1/*
2 *  linux/kernel/signal.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *
6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
7 *
8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
9 *		Changes to use preallocated sigqueue structures
10 *		to allow signals to be sent reliably.
11 */
12
13#include <linux/slab.h>
14#include <linux/export.h>
15#include <linux/init.h>
16#include <linux/sched.h>
17#include <linux/fs.h>
18#include <linux/tty.h>
19#include <linux/binfmts.h>
20#include <linux/coredump.h>
21#include <linux/security.h>
22#include <linux/syscalls.h>
23#include <linux/ptrace.h>
24#include <linux/signal.h>
25#include <linux/signalfd.h>
26#include <linux/ratelimit.h>
27#include <linux/tracehook.h>
28#include <linux/capability.h>
29#include <linux/freezer.h>
30#include <linux/pid_namespace.h>
31#include <linux/nsproxy.h>
32#include <linux/user_namespace.h>
33#include <linux/uprobes.h>
34#include <linux/compat.h>
35#include <linux/cn_proc.h>
36#include <linux/compiler.h>
37
38#define CREATE_TRACE_POINTS
39#include <trace/events/signal.h>
40
41#include <asm/param.h>
42#include <asm/uaccess.h>
43#include <asm/unistd.h>
44#include <asm/siginfo.h>
45#include <asm/cacheflush.h>
46#include "audit.h"	/* audit_signal_info() */
47
48/*
49 * SLAB caches for signal bits.
50 */
51
52static struct kmem_cache *sigqueue_cachep;
53
54int print_fatal_signals __read_mostly;
55
56static void __user *sig_handler(struct task_struct *t, int sig)
57{
58	return t->sighand->action[sig - 1].sa.sa_handler;
59}
60
61static int sig_handler_ignored(void __user *handler, int sig)
62{
63	/* Is it explicitly or implicitly ignored? */
64	return handler == SIG_IGN ||
65		(handler == SIG_DFL && sig_kernel_ignore(sig));
66}
67
68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
69{
70	void __user *handler;
71
72	handler = sig_handler(t, sig);
73
74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
75			handler == SIG_DFL && !force)
76		return 1;
77
78	return sig_handler_ignored(handler, sig);
79}
80
81static int sig_ignored(struct task_struct *t, int sig, bool force)
82{
83	/*
84	 * Blocked signals are never ignored, since the
85	 * signal handler may change by the time it is
86	 * unblocked.
87	 */
88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
89		return 0;
90
91	if (!sig_task_ignored(t, sig, force))
92		return 0;
93
94	/*
95	 * Tracers may want to know about even ignored signals.
96	 */
97	return !t->ptrace;
98}
99
100/*
101 * Re-calculate pending state from the set of locally pending
102 * signals, globally pending signals, and blocked signals.
103 */
104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
105{
106	unsigned long ready;
107	long i;
108
109	switch (_NSIG_WORDS) {
110	default:
111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
112			ready |= signal->sig[i] &~ blocked->sig[i];
113		break;
114
115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
116		ready |= signal->sig[2] &~ blocked->sig[2];
117		ready |= signal->sig[1] &~ blocked->sig[1];
118		ready |= signal->sig[0] &~ blocked->sig[0];
119		break;
120
121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
122		ready |= signal->sig[0] &~ blocked->sig[0];
123		break;
124
125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
126	}
127	return ready !=	0;
128}
129
130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
131
132static int recalc_sigpending_tsk(struct task_struct *t)
133{
134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
135	    PENDING(&t->pending, &t->blocked) ||
136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
137		set_tsk_thread_flag(t, TIF_SIGPENDING);
138		return 1;
139	}
140	/*
141	 * We must never clear the flag in another thread, or in current
142	 * when it's possible the current syscall is returning -ERESTART*.
143	 * So we don't clear it here, and only callers who know they should do.
144	 */
145	return 0;
146}
147
148/*
149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
150 * This is superfluous when called on current, the wakeup is a harmless no-op.
151 */
152void recalc_sigpending_and_wake(struct task_struct *t)
153{
154	if (recalc_sigpending_tsk(t))
155		signal_wake_up(t, 0);
156}
157
158void recalc_sigpending(void)
159{
160	if (!recalc_sigpending_tsk(current) && !freezing(current))
161		clear_thread_flag(TIF_SIGPENDING);
162
163}
164
165/* Given the mask, find the first available signal that should be serviced. */
166
167#define SYNCHRONOUS_MASK \
168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
170
171int next_signal(struct sigpending *pending, sigset_t *mask)
172{
173	unsigned long i, *s, *m, x;
174	int sig = 0;
175
176	s = pending->signal.sig;
177	m = mask->sig;
178
179	/*
180	 * Handle the first word specially: it contains the
181	 * synchronous signals that need to be dequeued first.
182	 */
183	x = *s &~ *m;
184	if (x) {
185		if (x & SYNCHRONOUS_MASK)
186			x &= SYNCHRONOUS_MASK;
187		sig = ffz(~x) + 1;
188		return sig;
189	}
190
191	switch (_NSIG_WORDS) {
192	default:
193		for (i = 1; i < _NSIG_WORDS; ++i) {
194			x = *++s &~ *++m;
195			if (!x)
196				continue;
197			sig = ffz(~x) + i*_NSIG_BPW + 1;
198			break;
199		}
200		break;
201
202	case 2:
203		x = s[1] &~ m[1];
204		if (!x)
205			break;
206		sig = ffz(~x) + _NSIG_BPW + 1;
207		break;
208
209	case 1:
210		/* Nothing to do */
211		break;
212	}
213
214	return sig;
215}
216
217static inline void print_dropped_signal(int sig)
218{
219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
220
221	if (!print_fatal_signals)
222		return;
223
224	if (!__ratelimit(&ratelimit_state))
225		return;
226
227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
228				current->comm, current->pid, sig);
229}
230
231/**
232 * task_set_jobctl_pending - set jobctl pending bits
233 * @task: target task
234 * @mask: pending bits to set
235 *
236 * Clear @mask from @task->jobctl.  @mask must be subset of
237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
239 * cleared.  If @task is already being killed or exiting, this function
240 * becomes noop.
241 *
242 * CONTEXT:
243 * Must be called with @task->sighand->siglock held.
244 *
245 * RETURNS:
246 * %true if @mask is set, %false if made noop because @task was dying.
247 */
248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
249{
250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
253
254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
255		return false;
256
257	if (mask & JOBCTL_STOP_SIGMASK)
258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
259
260	task->jobctl |= mask;
261	return true;
262}
263
264/**
265 * task_clear_jobctl_trapping - clear jobctl trapping bit
266 * @task: target task
267 *
268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
269 * Clear it and wake up the ptracer.  Note that we don't need any further
270 * locking.  @task->siglock guarantees that @task->parent points to the
271 * ptracer.
272 *
273 * CONTEXT:
274 * Must be called with @task->sighand->siglock held.
275 */
276void task_clear_jobctl_trapping(struct task_struct *task)
277{
278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
279		task->jobctl &= ~JOBCTL_TRAPPING;
280		smp_mb();	/* advised by wake_up_bit() */
281		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
282	}
283}
284
285/**
286 * task_clear_jobctl_pending - clear jobctl pending bits
287 * @task: target task
288 * @mask: pending bits to clear
289 *
290 * Clear @mask from @task->jobctl.  @mask must be subset of
291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
292 * STOP bits are cleared together.
293 *
294 * If clearing of @mask leaves no stop or trap pending, this function calls
295 * task_clear_jobctl_trapping().
296 *
297 * CONTEXT:
298 * Must be called with @task->sighand->siglock held.
299 */
300void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
301{
302	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
303
304	if (mask & JOBCTL_STOP_PENDING)
305		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
306
307	task->jobctl &= ~mask;
308
309	if (!(task->jobctl & JOBCTL_PENDING_MASK))
310		task_clear_jobctl_trapping(task);
311}
312
313/**
314 * task_participate_group_stop - participate in a group stop
315 * @task: task participating in a group stop
316 *
317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
318 * Group stop states are cleared and the group stop count is consumed if
319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
320 * stop, the appropriate %SIGNAL_* flags are set.
321 *
322 * CONTEXT:
323 * Must be called with @task->sighand->siglock held.
324 *
325 * RETURNS:
326 * %true if group stop completion should be notified to the parent, %false
327 * otherwise.
328 */
329static bool task_participate_group_stop(struct task_struct *task)
330{
331	struct signal_struct *sig = task->signal;
332	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
333
334	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
335
336	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
337
338	if (!consume)
339		return false;
340
341	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
342		sig->group_stop_count--;
343
344	/*
345	 * Tell the caller to notify completion iff we are entering into a
346	 * fresh group stop.  Read comment in do_signal_stop() for details.
347	 */
348	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
349		sig->flags = SIGNAL_STOP_STOPPED;
350		return true;
351	}
352	return false;
353}
354
355/*
356 * allocate a new signal queue record
357 * - this may be called without locks if and only if t == current, otherwise an
358 *   appropriate lock must be held to stop the target task from exiting
359 */
360static struct sigqueue *
361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
362{
363	struct sigqueue *q = NULL;
364	struct user_struct *user;
365
366	/*
367	 * Protect access to @t credentials. This can go away when all
368	 * callers hold rcu read lock.
369	 */
370	rcu_read_lock();
371	user = get_uid(__task_cred(t)->user);
372	atomic_inc(&user->sigpending);
373	rcu_read_unlock();
374
375	if (override_rlimit ||
376	    atomic_read(&user->sigpending) <=
377			task_rlimit(t, RLIMIT_SIGPENDING)) {
378		q = kmem_cache_alloc(sigqueue_cachep, flags);
379	} else {
380		print_dropped_signal(sig);
381	}
382
383	if (unlikely(q == NULL)) {
384		atomic_dec(&user->sigpending);
385		free_uid(user);
386	} else {
387		INIT_LIST_HEAD(&q->list);
388		q->flags = 0;
389		q->user = user;
390	}
391
392	return q;
393}
394
395static void __sigqueue_free(struct sigqueue *q)
396{
397	if (q->flags & SIGQUEUE_PREALLOC)
398		return;
399	atomic_dec(&q->user->sigpending);
400	free_uid(q->user);
401	kmem_cache_free(sigqueue_cachep, q);
402}
403
404void flush_sigqueue(struct sigpending *queue)
405{
406	struct sigqueue *q;
407
408	sigemptyset(&queue->signal);
409	while (!list_empty(&queue->list)) {
410		q = list_entry(queue->list.next, struct sigqueue , list);
411		list_del_init(&q->list);
412		__sigqueue_free(q);
413	}
414}
415
416/*
417 * Flush all pending signals for a task.
418 */
419void __flush_signals(struct task_struct *t)
420{
421	clear_tsk_thread_flag(t, TIF_SIGPENDING);
422	flush_sigqueue(&t->pending);
423	flush_sigqueue(&t->signal->shared_pending);
424}
425
426void flush_signals(struct task_struct *t)
427{
428	unsigned long flags;
429
430	spin_lock_irqsave(&t->sighand->siglock, flags);
431	__flush_signals(t);
432	spin_unlock_irqrestore(&t->sighand->siglock, flags);
433}
434
435static void __flush_itimer_signals(struct sigpending *pending)
436{
437	sigset_t signal, retain;
438	struct sigqueue *q, *n;
439
440	signal = pending->signal;
441	sigemptyset(&retain);
442
443	list_for_each_entry_safe(q, n, &pending->list, list) {
444		int sig = q->info.si_signo;
445
446		if (likely(q->info.si_code != SI_TIMER)) {
447			sigaddset(&retain, sig);
448		} else {
449			sigdelset(&signal, sig);
450			list_del_init(&q->list);
451			__sigqueue_free(q);
452		}
453	}
454
455	sigorsets(&pending->signal, &signal, &retain);
456}
457
458void flush_itimer_signals(void)
459{
460	struct task_struct *tsk = current;
461	unsigned long flags;
462
463	spin_lock_irqsave(&tsk->sighand->siglock, flags);
464	__flush_itimer_signals(&tsk->pending);
465	__flush_itimer_signals(&tsk->signal->shared_pending);
466	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
467}
468
469void ignore_signals(struct task_struct *t)
470{
471	int i;
472
473	for (i = 0; i < _NSIG; ++i)
474		t->sighand->action[i].sa.sa_handler = SIG_IGN;
475
476	flush_signals(t);
477}
478
479/*
480 * Flush all handlers for a task.
481 */
482
483void
484flush_signal_handlers(struct task_struct *t, int force_default)
485{
486	int i;
487	struct k_sigaction *ka = &t->sighand->action[0];
488	for (i = _NSIG ; i != 0 ; i--) {
489		if (force_default || ka->sa.sa_handler != SIG_IGN)
490			ka->sa.sa_handler = SIG_DFL;
491		ka->sa.sa_flags = 0;
492#ifdef __ARCH_HAS_SA_RESTORER
493		ka->sa.sa_restorer = NULL;
494#endif
495		sigemptyset(&ka->sa.sa_mask);
496		ka++;
497	}
498}
499
500int unhandled_signal(struct task_struct *tsk, int sig)
501{
502	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
503	if (is_global_init(tsk))
504		return 1;
505	if (handler != SIG_IGN && handler != SIG_DFL)
506		return 0;
507	/* if ptraced, let the tracer determine */
508	return !tsk->ptrace;
509}
510
511/*
512 * Notify the system that a driver wants to block all signals for this
513 * process, and wants to be notified if any signals at all were to be
514 * sent/acted upon.  If the notifier routine returns non-zero, then the
515 * signal will be acted upon after all.  If the notifier routine returns 0,
516 * then then signal will be blocked.  Only one block per process is
517 * allowed.  priv is a pointer to private data that the notifier routine
518 * can use to determine if the signal should be blocked or not.
