat;
6263
6264	if (!local->sum_nr_running)
6265		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6266	else if (busiest->load_per_task > local->load_per_task)
6267		imbn = 1;
6268
6269	scaled_busy_load_per_task =
6270		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6271		busiest->group_capacity;
6272
6273	if (busiest->avg_load + scaled_busy_load_per_task >=
6274	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6275		env->imbalance = busiest->load_per_task;
6276		return;
6277	}
6278
6279	/*
6280	 * OK, we don't have enough imbalance to justify moving tasks,
6281	 * however we may be able to increase total CPU capacity used by
6282	 * moving them.
6283	 */
6284
6285	capa_now += busiest->group_capacity *
6286			min(busiest->load_per_task, busiest->avg_load);
6287	capa_now += local->group_capacity *
6288			min(local->load_per_task, local->avg_load);
6289	capa_now /= SCHED_CAPACITY_SCALE;
6290
6291	/* Amount of load we'd subtract */
6292	if (busiest->avg_load > scaled_busy_load_per_task) {
6293		capa_move += busiest->group_capacity *
6294			    min(busiest->load_per_task,
6295				busiest->avg_load - scaled_busy_load_per_task);
6296	}
6297
6298	/* Amount of load we'd add */
6299	if (busiest->avg_load * busiest->group_capacity <
6300	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6301		tmp = (busiest->avg_load * busiest->group_capacity) /
6302		      local->group_capacity;
6303	} else {
6304		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6305		      local->group_capacity;
6306	}
6307	capa_move += local->group_capacity *
6308		    min(local->load_per_task, local->avg_load + tmp);
6309	capa_move /= SCHED_CAPACITY_SCALE;
6310
6311	/* Move if we gain throughput */
6312	if (capa_move > capa_now)
6313		env->imbalance = busiest->load_per_task;
6314}
6315
6316/**
6317 * calculate_imbalance - Calculate the amount of imbalance present within the
6318 *			 groups of a given sched_domain during load balance.
6319 * @env: load balance environment
6320 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6321 */
6322static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6323{
6324	unsigned long max_pull, load_above_capacity = ~0UL;
6325	struct sg_lb_stats *local, *busiest;
6326
6327	local = &sds->local_stat;
6328	busiest = &sds->busiest_stat;
6329
6330	if (busiest->group_type == group_imbalanced) {
6331		/*
6332		 * In the group_imb case we cannot rely on group-wide averages
6333		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6334		 */
6335		busiest->load_per_task =
6336			min(busiest->load_per_task, sds->avg_load);
6337	}
6338
6339	/*
6340	 * In the presence of smp nice balancing, certain scenarios can have
6341	 * max load less than avg load(as we skip the groups at or below
6342	 * its cpu_capacity, while calculating max_load..)
6343	 */
6344	if (busiest->avg_load <= sds->avg_load ||
6345	    local->avg_load >= sds->avg_load) {
6346		env->imbalance = 0;
6347		return fix_small_imbalance(env, sds);
6348	}
6349
6350	/*
6351	 * If there aren't any idle cpus, avoid creating some.
6352	 */
6353	if (busiest->group_type == group_overloaded &&
6354	    local->group_type   == group_overloaded) {
6355		load_above_capacity =
6356			(busiest->sum_nr_running - busiest->group_capacity_factor);
6357
6358		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6359		load_above_capacity /= busiest->group_capacity;
6360	}
6361
6362	/*
6363	 * We're trying to get all the cpus to the average_load, so we don't
6364	 * want to push ourselves above the average load, nor do we wish to
6365	 * reduce the max loaded cpu below the average load. At the same time,
6366	 * we also don't want to reduce the group load below the group capacity
6367	 * (so that we can implement power-savings policies etc). Thus we look
6368	 * for the minimum possible imbalance.
6369	 */
6370	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6371
6372	/* How much load to actually move to equalise the imbalance */
6373	env->imbalance = min(
6374		max_pull * busiest->group_capacity,
6375		(sds->avg_load - local->avg_load) * local->group_capacity
6376	) / SCHED_CAPACITY_SCALE;
6377
6378	/*
6379	 * if *imbalance is less than the average load per runnable task
6380	 * there is no guarantee that any tasks will be moved so we'll have
6381	 * a think about bumping its value to force at least one task to be
6382	 * moved
6383	 */
6384	if (env->imbalance < busiest->load_per_task)
6385		return fix_small_imbalance(env, sds);
6386}
6387
6388/******* find_busiest_group() helpers end here *********************/
6389
6390/**
6391 * find_busiest_group - Returns the busiest group within the sched_domain
6392 * if there is an imbalance. If there isn't an imbalance, and
6393 * the user has opted for power-savings, it returns a group whose
6394 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6395 * such a group exists.
6396 *
6397 * Also calculates the amount of weighted load which should be moved
6398 * to restore balance.
6399 *
6400 * @env: The load balancing environment.
6401 *
6402 * Return:	- The busiest group if imbalance exists.
6403 *		- If no imbalance and user has opted for power-savings balance,
6404 *		   return the least loaded group whose CPUs can be
6405 *		   put to idle by rebalancing its tasks onto our group.
6406 */
6407static struct sched_group *find_busiest_group(struct lb_env *env)
6408{
6409	struct sg_lb_stats *local, *busiest;
6410	struct sd_lb_stats sds;
6411
6412	init_sd_lb_stats(&sds);
6413
6414	/*
6415	 * Compute the various statistics relavent for load balancing at
6416	 * this level.
6417	 */
6418	update_sd_lb_stats(env, &sds);
6419	local = &sds.local_stat;
6420	busiest = &sds.busiest_stat;
6421
6422	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6423	    check_asym_packing(env, &sds))
6424		return sds.busiest;
6425
6426	/* There is no busy sibling group to pull tasks from */
6427	if (!sds.busiest || busiest->sum_nr_running == 0)
6428		goto out_balanced;
6429
6430	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6431						/ sds.total_capacity;
6432
6433	/*
6434	 * If the busiest group is imbalanced the below checks don't
6435	 * work because they assume all things are equal, which typically
6436	 * isn't true due to cpus_allowed constraints and the like.
6437	 */
6438	if (busiest->group_type == group_imbalanced)
6439		goto force_balance;
6440
6441	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6442	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6443	    !busiest->group_has_free_capacity)
6444		goto force_balance;
6445
6446	/*
6447	 * If the local group is busier than the selected busiest group
6448	 * don't try and pull any tasks.
6449	 */
6450	if (local->avg_load >= busiest->avg_load)
6451		goto out_balanced;
6452
6453	/*
6454	 * Don't pull any tasks if this group is already above the domain
6455	 * average load.
