1/* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13#include <linux/slab.h> 14#include <linux/export.h> 15#include <linux/init.h> 16#include <linux/sched.h> 17#include <linux/fs.h> 18#include <linux/tty.h> 19#include <linux/binfmts.h> 20#include <linux/coredump.h> 21#include <linux/security.h> 22#include <linux/syscalls.h> 23#include <linux/ptrace.h> 24#include <linux/signal.h> 25#include <linux/signalfd.h> 26#include <linux/ratelimit.h> 27#include <linux/tracehook.h> 28#include <linux/capability.h> 29#include <linux/freezer.h> 30#include <linux/pid_namespace.h> 31#include <linux/nsproxy.h> 32#include <linux/user_namespace.h> 33#include <linux/uprobes.h> 34#include <linux/compat.h> 35#include <linux/cn_proc.h> 36#include <linux/compiler.h> 37 38#define CREATE_TRACE_POINTS 39#include <trace/events/signal.h> 40 41#include <asm/param.h> 42#include <asm/uaccess.h> 43#include <asm/unistd.h> 44#include <asm/siginfo.h> 45#include <asm/cacheflush.h> 46#include "audit.h" /* audit_signal_info() */ 47 48/* 49 * SLAB caches for signal bits. 50 */ 51 52static struct kmem_cache *sigqueue_cachep; 53 54int print_fatal_signals __read_mostly; 55 56static void __user *sig_handler(struct task_struct *t, int sig) 57{ 58 return t->sighand->action[sig - 1].sa.sa_handler; 59} 60 61static int sig_handler_ignored(void __user *handler, int sig) 62{ 63 /* Is it explicitly or implicitly ignored? */ 64 return handler == SIG_IGN || 65 (handler == SIG_DFL && sig_kernel_ignore(sig)); 66} 67 68static int sig_task_ignored(struct task_struct *t, int sig, bool force) 69{ 70 void __user *handler; 71 72 handler = sig_handler(t, sig); 73 74 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 75 handler == SIG_DFL && !force) 76 return 1; 77 78 return sig_handler_ignored(handler, sig); 79} 80 81static int sig_ignored(struct task_struct *t, int sig, bool force) 82{ 83 /* 84 * Blocked signals are never ignored, since the 85 * signal handler may change by the time it is 86 * unblocked. 87 */ 88 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 89 return 0; 90 91 if (!sig_task_ignored(t, sig, force)) 92 return 0; 93 94 /* 95 * Tracers may want to know about even ignored signals. 96 */ 97 return !t->ptrace; 98} 99 100/* 101 * Re-calculate pending state from the set of locally pending 102 * signals, globally pending signals, and blocked signals. 103 */ 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 105{ 106 unsigned long ready; 107 long i; 108 109 switch (_NSIG_WORDS) { 110 default: 111 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 112 ready |= signal->sig[i] &~ blocked->sig[i]; 113 break; 114 115 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 116 ready |= signal->sig[2] &~ blocked->sig[2]; 117 ready |= signal->sig[1] &~ blocked->sig[1]; 118 ready |= signal->sig[0] &~ blocked->sig[0]; 119 break; 120 121 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 122 ready |= signal->sig[0] &~ blocked->sig[0]; 123 break; 124 125 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 126 } 127 return ready != 0; 128} 129 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 131 132static int recalc_sigpending_tsk(struct task_struct *t) 133{ 134 if ((t->jobctl & JOBCTL_PENDING_MASK) || 135 PENDING(&t->pending, &t->blocked) || 136 PENDING(&t->signal->shared_pending, &t->blocked)) { 137 set_tsk_thread_flag(t, TIF_SIGPENDING); 138 return 1; 139 } 140 /* 141 * We must never clear the flag in another thread, or in current 142 * when it's possible the current syscall is returning -ERESTART*. 143 * So we don't clear it here, and only callers who know they should do. 144 */ 145 return 0; 146} 147 148/* 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 150 * This is superfluous when called on current, the wakeup is a harmless no-op. 151 */ 152void recalc_sigpending_and_wake(struct task_struct *t) 153{ 154 if (recalc_sigpending_tsk(t)) 155 signal_wake_up(t, 0); 156} 157 158void recalc_sigpending(void) 159{ 160 if (!recalc_sigpending_tsk(current) && !freezing(current)) 161 clear_thread_flag(TIF_SIGPENDING); 162 163} 164 165/* Given the mask, find the first available signal that should be serviced. */ 166 167#define SYNCHRONOUS_MASK \ 168 (sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ 169 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS)) 170 171int next_signal(struct sigpending *pending, sigset_t *mask) 172{ 173 unsigned long i, *s, *m, x; 174 int sig = 0; 175 176 s = pending->signal.sig; 177 m = mask->sig; 178 179 /* 180 * Handle the first word specially: it contains the 181 * synchronous signals that need to be dequeued first. 