519 */
520void
521block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
522{
523	unsigned long flags;
524
525	spin_lock_irqsave(&current->sighand->siglock, flags);
526	current->notifier_mask = mask;
527	current->notifier_data = priv;
528	current->notifier = notifier;
529	spin_unlock_irqrestore(&current->sighand->siglock, flags);
530}
531
532/* Notify the system that blocking has ended. */
533
534void
535unblock_all_signals(void)
536{
537	unsigned long flags;
538
539	spin_lock_irqsave(&current->sighand->siglock, flags);
540	current->notifier = NULL;
541	current->notifier_data = NULL;
542	recalc_sigpending();
543	spin_unlock_irqrestore(&current->sighand->siglock, flags);
544}
545
546static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
547{
548	struct sigqueue *q, *first = NULL;
549
550	/*
551	 * Collect the siginfo appropriate to this signal.  Check if
552	 * there is another siginfo for the same signal.
553	*/
554	list_for_each_entry(q, &list->list, list) {
555		if (q->info.si_signo == sig) {
556			if (first)
557				goto still_pending;
558			first = q;
559		}
560	}
561
562	sigdelset(&list->signal, sig);
563
564	if (first) {
565still_pending:
566		list_del_init(&first->list);
567		copy_siginfo(info, &first->info);
568		__sigqueue_free(first);
569	} else {
570		/*
571		 * Ok, it wasn't in the queue.  This must be
572		 * a fast-pathed signal or we must have been
573		 * out of queue space.  So zero out the info.
574		 */
575		info->si_signo = sig;
576		info->si_errno = 0;
577		info->si_code = SI_USER;
578		info->si_pid = 0;
579		info->si_uid = 0;
580	}
581}
582
583static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
584			siginfo_t *info)
585{
586	int sig = next_signal(pending, mask);
587
588	if (sig) {
589		if (current->notifier) {
590			if (sigismember(current->notifier_mask, sig)) {
591				if (!(current->notifier)(current->notifier_data)) {
592					clear_thread_flag(TIF_SIGPENDING);
593					return 0;
594				}
595			}
596		}
597
598		collect_signal(sig, pending, info);
599	}
600
601	return sig;
602}
603
604/*
605 * Dequeue a signal and return the element to the caller, which is
606 * expected to free it.
607 *
608 * All callers have to hold the siglock.
609 */
610int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
611{
612	int signr;
613
614	/* We only dequeue private signals from ourselves, we don't let
615	 * signalfd steal them
616	 */
617	signr = __dequeue_signal(&tsk->pending, mask, info);
618	if (!signr) {
619		signr = __dequeue_signal(&tsk->signal->shared_pending,
620					 mask, info);
621		/*
622		 * itimer signal ?
623		 *
624		 * itimers are process shared and we restart periodic
625		 * itimers in the signal delivery path to prevent DoS
626		 * attacks in the high resolution timer case. This is
627		 * compliant with the old way of self-restarting
628		 * itimers, as the SIGALRM is a legacy signal and only
629		 * queued once. Changing the restart behaviour to
630		 * restart the timer in the signal dequeue path is
631		 * reducing the timer noise on heavy loaded !highres
632		 * systems too.
633		 */
634		if (unlikely(signr == SIGALRM)) {
635			struct hrtimer *tmr = &tsk->signal->real_timer;
636
637			if (!hrtimer_is_queued(tmr) &&
638			    tsk->signal->it_real_incr.tv64 != 0) {
639				hrtimer_forward(tmr, tmr->base->get_time(),
640						tsk->signal->it_real_incr);
641				hrtimer_restart(tmr);
642			}
643		}
644	}
645
646	recalc_sigpending();
647	if (!signr)
648		return 0;
649
650	if (unlikely(sig_kernel_stop(signr))) {
651		/*
652		 * Set a marker that we have dequeued a stop signal.  Our
653		 * caller might release the siglock and then the pending
654		 * stop signal it is about to process is no longer in the
655		 * pending bitmasks, but must still be cleared by a SIGCONT
656		 * (and overruled by a SIGKILL).  So those cases clear this
657		 * shared flag after we've set it.  Note that this flag may
658		 * remain set after the signal we return is ignored or
659		 * handled.  That doesn't matter because its only purpose
660		 * is to alert stop-signal processing code when another
661		 * processor has come along and cleared the flag.
662		 */
663		current->jobctl |= JOBCTL_STOP_DEQUEUED;
664	}
665	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
666		/*
667		 * Release the siglock to ensure proper locking order
668		 * of timer locks outside of siglocks.  Note, we leave
669		 * irqs disabled here, since the posix-timers code is
670		 * about to disable them again anyway.
671		 */
672		spin_unlock(&tsk->sighand->siglock);
673		do_schedule_next_timer(info);
674		spin_lock(&tsk->sighand->siglock);
675	}
676	return signr;
677}
678
679/*
680 * Tell a process that it has a new active signal..
681 *
682 * NOTE! we rely on the previous spin_lock to
683 * lock interrupts for us! We can only be called with
684 * "siglock" held, and the local interrupt must
685 * have been disabled when that got acquired!
686 *
687 * No need to set need_resched since signal event passing
688 * goes through ->blocked
689 */
690void signal_wake_up_state(struct task_struct *t, unsigned int state)
691{
692	set_tsk_thread_flag(t, TIF_SIGPENDING);
693	/*
694	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
695	 * case. We don't check t->state here because there is a race with it
696	 * executing another processor and just now entering stopped state.
697	 * By using wake_up_state, we ensure the process will wake up and
698	 * handle its death signal.
699	 */
700	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
701		kick_process(t);
702}
703
704/*
705 * Remove signals in mask from the pending set and queue.
706 * Returns 1 if any signals were found.
707 *
708 * All callers must be holding the siglock.
709 */
710static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
711{
712	struct sigqueue *q, *n;
713	sigset_t m;
714
715	sigandsets(&m, mask, &s->signal);
716	if (sigisemptyset(&m))
717		return 0;
718
719	sigandnsets(&s->signal, &s->signal, mask);
720	list_for_each_entry_safe(q, n, &s->list, list) {
721		if (sigismember(mask, q->info.si_signo)) {
722			list_del_init(&q->list);
723			__sigqueue_free(q);
724		}
725	}
726	return 1;
727}
728
729static inline int is_si_special(const struct siginfo *info)
730{
731	return info <= SEND_SIG_FORCED;
732}
733
734static inline bool si_fromuser(const struct siginfo *info)
735{
736	return info == SEND_SIG_NOINFO ||
737		(!is_si_special(info) && SI_FROMUSER(info));
738}
739
740/*
741 * called with RCU read lock from check_kill_permission()
742 */
743static int kill_ok_by_cred(struct task_struct *t)
744{
745	const struct cred *cred = current_cred();
746	const struct cred *tcred = __task_cred(t);
747
748	if (uid_eq(cred->euid, tcred->suid) ||
749	    uid_eq(cred->euid, tcred->uid)  ||
750	    uid_eq(cred->uid,  tcred->suid) ||
751	    uid_eq(cred->uid,  tcred->uid))
752		return 1;
753
754	if (ns_capable(tcred->user_ns, CAP_KILL))
755		return 1;
756
757	return 0;
758}
759
760/*
761 * Bad permissions for sending the signal
762 * - the caller must hold the RCU read lock
763 */
764static int check_kill_permission(int sig, struct siginfo *info,
765				 struct task_struct *t)
766{
767	struct pid *sid;
768	int error;
769
770	if (!valid_signal(sig))
771		return -EINVAL;
772
773	if (!si_fromuser(info))
774		return 0;
775
776	error = audit_signal_info(sig, t); /* Let audit system see the signal */
777	if (error)
778		return error;
779
780	if (!same_thread_group(current, t) &&
781	    !kill_ok_by_cred(t)) {
782		switch (sig) {
783		case SIGCONT:
784			sid = task_session(t);
785			/*
786			 * We don't return the error if sid == NULL. The
787			 * task was unhashed, the caller must notice this.
788			 */
789			if (!sid || sid == task_session(current))
790				break;
791		default:
792			return -EPERM;
793		}
794	}
795
796	return security_task_kill(t, info, sig, 0);
797}
798
799/**
800 * ptrace_trap_notify - schedule trap to notify ptracer
801 * @t: tracee wanting to notify tracer
802 *
803 * This function schedules sticky ptrace trap which is cleared on the next
804 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
805 * ptracer.
806 *
807 * If @t is running, STOP trap will be taken.  If trapped for STOP and
808 * ptracer is listening for events, tracee is woken up so that it can
809 * re-trap for the new event.  If trapped otherwise, STOP trap will be
810 * eventually taken without returning to userland after the existing traps
811 * are finished by PTRACE_CONT.
812 *
813 * CONTEXT:
814 * Must be called with @task->sighand->siglock held.
815 */
816static void ptrace_trap_notify(struct task_struct *t)
817{
818	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
819	assert_spin_locked(&t->sighand->siglock);
820
821	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
822	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
823}
824
825/*
826 * Handle magic process-wide effects of stop/continue signals. Unlike
827 * the signal actions, these happen immediately at signal-generation
828 * time regardless of blocking, ignoring, or handling.  This does the
829 * actual continuing for SIGCONT, but not the actual stopping for stop
830 * signals. The process stop is done as a signal action for SIG_DFL.
831 *
832 * Returns true if the signal should be actually delivered, otherwise
833 * it should be dropped.
834 */
835static bool prepare_signal(int sig, struct task_struct *p, bool force)
836{
837	struct signal_struct *signal = p->signal;
838	struct task_struct *t;
839	sigset_t flush;
840
841	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
842		if (signal->flags & SIGNAL_GROUP_COREDUMP)
843			return sig == SIGKILL;
844		/*
845		 * The process is in the middle of dying, nothing to do.
846		 */
847	} else if (sig_kernel_stop(sig)) {
848		/*
849		 * This is a stop signal.  Remove SIGCONT from all queues.
850		 */
851		siginitset(&flush, sigmask(SIGCONT));
852		flush_sigqueue_mask(&flush, &signal->shared_pending);
853		for_each_thread(p, t)
854			flush_sigqueue_mask(&flush, &t->pending);
855	} else if (sig == SIGCONT) {
856		unsigned int why;
857		/*
858		 * Remove all stop signals from all queues, wake all threads.
859		 */
860		siginitset(&flush, SIG_KERNEL_STOP_MASK);
861		flush_sigqueue_mask(&flush, &signal->shared_pending);
862		for_each_thread(p, t) {
863			flush_sigqueue_mask(&flush, &t->pending);
864			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
865			if (likely(!(t->ptrace & PT_SEIZED)))
866				wake_up_state(t, __TASK_STOPPED);
867			else
868				ptrace_trap_notify(t);
869		}
870
871		/*
872		 * Notify the parent with CLD_CONTINUED if we were stopped.
873		 *
874		 * If we were in the middle of a group stop, we pretend it
875		 * was already finished, and then continued. Since SIGCHLD
876		 * doesn't queue we report only CLD_STOPPED, as if the next
877		 * CLD_CONTINUED was dropped.
878		 */
879		why = 0;
880		if (signal->flags & SIGNAL_STOP_STOPPED)
881			why |= SIGNAL_CLD_CONTINUED;
882		else if (signal->group_stop_count)
883			why |= SIGNAL_CLD_STOPPED;
884
885		if (why) {
886			/*
887			 * The first thread which returns from do_signal_stop()
888			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
889			 * notify its parent. See get_signal_to_deliver().
890			 */
891			signal->flags = why | SIGNAL_STOP_CONTINUED;
892			signal->group_stop_count = 0;
893			signal->group_exit_code = 0;
894		}
895	}
896
897	return !sig_ignored(p, sig, force);
898}
899
900/*
901 * Test if P wants to take SIG.  After we've checked all threads with this,
902 * it's equivalent to finding no threads not blocking SIG.  Any threads not
903 * blocking SIG were ruled out because they are not running and already
904 * have pending signals.  Such threads will dequeue from the shared queue
905 * as soon as they're available, so putting the signal on the shared queue
906 * will be equivalent to sending it to one such thread.
907 */
908static inline int wants_signal(int sig, struct task_struct *p)
909{
910	if (sigismember(&p->blocked, sig))
911		return 0;
912	if (p->flags & PF_EXITING)
913		return 0;
914	if (sig == SIGKILL)
915		return 1;
916	if (task_is_stopped_or_traced(p))
917		return 0;
918	return task_curr(p) || !signal_pending(p);
919}
920
921static void complete_signal(int sig, struct task_struct *p, int group)
922{
923	struct signal_struct *signal = p->signal;
924	struct task_struct *t;
925
926	/*
927	 * Now find a thread we can wake up to take the signal off the queue.
928	 *
929	 * If the main thread wants the signal, it gets first crack.
930	 * Probably the least surprising to the average bear.
931	 */
932	if (wants_signal(sig, p))
933		t = p;
934	else if (!group || thread_group_empty(p))
935		/*
936		 * There is just one thread and it does not need to be woken.
937		 * It will dequeue unblocked signals before it runs again.
938		 */
939		return;
940	else {
941		/*
942		 * Otherwise try to find a suitable thread.
943		 */
944		t = signal->curr_target;
945		while (!wants_signal(sig, t)) {
946			t = next_thread(t);
947			if (t == signal->curr_target)
948				/*
949				 * No thread needs to be woken.
950				 * Any eligible threads will see
951				 * the signal in the queue soon.