6456	 */
6457	if (local->avg_load >= sds.avg_load)
6458		goto out_balanced;
6459
6460	if (env->idle == CPU_IDLE) {
6461		/*
6462		 * This cpu is idle. If the busiest group is not overloaded
6463		 * and there is no imbalance between this and busiest group
6464		 * wrt idle cpus, it is balanced. The imbalance becomes
6465		 * significant if the diff is greater than 1 otherwise we
6466		 * might end up to just move the imbalance on another group
6467		 */
6468		if ((busiest->group_type != group_overloaded) &&
6469				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6470			goto out_balanced;
6471	} else {
6472		/*
6473		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6474		 * imbalance_pct to be conservative.
6475		 */
6476		if (100 * busiest->avg_load <=
6477				env->sd->imbalance_pct * local->avg_load)
6478			goto out_balanced;
6479	}
6480
6481force_balance:
6482	/* Looks like there is an imbalance. Compute it */
6483	calculate_imbalance(env, &sds);
6484	return sds.busiest;
6485
6486out_balanced:
6487	env->imbalance = 0;
6488	return NULL;
6489}
6490
6491/*
6492 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6493 */
6494static struct rq *find_busiest_queue(struct lb_env *env,
6495				     struct sched_group *group)
6496{
6497	struct rq *busiest = NULL, *rq;
6498	unsigned long busiest_load = 0, busiest_capacity = 1;
6499	int i;
6500
6501	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6502		unsigned long capacity, capacity_factor, wl;
6503		enum fbq_type rt;
6504
6505		rq = cpu_rq(i);
6506		rt = fbq_classify_rq(rq);
6507
6508		/*
6509		 * We classify groups/runqueues into three groups:
6510		 *  - regular: there are !numa tasks
6511		 *  - remote:  there are numa tasks that run on the 'wrong' node
6512		 *  - all:     there is no distinction
6513		 *
6514		 * In order to avoid migrating ideally placed numa tasks,
6515		 * ignore those when there's better options.
6516		 *
6517		 * If we ignore the actual busiest queue to migrate another
6518		 * task, the next balance pass can still reduce the busiest
6519		 * queue by moving tasks around inside the node.
6520		 *
6521		 * If we cannot move enough load due to this classification
6522		 * the next pass will adjust the group classification and
6523		 * allow migration of more tasks.
6524		 *
6525		 * Both cases only affect the total convergence complexity.
6526		 */
6527		if (rt > env->fbq_type)
6528			continue;
6529
6530		capacity = capacity_of(i);
6531		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6532		if (!capacity_factor)
6533			capacity_factor = fix_small_capacity(env->sd, group);
6534
6535		wl = weighted_cpuload(i);
6536
6537		/*
6538		 * When comparing with imbalance, use weighted_cpuload()
6539		 * which is not scaled with the cpu capacity.
6540		 */
6541		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6542			continue;
6543
6544		/*
6545		 * For the load comparisons with the other cpu's, consider
6546		 * the weighted_cpuload() scaled with the cpu capacity, so
6547		 * that the load can be moved away from the cpu that is
6548		 * potentially running at a lower capacity.
6549		 *
6550		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6551		 * multiplication to rid ourselves of the division works out
6552		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6553		 * our previous maximum.
6554		 */
6555		if (wl * busiest_capacity > busiest_load * capacity) {
6556			busiest_load = wl;
6557			busiest_capacity = capacity;
6558			busiest = rq;
6559		}
6560	}
6561
6562	return busiest;
6563}
6564
6565/*
6566 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6567 * so long as it is large enough.
6568 */
6569#define MAX_PINNED_INTERVAL	512
6570
6571/* Working cpumask for load_balance and load_balance_newidle. */
6572DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6573
6574static int need_active_balance(struct lb_env *env)
6575{
6576	struct sched_domain *sd = env->sd;
6577
6578	if (env->idle == CPU_NEWLY_IDLE) {
6579
6580		/*
6581		 * ASYM_PACKING needs to force migrate tasks from busy but
6582		 * higher numbered CPUs in order to pack all tasks in the
6583		 * lowest numbered CPUs.
6584		 */
6585		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6586			return 1;
6587	}
6588
6589	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6590}
6591
6592static int active_load_balance_cpu_stop(void *data);
6593
6594static int should_we_balance(struct lb_env *env)
6595{
6596	struct sched_group *sg = env->sd->groups;
6597	struct cpumask *sg_cpus, *sg_mask;
6598	int cpu, balance_cpu = -1;
6599
6600	/*
6601	 * In the newly idle case, we will allow all the cpu's
6602	 * to do the newly idle load balance.
6603	 */
6604	if (env->idle == CPU_NEWLY_IDLE)
6605		return 1;
6606
6607	sg_cpus = sched_group_cpus(sg);
6608	sg_mask = sched_group_mask(sg);
6609	/* Try to find first idle cpu */
6610	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6611		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6612			continue;
6613
6614		balance_cpu = cpu;
6615		break;
6616	}
6617
6618	if (balance_cpu == -1)
6619		balance_cpu = group_balance_cpu(sg);
6620
6621	/*
6622	 * First idle cpu or the first cpu(busiest) in this sched group
6623	 * is eligible for doing load balancing at this and above domains.
6624	 */
6625	return balance_cpu == env->dst_cpu;
6626}
6627
6628/*
6629 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6630 * tasks if there is an imbalance.
6631 */
6632static int load_balance(int this_cpu, struct rq *this_rq,
6633			struct sched_domain *sd, enum cpu_idle_type idle,
6634			int *continue_balancing)
6635{
6636	int ld_moved, cur_ld_moved, active_balance = 0;
6637	struct sched_domain *sd_parent = sd->parent;
6638	struct sched_group *group;
6639	struct rq *busiest;
6640	unsigned long flags;
6641	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6642
6643	struct lb_env env = {
6644		.sd		= sd,
6645		.dst_cpu	= this_cpu,
6646		.dst_rq		= this_rq,
6647		.dst_grpmask    = sched_group_cpus(sd->groups),
6648		.idle		= idle,
6649		.loop_break	= sched_nr_migrate_break,
6650		.cpus		= cpus,
6651		.fbq_type	= all,
6652		.tasks		= LIST_HEAD_INIT(env.tasks),
6653	};
6654
6655	/*
6656	 * For NEWLY_IDLE load_balancing, we don't need to consider
6657	 * other cpus in our group
6658	 */
6659	if (idle == CPU_NEWLY_IDLE)
6660		env.dst_grpmask = NULL;
6661
6662	cpumask_copy(cpus, cpu_active_mask);
6663
6664	schedstat_inc(sd, lb_count[idle]);
6665
6666redo:
6667	if (!should_we_balance(&env)) {
6668		*continue_balancing = 0;
6669		goto out_balanced;
6670	}
6671
6672	group = find_busiest_group(&env);
6673	if (!group) {
6674		schedstat_inc(sd, lb_nobusyg[idle]);
6675		goto out_balanced;
6676	}
6677
6678	busiest = find_busiest_queue(&env, group);
6679	if (!busiest) {
6680		schedstat_inc(sd, lb_nobusyq[idle]);
6681		goto out_balanced;
6682	}
6683
6684	BUG_ON(busiest == env.dst_rq);
6685
6686	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6687
6688	ld_moved = 0;
6689	if (busiest->nr_running > 1) {
6690		/*
6691		 * Attempt to move tasks. If find_busiest_group has found
6692		 * an imbalance but busiest->nr_running <= 1, the group is
6693		 * still unbalanced. ld_moved simply stays zero, so it is
6694		 * correctly treated as an imbalance.