182 */ 183 x = *s &~ *m; 184 if (x) { 185 if (x & SYNCHRONOUS_MASK) 186 x &= SYNCHRONOUS_MASK; 187 sig = ffz(~x) + 1; 188 return sig; 189 } 190 191 switch (_NSIG_WORDS) { 192 default: 193 for (i = 1; i < _NSIG_WORDS; ++i) { 194 x = *++s &~ *++m; 195 if (!x) 196 continue; 197 sig = ffz(~x) + i*_NSIG_BPW + 1; 198 break; 199 } 200 break; 201 202 case 2: 203 x = s[1] &~ m[1]; 204 if (!x) 205 break; 206 sig = ffz(~x) + _NSIG_BPW + 1; 207 break; 208 209 case 1: 210 /* Nothing to do */ 211 break; 212 } 213 214 return sig; 215} 216 217static inline void print_dropped_signal(int sig) 218{ 219 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 220 221 if (!print_fatal_signals) 222 return; 223 224 if (!__ratelimit(&ratelimit_state)) 225 return; 226 227 printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", 228 current->comm, current->pid, sig); 229} 230 231/** 232 * task_set_jobctl_pending - set jobctl pending bits 233 * @task: target task 234 * @mask: pending bits to set 235 * 236 * Clear @mask from @task->jobctl. @mask must be subset of 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK | 238 * %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is 239 * cleared. If @task is already being killed or exiting, this function 240 * becomes noop. 241 * 242 * CONTEXT: 243 * Must be called with @task->sighand->siglock held. 244 * 245 * RETURNS: 246 * %true if @mask is set, %false if made noop because @task was dying. 247 */ 248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask) 249{ 250 BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME | 251 JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING)); 252 BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK)); 253 254 if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING))) 255 return false; 256 257 if (mask & JOBCTL_STOP_SIGMASK) 258 task->jobctl &= ~JOBCTL_STOP_SIGMASK; 259 260 task->jobctl |= mask; 261 return true; 262} 263 264/** 265 * task_clear_jobctl_trapping - clear jobctl trapping bit 266 * @task: target task 267 * 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. 269 * Clear it and wake up the ptracer. Note that we don't need any further 270 * locking. @task->siglock guarantees that @task->parent points to the 271 * ptracer. 272 * 273 * CONTEXT: 274 * Must be called with @task->sighand->siglock held. 275 */ 276void task_clear_jobctl_trapping(struct task_struct *task) 277{ 278 if (unlikely(task->jobctl & JOBCTL_TRAPPING)) { 279 task->jobctl &= ~JOBCTL_TRAPPING; 280 smp_mb(); /* advised by wake_up_bit() */ 281 wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT); 282 } 283} 284 285/** 286 * task_clear_jobctl_pending - clear jobctl pending bits 287 * @task: target task 288 * @mask: pending bits to clear 289 * 290 * Clear @mask from @task->jobctl. @mask must be subset of 291 * %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other 292 * STOP bits are cleared together. 293 * 294 * If clearing of @mask leaves no stop or trap pending, this function calls 295 * task_clear_jobctl_trapping(). 296 * 297 * CONTEXT: 298 * Must be called with @task->sighand->siglock held. 299 */ 300void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask) 301{ 302 BUG_ON(mask & ~JOBCTL_PENDING_MASK); 303 304 if (mask & JOBCTL_STOP_PENDING) 305 mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED; 306 307 task->jobctl &= ~mask; 308 309 if (!(task->jobctl & JOBCTL_PENDING_MASK)) 310 task_clear_jobctl_trapping(task); 311} 312 313/** 314 * task_participate_group_stop - participate in a group stop 315 * @task: task participating in a group stop 316 * 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop. 318 * Group stop states are cleared and the group stop count is consumed if 319 * %JOBCTL_STOP_CONSUME was set. If the consumption completes the group 320 * stop, the appropriate %SIGNAL_* flags are set. 321 * 322 * CONTEXT: 323 * Must be called with @task->sighand->siglock held. 324 * 325 * RETURNS: 326 * %true if group stop completion should be notified to the parent, %false 327 * otherwise. 328 */ 329static bool task_participate_group_stop(struct task_struct *task) 330{ 331 struct signal_struct *sig = task->signal; 332 bool consume = task->jobctl & JOBCTL_STOP_CONSUME; 333 334 WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING)); 335 336 task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING); 337 338 if (!consume) 339 return false; 340 341 if (!WARN_ON_ONCE(sig->group_stop_count == 0)) 342 sig->group_stop_count--; 343 344 /* 345 * Tell the caller to notify completion iff we are entering into a 346 * fresh group stop. Read comment in do_signal_stop() for details. 