952				 */
953				return;
954		}
955		signal->curr_target = t;
956	}
957
958	/*
959	 * Found a killable thread.  If the signal will be fatal,
960	 * then start taking the whole group down immediately.
961	 */
962	if (sig_fatal(p, sig) &&
963	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
964	    !sigismember(&t->real_blocked, sig) &&
965	    (sig == SIGKILL || !t->ptrace)) {
966		/*
967		 * This signal will be fatal to the whole group.
968		 */
969		if (!sig_kernel_coredump(sig)) {
970			/*
971			 * Start a group exit and wake everybody up.
972			 * This way we don't have other threads
973			 * running and doing things after a slower
974			 * thread has the fatal signal pending.
975			 */
976			signal->flags = SIGNAL_GROUP_EXIT;
977			signal->group_exit_code = sig;
978			signal->group_stop_count = 0;
979			t = p;
980			do {
981				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
982				sigaddset(&t->pending.signal, SIGKILL);
983				signal_wake_up(t, 1);
984			} while_each_thread(p, t);
985			return;
986		}
987	}
988
989	/*
990	 * The signal is already in the shared-pending queue.
991	 * Tell the chosen thread to wake up and dequeue it.
992	 */
993	signal_wake_up(t, sig == SIGKILL);
994	return;
995}
996
997static inline int legacy_queue(struct sigpending *signals, int sig)
998{
999	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1000}
1001
1002#ifdef CONFIG_USER_NS
1003static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1004{
1005	if (current_user_ns() == task_cred_xxx(t, user_ns))
1006		return;
1007
1008	if (SI_FROMKERNEL(info))
1009		return;
1010
1011	rcu_read_lock();
1012	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1013					make_kuid(current_user_ns(), info->si_uid));
1014	rcu_read_unlock();
1015}
1016#else
1017static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1018{
1019	return;
1020}
1021#endif
1022
1023static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1024			int group, int from_ancestor_ns)
1025{
1026	struct sigpending *pending;
1027	struct sigqueue *q;
1028	int override_rlimit;
1029	int ret = 0, result;
1030
1031	assert_spin_locked(&t->sighand->siglock);
1032
1033	result = TRACE_SIGNAL_IGNORED;
1034	if (!prepare_signal(sig, t,
1035			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1036		goto ret;
1037
1038	pending = group ? &t->signal->shared_pending : &t->pending;
1039	/*
1040	 * Short-circuit ignored signals and support queuing
1041	 * exactly one non-rt signal, so that we can get more
1042	 * detailed information about the cause of the signal.
1043	 */
1044	result = TRACE_SIGNAL_ALREADY_PENDING;
1045	if (legacy_queue(pending, sig))
1046		goto ret;
1047
1048	result = TRACE_SIGNAL_DELIVERED;
1049	/*
1050	 * fast-pathed signals for kernel-internal things like SIGSTOP
1051	 * or SIGKILL.
1052	 */
1053	if (info == SEND_SIG_FORCED)
1054		goto out_set;
1055
1056	/*
1057	 * Real-time signals must be queued if sent by sigqueue, or
1058	 * some other real-time mechanism.  It is implementation
1059	 * defined whether kill() does so.  We attempt to do so, on
1060	 * the principle of least surprise, but since kill is not
1061	 * allowed to fail with EAGAIN when low on memory we just
1062	 * make sure at least one signal gets delivered and don't
1063	 * pass on the info struct.
1064	 */
1065	if (sig < SIGRTMIN)
1066		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1067	else
1068		override_rlimit = 0;
1069
1070	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1071		override_rlimit);
1072	if (q) {
1073		list_add_tail(&q->list, &pending->list);
1074		switch ((unsigned long) info) {
1075		case (unsigned long) SEND_SIG_NOINFO:
1076			q->info.si_signo = sig;
1077			q->info.si_errno = 0;
1078			q->info.si_code = SI_USER;
1079			q->info.si_pid = task_tgid_nr_ns(current,
1080							task_active_pid_ns(t));
1081			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1082			break;
1083		case (unsigned long) SEND_SIG_PRIV:
1084			q->info.si_signo = sig;
1085			q->info.si_errno = 0;
1086			q->info.si_code = SI_KERNEL;
1087			q->info.si_pid = 0;
1088			q->info.si_uid = 0;
1089			break;
1090		default:
1091			copy_siginfo(&q->info, info);
1092			if (from_ancestor_ns)
1093				q->info.si_pid = 0;
1094			break;
1095		}
1096
1097		userns_fixup_signal_uid(&q->info, t);
1098
1099	} else if (!is_si_special(info)) {
1100		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1101			/*
1102			 * Queue overflow, abort.  We may abort if the
1103			 * signal was rt and sent by user using something
1104			 * other than kill().
1105			 */
1106			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1107			ret = -EAGAIN;
1108			goto ret;
1109		} else {
1110			/*
1111			 * This is a silent loss of information.  We still
1112			 * send the signal, but the *info bits are lost.
1113			 */
1114			result = TRACE_SIGNAL_LOSE_INFO;
1115		}
1116	}
1117
1118out_set:
1119	signalfd_notify(t, sig);
1120	sigaddset(&pending->signal, sig);
1121	complete_signal(sig, t, group);
1122ret:
1123	trace_signal_generate(sig, info, t, group, result);
1124	return ret;
1125}
1126
1127static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1128			int group)
1129{
1130	int from_ancestor_ns = 0;
1131
1132#ifdef CONFIG_PID_NS
1133	from_ancestor_ns = si_fromuser(info) &&
1134			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1135#endif
1136
1137	return __send_signal(sig, info, t, group, from_ancestor_ns);
1138}
1139
1140static void print_fatal_signal(int signr)
1141{
1142	struct pt_regs *regs = signal_pt_regs();
1143	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1144
1145#if defined(__i386__) && !defined(__arch_um__)
1146	printk(KERN_INFO "code at %08lx: ", regs->ip);
1147	{
1148		int i;
1149		for (i = 0; i < 16; i++) {
1150			unsigned char insn;
1151
1152			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1153				break;
1154			printk(KERN_CONT "%02x ", insn);
1155		}
1156	}
1157	printk(KERN_CONT "\n");
1158#endif
1159	preempt_disable();
1160	show_regs(regs);
1161	preempt_enable();
1162}
1163
1164static int __init setup_print_fatal_signals(char *str)
1165{
1166	get_option (&str, &print_fatal_signals);
1167
1168	return 1;
1169}
1170
1171__setup("print-fatal-signals=", setup_print_fatal_signals);
1172
1173int
1174__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1175{
1176	return send_signal(sig, info, p, 1);
1177}
1178
1179static int
1180specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1181{
1182	return send_signal(sig, info, t, 0);
1183}
1184
1185int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1186			bool group)
1187{
1188	unsigned long flags;
1189	int ret = -ESRCH;
1190
1191	if (lock_task_sighand(p, &flags)) {
1192		ret = send_signal(sig, info, p, group);
1193		unlock_task_sighand(p, &flags);
1194	}
1195
1196	return ret;
1197}
1198
1199/*
1200 * Force a signal that the process can't ignore: if necessary
1201 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1202 *
1203 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1204 * since we do not want to have a signal handler that was blocked
1205 * be invoked when user space had explicitly blocked it.
1206 *
1207 * We don't want to have recursive SIGSEGV's etc, for example,
1208 * that is why we also clear SIGNAL_UNKILLABLE.
1209 */
1210int
1211force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1212{
1213	unsigned long int flags;
1214	int ret, blocked, ignored;
1215	struct k_sigaction *action;
1216
1217	spin_lock_irqsave(&t->sighand->siglock, flags);
1218	action = &t->sighand->action[sig-1];
1219	ignored = action->sa.sa_handler == SIG_IGN;
1220	blocked = sigismember(&t->blocked, sig);
1221	if (blocked || ignored) {
1222		action->sa.sa_handler = SIG_DFL;
1223		if (blocked) {
1224			sigdelset(&t->blocked, sig);
1225			recalc_sigpending_and_wake(t);
1226		}
1227	}
1228	if (action->sa.sa_handler == SIG_DFL)
1229		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1230	ret = specific_send_sig_info(sig, info, t);
1231	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1232
1233	return ret;
1234}
1235
1236/*
1237 * Nuke all other threads in the group.
1238 */
1239int zap_other_threads(struct task_struct *p)
1240{
1241	struct task_struct *t = p;
1242	int count = 0;
1243
1244	p->signal->group_stop_count = 0;
1245
1246	while_each_thread(p, t) {
1247		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1248		count++;
1249
1250		/* Don't bother with already dead threads */
1251		if (t->exit_state)
1252			continue;
1253		sigaddset(&t->pending.signal, SIGKILL);
1254		signal_wake_up(t, 1);
1255	}
1256
1257	return count;
1258}
1259
1260struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1261					   unsigned long *flags)
1262{
1263	struct sighand_struct *sighand;
1264
1265	for (;;) {
1266		/*
1267		 * Disable interrupts early to avoid deadlocks.
1268		 * See rcu_read_unlock() comment header for details.
1269		 */
1270		local_irq_save(*flags);
1271		rcu_read_lock();
1272		sighand = rcu_dereference(tsk->sighand);
1273		if (unlikely(sighand == NULL)) {
1274			rcu_read_unlock();
1275			local_irq_restore(*flags);
1276			break;
1277		}
1278
1279		spin_lock(&sighand->siglock);
1280		if (likely(sighand == tsk->sighand)) {
1281			rcu_read_unlock();
1282			break;
1283		}
1284		spin_unlock(&sighand->siglock);
1285		rcu_read_unlock();
1286		local_irq_restore(*flags);
1287	}
1288
1289	return sighand;
1290}
1291
1292/*
1293 * send signal info to all the members of a group
1294 */
1295int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1296{
1297	int ret;
1298
1299	rcu_read_lock();
1300	ret = check_kill_permission(sig, info, p);
1301	rcu_read_unlock();
1302
1303	if (!ret && sig)
1304		ret = do_send_sig_info(sig, info, p, true);
1305
1306	return ret;
1307}
1308
1309/*
1310 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1311 * control characters do (^C, ^Z etc)
1312 * - the caller must hold at least a readlock on tasklist_lock
1313 */
1314int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1315{
1316	struct task_struct *p = NULL;
1317	int retval, success;
1318
1319	success = 0;
1320	retval = -ESRCH;
1321	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1322		int err = group_send_sig_info(sig, info, p);
1323		success |= !err;
1324		retval = err;
1325	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1326	return success ? 0 : retval;
1327}
1328
1329int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1330{
1331	int error = -ESRCH;
1332	struct task_struct *p;
1333
1334	rcu_read_lock();
1335retry:
1336	p = pid_task(pid, PIDTYPE_PID);
1337	if (p) {
1338		error = group_send_sig_info(sig, info, p);
1339		if (unlikely(error == -ESRCH))
1340			/*
1341			 * The task was unhashed in between, try again.
1342			 * If it is dead, pid_task() will return NULL,
1343			 * if we race with de_thread() it will find the
1344			 * new leader.
1345			 */
1346			goto retry;
1347	}
1348	rcu_read_unlock();
1349
1350	return error;
1351}
1352
1353int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1354{
1355	int error;
1356	rcu_read_lock();
1357	error = kill_pid_info(sig, info, find_vpid(pid));
1358	rcu_read_unlock();
1359	return error;
1360}
1361
1362static int kill_as_cred_perm(const struct cred *cred,
1363			     struct task_struct *target)
1364{
1365	const struct cred *pcred = __task_cred(target);
1366	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1367	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1368		return 0;
1369	return 1;
1370}
1371
1372/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1373int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1374			 const struct cred *cred, u32 secid)
1375{
1376	int ret = -EINVAL;
1377	struct task_struct *p;
1378	unsigned long flags;
1379
1380	if (!valid_signal(sig))
1381		return ret;
1382
1383	rcu_read_lock();
1384	p = pid_task(pid, PIDTYPE_PID);
1385	if (!p) {
1386		ret = -ESRCH;
1387		goto out_unlock;
1388	}
1389	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1390		ret = -EPERM;
1391		goto out_unlock;
1392	}
1393	ret = security_task_kill(p, info, sig, secid);
1394	if (ret)
1395		goto out_unlock;
1396
1397	if (sig) {
1398		if (lock_task_sighand(p, &flags)) {
1399			ret = __send_signal(sig, info, p, 1, 0);
1400			unlock_task_sighand(p, &flags);
1401		} else
1402			ret = -ESRCH;
1403	}
1404out_unlock:
1405	rcu_read_unlock();
1406	return ret;
1407}
1408EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1409
1410/*
1411 * kill_something_info() interprets pid in interesting ways just like kill(2).
1412 *
1413 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1414 * is probably wrong.  Should make it like BSD or SYSV.
1415 */
1416
1417static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1418{
1419	int ret;
1420
1421	if (pid > 0) {
1422		rcu_read_lock();
1423		ret = kill_pid_info(sig, info, find_vpid(pid));
1424		rcu_read_unlock();
1425		return ret;
1426	}
1427
1428	read_lock(&tasklist_lock);
1429	if (pid != -1) {
1430		ret = __kill_pgrp_info(sig, info,
1431				pid ? find_vpid(-pid) : task_pgrp(current));
1432	} else {
1433		int retval = 0, count = 0;
1434		struct task_struct * p;
1435
1436		for_each_process(p) {
1437			if (task_pid_vnr(p) > 1 &&
1438					!same_thread_group(p, current)) {
1439				int err = group_send_sig_info(sig, info, p);
1440				++count;
1441				if (err != -EPERM)
1442					retval = err;
1443			}
1444		}
1445		ret = count ? retval : -ESRCH;
1446	}
1447	read_unlock(&tasklist_lock);
1448
1449	return ret;
1450}
1451
1452/*
1453 * These are for backward compatibility with the rest of the kernel source.