6695		 */
6696		env.flags |= LBF_ALL_PINNED;
6697		env.src_cpu   = busiest->cpu;
6698		env.src_rq    = busiest;
6699		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6700
6701more_balance:
6702		raw_spin_lock_irqsave(&busiest->lock, flags);
6703
6704		/*
6705		 * cur_ld_moved - load moved in current iteration
6706		 * ld_moved     - cumulative load moved across iterations
6707		 */
6708		cur_ld_moved = detach_tasks(&env);
6709
6710		/*
6711		 * We've detached some tasks from busiest_rq. Every
6712		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6713		 * unlock busiest->lock, and we are able to be sure
6714		 * that nobody can manipulate the tasks in parallel.
6715		 * See task_rq_lock() family for the details.
6716		 */
6717
6718		raw_spin_unlock(&busiest->lock);
6719
6720		if (cur_ld_moved) {
6721			attach_tasks(&env);
6722			ld_moved += cur_ld_moved;
6723		}
6724
6725		local_irq_restore(flags);
6726
6727		if (env.flags & LBF_NEED_BREAK) {
6728			env.flags &= ~LBF_NEED_BREAK;
6729			goto more_balance;
6730		}
6731
6732		/*
6733		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6734		 * us and move them to an alternate dst_cpu in our sched_group
6735		 * where they can run. The upper limit on how many times we
6736		 * iterate on same src_cpu is dependent on number of cpus in our
6737		 * sched_group.
6738		 *
6739		 * This changes load balance semantics a bit on who can move
6740		 * load to a given_cpu. In addition to the given_cpu itself
6741		 * (or a ilb_cpu acting on its behalf where given_cpu is
6742		 * nohz-idle), we now have balance_cpu in a position to move
6743		 * load to given_cpu. In rare situations, this may cause
6744		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6745		 * _independently_ and at _same_ time to move some load to
6746		 * given_cpu) causing exceess load to be moved to given_cpu.
6747		 * This however should not happen so much in practice and
6748		 * moreover subsequent load balance cycles should correct the
6749		 * excess load moved.
6750		 */
6751		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6752
6753			/* Prevent to re-select dst_cpu via env's cpus */
6754			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6755
6756			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6757			env.dst_cpu	 = env.new_dst_cpu;
6758			env.flags	&= ~LBF_DST_PINNED;
6759			env.loop	 = 0;
6760			env.loop_break	 = sched_nr_migrate_break;
6761
6762			/*
6763			 * Go back to "more_balance" rather than "redo" since we
6764			 * need to continue with same src_cpu.
6765			 */
6766			goto more_balance;
6767		}
6768
6769		/*
6770		 * We failed to reach balance because of affinity.
6771		 */
6772		if (sd_parent) {
6773			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6774
6775			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6776				*group_imbalance = 1;
6777		}
6778
6779		/* All tasks on this runqueue were pinned by CPU affinity */
6780		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6781			cpumask_clear_cpu(cpu_of(busiest), cpus);
6782			if (!cpumask_empty(cpus)) {
6783				env.loop = 0;
6784				env.loop_break = sched_nr_migrate_break;
6785				goto redo;
6786			}
6787			goto out_all_pinned;
6788		}
6789	}
6790
6791	if (!ld_moved) {
6792		schedstat_inc(sd, lb_failed[idle]);
6793		/*
6794		 * Increment the failure counter only on periodic balance.
6795		 * We do not want newidle balance, which can be very
6796		 * frequent, pollute the failure counter causing
6797		 * excessive cache_hot migrations and active balances.
6798		 */
6799		if (idle != CPU_NEWLY_IDLE)
6800			sd->nr_balance_failed++;
6801
6802		if (need_active_balance(&env)) {
6803			raw_spin_lock_irqsave(&busiest->lock, flags);
6804
6805			/* don't kick the active_load_balance_cpu_stop,
6806			 * if the curr task on busiest cpu can't be
6807			 * moved to this_cpu
6808			 */
6809			if (!cpumask_test_cpu(this_cpu,
6810					tsk_cpus_allowed(busiest->curr))) {
6811				raw_spin_unlock_irqrestore(&busiest->lock,
6812							    flags);
6813				env.flags |= LBF_ALL_PINNED;
6814				goto out_one_pinned;
6815			}
6816
6817			/*
6818			 * ->active_balance synchronizes accesses to
6819			 * ->active_balance_work.  Once set, it's cleared
6820			 * only after active load balance is finished.
6821			 */
6822			if (!busiest->active_balance) {
6823				busiest->active_balance = 1;
6824				busiest->push_cpu = this_cpu;
6825				active_balance = 1;
6826			}
6827			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6828
6829			if (active_balance) {
6830				stop_one_cpu_nowait(cpu_of(busiest),
6831					active_load_balance_cpu_stop, busiest,
6832					&busiest->active_balance_work);
6833			}
6834
6835			/*
6836			 * We've kicked active balancing, reset the failure
6837			 * counter.
6838			 */
6839			sd->nr_balance_failed = sd->cache_nice_tries+1;
6840		}
6841	} else
6842		sd->nr_balance_failed = 0;
6843
6844	if (likely(!active_balance)) {
6845		/* We were unbalanced, so reset the balancing interval */
6846		sd->balance_interval = sd->min_interval;
6847	} else {
6848		/*
6849		 * If we've begun active balancing, start to back off. This
6850		 * case may not be covered by the all_pinned logic if there
6851		 * is only 1 task on the busy runqueue (because we don't call
6852		 * detach_tasks).
6853		 */
6854		if (sd->balance_interval < sd->max_interval)
6855			sd->balance_interval *= 2;
6856	}
6857
6858	goto out;
6859
6860out_balanced:
6861	/*
6862	 * We reach balance although we may have faced some affinity
6863	 * constraints. Clear the imbalance flag if it was set.
6864	 */
6865	if (sd_parent) {
6866		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6867
6868		if (*group_imbalance)
6869			*group_imbalance = 0;
6870	}
6871
6872out_all_pinned:
6873	/*
6874	 * We reach balance because all tasks are pinned at this level so
6875	 * we can't migrate them. Let the imbalance flag set so parent level
6876	 * can try to migrate them.