347 */ 348 if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { 349 sig->flags = SIGNAL_STOP_STOPPED; 350 return true; 351 } 352 return false; 353} 354 355/* 356 * allocate a new signal queue record 357 * - this may be called without locks if and only if t == current, otherwise an 358 * appropriate lock must be held to stop the target task from exiting 359 */ 360static struct sigqueue * 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) 362{ 363 struct sigqueue *q = NULL; 364 struct user_struct *user; 365 366 /* 367 * Protect access to @t credentials. This can go away when all 368 * callers hold rcu read lock. 369 */ 370 rcu_read_lock(); 371 user = get_uid(__task_cred(t)->user); 372 atomic_inc(&user->sigpending); 373 rcu_read_unlock(); 374 375 if (override_rlimit || 376 atomic_read(&user->sigpending) <= 377 task_rlimit(t, RLIMIT_SIGPENDING)) { 378 q = kmem_cache_alloc(sigqueue_cachep, flags); 379 } else { 380 print_dropped_signal(sig); 381 } 382 383 if (unlikely(q == NULL)) { 384 atomic_dec(&user->sigpending); 385 free_uid(user); 386 } else { 387 INIT_LIST_HEAD(&q->list); 388 q->flags = 0; 389 q->user = user; 390 } 391 392 return q; 393} 394 395static void __sigqueue_free(struct sigqueue *q) 396{ 397 if (q->flags & SIGQUEUE_PREALLOC) 398 return; 399 atomic_dec(&q->user->sigpending); 400 free_uid(q->user); 401 kmem_cache_free(sigqueue_cachep, q); 402} 403 404void flush_sigqueue(struct sigpending *queue) 405{ 406 struct sigqueue *q; 407 408 sigemptyset(&queue->signal); 409 while (!list_empty(&queue->list)) { 410 q = list_entry(queue->list.next, struct sigqueue , list); 411 list_del_init(&q->list); 412 __sigqueue_free(q); 413 } 414} 415 416/* 417 * Flush all pending signals for a task. 418 */ 419void __flush_signals(struct task_struct *t) 420{ 421 clear_tsk_thread_flag(t, TIF_SIGPENDING); 422 flush_sigqueue(&t->pending); 423 flush_sigqueue(&t->signal->shared_pending); 424} 425 426void flush_signals(struct task_struct *t) 427{ 428 unsigned long flags; 429 430 spin_lock_irqsave(&t->sighand->siglock, flags); 431 __flush_signals(t); 432 spin_unlock_irqrestore(&t->sighand->siglock, flags); 433} 434 435static void __flush_itimer_signals(struct sigpending *pending) 436{ 437 sigset_t signal, retain; 438 struct sigqueue *q, *n; 439 440 signal = pending->signal; 441 sigemptyset(&retain); 442 443 list_for_each_entry_safe(q, n, &pending->list, list) { 444 int sig = q->info.si_signo; 445 446 if (likely(q->info.si_code != SI_TIMER)) { 447 sigaddset(&retain, sig); 448 } else { 449 sigdelset(&signal, sig); 450 list_del_init(&q->list); 451 __sigqueue_free(q); 452 } 453 } 454 455 sigorsets(&pending->signal, &signal, &retain); 456} 457 458void flush_itimer_signals(void) 459{ 460 struct task_struct *tsk = current; 461 unsigned long flags; 462 463 spin_lock_irqsave(&tsk->sighand->siglock, flags); 464 __flush_itimer_signals(&tsk->pending); 465 __flush_itimer_signals(&tsk->signal->shared_pending); 466 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 467} 468 469void ignore_signals(struct task_struct *t) 470{ 471 int i; 472 473 for (i = 0; i < _NSIG; ++i) 474 t->sighand->action[i].sa.sa_handler = SIG_IGN; 475 476 flush_signals(t); 477} 478 479/* 480 * Flush all handlers for a task. 481 */ 482 483void 484flush_signal_handlers(struct task_struct *t, int force_default) 485{ 486 int i; 487 struct k_sigaction *ka = &t->sighand->action[0]; 488 for (i = _NSIG ; i != 0 ; i--) { 489 if (force_default || ka->sa.sa_handler != SIG_IGN) 490 ka->sa.sa_handler = SIG_DFL; 491 ka->sa.sa_flags = 0; 492#ifdef __ARCH_HAS_SA_RESTORER 493 ka->sa.sa_restorer = NULL; 494#endif 495 sigemptyset(&ka->sa.sa_mask); 496 ka++; 497 } 498} 499 500int unhandled_signal(struct task_struct *tsk, int sig) 501{ 502 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 503 if (is_global_init(tsk)) 504 return 1; 505 if (handler != SIG_IGN && handler != SIG_DFL) 506 return 0; 507 /* if ptraced, let the tracer determine */ 508 return !tsk->ptrace; 509} 510 511/* 512 * Notify the system that a driver wants to block all signals for this 513 * process, and wants to be notified if any signals at all were to be 514 * sent/acted upon. If the notifier routine returns non-zero, then the 515 * signal will be acted upon after all. If the notifier routine returns 0, 516 * then then signal will be blocked. Only one block per process is 517 * allowed. priv is a pointer to private data that the notifier routine 518 * can use to determine if the signal should be blocked or not. 519 */ 520void 521block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 522{ 523 unsigned long flags; 524 525 spin_lock_irqsave(¤t->sighand->siglock, flags); 526 current->notifier_mask = mask; 527 current->notifier_data = priv; 528 current->notifier = notifier; 529 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 530} 531 532/* Notify the system that blocking has ended. */ 533 534void 535unblock_all_signals(void) 536{ 537 unsigned long flags; 538 539 spin_lock_irqsave(¤t->sighand->siglock, flags); 540 current->notifier = NULL; 541 current->notifier_data = NULL; 542 recalc_sigpending(); 543 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 544} 545 546static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 547{ 548 struct sigqueue *q, *first = NULL; 549 550 /* 551 * Collect the siginfo appropriate to this signal. Check if 552 * there is another siginfo for the same signal. 