1454 */
1455
1456int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1457{
1458	/*
1459	 * Make sure legacy kernel users don't send in bad values
1460	 * (normal paths check this in check_kill_permission).
1461	 */
1462	if (!valid_signal(sig))
1463		return -EINVAL;
1464
1465	return do_send_sig_info(sig, info, p, false);
1466}
1467
1468#define __si_special(priv) \
1469	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1470
1471int
1472send_sig(int sig, struct task_struct *p, int priv)
1473{
1474	return send_sig_info(sig, __si_special(priv), p);
1475}
1476
1477void
1478force_sig(int sig, struct task_struct *p)
1479{
1480	force_sig_info(sig, SEND_SIG_PRIV, p);
1481}
1482
1483/*
1484 * When things go south during signal handling, we
1485 * will force a SIGSEGV. And if the signal that caused
1486 * the problem was already a SIGSEGV, we'll want to
1487 * make sure we don't even try to deliver the signal..
1488 */
1489int
1490force_sigsegv(int sig, struct task_struct *p)
1491{
1492	if (sig == SIGSEGV) {
1493		unsigned long flags;
1494		spin_lock_irqsave(&p->sighand->siglock, flags);
1495		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1496		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1497	}
1498	force_sig(SIGSEGV, p);
1499	return 0;
1500}
1501
1502int kill_pgrp(struct pid *pid, int sig, int priv)
1503{
1504	int ret;
1505
1506	read_lock(&tasklist_lock);
1507	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1508	read_unlock(&tasklist_lock);
1509
1510	return ret;
1511}
1512EXPORT_SYMBOL(kill_pgrp);
1513
1514int kill_pid(struct pid *pid, int sig, int priv)
1515{
1516	return kill_pid_info(sig, __si_special(priv), pid);
1517}
1518EXPORT_SYMBOL(kill_pid);
1519
1520/*
1521 * These functions support sending signals using preallocated sigqueue
1522 * structures.  This is needed "because realtime applications cannot
1523 * afford to lose notifications of asynchronous events, like timer
1524 * expirations or I/O completions".  In the case of POSIX Timers
1525 * we allocate the sigqueue structure from the timer_create.  If this
1526 * allocation fails we are able to report the failure to the application
1527 * with an EAGAIN error.
1528 */
1529struct sigqueue *sigqueue_alloc(void)
1530{
1531	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1532
1533	if (q)
1534		q->flags |= SIGQUEUE_PREALLOC;
1535
1536	return q;
1537}
1538
1539void sigqueue_free(struct sigqueue *q)
1540{
1541	unsigned long flags;
1542	spinlock_t *lock = &current->sighand->siglock;
1543
1544	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1545	/*
1546	 * We must hold ->siglock while testing q->list
1547	 * to serialize with collect_signal() or with
1548	 * __exit_signal()->flush_sigqueue().
1549	 */
1550	spin_lock_irqsave(lock, flags);
1551	q->flags &= ~SIGQUEUE_PREALLOC;
1552	/*
1553	 * If it is queued it will be freed when dequeued,
1554	 * like the "regular" sigqueue.
1555	 */
1556	if (!list_empty(&q->list))
1557		q = NULL;
1558	spin_unlock_irqrestore(lock, flags);
1559
1560	if (q)
1561		__sigqueue_free(q);
1562}
1563
1564int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1565{
1566	int sig = q->info.si_signo;
1567	struct sigpending *pending;
1568	unsigned long flags;
1569	int ret, result;
1570
1571	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1572
1573	ret = -1;
1574	if (!likely(lock_task_sighand(t, &flags)))
1575		goto ret;
1576
1577	ret = 1; /* the signal is ignored */
1578	result = TRACE_SIGNAL_IGNORED;
1579	if (!prepare_signal(sig, t, false))
1580		goto out;
1581
1582	ret = 0;
1583	if (unlikely(!list_empty(&q->list))) {
1584		/*
1585		 * If an SI_TIMER entry is already queue just increment
1586		 * the overrun count.
1587		 */
1588		BUG_ON(q->info.si_code != SI_TIMER);
1589		q->info.si_overrun++;
1590		result = TRACE_SIGNAL_ALREADY_PENDING;
1591		goto out;
1592	}
1593	q->info.si_overrun = 0;
1594
1595	signalfd_notify(t, sig);
1596	pending = group ? &t->signal->shared_pending : &t->pending;
1597	list_add_tail(&q->list, &pending->list);
1598	sigaddset(&pending->signal, sig);
1599	complete_signal(sig, t, group);
1600	result = TRACE_SIGNAL_DELIVERED;
1601out:
1602	trace_signal_generate(sig, &q->info, t, group, result);
1603	unlock_task_sighand(t, &flags);
1604ret:
1605	return ret;
1606}
1607
1608/*
1609 * Let a parent know about the death of a child.
1610 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1611 *
1612 * Returns true if our parent ignored us and so we've switched to
1613 * self-reaping.
1614 */
1615bool do_notify_parent(struct task_struct *tsk, int sig)
1616{
1617	struct siginfo info;
1618	unsigned long flags;
1619	struct sighand_struct *psig;
1620	bool autoreap = false;
1621	cputime_t utime, stime;
1622
1623	BUG_ON(sig == -1);
1624
1625 	/* do_notify_parent_cldstop should have been called instead.  */
1626 	BUG_ON(task_is_stopped_or_traced(tsk));
1627
1628	BUG_ON(!tsk->ptrace &&
1629	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1630
1631	if (sig != SIGCHLD) {
1632		/*
1633		 * This is only possible if parent == real_parent.
1634		 * Check if it has changed security domain.
1635		 */
1636		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1637			sig = SIGCHLD;
1638	}
1639
1640	info.si_signo = sig;
1641	info.si_errno = 0;
1642	/*
1643	 * We are under tasklist_lock here so our parent is tied to
1644	 * us and cannot change.
1645	 *
1646	 * task_active_pid_ns will always return the same pid namespace
1647	 * until a task passes through release_task.
1648	 *
1649	 * write_lock() currently calls preempt_disable() which is the
1650	 * same as rcu_read_lock(), but according to Oleg, this is not
1651	 * correct to rely on this
1652	 */
1653	rcu_read_lock();
1654	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1655	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1656				       task_uid(tsk));
1657	rcu_read_unlock();
1658
1659	task_cputime(tsk, &utime, &stime);
1660	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1661	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1662
1663	info.si_status = tsk->exit_code & 0x7f;
1664	if (tsk->exit_code & 0x80)
1665		info.si_code = CLD_DUMPED;
1666	else if (tsk->exit_code & 0x7f)
1667		info.si_code = CLD_KILLED;
1668	else {
1669		info.si_code = CLD_EXITED;
1670		info.si_status = tsk->exit_code >> 8;
1671	}
1672
1673	psig = tsk->parent->sighand;
1674	spin_lock_irqsave(&psig->siglock, flags);
1675	if (!tsk->ptrace && sig == SIGCHLD &&
1676	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1677	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1678		/*
1679		 * We are exiting and our parent doesn't care.  POSIX.1
1680		 * defines special semantics for setting SIGCHLD to SIG_IGN
1681		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1682		 * automatically and not left for our parent's wait4 call.
1683		 * Rather than having the parent do it as a magic kind of
1684		 * signal handler, we just set this to tell do_exit that we
1685		 * can be cleaned up without becoming a zombie.  Note that
1686		 * we still call __wake_up_parent in this case, because a
1687		 * blocked sys_wait4 might now return -ECHILD.
1688		 *
1689		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1690		 * is implementation-defined: we do (if you don't want
1691		 * it, just use SIG_IGN instead).
1692		 */
1693		autoreap = true;
1694		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1695			sig = 0;
1696	}
1697	if (valid_signal(sig) && sig)
1698		__group_send_sig_info(sig, &info, tsk->parent);
1699	__wake_up_parent(tsk, tsk->parent);
1700	spin_unlock_irqrestore(&psig->siglock, flags);
1701
1702	return autoreap;
1703}
1704
1705/**
1706 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1707 * @tsk: task reporting the state change
1708 * @for_ptracer: the notification is for ptracer
1709 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1710 *
1711 * Notify @tsk's parent that the stopped/continued state has changed.  If
1712 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1713 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1714 *
1715 * CONTEXT:
1716 * Must be called with tasklist_lock at least read locked.
1717 */
1718static void do_notify_parent_cldstop(struct task_struct *tsk,
1719				     bool for_ptracer, int why)
1720{
1721	struct siginfo info;
1722	unsigned long flags;
1723	struct task_struct *parent;
1724	struct sighand_struct *sighand;
1725	cputime_t utime, stime;
1726
1727	if (for_ptracer) {
1728		parent = tsk->parent;
1729	} else {
1730		tsk = tsk->group_leader;
1731		parent = tsk->real_parent;
1732	}
1733
1734	info.si_signo = SIGCHLD;
1735	info.si_errno = 0;
1736	/*
1737	 * see comment in do_notify_parent() about the following 4 lines
1738	 */
1739	rcu_read_lock();
1740	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1741	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1742	rcu_read_unlock();
1743
1744	task_cputime(tsk, &utime, &stime);
1745	info.si_utime = cputime_to_clock_t(utime);
1746	info.si_stime = cputime_to_clock_t(stime);
1747
1748 	info.si_code = why;
1749 	switch (why) {
1750 	case CLD_CONTINUED:
1751 		info.si_status = SIGCONT;
1752 		break;
1753 	case CLD_STOPPED:
1754 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1755 		break;
1756 	case CLD_TRAPPED:
1757 		info.si_status = tsk->exit_code & 0x7f;
1758 		break;
1759 	default:
1760 		BUG();
1761 	}
1762
1763	sighand = parent->sighand;
1764	spin_lock_irqsave(&sighand->siglock, flags);
1765	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1766	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1767		__group_send_sig_info(SIGCHLD, &info, parent);
1768	/*
1769	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1770	 */
1771	__wake_up_parent(tsk, parent);
1772	spin_unlock_irqrestore(&sighand->siglock, flags);
1773}
1774
1775static inline int may_ptrace_stop(void)
1776{
1777	if (!likely(current->ptrace))
1778		return 0;
1779	/*
1780	 * Are we in the middle of do_coredump?
1781	 * If so and our tracer is also part of the coredump stopping
1782	 * is a deadlock situation, and pointless because our tracer
1783	 * is dead so don't allow us to stop.
1784	 * If SIGKILL was already sent before the caller unlocked
1785	 * ->siglock we must see ->core_state != NULL. Otherwise it
1786	 * is safe to enter schedule().
1787	 *
1788	 * This is almost outdated, a task with the pending SIGKILL can't
1789	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1790	 * after SIGKILL was already dequeued.
1791	 */
1792	if (unlikely(current->mm->core_state) &&
1793	    unlikely(current->mm == current->parent->mm))
1794		return 0;
1795
1796	return 1;
1797}
1798
1799/*
1800 * Return non-zero if there is a SIGKILL that should be waking us up.
1801 * Called with the siglock held.
1802 */
1803static int sigkill_pending(struct task_struct *tsk)
1804{
1805	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1806		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1807}
1808
1809/*
1810 * This must be called with current->sighand->siglock held.
1811 *
1812 * This should be the path for all ptrace stops.
1813 * We always set current->last_siginfo while stopped here.
1814 * That makes it a way to test a stopped process for
1815 * being ptrace-stopped vs being job-control-stopped.
1816 *
1817 * If we actually decide not to stop at all because the tracer
1818 * is gone, we keep current->exit_code unless clear_code.
1819 */
1820static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1821	__releases(&current->sighand->siglock)
1822	__acquires(&current->sighand->siglock)
1823{
1824	bool gstop_done = false;
1825
1826	if (arch_ptrace_stop_needed(exit_code, info)) {
1827		/*
1828		 * The arch code has something special to do before a
1829		 * ptrace stop.  This is allowed to block, e.g. for faults
1830		 * on user stack pages.  We can't keep the siglock while
1831		 * calling arch_ptrace_stop, so we must release it now.
1832		 * To preserve proper semantics, we must do this before
1833		 * any signal bookkeeping like checking group_stop_count.
1834		 * Meanwhile, a SIGKILL could come in before we retake the
1835		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1836		 * So after regaining the lock, we must check for SIGKILL.
1837		 */
1838		spin_unlock_irq(&current->sighand->siglock);
1839		arch_ptrace_stop(exit_code, info);
1840		spin_lock_irq(&current->sighand->siglock);
1841		if (sigkill_pending(current))
1842			return;
1843	}
1844
1845	/*
1846	 * We're committing to trapping.  TRACED should be visible before
1847	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1848	 * Also, transition to TRACED and updates to ->jobctl should be
1849	 * atomic with respect to siglock and should be done after the arch
1850	 * hook as siglock is released and regrabbed across it.
1851	 */
1852	set_current_state(TASK_TRACED);
1853
1854	current->last_siginfo = info;
1855	current->exit_code = exit_code;
1856
1857	/*
1858	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1859	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1860	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1861	 * could be clear now.  We act as if SIGCONT is received after
1862	 * TASK_TRACED is entered - ignore it.