6877	 */
6878	schedstat_inc(sd, lb_balanced[idle]);
6879
6880	sd->nr_balance_failed = 0;
6881
6882out_one_pinned:
6883	/* tune up the balancing interval */
6884	if (((env.flags & LBF_ALL_PINNED) &&
6885			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6886			(sd->balance_interval < sd->max_interval))
6887		sd->balance_interval *= 2;
6888
6889	ld_moved = 0;
6890out:
6891	return ld_moved;
6892}
6893
6894static inline unsigned long
6895get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6896{
6897	unsigned long interval = sd->balance_interval;
6898
6899	if (cpu_busy)
6900		interval *= sd->busy_factor;
6901
6902	/* scale ms to jiffies */
6903	interval = msecs_to_jiffies(interval);
6904	interval = clamp(interval, 1UL, max_load_balance_interval);
6905
6906	return interval;
6907}
6908
6909static inline void
6910update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6911{
6912	unsigned long interval, next;
6913
6914	interval = get_sd_balance_interval(sd, cpu_busy);
6915	next = sd->last_balance + interval;
6916
6917	if (time_after(*next_balance, next))
6918		*next_balance = next;
6919}
6920
6921/*
6922 * idle_balance is called by schedule() if this_cpu is about to become
6923 * idle. Attempts to pull tasks from other CPUs.
6924 */
6925static int idle_balance(struct rq *this_rq)
6926{
6927	unsigned long next_balance = jiffies + HZ;
6928	int this_cpu = this_rq->cpu;
6929	struct sched_domain *sd;
6930	int pulled_task = 0;
6931	u64 curr_cost = 0;
6932
6933	idle_enter_fair(this_rq);
6934
6935	/*
6936	 * We must set idle_stamp _before_ calling idle_balance(), such that we
6937	 * measure the duration of idle_balance() as idle time.
6938	 */
6939	this_rq->idle_stamp = rq_clock(this_rq);
6940
6941	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6942	    !this_rq->rd->overload) {
6943		rcu_read_lock();
6944		sd = rcu_dereference_check_sched_domain(this_rq->sd);
6945		if (sd)
6946			update_next_balance(sd, 0, &next_balance);
6947		rcu_read_unlock();
6948
6949		goto out;
6950	}
6951
6952	/*
6953	 * Drop the rq->lock, but keep IRQ/preempt disabled.
6954	 */
6955	raw_spin_unlock(&this_rq->lock);
6956
6957	update_blocked_averages(this_cpu);
6958	rcu_read_lock();
6959	for_each_domain(this_cpu, sd) {
6960		int continue_balancing = 1;
6961		u64 t0, domain_cost;
6962
6963		if (!(sd->flags & SD_LOAD_BALANCE))
6964			continue;
6965
6966		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6967			update_next_balance(sd, 0, &next_balance);
6968			break;
6969		}
6970
6971		if (sd->flags & SD_BALANCE_NEWIDLE) {
6972			t0 = sched_clock_cpu(this_cpu);
6973
6974			pulled_task = load_balance(this_cpu, this_rq,
6975						   sd, CPU_NEWLY_IDLE,
6976						   &continue_balancing);
6977
6978			domain_cost = sched_clock_cpu(this_cpu) - t0;
6979			if (domain_cost > sd->max_newidle_lb_cost)
6980				sd->max_newidle_lb_cost = domain_cost;
6981
6982			curr_cost += domain_cost;
6983		}
6984
6985		update_next_balance(sd, 0, &next_balance);
6986
6987		/*
6988		 * Stop searching for tasks to pull if there are
6989		 * now runnable tasks on this rq.
6990		 */
6991		if (pulled_task || this_rq->nr_running > 0)
6992			break;
6993	}
6994	rcu_read_unlock();
6995
6996	raw_spin_lock(&this_rq->lock);
6997
6998	if (curr_cost > this_rq->max_idle_balance_cost)
6999		this_rq->max_idle_balance_cost = curr_cost;
7000
7001	/*
7002	 * While browsing the domains, we released the rq lock, a task could
7003	 * have been enqueued in the meantime. Since we're not going idle,
7004	 * pretend we pulled a task.
7005	 */
7006	if (this_rq->cfs.h_nr_running && !pulled_task)
7007		pulled_task = 1;
7008
7009out:
7010	/* Move the next balance forward */
7011	if (time_after(this_rq->next_balance, next_balance))
7012		this_rq->next_balance = next_balance;
7013
7014	/* Is there a task of a high priority class? */
7015	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7016		pulled_task = -1;
7017
7018	if (pulled_task) {
7019		idle_exit_fair(this_rq);
7020		this_rq->idle_stamp = 0;
7021	}
7022
7023	return pulled_task;
7024}
7025
7026/*
7027 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7028 * running tasks off the busiest CPU onto idle CPUs. It requires at
7029 * least 1 task to be running on each physical CPU where possible, and
7030 * avoids physical / logical imbalances.
7031 */
7032static int active_load_balance_cpu_stop(void *data)
7033{
7034	struct rq *busiest_rq = data;
7035	int busiest_cpu = cpu_of(busiest_rq);
7036	int target_cpu = busiest_rq->push_cpu;
7037	struct rq *target_rq = cpu_rq(target_cpu);
7038	struct sched_domain *sd;
7039	struct task_struct *p = NULL;
7040
7041	raw_spin_lock_irq(&busiest_rq->lock);
7042
7043	/* make sure the requested cpu hasn't gone down in the meantime */
7044	if (unlikely(busiest_cpu != smp_processor_id() ||
7045		     !busiest_rq->active_balance))
7046		goto out_unlock;
7047
7048	/* Is there any task to move? */
7049	if (busiest_rq->nr_running <= 1)
7050		goto out_unlock;
7051
7052	/*
7053	 * This condition is "impossible", if it occurs
7054	 * we need to fix it. Originally reported by
7055	 * Bjorn Helgaas on a 128-cpu setup.
7056	 */
7057	BUG_ON(busiest_rq == target_rq);
7058
7059	/* Search for an sd spanning us and the target CPU. */
7060	rcu_read_lock();
7061	for_each_domain(target_cpu, sd) {
7062		if ((sd->flags & SD_LOAD_BALANCE) &&
7063		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7064				break;
7065	}
7066
7067	if (likely(sd)) {
7068		struct lb_env env = {
7069			.sd		= sd,
7070			.dst_cpu	= target_cpu,
7071			.dst_rq		= target_rq,
7072			.src_cpu	= busiest_rq->cpu,
7073			.src_rq		= busiest_rq,
7074			.idle		= CPU_IDLE,
7075		};
7076
7077		schedstat_inc(sd, alb_count);
7078
7079		p = detach_one_task(&env);
7080		if (p)
7081			schedstat_inc(sd, alb_pushed);
7082		else
7083			schedstat_inc(sd, alb_failed);
7084	}
7085	rcu_read_unlock();
7086out_unlock:
7087	busiest_rq->active_balance = 0;
7088	raw_spin_unlock(&busiest_rq->lock);
7089
7090	if (p)
7091		attach_one_task(target_rq, p);
7092
7093	local_irq_enable();
7094
7095	return 0;
7096}
7097
7098static inline int on_null_domain(struct rq *rq)
7099{
7100	return unlikely(!rcu_dereference_sched(rq->sd));
7101}
7102
7103#ifdef CONFIG_NO_HZ_COMMON
7104/*
7105 * idle load balancing details
7106 * - When one of the busy CPUs notice that there may be an idle rebalancing
7107 *   needed, they will kick the idle load balancer, which then does idle
7108 *   load balancing for all the idle CPUs.