553 */ 554 list_for_each_entry(q, &list->list, list) { 555 if (q->info.si_signo == sig) { 556 if (first) 557 goto still_pending; 558 first = q; 559 } 560 } 561 562 sigdelset(&list->signal, sig); 563 564 if (first) { 565still_pending: 566 list_del_init(&first->list); 567 copy_siginfo(info, &first->info); 568 __sigqueue_free(first); 569 } else { 570 /* 571 * Ok, it wasn't in the queue. This must be 572 * a fast-pathed signal or we must have been 573 * out of queue space. So zero out the info. 574 */ 575 info->si_signo = sig; 576 info->si_errno = 0; 577 info->si_code = SI_USER; 578 info->si_pid = 0; 579 info->si_uid = 0; 580 } 581} 582 583static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 584 siginfo_t *info) 585{ 586 int sig = next_signal(pending, mask); 587 588 if (sig) { 589 if (current->notifier) { 590 if (sigismember(current->notifier_mask, sig)) { 591 if (!(current->notifier)(current->notifier_data)) { 592 clear_thread_flag(TIF_SIGPENDING); 593 return 0; 594 } 595 } 596 } 597 598 collect_signal(sig, pending, info); 599 } 600 601 return sig; 602} 603 604/* 605 * Dequeue a signal and return the element to the caller, which is 606 * expected to free it. 607 * 608 * All callers have to hold the siglock. 609 */ 610int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 611{ 612 int signr; 613 614 /* We only dequeue private signals from ourselves, we don't let 615 * signalfd steal them 616 */ 617 signr = __dequeue_signal(&tsk->pending, mask, info); 618 if (!signr) { 619 signr = __dequeue_signal(&tsk->signal->shared_pending, 620 mask, info); 621 /* 622 * itimer signal ? 623 * 624 * itimers are process shared and we restart periodic 625 * itimers in the signal delivery path to prevent DoS 626 * attacks in the high resolution timer case. This is 627 * compliant with the old way of self-restarting 628 * itimers, as the SIGALRM is a legacy signal and only 629 * queued once. Changing the restart behaviour to 630 * restart the timer in the signal dequeue path is 631 * reducing the timer noise on heavy loaded !highres 632 * systems too. 633 */ 634 if (unlikely(signr == SIGALRM)) { 635 struct hrtimer *tmr = &tsk->signal->real_timer; 636 637 if (!hrtimer_is_queued(tmr) && 638 tsk->signal->it_real_incr.tv64 != 0) { 639 hrtimer_forward(tmr, tmr->base->get_time(), 640 tsk->signal->it_real_incr); 641 hrtimer_restart(tmr); 642 } 643 } 644 } 645 646 recalc_sigpending(); 647 if (!signr) 648 return 0; 649 650 if (unlikely(sig_kernel_stop(signr))) { 651 /* 652 * Set a marker that we have dequeued a stop signal. Our 653 * caller might release the siglock and then the pending 654 * stop signal it is about to process is no longer in the 655 * pending bitmasks, but must still be cleared by a SIGCONT 656 * (and overruled by a SIGKILL). So those cases clear this 657 * shared flag after we've set it. Note that this flag may 658 * remain set after the signal we return is ignored or 659 * handled. That doesn't matter because its only purpose 660 * is to alert stop-signal processing code when another 661 * processor has come along and cleared the flag. 662 */ 663 current->jobctl |= JOBCTL_STOP_DEQUEUED; 664 } 665 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 666 /* 667 * Release the siglock to ensure proper locking order 668 * of timer locks outside of siglocks. Note, we leave 669 * irqs disabled here, since the posix-timers code is 670 * about to disable them again anyway. 671 */ 672 spin_unlock(&tsk->sighand->siglock); 673 do_schedule_next_timer(info); 674 spin_lock(&tsk->sighand->siglock); 675 } 676 return signr; 677} 678 679/* 680 * Tell a process that it has a new active signal.. 681 * 682 * NOTE! we rely on the previous spin_lock to 683 * lock interrupts for us! We can only be called with 684 * "siglock" held, and the local interrupt must 685 * have been disabled when that got acquired! 686 * 687 * No need to set need_resched since signal event passing 688 * goes through ->blocked 689 */ 690void signal_wake_up_state(struct task_struct *t, unsigned int state) 691{ 692 set_tsk_thread_flag(t, TIF_SIGPENDING); 693 /* 694 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable 695 * case. We don't check t->state here because there is a race with it 696 * executing another processor and just now entering stopped state. 697 * By using wake_up_state, we ensure the process will wake up and 698 * handle its death signal. 699 */ 700 if (!wake_up_state(t, state | TASK_INTERRUPTIBLE)) 701 kick_process(t); 702} 703 704/* 705 * Remove signals in mask from the pending set and queue. 706 * Returns 1 if any signals were found. 707 * 708 * All callers must be holding the siglock. 