1863	 */
1864	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1865		gstop_done = task_participate_group_stop(current);
1866
1867	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1868	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1869	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1870		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1871
1872	/* entering a trap, clear TRAPPING */
1873	task_clear_jobctl_trapping(current);
1874
1875	spin_unlock_irq(&current->sighand->siglock);
1876	read_lock(&tasklist_lock);
1877	if (may_ptrace_stop()) {
1878		/*
1879		 * Notify parents of the stop.
1880		 *
1881		 * While ptraced, there are two parents - the ptracer and
1882		 * the real_parent of the group_leader.  The ptracer should
1883		 * know about every stop while the real parent is only
1884		 * interested in the completion of group stop.  The states
1885		 * for the two don't interact with each other.  Notify
1886		 * separately unless they're gonna be duplicates.
1887		 */
1888		do_notify_parent_cldstop(current, true, why);
1889		if (gstop_done && ptrace_reparented(current))
1890			do_notify_parent_cldstop(current, false, why);
1891
1892		/*
1893		 * Don't want to allow preemption here, because
1894		 * sys_ptrace() needs this task to be inactive.
1895		 *
1896		 * XXX: implement read_unlock_no_resched().
1897		 */
1898		preempt_disable();
1899		read_unlock(&tasklist_lock);
1900		preempt_enable_no_resched();
1901		freezable_schedule();
1902	} else {
1903		/*
1904		 * By the time we got the lock, our tracer went away.
1905		 * Don't drop the lock yet, another tracer may come.
1906		 *
1907		 * If @gstop_done, the ptracer went away between group stop
1908		 * completion and here.  During detach, it would have set
1909		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1910		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1911		 * the real parent of the group stop completion is enough.
1912		 */
1913		if (gstop_done)
1914			do_notify_parent_cldstop(current, false, why);
1915
1916		/* tasklist protects us from ptrace_freeze_traced() */
1917		__set_current_state(TASK_RUNNING);
1918		if (clear_code)
1919			current->exit_code = 0;
1920		read_unlock(&tasklist_lock);
1921	}
1922
1923	/*
1924	 * We are back.  Now reacquire the siglock before touching
1925	 * last_siginfo, so that we are sure to have synchronized with
1926	 * any signal-sending on another CPU that wants to examine it.
1927	 */
1928	spin_lock_irq(&current->sighand->siglock);
1929	current->last_siginfo = NULL;
1930
1931	/* LISTENING can be set only during STOP traps, clear it */
1932	current->jobctl &= ~JOBCTL_LISTENING;
1933
1934	/*
1935	 * Queued signals ignored us while we were stopped for tracing.
1936	 * So check for any that we should take before resuming user mode.
1937	 * This sets TIF_SIGPENDING, but never clears it.
1938	 */
1939	recalc_sigpending_tsk(current);
1940}
1941
1942static void ptrace_do_notify(int signr, int exit_code, int why)
1943{
1944	siginfo_t info;
1945
1946	memset(&info, 0, sizeof info);
1947	info.si_signo = signr;
1948	info.si_code = exit_code;
1949	info.si_pid = task_pid_vnr(current);
1950	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1951
1952	/* Let the debugger run.  */
1953	ptrace_stop(exit_code, why, 1, &info);
1954}
1955
1956void ptrace_notify(int exit_code)
1957{
1958	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1959	if (unlikely(current->task_works))
1960		task_work_run();
1961
1962	spin_lock_irq(&current->sighand->siglock);
1963	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1964	spin_unlock_irq(&current->sighand->siglock);
1965}
1966
1967/**
1968 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1969 * @signr: signr causing group stop if initiating
1970 *
1971 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1972 * and participate in it.  If already set, participate in the existing
1973 * group stop.  If participated in a group stop (and thus slept), %true is
1974 * returned with siglock released.
1975 *
1976 * If ptraced, this function doesn't handle stop itself.  Instead,
1977 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1978 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1979 * places afterwards.
1980 *
1981 * CONTEXT:
1982 * Must be called with @current->sighand->siglock held, which is released
1983 * on %true return.
1984 *
1985 * RETURNS:
1986 * %false if group stop is already cancelled or ptrace trap is scheduled.
1987 * %true if participated in group stop.
1988 */
1989static bool do_signal_stop(int signr)
1990	__releases(&current->sighand->siglock)
1991{
1992	struct signal_struct *sig = current->signal;
1993
1994	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1995		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1996		struct task_struct *t;
1997
1998		/* signr will be recorded in task->jobctl for retries */
1999		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2000
2001		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2002		    unlikely(signal_group_exit(sig)))
2003			return false;
2004		/*
2005		 * There is no group stop already in progress.  We must
2006		 * initiate one now.
2007		 *
2008		 * While ptraced, a task may be resumed while group stop is
2009		 * still in effect and then receive a stop signal and
2010		 * initiate another group stop.  This deviates from the
2011		 * usual behavior as two consecutive stop signals can't
2012		 * cause two group stops when !ptraced.  That is why we
2013		 * also check !task_is_stopped(t) below.
2014		 *
2015		 * The condition can be distinguished by testing whether
2016		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2017		 * group_exit_code in such case.
2018		 *
2019		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2020		 * an intervening stop signal is required to cause two
2021		 * continued events regardless of ptrace.
2022		 */
2023		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2024			sig->group_exit_code = signr;
2025
2026		sig->group_stop_count = 0;
2027
2028		if (task_set_jobctl_pending(current, signr | gstop))
2029			sig->group_stop_count++;
2030
2031		t = current;
2032		while_each_thread(current, t) {
2033			/*
2034			 * Setting state to TASK_STOPPED for a group
2035			 * stop is always done with the siglock held,
2036			 * so this check has no races.
2037			 */
2038			if (!task_is_stopped(t) &&
2039			    task_set_jobctl_pending(t, signr | gstop)) {
2040				sig->group_stop_count++;
2041				if (likely(!(t->ptrace & PT_SEIZED)))
2042					signal_wake_up(t, 0);
2043				else
2044					ptrace_trap_notify(t);
2045			}
2046		}
2047	}
2048
2049	if (likely(!current->ptrace)) {
2050		int notify = 0;
2051
2052		/*
2053		 * If there are no other threads in the group, or if there
2054		 * is a group stop in progress and we are the last to stop,
2055		 * report to the parent.
2056		 */
2057		if (task_participate_group_stop(current))
2058			notify = CLD_STOPPED;
2059
2060		__set_current_state(TASK_STOPPED);
2061		spin_unlock_irq(&current->sighand->siglock);
2062
2063		/*
2064		 * Notify the parent of the group stop completion.  Because
2065		 * we're not holding either the siglock or tasklist_lock
2066		 * here, ptracer may attach inbetween; however, this is for
2067		 * group stop and should always be delivered to the real
2068		 * parent of the group leader.  The new ptracer will get
2069		 * its notification when this task transitions into
2070		 * TASK_TRACED.
2071		 */
2072		if (notify) {
2073			read_lock(&tasklist_lock);
2074			do_notify_parent_cldstop(current, false, notify);
2075			read_unlock(&tasklist_lock);
2076		}
2077
2078		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2079		freezable_schedule();
2080		return true;
2081	} else {
2082		/*
2083		 * While ptraced, group stop is handled by STOP trap.
2084		 * Schedule it and let the caller deal with it.
2085		 */
2086		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2087		return false;
2088	}
2089}
2090
2091/**
2092 * do_jobctl_trap - take care of ptrace jobctl traps
2093 *
2094 * When PT_SEIZED, it's used for both group stop and explicit
2095 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2096 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2097 * the stop signal; otherwise, %SIGTRAP.
2098 *
2099 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2100 * number as exit_code and no siginfo.
2101 *
2102 * CONTEXT:
2103 * Must be called with @current->sighand->siglock held, which may be
2104 * released and re-acquired before returning with intervening sleep.
2105 */
2106static void do_jobctl_trap(void)
2107{
2108	struct signal_struct *signal = current->signal;
2109	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2110
2111	if (current->ptrace & PT_SEIZED) {
2112		if (!signal->group_stop_count &&
2113		    !(signal->flags & SIGNAL_STOP_STOPPED))
2114			signr = SIGTRAP;
2115		WARN_ON_ONCE(!signr);
2116		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2117				 CLD_STOPPED);
2118	} else {
2119		WARN_ON_ONCE(!signr);
2120		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2121		current->exit_code = 0;
2122	}
2123}
2124
2125static int ptrace_signal(int signr, siginfo_t *info)
2126{
2127	ptrace_signal_deliver();
2128	/*
2129	 * We do not check sig_kernel_stop(signr) but set this marker
2130	 * unconditionally because we do not know whether debugger will
2131	 * change signr. This flag has no meaning unless we are going
2132	 * to stop after return from ptrace_stop(). In this case it will
2133	 * be checked in do_signal_stop(), we should only stop if it was
2134	 * not cleared by SIGCONT while we were sleeping. See also the
2135	 * comment in dequeue_signal().
2136	 */
2137	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2138	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2139
2140	/* We're back.  Did the debugger cancel the sig?  */
2141	signr = current->exit_code;
2142	if (signr == 0)
2143		return signr;
2144
2145	current->exit_code = 0;
2146
2147	/*
2148	 * Update the siginfo structure if the signal has
2149	 * changed.  If the debugger wanted something
2150	 * specific in the siginfo structure then it should
2151	 * have updated *info via PTRACE_SETSIGINFO.
2152	 */
2153	if (signr != info->si_signo) {
2154		info->si_signo = signr;
2155		info->si_errno = 0;
2156		info->si_code = SI_USER;
2157		rcu_read_lock();
2158		info->si_pid = task_pid_vnr(current->parent);
2159		info->si_uid = from_kuid_munged(current_user_ns(),
2160						task_uid(current->parent));
2161		rcu_read_unlock();
2162	}
2163
2164	/* If the (new) signal is now blocked, requeue it.  */
2165	if (sigismember(&current->blocked, signr)) {
2166		specific_send_sig_info(signr, info, current);
2167		signr = 0;
2168	}
2169
2170	return signr;
2171}
2172
2173int get_signal(struct ksignal *ksig)
2174{
2175	struct sighand_struct *sighand = current->sighand;
2176	struct signal_struct *signal = current->signal;
2177	int signr;
2178
2179	if (unlikely(current->task_works))
2180		task_work_run();
2181
2182	if (unlikely(uprobe_deny_signal()))
2183		return 0;
2184
2185	/*
2186	 * Do this once, we can't return to user-mode if freezing() == T.
2187	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2188	 * thus do not need another check after return.
2189	 */
2190	try_to_freeze();
2191
2192relock:
2193	spin_lock_irq(&sighand->siglock);
2194	/*
2195	 * Every stopped thread goes here after wakeup. Check to see if
2196	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2197	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2198	 */
2199	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2200		int why;
2201
2202		if (signal->flags & SIGNAL_CLD_CONTINUED)
2203			why = CLD_CONTINUED;
2204		else
2205			why = CLD_STOPPED;
2206
2207		signal->flags &= ~SIGNAL_CLD_MASK;
2208
2209		spin_unlock_irq(&sighand->siglock);
2210
2211		/*
2212		 * Notify the parent that we're continuing.  This event is
2213		 * always per-process and doesn't make whole lot of sense
2214		 * for ptracers, who shouldn't consume the state via
2215		 * wait(2) either, but, for backward compatibility, notify
2216		 * the ptracer of the group leader too unless it's gonna be
2217		 * a duplicate.
2218		 */
2219		read_lock(&tasklist_lock);
2220		do_notify_parent_cldstop(current, false, why);
2221
2222		if (ptrace_reparented(current->group_leader))
2223			do_notify_parent_cldstop(current->group_leader,
2224						true, why);
2225		read_unlock(&tasklist_lock);
2226
2227		goto relock;
2228	}
2229
2230	for (;;) {
2231		struct k_sigaction *ka;
2232
2233		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2234		    do_signal_stop(0))
2235			goto relock;
2236
2237		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2238			do_jobctl_trap();
2239			spin_unlock_irq(&sighand->siglock);
2240			goto relock;
2241		}
2242
2243		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2244
2245		if (!signr)
2246			break; /* will return 0 */
2247
2248		if (unlikely(current->ptrace) && signr != SIGKILL) {
2249			signr = ptrace_signal(signr, &ksig->info);
2250			if (!signr)
2251				continue;
2252		}
2253
2254		ka = &sighand->action[signr-1];
2255
2256		/* Trace actually delivered signals. */
2257		trace_signal_deliver(signr, &ksig->info, ka);
2258
2259		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2260			continue;
2261		if (ka->sa.sa_handler != SIG_DFL) {
2262			/* Run the handler.  */
2263			ksig->ka = *ka;
2264
2265			if (ka->sa.sa_flags & SA_ONESHOT)
2266				ka->sa.sa_handler = SIG_DFL;
2267
2268			break; /* will return non-zero "signr" value */
2269		}
2270
2271		/*
2272		 * Now we are doing the default action for this signal.
2273		 */
2274		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2275			continue;
2276
2277		/*
2278		 * Global init gets no signals it doesn't want.
2279		 * Container-init gets no signals it doesn't want from same
2280		 * container.
2281		 *
2282		 * Note that if global/container-init sees a sig_kernel_only()
2283		 * signal here, the signal must have been generated internally
2284		 * or must have come from an ancestor namespace. In either
2285		 * case, the signal cannot be dropped.
2286		 */
2287		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2288				!sig_kernel_only(signr))
2289			continue;
2290
2291		if (sig_kernel_stop(signr)) {
2292			/*
2293			 * The default action is to stop all threads in
2294			 * the thread group.  The job control signals
2295			 * do nothing in an orphaned pgrp, but SIGSTOP
2296			 * always works.  Note that siglock needs to be
2297			 * dropped during the call to is_orphaned_pgrp()
2298			 * because of lock ordering with tasklist_lock.