7109 */
7110static struct {
7111	cpumask_var_t idle_cpus_mask;
7112	atomic_t nr_cpus;
7113	unsigned long next_balance;     /* in jiffy units */
7114} nohz ____cacheline_aligned;
7115
7116static inline int find_new_ilb(void)
7117{
7118	int ilb = cpumask_first(nohz.idle_cpus_mask);
7119
7120	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7121		return ilb;
7122
7123	return nr_cpu_ids;
7124}
7125
7126/*
7127 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7128 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7129 * CPU (if there is one).
7130 */
7131static void nohz_balancer_kick(void)
7132{
7133	int ilb_cpu;
7134
7135	nohz.next_balance++;
7136
7137	ilb_cpu = find_new_ilb();
7138
7139	if (ilb_cpu >= nr_cpu_ids)
7140		return;
7141
7142	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7143		return;
7144	/*
7145	 * Use smp_send_reschedule() instead of resched_cpu().
7146	 * This way we generate a sched IPI on the target cpu which
7147	 * is idle. And the softirq performing nohz idle load balance
7148	 * will be run before returning from the IPI.
7149	 */
7150	smp_send_reschedule(ilb_cpu);
7151	return;
7152}
7153
7154static inline void nohz_balance_exit_idle(int cpu)
7155{
7156	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7157		/*
7158		 * Completely isolated CPUs don't ever set, so we must test.
7159		 */
7160		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7161			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7162			atomic_dec(&nohz.nr_cpus);
7163		}
7164		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7165	}
7166}
7167
7168static inline void set_cpu_sd_state_busy(void)
7169{
7170	struct sched_domain *sd;
7171	int cpu = smp_processor_id();
7172
7173	rcu_read_lock();
7174	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7175
7176	if (!sd || !sd->nohz_idle)
7177		goto unlock;
7178	sd->nohz_idle = 0;
7179
7180	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7181unlock:
7182	rcu_read_unlock();
7183}
7184
7185void set_cpu_sd_state_idle(void)
7186{
7187	struct sched_domain *sd;
7188	int cpu = smp_processor_id();
7189
7190	rcu_read_lock();
7191	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7192
7193	if (!sd || sd->nohz_idle)
7194		goto unlock;
7195	sd->nohz_idle = 1;
7196
7197	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7198unlock:
7199	rcu_read_unlock();
7200}
7201
7202/*
7203 * This routine will record that the cpu is going idle with tick stopped.
7204 * This info will be used in performing idle load balancing in the future.
7205 */
7206void nohz_balance_enter_idle(int cpu)
7207{
7208	/*
7209	 * If this cpu is going down, then nothing needs to be done.
7210	 */
7211	if (!cpu_active(cpu))
7212		return;
7213
7214	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7215		return;
7216
7217	/*
7218	 * If we're a completely isolated CPU, we don't play.
7219	 */
7220	if (on_null_domain(cpu_rq(cpu)))
7221		return;
7222
7223	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7224	atomic_inc(&nohz.nr_cpus);
7225	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7226}
7227
7228static int sched_ilb_notifier(struct notifier_block *nfb,
7229					unsigned long action, void *hcpu)
7230{
7231	switch (action & ~CPU_TASKS_FROZEN) {
7232	case CPU_DYING:
7233		nohz_balance_exit_idle(smp_processor_id());
7234		return NOTIFY_OK;
7235	default:
7236		return NOTIFY_DONE;
7237	}
7238}
7239#endif
7240
7241static DEFINE_SPINLOCK(balancing);
7242
7243/*
7244 * Scale the max load_balance interval with the number of CPUs in the system.
7245 * This trades load-balance latency on larger machines for less cross talk.
7246 */
7247void update_max_interval(void)
7248{
7249	max_load_balance_interval = HZ*num_online_cpus()/10;
7250}
7251
7252/*
7253 * It checks each scheduling domain to see if it is due to be balanced,
7254 * and initiates a balancing operation if so.
7255 *
7256 * Balancing parameters are set up in init_sched_domains.
7257 */
7258static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7259{
7260	int continue_balancing = 1;
7261	int cpu = rq->cpu;
7262	unsigned long interval;
7263	struct sched_domain *sd;
7264	/* Earliest time when we have to do rebalance again */
7265	unsigned long next_balance = jiffies + 60*HZ;
7266	int update_next_balance = 0;
7267	int need_serialize, need_decay = 0;
7268	u64 max_cost = 0;
7269
7270	update_blocked_averages(cpu);
7271
7272	rcu_read_lock();
7273	for_each_domain(cpu, sd) {
7274		/*
7275		 * Decay the newidle max times here because this is a regular
7276		 * visit to all the domains. Decay ~1% per second.
7277		 */
7278		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7279			sd->max_newidle_lb_cost =
7280				(sd->max_newidle_lb_cost * 253) / 256;
7281			sd->next_decay_max_lb_cost = jiffies + HZ;
7282			need_decay = 1;
7283		}
7284		max_cost += sd->max_newidle_lb_cost;
7285
7286		if (!(sd->flags & SD_LOAD_BALANCE))
7287			continue;
7288
7289		/*
7290		 * Stop the load balance at this level. There is another
7291		 * CPU in our sched group which is doing load balancing more
7292		 * actively.
7293		 */
7294		if (!continue_balancing) {
7295			if (need_decay)
7296				continue;
7297			break;
7298		}
7299
7300		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7301
7302		need_serialize = sd->flags & SD_SERIALIZE;
7303		if (need_serialize) {
7304			if (!spin_trylock(&balancing))
7305				goto out;
7306		}
7307
7308		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7309			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7310				/*
7311				 * The LBF_DST_PINNED logic could have changed
7312				 * env->dst_cpu, so we can't know our idle
7313				 * state even if we migrated tasks. Update it.
7314				 */
7315				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7316			}
7317			sd->last_balance = jiffies;
7318			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7319		}
7320		if (need_serialize)
7321			spin_unlock(&balancing);
7322out:
7323		if (time_after(next_balance, sd->last_balance + interval)) {
7324			next_balance = sd->last_balance + interval;
7325			update_next_balance = 1;
7326		}
7327	}
7328	if (need_decay) {
7329		/*
7330		 * Ensure the rq-wide value also decays but keep it at a
7331		 * reasonable floor to avoid funnies with rq->avg_idle.