709 */ 710static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s) 711{ 712 struct sigqueue *q, *n; 713 sigset_t m; 714 715 sigandsets(&m, mask, &s->signal); 716 if (sigisemptyset(&m)) 717 return 0; 718 719 sigandnsets(&s->signal, &s->signal, mask); 720 list_for_each_entry_safe(q, n, &s->list, list) { 721 if (sigismember(mask, q->info.si_signo)) { 722 list_del_init(&q->list); 723 __sigqueue_free(q); 724 } 725 } 726 return 1; 727} 728 729static inline int is_si_special(const struct siginfo *info) 730{ 731 return info <= SEND_SIG_FORCED; 732} 733 734static inline bool si_fromuser(const struct siginfo *info) 735{ 736 return info == SEND_SIG_NOINFO || 737 (!is_si_special(info) && SI_FROMUSER(info)); 738} 739 740/* 741 * called with RCU read lock from check_kill_permission() 742 */ 743static int kill_ok_by_cred(struct task_struct *t) 744{ 745 const struct cred *cred = current_cred(); 746 const struct cred *tcred = __task_cred(t); 747 748 if (uid_eq(cred->euid, tcred->suid) || 749 uid_eq(cred->euid, tcred->uid) || 750 uid_eq(cred->uid, tcred->suid) || 751 uid_eq(cred->uid, tcred->uid)) 752 return 1; 753 754 if (ns_capable(tcred->user_ns, CAP_KILL)) 755 return 1; 756 757 return 0; 758} 759 760/* 761 * Bad permissions for sending the signal 762 * - the caller must hold the RCU read lock 763 */ 764static int check_kill_permission(int sig, struct siginfo *info, 765 struct task_struct *t) 766{ 767 struct pid *sid; 768 int error; 769 770 if (!valid_signal(sig)) 771 return -EINVAL; 772 773 if (!si_fromuser(info)) 774 return 0; 775 776 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 777 if (error) 778 return error; 779 780 if (!same_thread_group(current, t) && 781 !kill_ok_by_cred(t)) { 782 switch (sig) { 783 case SIGCONT: 784 sid = task_session(t); 785 /* 786 * We don't return the error if sid == NULL. The 787 * task was unhashed, the caller must notice this. 788 */ 789 if (!sid || sid == task_session(current)) 790 break; 791 default: 792 return -EPERM; 793 } 794 } 795 796 return security_task_kill(t, info, sig, 0); 797} 798 799/** 800 * ptrace_trap_notify - schedule trap to notify ptracer 801 * @t: tracee wanting to notify tracer 802 * 803 * This function schedules sticky ptrace trap which is cleared on the next 804 * TRAP_STOP to notify ptracer of an event. @t must have been seized by 805 * ptracer. 806 * 807 * If @t is running, STOP trap will be taken. If trapped for STOP and 808 * ptracer is listening for events, tracee is woken up so that it can 809 * re-trap for the new event. If trapped otherwise, STOP trap will be 810 * eventually taken without returning to userland after the existing traps 811 * are finished by PTRACE_CONT. 812 * 813 * CONTEXT: 814 * Must be called with @task->sighand->siglock held. 815 */ 816static void ptrace_trap_notify(struct task_struct *t) 817{ 818 WARN_ON_ONCE(!(t->ptrace & PT_SEIZED)); 819 assert_spin_locked(&t->sighand->siglock); 820 821 task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY); 822 ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING); 823} 824 825/* 826 * Handle magic process-wide effects of stop/continue signals. Unlike 827 * the signal actions, these happen immediately at signal-generation 828 * time regardless of blocking, ignoring, or handling. This does the 829 * actual continuing for SIGCONT, but not the actual stopping for stop 830 * signals. The process stop is done as a signal action for SIG_DFL. 831 * 832 * Returns true if the signal should be actually delivered, otherwise 833 * it should be dropped. 834 */ 835static bool prepare_signal(int sig, struct task_struct *p, bool force) 836{ 837 struct signal_struct *signal = p->signal; 838 struct task_struct *t; 839 sigset_t flush; 840 841 if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) { 842 if (signal->flags & SIGNAL_GROUP_COREDUMP) 843 return sig == SIGKILL; 844 /* 845 * The process is in the middle of dying, nothing to do. 846 */ 847 } else if (sig_kernel_stop(sig)) { 848 /* 849 * This is a stop signal. Remove SIGCONT from all queues. 850 */ 851 siginitset(&flush, sigmask(SIGCONT)); 852 flush_sigqueue_mask(&flush, &signal->shared_pending); 853 for_each_thread(p, t) 854 flush_sigqueue_mask(&flush, &t->pending); 855 } else if (sig == SIGCONT) { 856 unsigned int why; 857 /* 858 * Remove all stop signals from all queues, wake all threads. 859 */ 860 siginitset(&flush, SIG_KERNEL_STOP_MASK); 861 flush_sigqueue_mask(&flush, &signal->shared_pending); 862 for_each_thread(p, t) { 863 flush_sigqueue_mask(&flush, &t->pending); 864 task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING); 865 if (likely(!(t->ptrace & PT_SEIZED))) 866 wake_up_state(t, __TASK_STOPPED); 867 else 868 ptrace_trap_notify(t); 869 } 870 871 /* 872 * Notify the parent with CLD_CONTINUED if we were stopped. 