2299			 * This allows an intervening SIGCONT to be posted.
2300			 * We need to check for that and bail out if necessary.
2301			 */
2302			if (signr != SIGSTOP) {
2303				spin_unlock_irq(&sighand->siglock);
2304
2305				/* signals can be posted during this window */
2306
2307				if (is_current_pgrp_orphaned())
2308					goto relock;
2309
2310				spin_lock_irq(&sighand->siglock);
2311			}
2312
2313			if (likely(do_signal_stop(ksig->info.si_signo))) {
2314				/* It released the siglock.  */
2315				goto relock;
2316			}
2317
2318			/*
2319			 * We didn't actually stop, due to a race
2320			 * with SIGCONT or something like that.
2321			 */
2322			continue;
2323		}
2324
2325		spin_unlock_irq(&sighand->siglock);
2326
2327		/*
2328		 * Anything else is fatal, maybe with a core dump.
2329		 */
2330		current->flags |= PF_SIGNALED;
2331
2332		if (sig_kernel_coredump(signr)) {
2333			if (print_fatal_signals)
2334				print_fatal_signal(ksig->info.si_signo);
2335			proc_coredump_connector(current);
2336			/*
2337			 * If it was able to dump core, this kills all
2338			 * other threads in the group and synchronizes with
2339			 * their demise.  If we lost the race with another
2340			 * thread getting here, it set group_exit_code
2341			 * first and our do_group_exit call below will use
2342			 * that value and ignore the one we pass it.
2343			 */
2344			do_coredump(&ksig->info);
2345		}
2346
2347		/*
2348		 * Death signals, no core dump.
2349		 */
2350		do_group_exit(ksig->info.si_signo);
2351		/* NOTREACHED */
2352	}
2353	spin_unlock_irq(&sighand->siglock);
2354
2355	ksig->sig = signr;
2356	return ksig->sig > 0;
2357}
2358
2359/**
2360 * signal_delivered -
2361 * @ksig:		kernel signal struct
2362 * @stepping:		nonzero if debugger single-step or block-step in use
2363 *
2364 * This function should be called when a signal has successfully been
2365 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2366 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2367 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2368 */
2369static void signal_delivered(struct ksignal *ksig, int stepping)
2370{
2371	sigset_t blocked;
2372
2373	/* A signal was successfully delivered, and the
2374	   saved sigmask was stored on the signal frame,
2375	   and will be restored by sigreturn.  So we can
2376	   simply clear the restore sigmask flag.  */
2377	clear_restore_sigmask();
2378
2379	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2380	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2381		sigaddset(&blocked, ksig->sig);
2382	set_current_blocked(&blocked);
2383	tracehook_signal_handler(stepping);
2384}
2385
2386void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2387{
2388	if (failed)
2389		force_sigsegv(ksig->sig, current);
2390	else
2391		signal_delivered(ksig, stepping);
2392}
2393
2394/*
2395 * It could be that complete_signal() picked us to notify about the
2396 * group-wide signal. Other threads should be notified now to take
2397 * the shared signals in @which since we will not.
2398 */
2399static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2400{
2401	sigset_t retarget;
2402	struct task_struct *t;
2403
2404	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2405	if (sigisemptyset(&retarget))
2406		return;
2407
2408	t = tsk;
2409	while_each_thread(tsk, t) {
2410		if (t->flags & PF_EXITING)
2411			continue;
2412
2413		if (!has_pending_signals(&retarget, &t->blocked))
2414			continue;
2415		/* Remove the signals this thread can handle. */
2416		sigandsets(&retarget, &retarget, &t->blocked);
2417
2418		if (!signal_pending(t))
2419			signal_wake_up(t, 0);
2420
2421		if (sigisemptyset(&retarget))
2422			break;
2423	}
2424}
2425
2426void exit_signals(struct task_struct *tsk)
2427{
2428	int group_stop = 0;
2429	sigset_t unblocked;
2430
2431	/*
2432	 * @tsk is about to have PF_EXITING set - lock out users which
2433	 * expect stable threadgroup.
2434	 */
2435	threadgroup_change_begin(tsk);
2436
2437	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2438		tsk->flags |= PF_EXITING;
2439		threadgroup_change_end(tsk);
2440		return;
2441	}
2442
2443	spin_lock_irq(&tsk->sighand->siglock);
2444	/*
2445	 * From now this task is not visible for group-wide signals,
2446	 * see wants_signal(), do_signal_stop().
2447	 */
2448	tsk->flags |= PF_EXITING;
2449
2450	threadgroup_change_end(tsk);
2451
2452	if (!signal_pending(tsk))
2453		goto out;
2454
2455	unblocked = tsk->blocked;
2456	signotset(&unblocked);
2457	retarget_shared_pending(tsk, &unblocked);
2458
2459	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2460	    task_participate_group_stop(tsk))
2461		group_stop = CLD_STOPPED;
2462out:
2463	spin_unlock_irq(&tsk->sighand->siglock);
2464
2465	/*
2466	 * If group stop has completed, deliver the notification.  This
2467	 * should always go to the real parent of the group leader.
2468	 */
2469	if (unlikely(group_stop)) {
2470		read_lock(&tasklist_lock);
2471		do_notify_parent_cldstop(tsk, false, group_stop);
2472		read_unlock(&tasklist_lock);
2473	}
2474}
2475
2476EXPORT_SYMBOL(recalc_sigpending);
2477EXPORT_SYMBOL_GPL(dequeue_signal);
2478EXPORT_SYMBOL(flush_signals);
2479EXPORT_SYMBOL(force_sig);
2480EXPORT_SYMBOL(send_sig);
2481EXPORT_SYMBOL(send_sig_info);
2482EXPORT_SYMBOL(sigprocmask);
2483EXPORT_SYMBOL(block_all_signals);
2484EXPORT_SYMBOL(unblock_all_signals);
2485
2486
2487/*
2488 * System call entry points.
2489 */
2490
2491/**
2492 *  sys_restart_syscall - restart a system call
2493 */
2494SYSCALL_DEFINE0(restart_syscall)
2495{
2496	struct restart_block *restart = &current_thread_info()->restart_block;
2497	return restart->fn(restart);
2498}
2499
2500long do_no_restart_syscall(struct restart_block *param)
2501{
2502	return -EINTR;
2503}
2504
2505static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2506{
2507	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2508		sigset_t newblocked;
2509		/* A set of now blocked but previously unblocked signals. */
2510		sigandnsets(&newblocked, newset, &current->blocked);
2511		retarget_shared_pending(tsk, &newblocked);
2512	}
2513	tsk->blocked = *newset;
2514	recalc_sigpending();
2515}
2516
2517/**
2518 * set_current_blocked - change current->blocked mask
2519 * @newset: new mask
2520 *
2521 * It is wrong to change ->blocked directly, this helper should be used
2522 * to ensure the process can't miss a shared signal we are going to block.
2523 */
2524void set_current_blocked(sigset_t *newset)
2525{
2526	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2527	__set_current_blocked(newset);
2528}
2529
2530void __set_current_blocked(const sigset_t *newset)
2531{
2532	struct task_struct *tsk = current;
2533
2534	spin_lock_irq(&tsk->sighand->siglock);
2535	__set_task_blocked(tsk, newset);
2536	spin_unlock_irq(&tsk->sighand->siglock);
2537}
2538
2539/*
2540 * This is also useful for kernel threads that want to temporarily
2541 * (or permanently) block certain signals.
2542 *
2543 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2544 * interface happily blocks "unblockable" signals like SIGKILL
2545 * and friends.
2546 */
2547int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2548{
2549	struct task_struct *tsk = current;
2550	sigset_t newset;
2551
2552	/* Lockless, only current can change ->blocked, never from irq */
2553	if (oldset)
2554		*oldset = tsk->blocked;
2555
2556	switch (how) {
2557	case SIG_BLOCK:
2558		sigorsets(&newset, &tsk->blocked, set);
2559		break;
2560	case SIG_UNBLOCK:
2561		sigandnsets(&newset, &tsk->blocked, set);
2562		break;
2563	case SIG_SETMASK:
2564		newset = *set;
2565		break;
2566	default:
2567		return -EINVAL;
2568	}
2569
2570	__set_current_blocked(&newset);
2571	return 0;
2572}
2573
2574/**
2575 *  sys_rt_sigprocmask - change the list of currently blocked signals
2576 *  @how: whether to add, remove, or set signals
2577 *  @nset: stores pending signals
2578 *  @oset: previous value of signal mask if non-null
2579 *  @sigsetsize: size of sigset_t type
2580 */
2581SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2582		sigset_t __user *, oset, size_t, sigsetsize)
2583{
2584	sigset_t old_set, new_set;
2585	int error;
2586
2587	/* XXX: Don't preclude handling different sized sigset_t's.  */
2588	if (sigsetsize != sizeof(sigset_t))
2589		return -EINVAL;
2590
2591	old_set = current->blocked;
2592
2593	if (nset) {
2594		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2595			return -EFAULT;
2596		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2597
2598		error = sigprocmask(how, &new_set, NULL);
2599		if (error)
2600			return error;
2601	}
2602
2603	if (oset) {
2604		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2605			return -EFAULT;
2606	}
2607
2608	return 0;
2609}
2610
2611#ifdef CONFIG_COMPAT
2612COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2613		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2614{
2615#ifdef __BIG_ENDIAN
2616	sigset_t old_set = current->blocked;
2617
2618	/* XXX: Don't preclude handling different sized sigset_t's.  */
2619	if (sigsetsize != sizeof(sigset_t))
2620		return -EINVAL;
2621
2622	if (nset) {
2623		compat_sigset_t new32;
2624		sigset_t new_set;
2625		int error;
2626		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2627			return -EFAULT;
2628
2629		sigset_from_compat(&new_set, &new32);
2630		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2631
2632		error = sigprocmask(how, &new_set, NULL);
2633		if (error)
2634			return error;
2635	}
2636	if (oset) {
2637		compat_sigset_t old32;
2638		sigset_to_compat(&old32, &old_set);
2639		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2640			return -EFAULT;
2641	}
2642	return 0;
2643#else
2644	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2645				  (sigset_t __user *)oset, sigsetsize);
2646#endif
2647}
2648#endif
2649
2650static int do_sigpending(void *set, unsigned long sigsetsize)
2651{
2652	if (sigsetsize > sizeof(sigset_t))
2653		return -EINVAL;
2654
2655	spin_lock_irq(&current->sighand->siglock);
2656	sigorsets(set, &current->pending.signal,
2657		  &current->signal->shared_pending.signal);
2658	spin_unlock_irq(&current->sighand->siglock);
2659
2660	/* Outside the lock because only this thread touches it.  */
2661	sigandsets(set, &current->blocked, set);
2662	return 0;
2663}
2664
2665/**
2666 *  sys_rt_sigpending - examine a pending signal that has been raised
2667 *			while blocked
2668 *  @uset: stores pending signals
2669 *  @sigsetsize: size of sigset_t type or larger
2670 */
2671SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2672{
2673	sigset_t set;
2674	int err = do_sigpending(&set, sigsetsize);
2675	if (!err && copy_to_user(uset, &set, sigsetsize))
2676		err = -EFAULT;
2677	return err;
2678}
2679
2680#ifdef CONFIG_COMPAT
2681COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2682		compat_size_t, sigsetsize)
2683{
2684#ifdef __BIG_ENDIAN
2685	sigset_t set;
2686	int err = do_sigpending(&set, sigsetsize);
2687	if (!err) {
2688		compat_sigset_t set32;
2689		sigset_to_compat(&set32, &set);
2690		/* we can get here only if sigsetsize <= sizeof(set) */
2691		if (copy_to_user(uset, &set32, sigsetsize))
2692			err = -EFAULT;
2693	}
2694	return err;
2695#else
2696	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2697#endif
2698}
2699#endif
2700
2701#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2702
2703int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2704{
2705	int err;
2706
2707	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2708		return -EFAULT;
2709	if (from->si_code < 0)
2710		return __copy_to_user(to, from, sizeof(siginfo_t))
2711			? -EFAULT : 0;
2712	/*
2713	 * If you change siginfo_t structure, please be sure
2714	 * this code is fixed accordingly.
2715	 * Please remember to update the signalfd_copyinfo() function
2716	 * inside fs/signalfd.c too, in case siginfo_t changes.
2717	 * It should never copy any pad contained in the structure
2718	 * to avoid security leaks, but must copy the generic
2719	 * 3 ints plus the relevant union member.
2720	 */
2721	err = __put_user(from->si_signo, &to->si_signo);
2722	err |= __put_user(from->si_errno, &to->si_errno);
2723	err |= __put_user((short)from->si_code, &to->si_code);
2724	switch (from->si_code & __SI_MASK) {
2725	case __SI_KILL:
2726		err |= __put_user(from->si_pid, &to->si_pid);
2727		err |= __put_user(from->si_uid, &to->si_uid);
2728		break;
2729	case __SI_TIMER:
2730		 err |= __put_user(from->si_tid, &to->si_tid);
2731		 err |= __put_user(from->si_overrun, &to->si_overrun);
2732		 err |= __put_user(from->si_ptr, &to->si_ptr);
2733		break;
2734	case __SI_POLL:
2735		err |= __put_user(from->si_band, &to->si_band);
2736		err |= __put_user(from->si_fd, &to->si_fd);
2737		break;
2738	case __SI_FAULT:
2739		err |= __put_user(from->si_addr, &to->si_addr);
2740#ifdef __ARCH_SI_TRAPNO
2741		err |= __put_user(from->si_trapno, &to->si_trapno);
2742#endif
2743#ifdef BUS_MCEERR_AO
2744		/*
2745		 * Other callers might not initialize the si_lsb field,
2746		 * so check explicitly for the right codes here.