7332		 */
7333		rq->max_idle_balance_cost =
7334			max((u64)sysctl_sched_migration_cost, max_cost);
7335	}
7336	rcu_read_unlock();
7337
7338	/*
7339	 * next_balance will be updated only when there is a need.
7340	 * When the cpu is attached to null domain for ex, it will not be
7341	 * updated.
7342	 */
7343	if (likely(update_next_balance))
7344		rq->next_balance = next_balance;
7345}
7346
7347#ifdef CONFIG_NO_HZ_COMMON
7348/*
7349 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7350 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7351 */
7352static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7353{
7354	int this_cpu = this_rq->cpu;
7355	struct rq *rq;
7356	int balance_cpu;
7357
7358	if (idle != CPU_IDLE ||
7359	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7360		goto end;
7361
7362	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7363		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7364			continue;
7365
7366		/*
7367		 * If this cpu gets work to do, stop the load balancing
7368		 * work being done for other cpus. Next load
7369		 * balancing owner will pick it up.
7370		 */
7371		if (need_resched())
7372			break;
7373
7374		rq = cpu_rq(balance_cpu);
7375
7376		/*
7377		 * If time for next balance is due,
7378		 * do the balance.
7379		 */
7380		if (time_after_eq(jiffies, rq->next_balance)) {
7381			raw_spin_lock_irq(&rq->lock);
7382			update_rq_clock(rq);
7383			update_idle_cpu_load(rq);
7384			raw_spin_unlock_irq(&rq->lock);
7385			rebalance_domains(rq, CPU_IDLE);
7386		}
7387
7388		if (time_after(this_rq->next_balance, rq->next_balance))
7389			this_rq->next_balance = rq->next_balance;
7390	}
7391	nohz.next_balance = this_rq->next_balance;
7392end:
7393	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7394}
7395
7396/*
7397 * Current heuristic for kicking the idle load balancer in the presence
7398 * of an idle cpu is the system.
7399 *   - This rq has more than one task.
7400 *   - At any scheduler domain level, this cpu's scheduler group has multiple
7401 *     busy cpu's exceeding the group's capacity.
7402 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7403 *     domain span are idle.
7404 */
7405static inline int nohz_kick_needed(struct rq *rq)
7406{
7407	unsigned long now = jiffies;
7408	struct sched_domain *sd;
7409	struct sched_group_capacity *sgc;
7410	int nr_busy, cpu = rq->cpu;
7411
7412	if (unlikely(rq->idle_balance))
7413		return 0;
7414
7415       /*
7416	* We may be recently in ticked or tickless idle mode. At the first
7417	* busy tick after returning from idle, we will update the busy stats.
7418	*/
7419	set_cpu_sd_state_busy();
7420	nohz_balance_exit_idle(cpu);
7421
7422	/*
7423	 * None are in tickless mode and hence no need for NOHZ idle load
7424	 * balancing.
7425	 */
7426	if (likely(!atomic_read(&nohz.nr_cpus)))
7427		return 0;
7428
7429	if (time_before(now, nohz.next_balance))
7430		return 0;
7431
7432	if (rq->nr_running >= 2)
7433		goto need_kick;
7434
7435	rcu_read_lock();
7436	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7437
7438	if (sd) {
7439		sgc = sd->groups->sgc;
7440		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7441
7442		if (nr_busy > 1)
7443			goto need_kick_unlock;
7444	}
7445
7446	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7447
7448	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7449				  sched_domain_span(sd)) < cpu))
7450		goto need_kick_unlock;
7451
7452	rcu_read_unlock();
7453	return 0;
7454
7455need_kick_unlock:
7456	rcu_read_unlock();
7457need_kick:
7458	return 1;
7459}
7460#else
7461static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7462#endif
7463
7464/*
7465 * run_rebalance_domains is triggered when needed from the scheduler tick.
7466 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7467 */
7468static void run_rebalance_domains(struct softirq_action *h)
7469{
7470	struct rq *this_rq = this_rq();
7471	enum cpu_idle_type idle = this_rq->idle_balance ?
7472						CPU_IDLE : CPU_NOT_IDLE;
7473
7474	rebalance_domains(this_rq, idle);
7475
7476	/*
7477	 * If this cpu has a pending nohz_balance_kick, then do the
7478	 * balancing on behalf of the other idle cpus whose ticks are
7479	 * stopped.
7480	 */
7481	nohz_idle_balance(this_rq, idle);
7482}
7483
7484/*
7485 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7486 */
7487void trigger_load_balance(struct rq *rq)
7488{
7489	/* Don't need to rebalance while attached to NULL domain */
7490	if (unlikely(on_null_domain(rq)))
7491		return;
7492
7493	if (time_after_eq(jiffies, rq->next_balance))
7494		raise_softirq(SCHED_SOFTIRQ);
7495#ifdef CONFIG_NO_HZ_COMMON
7496	if (nohz_kick_needed(rq))
7497		nohz_balancer_kick();
7498#endif
7499}
7500
7501static void rq_online_fair(struct rq *rq)
7502{
7503	update_sysctl();
7504
7505	update_runtime_enabled(rq);
7506}
7507
7508static void rq_offline_fair(struct rq *rq)
7509{
7510	update_sysctl();
7511
7512	/* Ensure any throttled groups are reachable by pick_next_task */
7513	unthrottle_offline_cfs_rqs(rq);
7514}
7515
7516#endif /* CONFIG_SMP */
7517
7518/*
7519 * scheduler tick hitting a task of our scheduling class:
7520 */
7521static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7522{
7523	struct cfs_rq *cfs_rq;
7524	struct sched_entity *se = &curr->se;
7525
7526	for_each_sched_entity(se) {
7527		cfs_rq = cfs_rq_of(se);
7528		entity_tick(cfs_rq, se, queued);
7529	}
7530
7531	if (numabalancing_enabled)
7532		task_tick_numa(rq, curr);
7533
7534	update_rq_runnable_avg(rq, 1);
7535}
7536
7537/*
7538 * called on fork with the child task as argument from the parent's context
7539 *  - child not yet on the tasklist
7540 *  - preemption disabled
7541 */
7542static void task_fork_fair(struct task_struct *p)
7543{
7544	struct cfs_rq *cfs_rq;
7545	struct sched_entity *se = &p->se, *curr;
7546	int this_cpu = smp_processor_id();
7547	struct rq *rq = this_rq();
7548	unsigned long flags;
7549
7550	raw_spin_lock_irqsave(&rq->lock, flags);
7551
7552	update_rq_clock(rq);
7553
7554	cfs_rq = task_cfs_rq(current);
7555	curr = cfs_rq->curr;
7556
7557	/*
7558	 * Not only the cpu but also the task_group of the parent might have
7559	 * been changed after parent->se.parent,cfs_rq were copied to
7560	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7561	 * of child point to valid ones.