873 * 874 * If we were in the middle of a group stop, we pretend it 875 * was already finished, and then continued. Since SIGCHLD 876 * doesn't queue we report only CLD_STOPPED, as if the next 877 * CLD_CONTINUED was dropped. 878 */ 879 why = 0; 880 if (signal->flags & SIGNAL_STOP_STOPPED) 881 why |= SIGNAL_CLD_CONTINUED; 882 else if (signal->group_stop_count) 883 why |= SIGNAL_CLD_STOPPED; 884 885 if (why) { 886 /* 887 * The first thread which returns from do_signal_stop() 888 * will take ->siglock, notice SIGNAL_CLD_MASK, and 889 * notify its parent. See get_signal_to_deliver(). 890 */ 891 signal->flags = why | SIGNAL_STOP_CONTINUED; 892 signal->group_stop_count = 0; 893 signal->group_exit_code = 0; 894 } 895 } 896 897 return !sig_ignored(p, sig, force); 898} 899 900/* 901 * Test if P wants to take SIG. After we've checked all threads with this, 902 * it's equivalent to finding no threads not blocking SIG. Any threads not 903 * blocking SIG were ruled out because they are not running and already 904 * have pending signals. Such threads will dequeue from the shared queue 905 * as soon as they're available, so putting the signal on the shared queue 906 * will be equivalent to sending it to one such thread. 907 */ 908static inline int wants_signal(int sig, struct task_struct *p) 909{ 910 if (sigismember(&p->blocked, sig)) 911 return 0; 912 if (p->flags & PF_EXITING) 913 return 0; 914 if (sig == SIGKILL) 915 return 1; 916 if (task_is_stopped_or_traced(p)) 917 return 0; 918 return task_curr(p) || !signal_pending(p); 919} 920 921static void complete_signal(int sig, struct task_struct *p, int group) 922{ 923 struct signal_struct *signal = p->signal; 924 struct task_struct *t; 925 926 /* 927 * Now find a thread we can wake up to take the signal off the queue. 928 * 929 * If the main thread wants the signal, it gets first crack. 930 * Probably the least surprising to the average bear. 931 */ 932 if (wants_signal(sig, p)) 933 t = p; 934 else if (!group || thread_group_empty(p)) 935 /* 936 * There is just one thread and it does not need to be woken. 937 * It will dequeue unblocked signals before it runs again. 938 */ 939 return; 940 else { 941 /* 942 * Otherwise try to find a suitable thread. 943 */ 944 t = signal->curr_target; 945 while (!wants_signal(sig, t)) { 946 t = next_thread(t); 947 if (t == signal->curr_target) 948 /* 949 * No thread needs to be woken. 950 * Any eligible threads will see 951 * the signal in the queue soon. 952 */ 953 return; 954 } 955 signal->curr_target = t; 956 } 957 958 /* 959 * Found a killable thread. If the signal will be fatal, 960 * then start taking the whole group down immediately. 961 */ 962 if (sig_fatal(p, sig) && 963 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 964 !sigismember(&t->real_blocked, sig) && 965 (sig == SIGKILL || !t->ptrace)) { 966 /* 967 * This signal will be fatal to the whole group. 968 */ 969 if (!sig_kernel_coredump(sig)) { 970 /* 971 * Start a group exit and wake everybody up. 972 * This way we don't have other threads 973 * running and doing things after a slower 974 * thread has the fatal signal pending. 975 */ 976 signal->flags = SIGNAL_GROUP_EXIT; 977 signal->group_exit_code = sig; 978 signal->group_stop_count = 0; 979 t = p; 980 do { 981 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 982 sigaddset(&t->pending.signal, SIGKILL); 983 signal_wake_up(t, 1); 984 } while_each_thread(p, t); 985 return; 986 } 987 } 988 989 /* 990 * The signal is already in the shared-pending queue. 991 * Tell the chosen thread to wake up and dequeue it. 992 */ 993 signal_wake_up(t, sig == SIGKILL); 994 return; 995} 996 997static inline int legacy_queue(struct sigpending *signals, int sig) 998{ 999 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 1000} 1001 1002#ifdef CONFIG_USER_NS 1003static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1004{ 1005 if (current_user_ns() == task_cred_xxx(t, user_ns)) 1006 return; 1007 1008 if (SI_FROMKERNEL(info)) 1009 return; 1010 1011 rcu_read_lock(); 1012 info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns), 1013 make_kuid(current_user_ns(), info->si_uid)); 1014 rcu_read_unlock(); 1015} 1016#else 1017static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t) 1018{ 1019 return; 1020} 1021#endif 1022 1023static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 1024 int group, int from_ancestor_ns) 1025{ 1026 struct sigpending *pending; 1027 struct sigqueue *q; 1028 int override_rlimit; 1029 int ret = 0, result; 1030 1031 assert_spin_locked(&t->sighand->siglock); 1032 1033 result = TRACE_SIGNAL_IGNORED; 1034 if (!prepare_signal(sig, t, 1035 from_ancestor_ns || (info == SEND_SIG_FORCED))) 1036 goto ret; 1037 1038 pending = group ? &t->signal->shared_pending : &t->pending; 1039 /* 1040 * Short-circuit ignored signals and support queuing 1041 * exactly one non-rt signal, so that we can get more 1042 * detailed information about the cause of the signal. 