2747		 */
2748		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2749			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2750#endif
2751		break;
2752	case __SI_CHLD:
2753		err |= __put_user(from->si_pid, &to->si_pid);
2754		err |= __put_user(from->si_uid, &to->si_uid);
2755		err |= __put_user(from->si_status, &to->si_status);
2756		err |= __put_user(from->si_utime, &to->si_utime);
2757		err |= __put_user(from->si_stime, &to->si_stime);
2758		break;
2759	case __SI_RT: /* This is not generated by the kernel as of now. */
2760	case __SI_MESGQ: /* But this is */
2761		err |= __put_user(from->si_pid, &to->si_pid);
2762		err |= __put_user(from->si_uid, &to->si_uid);
2763		err |= __put_user(from->si_ptr, &to->si_ptr);
2764		break;
2765#ifdef __ARCH_SIGSYS
2766	case __SI_SYS:
2767		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2768		err |= __put_user(from->si_syscall, &to->si_syscall);
2769		err |= __put_user(from->si_arch, &to->si_arch);
2770		break;
2771#endif
2772	default: /* this is just in case for now ... */
2773		err |= __put_user(from->si_pid, &to->si_pid);
2774		err |= __put_user(from->si_uid, &to->si_uid);
2775		break;
2776	}
2777	return err;
2778}
2779
2780#endif
2781
2782/**
2783 *  do_sigtimedwait - wait for queued signals specified in @which
2784 *  @which: queued signals to wait for
2785 *  @info: if non-null, the signal's siginfo is returned here
2786 *  @ts: upper bound on process time suspension
2787 */
2788int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2789			const struct timespec *ts)
2790{
2791	struct task_struct *tsk = current;
2792	long timeout = MAX_SCHEDULE_TIMEOUT;
2793	sigset_t mask = *which;
2794	int sig;
2795
2796	if (ts) {
2797		if (!timespec_valid(ts))
2798			return -EINVAL;
2799		timeout = timespec_to_jiffies(ts);
2800		/*
2801		 * We can be close to the next tick, add another one
2802		 * to ensure we will wait at least the time asked for.
2803		 */
2804		if (ts->tv_sec || ts->tv_nsec)
2805			timeout++;
2806	}
2807
2808	/*
2809	 * Invert the set of allowed signals to get those we want to block.
2810	 */
2811	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2812	signotset(&mask);
2813
2814	spin_lock_irq(&tsk->sighand->siglock);
2815	sig = dequeue_signal(tsk, &mask, info);
2816	if (!sig && timeout) {
2817		/*
2818		 * None ready, temporarily unblock those we're interested
2819		 * while we are sleeping in so that we'll be awakened when
2820		 * they arrive. Unblocking is always fine, we can avoid
2821		 * set_current_blocked().
2822		 */
2823		tsk->real_blocked = tsk->blocked;
2824		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2825		recalc_sigpending();
2826		spin_unlock_irq(&tsk->sighand->siglock);
2827
2828		timeout = freezable_schedule_timeout_interruptible(timeout);
2829
2830		spin_lock_irq(&tsk->sighand->siglock);
2831		__set_task_blocked(tsk, &tsk->real_blocked);
2832		sigemptyset(&tsk->real_blocked);
2833		sig = dequeue_signal(tsk, &mask, info);
2834	}
2835	spin_unlock_irq(&tsk->sighand->siglock);
2836
2837	if (sig)
2838		return sig;
2839	return timeout ? -EINTR : -EAGAIN;
2840}
2841
2842/**
2843 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2844 *			in @uthese
2845 *  @uthese: queued signals to wait for
2846 *  @uinfo: if non-null, the signal's siginfo is returned here
2847 *  @uts: upper bound on process time suspension
2848 *  @sigsetsize: size of sigset_t type
2849 */
2850SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2851		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2852		size_t, sigsetsize)
2853{
2854	sigset_t these;
2855	struct timespec ts;
2856	siginfo_t info;
2857	int ret;
2858
2859	/* XXX: Don't preclude handling different sized sigset_t's.  */
2860	if (sigsetsize != sizeof(sigset_t))
2861		return -EINVAL;
2862
2863	if (copy_from_user(&these, uthese, sizeof(these)))
2864		return -EFAULT;
2865
2866	if (uts) {
2867		if (copy_from_user(&ts, uts, sizeof(ts)))
2868			return -EFAULT;
2869	}
2870
2871	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2872
2873	if (ret > 0 && uinfo) {
2874		if (copy_siginfo_to_user(uinfo, &info))
2875			ret = -EFAULT;
2876	}
2877
2878	return ret;
2879}
2880
2881/**
2882 *  sys_kill - send a signal to a process
2883 *  @pid: the PID of the process
2884 *  @sig: signal to be sent
2885 */
2886SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2887{
2888	struct siginfo info;
2889
2890	info.si_signo = sig;
2891	info.si_errno = 0;
2892	info.si_code = SI_USER;
2893	info.si_pid = task_tgid_vnr(current);
2894	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2895
2896	return kill_something_info(sig, &info, pid);
2897}
2898
2899static int
2900do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2901{
2902	struct task_struct *p;
2903	int error = -ESRCH;
2904
2905	rcu_read_lock();
2906	p = find_task_by_vpid(pid);
2907	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2908		error = check_kill_permission(sig, info, p);
2909		/*
2910		 * The null signal is a permissions and process existence
2911		 * probe.  No signal is actually delivered.
2912		 */
2913		if (!error && sig) {
2914			error = do_send_sig_info(sig, info, p, false);
2915			/*
2916			 * If lock_task_sighand() failed we pretend the task
2917			 * dies after receiving the signal. The window is tiny,
2918			 * and the signal is private anyway.
2919			 */
2920			if (unlikely(error == -ESRCH))
2921				error = 0;
2922		}
2923	}
2924	rcu_read_unlock();
2925
2926	return error;
2927}
2928
2929static int do_tkill(pid_t tgid, pid_t pid, int sig)
2930{
2931	struct siginfo info = {};
2932
2933	info.si_signo = sig;
2934	info.si_errno = 0;
2935	info.si_code = SI_TKILL;
2936	info.si_pid = task_tgid_vnr(current);
2937	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2938
2939	return do_send_specific(tgid, pid, sig, &info);
2940}
2941
2942/**
2943 *  sys_tgkill - send signal to one specific thread
2944 *  @tgid: the thread group ID of the thread
2945 *  @pid: the PID of the thread
2946 *  @sig: signal to be sent
2947 *
2948 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2949 *  exists but it's not belonging to the target process anymore. This
2950 *  method solves the problem of threads exiting and PIDs getting reused.
2951 */
2952SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2953{
2954	/* This is only valid for single tasks */
2955	if (pid <= 0 || tgid <= 0)
2956		return -EINVAL;
2957
2958	return do_tkill(tgid, pid, sig);
2959}
2960
2961/**
2962 *  sys_tkill - send signal to one specific task
2963 *  @pid: the PID of the task
2964 *  @sig: signal to be sent
2965 *
2966 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2967 */
2968SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2969{
2970	/* This is only valid for single tasks */
2971	if (pid <= 0)
2972		return -EINVAL;
2973
2974	return do_tkill(0, pid, sig);
2975}
2976
2977static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2978{
2979	/* Not even root can pretend to send signals from the kernel.
2980	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2981	 */
2982	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2983	    (task_pid_vnr(current) != pid)) {
2984		/* We used to allow any < 0 si_code */
2985		WARN_ON_ONCE(info->si_code < 0);
2986		return -EPERM;
2987	}
2988	info->si_signo = sig;
2989
2990	/* POSIX.1b doesn't mention process groups.  */
2991	return kill_proc_info(sig, info, pid);
2992}
2993
2994/**
2995 *  sys_rt_sigqueueinfo - send signal information to a signal
2996 *  @pid: the PID of the thread
2997 *  @sig: signal to be sent
2998 *  @uinfo: signal info to be sent
2999 */
3000SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3001		siginfo_t __user *, uinfo)
3002{
3003	siginfo_t info;
3004	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3005		return -EFAULT;
3006	return do_rt_sigqueueinfo(pid, sig, &info);
3007}
3008
3009#ifdef CONFIG_COMPAT
3010COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3011			compat_pid_t, pid,
3012			int, sig,
3013			struct compat_siginfo __user *, uinfo)
3014{
3015	siginfo_t info;
3016	int ret = copy_siginfo_from_user32(&info, uinfo);
3017	if (unlikely(ret))
3018		return ret;
3019	return do_rt_sigqueueinfo(pid, sig, &info);
3020}
3021#endif
3022
3023static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3024{
3025	/* This is only valid for single tasks */
3026	if (pid <= 0 || tgid <= 0)
3027		return -EINVAL;
3028
3029	/* Not even root can pretend to send signals from the kernel.
3030	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3031	 */
3032	if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3033	    (task_pid_vnr(current) != pid)) {
3034		/* We used to allow any < 0 si_code */
3035		WARN_ON_ONCE(info->si_code < 0);
3036		return -EPERM;
3037	}
3038	info->si_signo = sig;
3039
3040	return do_send_specific(tgid, pid, sig, info);
3041}
3042
3043SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3044		siginfo_t __user *, uinfo)
3045{
3046	siginfo_t info;
3047
3048	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3049		return -EFAULT;
3050
3051	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3052}
3053
3054#ifdef CONFIG_COMPAT
3055COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3056			compat_pid_t, tgid,
3057			compat_pid_t, pid,
3058			int, sig,
3059			struct compat_siginfo __user *, uinfo)
3060{
3061	siginfo_t info;
3062
3063	if (copy_siginfo_from_user32(&info, uinfo))
3064		return -EFAULT;
3065	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3066}
3067#endif
3068
3069/*
3070 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3071 */
3072void kernel_sigaction(int sig, __sighandler_t action)
3073{
3074	spin_lock_irq(&current->sighand->siglock);
3075	current->sighand->action[sig - 1].sa.sa_handler = action;
3076	if (action == SIG_IGN) {
3077		sigset_t mask;
3078
3079		sigemptyset(&mask);
3080		sigaddset(&mask, sig);
3081
3082		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3083		flush_sigqueue_mask(&mask, &current->pending);
3084		recalc_sigpending();
3085	}
3086	spin_unlock_irq(&current->sighand->siglock);
3087}
3088EXPORT_SYMBOL(kernel_sigaction);
3089
3090int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3091{
3092	struct task_struct *p = current, *t;
3093	struct k_sigaction *k;
3094	sigset_t mask;
3095
3096	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3097		return -EINVAL;
3098
3099	k = &p->sighand->action[sig-1];
3100
3101	spin_lock_irq(&p->sighand->siglock);
3102	if (oact)
3103		*oact = *k;
3104
3105	if (act) {
3106		sigdelsetmask(&act->sa.sa_mask,
3107			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3108		*k = *act;
3109		/*
3110		 * POSIX 3.3.1.3:
3111		 *  "Setting a signal action to SIG_IGN for a signal that is
3112		 *   pending shall cause the pending signal to be discarded,
3113		 *   whether or not it is blocked."
3114		 *
3115		 *  "Setting a signal action to SIG_DFL for a signal that is
3116		 *   pending and whose default action is to ignore the signal
3117		 *   (for example, SIGCHLD), shall cause the pending signal to
3118		 *   be discarded, whether or not it is blocked"
3119		 */
3120		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3121			sigemptyset(&mask);
3122			sigaddset(&mask, sig);
3123			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3124			for_each_thread(p, t)
3125				flush_sigqueue_mask(&mask, &t->pending);
3126		}
3127	}
3128
3129	spin_unlock_irq(&p->sighand->siglock);
3130	return 0;
3131}
3132
3133static int
3134do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3135{
3136	stack_t oss;
3137	int error;
3138
3139	oss.ss_sp = (void __user *) current->sas_ss_sp;
3140	oss.ss_size = current->sas_ss_size;
3141	oss.ss_flags = sas_ss_flags(sp);
3142
3143	if (uss) {
3144		void __user *ss_sp;
3145		size_t ss_size;
3146		int ss_flags;
3147
3148		error = -EFAULT;
3149		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3150			goto out;
3151		error = __get_user(ss_sp, &uss->ss_sp) |
3152			__get_user(ss_flags, &uss->ss_flags) |
3153			__get_user(ss_size, &uss->ss_size);
3154		if (error)
3155			goto out;
3156
3157		error = -EPERM;
3158		if (on_sig_stack(sp))
3159			goto out;
3160
3161		error = -EINVAL;
3162		/*
3163		 * Note - this code used to test ss_flags incorrectly:
3164		 *  	  old code may have been written using ss_flags==0
3165		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3166		 *	  way that worked) - this fix preserves that older
3167		 *	  mechanism.