7562	 */
7563	rcu_read_lock();
7564	__set_task_cpu(p, this_cpu);
7565	rcu_read_unlock();
7566
7567	update_curr(cfs_rq);
7568
7569	if (curr)
7570		se->vruntime = curr->vruntime;
7571	place_entity(cfs_rq, se, 1);
7572
7573	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7574		/*
7575		 * Upon rescheduling, sched_class::put_prev_task() will place
7576		 * 'current' within the tree based on its new key value.
7577		 */
7578		swap(curr->vruntime, se->vruntime);
7579		resched_curr(rq);
7580	}
7581
7582	se->vruntime -= cfs_rq->min_vruntime;
7583
7584	raw_spin_unlock_irqrestore(&rq->lock, flags);
7585}
7586
7587/*
7588 * Priority of the task has changed. Check to see if we preempt
7589 * the current task.
7590 */
7591static void
7592prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7593{
7594	if (!task_on_rq_queued(p))
7595		return;
7596
7597	/*
7598	 * Reschedule if we are currently running on this runqueue and
7599	 * our priority decreased, or if we are not currently running on
7600	 * this runqueue and our priority is higher than the current's
7601	 */
7602	if (rq->curr == p) {
7603		if (p->prio > oldprio)
7604			resched_curr(rq);
7605	} else
7606		check_preempt_curr(rq, p, 0);
7607}
7608
7609static void switched_from_fair(struct rq *rq, struct task_struct *p)
7610{
7611	struct sched_entity *se = &p->se;
7612	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7613
7614	/*
7615	 * Ensure the task's vruntime is normalized, so that when it's
7616	 * switched back to the fair class the enqueue_entity(.flags=0) will
7617	 * do the right thing.
7618	 *
7619	 * If it's queued, then the dequeue_entity(.flags=0) will already
7620	 * have normalized the vruntime, if it's !queued, then only when
7621	 * the task is sleeping will it still have non-normalized vruntime.
7622	 */
7623	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7624		/*
7625		 * Fix up our vruntime so that the current sleep doesn't
7626		 * cause 'unlimited' sleep bonus.
7627		 */
7628		place_entity(cfs_rq, se, 0);
7629		se->vruntime -= cfs_rq->min_vruntime;
7630	}
7631
7632#ifdef CONFIG_SMP
7633	/*
7634	* Remove our load from contribution when we leave sched_fair
7635	* and ensure we don't carry in an old decay_count if we
7636	* switch back.
7637	*/
7638	if (se->avg.decay_count) {
7639		__synchronize_entity_decay(se);
7640		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7641	}
7642#endif
7643}
7644
7645/*
7646 * We switched to the sched_fair class.
7647 */
7648static void switched_to_fair(struct rq *rq, struct task_struct *p)
7649{
7650#ifdef CONFIG_FAIR_GROUP_SCHED
7651	struct sched_entity *se = &p->se;
7652	/*
7653	 * Since the real-depth could have been changed (only FAIR
7654	 * class maintain depth value), reset depth properly.
7655	 */
7656	se->depth = se->parent ? se->parent->depth + 1 : 0;
7657#endif
7658	if (!task_on_rq_queued(p))
7659		return;
7660
7661	/*
7662	 * We were most likely switched from sched_rt, so
7663	 * kick off the schedule if running, otherwise just see
7664	 * if we can still preempt the current task.
7665	 */
7666	if (rq->curr == p)
7667		resched_curr(rq);
7668	else
7669		check_preempt_curr(rq, p, 0);
7670}
7671
7672/* Account for a task changing its policy or group.
7673 *
7674 * This routine is mostly called to set cfs_rq->curr field when a task
7675 * migrates between groups/classes.
7676 */
7677static void set_curr_task_fair(struct rq *rq)
7678{
7679	struct sched_entity *se = &rq->curr->se;
7680
7681	for_each_sched_entity(se) {
7682		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7683
7684		set_next_entity(cfs_rq, se);
7685		/* ensure bandwidth has been allocated on our new cfs_rq */
7686		account_cfs_rq_runtime(cfs_rq, 0);
7687	}
7688}
7689
7690void init_cfs_rq(struct cfs_rq *cfs_rq)
7691{
7692	cfs_rq->tasks_timeline = RB_ROOT;
7693	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7694#ifndef CONFIG_64BIT
7695	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7696#endif
7697#ifdef CONFIG_SMP
7698	atomic64_set(&cfs_rq->decay_counter, 1);
7699	atomic_long_set(&cfs_rq->removed_load, 0);
7700#endif
7701}
7702
7703#ifdef CONFIG_FAIR_GROUP_SCHED
7704static void task_move_group_fair(struct task_struct *p, int queued)
7705{
7706	struct sched_entity *se = &p->se;
7707	struct cfs_rq *cfs_rq;
7708
7709	/*
7710	 * If the task was not on the rq at the time of this cgroup movement
7711	 * it must have been asleep, sleeping tasks keep their ->vruntime
7712	 * absolute on their old rq until wakeup (needed for the fair sleeper
7713	 * bonus in place_entity()).
7714	 *
7715	 * If it was on the rq, we've just 'preempted' it, which does convert
7716	 * ->vruntime to a relative base.
7717	 *
7718	 * Make sure both cases convert their relative position when migrating
7719	 * to another cgroup's rq. This does somewhat interfere with the
7720	 * fair sleeper stuff for the first placement, but who cares.
7721	 */
7722	/*
7723	 * When !queued, vruntime of the task has usually NOT been normalized.
7724	 * But there are some cases where it has already been normalized:
7725	 *
7726	 * - Moving a forked child which is waiting for being woken up by
7727	 *   wake_up_new_task().
7728	 * - Moving a task which has been woken up by try_to_wake_up() and
7729	 *   waiting for actually being woken up by sched_ttwu_pending().
7730	 *
7731	 * To prevent boost or penalty in the new cfs_rq caused by delta
7732	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7733	 */
7734	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7735		queued = 1;
7736
7737	if (!queued)
7738		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7739	set_task_rq(p, task_cpu(p));
7740	se->depth = se->parent ? se->parent->depth + 1 : 0;
7741	if (!queued) {
7742		cfs_rq = cfs_rq_of(se);
7743		se->vruntime += cfs_rq->min_vruntime;
7744#ifdef CONFIG_SMP
7745		/*
7746		 * migrate_task_rq_fair() will have removed our previous
7747		 * contribution, but we must synchronize for ongoing future
7748		 * decay.