1043 */ 1044 result = TRACE_SIGNAL_ALREADY_PENDING; 1045 if (legacy_queue(pending, sig)) 1046 goto ret; 1047 1048 result = TRACE_SIGNAL_DELIVERED; 1049 /* 1050 * fast-pathed signals for kernel-internal things like SIGSTOP 1051 * or SIGKILL. 1052 */ 1053 if (info == SEND_SIG_FORCED) 1054 goto out_set; 1055 1056 /* 1057 * Real-time signals must be queued if sent by sigqueue, or 1058 * some other real-time mechanism. It is implementation 1059 * defined whether kill() does so. We attempt to do so, on 1060 * the principle of least surprise, but since kill is not 1061 * allowed to fail with EAGAIN when low on memory we just 1062 * make sure at least one signal gets delivered and don't 1063 * pass on the info struct. 1064 */ 1065 if (sig < SIGRTMIN) 1066 override_rlimit = (is_si_special(info) || info->si_code >= 0); 1067 else 1068 override_rlimit = 0; 1069 1070 q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 1071 override_rlimit); 1072 if (q) { 1073 list_add_tail(&q->list, &pending->list); 1074 switch ((unsigned long) info) { 1075 case (unsigned long) SEND_SIG_NOINFO: 1076 q->info.si_signo = sig; 1077 q->info.si_errno = 0; 1078 q->info.si_code = SI_USER; 1079 q->info.si_pid = task_tgid_nr_ns(current, 1080 task_active_pid_ns(t)); 1081 q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1082 break; 1083 case (unsigned long) SEND_SIG_PRIV: 1084 q->info.si_signo = sig; 1085 q->info.si_errno = 0; 1086 q->info.si_code = SI_KERNEL; 1087 q->info.si_pid = 0; 1088 q->info.si_uid = 0; 1089 break; 1090 default: 1091 copy_siginfo(&q->info, info); 1092 if (from_ancestor_ns) 1093 q->info.si_pid = 0; 1094 break; 1095 } 1096 1097 userns_fixup_signal_uid(&q->info, t); 1098 1099 } else if (!is_si_special(info)) { 1100 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 1101 /* 1102 * Queue overflow, abort. We may abort if the 1103 * signal was rt and sent by user using something 1104 * other than kill(). 1105 */ 1106 result = TRACE_SIGNAL_OVERFLOW_FAIL; 1107 ret = -EAGAIN; 1108 goto ret; 1109 } else { 1110 /* 1111 * This is a silent loss of information. We still 1112 * send the signal, but the *info bits are lost. 1113 */ 1114 result = TRACE_SIGNAL_LOSE_INFO; 1115 } 1116 } 1117 1118out_set: 1119 signalfd_notify(t, sig); 1120 sigaddset(&pending->signal, sig); 1121 complete_signal(sig, t, group); 1122ret: 1123 trace_signal_generate(sig, info, t, group, result); 1124 return ret; 1125} 1126 1127static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 1128 int group) 1129{ 1130 int from_ancestor_ns = 0; 1131 1132#ifdef CONFIG_PID_NS 1133 from_ancestor_ns = si_fromuser(info) && 1134 !task_pid_nr_ns(current, task_active_pid_ns(t)); 1135#endif 1136 1137 return __send_signal(sig, info, t, group, from_ancestor_ns); 1138} 1139 1140static void print_fatal_signal(int signr) 1141{ 1142 struct pt_regs *regs = signal_pt_regs(); 1143 printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr); 1144 1145#if defined(__i386__) && !defined(__arch_um__) 1146 printk(KERN_INFO "code at %08lx: ", regs->ip); 1147 { 1148 int i; 1149 for (i = 0; i < 16; i++) { 1150 unsigned char insn; 1151 1152 if (get_user(insn, (unsigned char *)(regs->ip + i))) 1153 break; 1154 printk(KERN_CONT "%02x ", insn); 1155 } 1156 } 1157 printk(KERN_CONT "\n"); 1158#endif 1159 preempt_disable(); 1160 show_regs(regs); 1161 preempt_enable(); 1162} 1163 1164static int __init setup_print_fatal_signals(char *str) 1165{ 1166 get_option (&str, &print_fatal_signals); 1167 1168 return 1; 1169} 1170 1171__setup("print-fatal-signals=", setup_print_fatal_signals); 1172 1173int 1174__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1175{ 1176 return send_signal(sig, info, p, 1); 1177} 1178 1179static int 1180specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1181{ 1182 return send_signal(sig, info, t, 0); 1183} 1184 1185int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 1186 bool group) 1187{ 1188 unsigned long flags; 1189 int ret = -ESRCH; 1190 1191 if (lock_task_sighand(p, &flags)) { 1192 ret = send_signal(sig, info, p, group); 1193 unlock_task_sighand(p, &flags); 1194 } 1195 1196 return ret; 1197} 1198 1199/* 1200 * Force a signal that the process can't ignore: if necessary 1201 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1202 * 1203 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1204 * since we do not want to have a signal handler that was blocked 1205 * be invoked when user space had explicitly blocked it. 1206 * 1207 * We don't want to have recursive SIGSEGV's etc, for example, 1208 * that is why we also clear SIGNAL_UNKILLABLE. 