3168		 */
3169		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3170			goto out;
3171
3172		if (ss_flags == SS_DISABLE) {
3173			ss_size = 0;
3174			ss_sp = NULL;
3175		} else {
3176			error = -ENOMEM;
3177			if (ss_size < MINSIGSTKSZ)
3178				goto out;
3179		}
3180
3181		current->sas_ss_sp = (unsigned long) ss_sp;
3182		current->sas_ss_size = ss_size;
3183	}
3184
3185	error = 0;
3186	if (uoss) {
3187		error = -EFAULT;
3188		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3189			goto out;
3190		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3191			__put_user(oss.ss_size, &uoss->ss_size) |
3192			__put_user(oss.ss_flags, &uoss->ss_flags);
3193	}
3194
3195out:
3196	return error;
3197}
3198SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3199{
3200	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3201}
3202
3203int restore_altstack(const stack_t __user *uss)
3204{
3205	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3206	/* squash all but EFAULT for now */
3207	return err == -EFAULT ? err : 0;
3208}
3209
3210int __save_altstack(stack_t __user *uss, unsigned long sp)
3211{
3212	struct task_struct *t = current;
3213	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3214		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3215		__put_user(t->sas_ss_size, &uss->ss_size);
3216}
3217
3218#ifdef CONFIG_COMPAT
3219COMPAT_SYSCALL_DEFINE2(sigaltstack,
3220			const compat_stack_t __user *, uss_ptr,
3221			compat_stack_t __user *, uoss_ptr)
3222{
3223	stack_t uss, uoss;
3224	int ret;
3225	mm_segment_t seg;
3226
3227	if (uss_ptr) {
3228		compat_stack_t uss32;
3229
3230		memset(&uss, 0, sizeof(stack_t));
3231		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3232			return -EFAULT;
3233		uss.ss_sp = compat_ptr(uss32.ss_sp);
3234		uss.ss_flags = uss32.ss_flags;
3235		uss.ss_size = uss32.ss_size;
3236	}
3237	seg = get_fs();
3238	set_fs(KERNEL_DS);
3239	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3240			     (stack_t __force __user *) &uoss,
3241			     compat_user_stack_pointer());
3242	set_fs(seg);
3243	if (ret >= 0 && uoss_ptr)  {
3244		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3245		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3246		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3247		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3248			ret = -EFAULT;
3249	}
3250	return ret;
3251}
3252
3253int compat_restore_altstack(const compat_stack_t __user *uss)
3254{
3255	int err = compat_sys_sigaltstack(uss, NULL);
3256	/* squash all but -EFAULT for now */
3257	return err == -EFAULT ? err : 0;
3258}
3259
3260int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3261{
3262	struct task_struct *t = current;
3263	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3264		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3265		__put_user(t->sas_ss_size, &uss->ss_size);
3266}
3267#endif
3268
3269#ifdef __ARCH_WANT_SYS_SIGPENDING
3270
3271/**
3272 *  sys_sigpending - examine pending signals
3273 *  @set: where mask of pending signal is returned
3274 */
3275SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3276{
3277	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t));
3278}
3279
3280#endif
3281
3282#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3283/**
3284 *  sys_sigprocmask - examine and change blocked signals
3285 *  @how: whether to add, remove, or set signals
3286 *  @nset: signals to add or remove (if non-null)
3287 *  @oset: previous value of signal mask if non-null
3288 *
3289 * Some platforms have their own version with special arguments;
3290 * others support only sys_rt_sigprocmask.
3291 */
3292
3293SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3294		old_sigset_t __user *, oset)
3295{
3296	old_sigset_t old_set, new_set;
3297	sigset_t new_blocked;
3298
3299	old_set = current->blocked.sig[0];
3300
3301	if (nset) {
3302		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3303			return -EFAULT;
3304
3305		new_blocked = current->blocked;
3306
3307		switch (how) {
3308		case SIG_BLOCK:
3309			sigaddsetmask(&new_blocked, new_set);
3310			break;
3311		case SIG_UNBLOCK:
3312			sigdelsetmask(&new_blocked, new_set);
3313			break;
3314		case SIG_SETMASK:
3315			new_blocked.sig[0] = new_set;
3316			break;
3317		default:
3318			return -EINVAL;
3319		}
3320
3321		set_current_blocked(&new_blocked);
3322	}
3323
3324	if (oset) {
3325		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3326			return -EFAULT;
3327	}
3328
3329	return 0;
3330}
3331#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3332
3333#ifndef CONFIG_ODD_RT_SIGACTION
3334/**
3335 *  sys_rt_sigaction - alter an action taken by a process
3336 *  @sig: signal to be sent
3337 *  @act: new sigaction
3338 *  @oact: used to save the previous sigaction
3339 *  @sigsetsize: size of sigset_t type
3340 */
3341SYSCALL_DEFINE4(rt_sigaction, int, sig,
3342		const struct sigaction __user *, act,
3343		struct sigaction __user *, oact,
3344		size_t, sigsetsize)
3345{
3346	struct k_sigaction new_sa, old_sa;
3347	int ret = -EINVAL;
3348
3349	/* XXX: Don't preclude handling different sized sigset_t's.  */
3350	if (sigsetsize != sizeof(sigset_t))
3351		goto out;
3352
3353	if (act) {
3354		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3355			return -EFAULT;
3356	}
3357
3358	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3359
3360	if (!ret && oact) {
3361		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3362			return -EFAULT;
3363	}
3364out:
3365	return ret;
3366}
3367#ifdef CONFIG_COMPAT
3368COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3369		const struct compat_sigaction __user *, act,
3370		struct compat_sigaction __user *, oact,
3371		compat_size_t, sigsetsize)
3372{
3373	struct k_sigaction new_ka, old_ka;
3374	compat_sigset_t mask;
3375#ifdef __ARCH_HAS_SA_RESTORER
3376	compat_uptr_t restorer;
3377#endif
3378	int ret;
3379
3380	/* XXX: Don't preclude handling different sized sigset_t's.  */
3381	if (sigsetsize != sizeof(compat_sigset_t))
3382		return -EINVAL;
3383
3384	if (act) {
3385		compat_uptr_t handler;
3386		ret = get_user(handler, &act->sa_handler);
3387		new_ka.sa.sa_handler = compat_ptr(handler);
3388#ifdef __ARCH_HAS_SA_RESTORER
3389		ret |= get_user(restorer, &act->sa_restorer);
3390		new_ka.sa.sa_restorer = compat_ptr(restorer);
3391#endif
3392		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3393		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3394		if (ret)
3395			return -EFAULT;
3396		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3397	}
3398
3399	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3400	if (!ret && oact) {
3401		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3402		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler),
3403			       &oact->sa_handler);
3404		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3405		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3406#ifdef __ARCH_HAS_SA_RESTORER
3407		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3408				&oact->sa_restorer);
3409#endif
3410	}
3411	return ret;
3412}
3413#endif
3414#endif /* !CONFIG_ODD_RT_SIGACTION */
3415
3416#ifdef CONFIG_OLD_SIGACTION
3417SYSCALL_DEFINE3(sigaction, int, sig,
3418		const struct old_sigaction __user *, act,
3419	        struct old_sigaction __user *, oact)
3420{
3421	struct k_sigaction new_ka, old_ka;
3422	int ret;
3423
3424	if (act) {
3425		old_sigset_t mask;
3426		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3427		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3428		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3429		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3430		    __get_user(mask, &act->sa_mask))
3431			return -EFAULT;
3432#ifdef __ARCH_HAS_KA_RESTORER
3433		new_ka.ka_restorer = NULL;
3434#endif
3435		siginitset(&new_ka.sa.sa_mask, mask);
3436	}
3437
3438	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3439
3440	if (!ret && oact) {
3441		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3442		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3443		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3444		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3445		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3446			return -EFAULT;
3447	}
3448
3449	return ret;
3450}
3451#endif
3452#ifdef CONFIG_COMPAT_OLD_SIGACTION
3453COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3454		const struct compat_old_sigaction __user *, act,
3455	        struct compat_old_sigaction __user *, oact)
3456{
3457	struct k_sigaction new_ka, old_ka;
3458	int ret;
3459	compat_old_sigset_t mask;
3460	compat_uptr_t handler, restorer;
3461
3462	if (act) {
3463		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3464		    __get_user(handler, &act->sa_handler) ||
3465		    __get_user(restorer, &act->sa_restorer) ||
3466		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3467		    __get_user(mask, &act->sa_mask))
3468			return -EFAULT;
3469
3470#ifdef __ARCH_HAS_KA_RESTORER
3471		new_ka.ka_restorer = NULL;
3472#endif
3473		new_ka.sa.sa_handler = compat_ptr(handler);
3474		new_ka.sa.sa_restorer = compat_ptr(restorer);
3475		siginitset(&new_ka.sa.sa_mask, mask);
3476	}
3477
3478	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3479
3480	if (!ret && oact) {
3481		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3482		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3483			       &oact->sa_handler) ||
3484		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3485			       &oact->sa_restorer) ||
3486		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3487		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3488			return -EFAULT;
3489	}
3490	return ret;
3491}
3492#endif
3493
3494#ifdef CONFIG_SGETMASK_SYSCALL
3495
3496/*
3497 * For backwards compatibility.  Functionality superseded by sigprocmask.
3498 */
3499SYSCALL_DEFINE0(sgetmask)
3500{
3501	/* SMP safe */
3502	return current->blocked.sig[0];
3503}
3504
3505SYSCALL_DEFINE1(ssetmask, int, newmask)
3506{
3507	int old = current->blocked.sig[0];
3508	sigset_t newset;
3509
3510	siginitset(&newset, newmask);
3511	set_current_blocked(&newset);
3512
3513	return old;
3514}
3515#endif /* CONFIG_SGETMASK_SYSCALL */
3516
3517#ifdef __ARCH_WANT_SYS_SIGNAL
3518/*
3519 * For backwards compatibility.  Functionality superseded by sigaction.
3520 */
3521SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3522{
3523	struct k_sigaction new_sa, old_sa;
3524	int ret;
3525
3526	new_sa.sa.sa_handler = handler;
3527	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3528	sigemptyset(&new_sa.sa.sa_mask);
3529
3530	ret = do_sigaction(sig, &new_sa, &old_sa);
3531
3532	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3533}
3534#endif /* __ARCH_WANT_SYS_SIGNAL */
3535
3536#ifdef __ARCH_WANT_SYS_PAUSE
3537
3538SYSCALL_DEFINE0(pause)
3539{
3540	while (!signal_pending(current)) {
3541		current->state = TASK_INTERRUPTIBLE;
3542		schedule();
3543	}
3544	return -ERESTARTNOHAND;
3545}
3546
3547#endif
3548
3549int sigsuspend(sigset_t *set)
3550{
3551	current->saved_sigmask = current->blocked;
3552	set_current_blocked(set);
3553
3554	current->state = TASK_INTERRUPTIBLE;
3555	schedule();
3556	set_restore_sigmask();
3557	return -ERESTARTNOHAND;
3558}
3559
3560/**
3561 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3562 *	@unewset value until a signal is received
3563 *  @unewset: new signal mask value
3564 *  @sigsetsize: size of sigset_t type
3565 */
3566SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3567{
3568	sigset_t newset;
3569
3570	/* XXX: Don't preclude handling different sized sigset_t's.  */
3571	if (sigsetsize != sizeof(sigset_t))
3572		return -EINVAL;
3573
3574	if (copy_from_user(&newset, unewset, sizeof(newset)))
3575		return -EFAULT;
3576	return sigsuspend(&newset);
3577}
3578
3579#ifdef CONFIG_COMPAT
3580COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3581{
3582#ifdef __BIG_ENDIAN
3583	sigset_t newset;
3584	compat_sigset_t newset32;
3585
3586	/* XXX: Don't preclude handling different sized sigset_t's.  */
3587	if (sigsetsize != sizeof(sigset_t))
3588		return -EINVAL;
3589
3590	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3591		return -EFAULT;
3592	sigset_from_compat(&newset, &newset32);
3593	return sigsuspend(&newset);
3594#else
3595	/* on little-endian bitmaps don't care about granularity */
3596	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3597#endif
3598}
3599#endif
3600
3601#ifdef CONFIG_OLD_SIGSUSPEND
3602SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3603{
3604	sigset_t blocked;
3605	siginitset(&blocked, mask);
3606	return sigsuspend(&blocked);
3607}
3608#endif
3609#ifdef CONFIG_OLD_SIGSUSPEND3
3610SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3611{
3612	sigset_t blocked;
3613	siginitset(&blocked, mask);
3614	return sigsuspend(&blocked);
3615}
3616#endif
3617
3618__weak const char *arch_vma_name(struct vm_area_struct *vma)
3619{
3620	return NULL;
3621}
3622
3623void __init signals_init(void)
3624{
3625	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3626}
3627
3628#ifdef CONFIG_KGDB_KDB
3629#include <linux/kdb.h>
3630/*
3631 * kdb_send_sig_info - Allows kdb to send signals without exposing
3632 * signal internals.  This function checks if the required locks are
3633 * available before calling the main signal code, to avoid kdb
3634 * deadlocks.
3635 */
3636void
3637kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3638{
3639	static struct task_struct *kdb_prev_t;
3640	int sig, new_t;
3641	if (!spin_trylock(&t->sighand->siglock)) {
3642		kdb_printf("Can't do kill command now.\n"
3643			   "The sigmask lock is held somewhere else in "
3644			   "kernel, try again later\n");
3645		return;
3646	}
3647	spin_unlock(&t->sighand->siglock);
3648	new_t = kdb_prev_t != t;
3649	kdb_prev_t = t;
3650	if (t->state != TASK_RUNNING && new_t) {
3651		kdb_printf("Process is not RUNNING, sending a signal from "
3652			   "kdb risks deadlock\n"
3653			   "on the run queue locks. "
3654			   "The signal has _not_ been sent.\n"
3655			   "Reissue the kill command if you want to risk "
3656			   "the deadlock.\n");
3657		return;
3658	}
3659	sig = info->si_signo;
3660	if (send_sig_info(sig, info, t))
3661		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3662			   sig, t->pid);
3663	else
3664		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3665}
3666#endif	/* CONFIG_KGDB_KDB */
3667