7749		 */
7750		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7751		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7752#endif
7753	}
7754}
7755
7756void free_fair_sched_group(struct task_group *tg)
7757{
7758	int i;
7759
7760	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7761
7762	for_each_possible_cpu(i) {
7763		if (tg->cfs_rq)
7764			kfree(tg->cfs_rq[i]);
7765		if (tg->se)
7766			kfree(tg->se[i]);
7767	}
7768
7769	kfree(tg->cfs_rq);
7770	kfree(tg->se);
7771}
7772
7773int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7774{
7775	struct cfs_rq *cfs_rq;
7776	struct sched_entity *se;
7777	int i;
7778
7779	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7780	if (!tg->cfs_rq)
7781		goto err;
7782	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7783	if (!tg->se)
7784		goto err;
7785
7786	tg->shares = NICE_0_LOAD;
7787
7788	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7789
7790	for_each_possible_cpu(i) {
7791		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7792				      GFP_KERNEL, cpu_to_node(i));
7793		if (!cfs_rq)
7794			goto err;
7795
7796		se = kzalloc_node(sizeof(struct sched_entity),
7797				  GFP_KERNEL, cpu_to_node(i));
7798		if (!se)
7799			goto err_free_rq;
7800
7801		init_cfs_rq(cfs_rq);
7802		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7803	}
7804
7805	return 1;
7806
7807err_free_rq:
7808	kfree(cfs_rq);
7809err:
7810	return 0;
7811}
7812
7813void unregister_fair_sched_group(struct task_group *tg, int cpu)
7814{
7815	struct rq *rq = cpu_rq(cpu);
7816	unsigned long flags;
7817
7818	/*
7819	* Only empty task groups can be destroyed; so we can speculatively
7820	* check on_list without danger of it being re-added.
7821	*/
7822	if (!tg->cfs_rq[cpu]->on_list)
7823		return;
7824
7825	raw_spin_lock_irqsave(&rq->lock, flags);
7826	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7827	raw_spin_unlock_irqrestore(&rq->lock, flags);
7828}
7829
7830void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7831			struct sched_entity *se, int cpu,
7832			struct sched_entity *parent)
7833{
7834	struct rq *rq = cpu_rq(cpu);
7835
7836	cfs_rq->tg = tg;
7837	cfs_rq->rq = rq;
7838	init_cfs_rq_runtime(cfs_rq);
7839
7840	tg->cfs_rq[cpu] = cfs_rq;
7841	tg->se[cpu] = se;
7842
7843	/* se could be NULL for root_task_group */
7844	if (!se)
7845		return;
7846
7847	if (!parent) {
7848		se->cfs_rq = &rq->cfs;
7849		se->depth = 0;
7850	} else {
7851		se->cfs_rq = parent->my_q;
7852		se->depth = parent->depth + 1;
7853	}
7854
7855	se->my_q = cfs_rq;
7856	/* guarantee group entities always have weight */
7857	update_load_set(&se->load, NICE_0_LOAD);
7858	se->parent = parent;
7859}
7860
7861static DEFINE_MUTEX(shares_mutex);
7862
7863int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7864{
7865	int i;
7866	unsigned long flags;
7867
7868	/*
7869	 * We can't change the weight of the root cgroup.
7870	 */
7871	if (!tg->se[0])
7872		return -EINVAL;
7873
7874	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7875
7876	mutex_lock(&shares_mutex);
7877	if (tg->shares == shares)
7878		goto done;
7879
7880	tg->shares = shares;
7881	for_each_possible_cpu(i) {
7882		struct rq *rq = cpu_rq(i);
7883		struct sched_entity *se;
7884
7885		se = tg->se[i];
7886		/* Propagate contribution to hierarchy */
7887		raw_spin_lock_irqsave(&rq->lock, flags);
7888
7889		/* Possible calls to update_curr() need rq clock */
7890		update_rq_clock(rq);
7891		for_each_sched_entity(se)
7892			update_cfs_shares(group_cfs_rq(se));
7893		raw_spin_unlock_irqrestore(&rq->lock, flags);
7894	}
7895
7896done:
7897	mutex_unlock(&shares_mutex);
7898	return 0;
7899}
7900#else /* CONFIG_FAIR_GROUP_SCHED */
7901
7902void free_fair_sched_group(struct task_group *tg) { }
7903
7904int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7905{
7906	return 1;
7907}
7908
7909void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7910
7911#endif /* CONFIG_FAIR_GROUP_SCHED */
7912
7913
7914static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7915{
7916	struct sched_entity *se = &task->se;
7917	unsigned int rr_interval = 0;
7918
7919	/*
7920	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7921	 * idle runqueue:
7922	 */
7923	if (rq->cfs.load.weight)
7924		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7925
7926	return rr_interval;
7927}
7928
7929/*
7930 * All the scheduling class methods:
7931 */
7932const struct sched_class fair_sched_class = {
7933	.next			= &idle_sched_class,
7934	.enqueue_task		= enqueue_task_fair,
7935	.dequeue_task		= dequeue_task_fair,
7936	.yield_task		= yield_task_fair,
7937	.yield_to_task		= yield_to_task_fair,
7938
7939	.check_preempt_curr	= check_preempt_wakeup,
7940
7941	.pick_next_task		= pick_next_task_fair,
7942	.put_prev_task		= put_prev_task_fair,
7943
7944#ifdef CONFIG_SMP
7945	.select_task_rq		= select_task_rq_fair,
7946	.migrate_task_rq	= migrate_task_rq_fair,
7947
7948	.rq_online		= rq_online_fair,
7949	.rq_offline		= rq_offline_fair,
7950
7951	.task_waking		= task_waking_fair,
7952#endif
7953
7954	.set_curr_task          = set_curr_task_fair,
7955	.task_tick		= task_tick_fair,
7956	.task_fork		= task_fork_fair,
7957
7958	.prio_changed		= prio_changed_fair,
7959	.switched_from		= switched_from_fair,
7960	.switched_to		= switched_to_fair,
7961
7962	.get_rr_interval	= get_rr_interval_fair,
7963
7964	.update_curr		= update_curr_fair,
7965
7966#ifdef CONFIG_FAIR_GROUP_SCHED
7967	.task_move_group	= task_move_group_fair,
7968#endif
7969};
7970
7971#ifdef CONFIG_SCHED_DEBUG
7972void print_cfs_stats(struct seq_file *m, int cpu)
7973{
7974	struct cfs_rq *cfs_rq;
7975
7976	rcu_read_lock();
7977	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7978		print_cfs_rq(m, cpu, cfs_rq);
7979	rcu_read_unlock();
7980}
7981#endif
7982
7983__init void init_sched_fair_class(void)
7984{
7985#ifdef CONFIG_SMP
7986	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7987
7988#ifdef CONFIG_NO_HZ_COMMON
7989	nohz.next_balance = jiffies;
7990	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7991	cpu_notifier(sched_ilb_notifier, 0);
7992#endif
7993#endif /* SMP */
7994
7995}
7996