1209 */ 1210int 1211force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1212{ 1213 unsigned long int flags; 1214 int ret, blocked, ignored; 1215 struct k_sigaction *action; 1216 1217 spin_lock_irqsave(&t->sighand->siglock, flags); 1218 action = &t->sighand->action[sig-1]; 1219 ignored = action->sa.sa_handler == SIG_IGN; 1220 blocked = sigismember(&t->blocked, sig); 1221 if (blocked || ignored) { 1222 action->sa.sa_handler = SIG_DFL; 1223 if (blocked) { 1224 sigdelset(&t->blocked, sig); 1225 recalc_sigpending_and_wake(t); 1226 } 1227 } 1228 if (action->sa.sa_handler == SIG_DFL) 1229 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1230 ret = specific_send_sig_info(sig, info, t); 1231 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1232 1233 return ret; 1234} 1235 1236/* 1237 * Nuke all other threads in the group. 1238 */ 1239int zap_other_threads(struct task_struct *p) 1240{ 1241 struct task_struct *t = p; 1242 int count = 0; 1243 1244 p->signal->group_stop_count = 0; 1245 1246 while_each_thread(p, t) { 1247 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK); 1248 count++; 1249 1250 /* Don't bother with already dead threads */ 1251 if (t->exit_state) 1252 continue; 1253 sigaddset(&t->pending.signal, SIGKILL); 1254 signal_wake_up(t, 1); 1255 } 1256 1257 return count; 1258} 1259 1260struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 1261 unsigned long *flags) 1262{ 1263 struct sighand_struct *sighand; 1264 1265 for (;;) { 1266 /* 1267 * Disable interrupts early to avoid deadlocks. 1268 * See rcu_read_unlock() comment header for details. 1269 */ 1270 local_irq_save(*flags); 1271 rcu_read_lock(); 1272 sighand = rcu_dereference(tsk->sighand); 1273 if (unlikely(sighand == NULL)) { 1274 rcu_read_unlock(); 1275 local_irq_restore(*flags); 1276 break; 1277 } 1278 1279 spin_lock(&sighand->siglock); 1280 if (likely(sighand == tsk->sighand)) { 1281 rcu_read_unlock(); 1282 break; 1283 } 1284 spin_unlock(&sighand->siglock); 1285 rcu_read_unlock(); 1286 local_irq_restore(*flags); 1287 } 1288 1289 return sighand; 1290} 1291 1292/* 1293 * send signal info to all the members of a group 1294 */ 1295int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1296{ 1297 int ret; 1298 1299 rcu_read_lock(); 1300 ret = check_kill_permission(sig, info, p); 1301 rcu_read_unlock(); 1302 1303 if (!ret && sig) 1304 ret = do_send_sig_info(sig, info, p, true); 1305 1306 return ret; 1307} 1308 1309/* 1310 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1311 * control characters do (^C, ^Z etc) 1312 * - the caller must hold at least a readlock on tasklist_lock 1313 */ 1314int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1315{ 1316 struct task_struct *p = NULL; 1317 int retval, success; 1318 1319 success = 0; 1320 retval = -ESRCH; 1321 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1322 int err = group_send_sig_info(sig, info, p); 1323 success |= !err; 1324 retval = err; 1325 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1326 return success ? 0 : retval; 1327} 1328 1329int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1330{ 1331 int error = -ESRCH; 1332 struct task_struct *p; 1333 1334 rcu_read_lock(); 1335retry: 1336 p = pid_task(pid, PIDTYPE_PID); 1337 if (p) { 1338 error = group_send_sig_info(sig, info, p); 1339 if (unlikely(error == -ESRCH)) 1340 /* 1341 * The task was unhashed in between, try again. 1342 * If it is dead, pid_task() will return NULL, 1343 * if we race with de_thread() it will find the 1344 * new leader. 1345 */ 1346 goto retry; 1347 } 1348 rcu_read_unlock(); 1349 1350 return error; 1351} 1352 1353int kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1354{ 1355 int error; 1356 rcu_read_lock(); 1357 error = kill_pid_info(sig, info, find_vpid(pid)); 1358 rcu_read_unlock(); 1359 return error; 1360} 1361 1362static int kill_as_cred_perm(const struct cred *cred, 1363 struct task_struct *target) 1364{ 1365 const struct cred *pcred = __task_cred(target); 1366 if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) && 1367 !uid_eq(cred->uid, pcred->suid) && !uid_eq(cred->uid, pcred->uid)) 1368 return 0; 1369 return 1; 1370} 1371 1372/* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1373int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid, 1374 const struct cred *cred, u32 secid) 1375{ 1376 int ret = -EINVAL; 1377 struct task_struct *p; 1378 unsigned long flags; 1379 1380 if (!valid_signal(sig)) 1381 return ret; 1382 1383 rcu_read_lock(); 1384 p = pid_task(pid, PIDTYPE_PID); 1385 if (!p) { 1386 ret = -ESRCH; 1387 goto out_unlock; 1388 } 1389 if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) { 1390 ret = -EPERM; 1391 goto out_unlock; 1392 } 1393 ret = security_task_kill(p, info, sig, secid); 1394 if (ret) 1395 goto out_unlock; 1396 1397 if (sig) { 1398 if (lock_task_sighand(p, &flags)) { 1399 ret = __send_signal(sig, info, p, 1, 0); 1400 unlock_task_sighand(p, &flags); 1401 } else 1402 ret = -ESRCH; 1403 } 1404out_unlock: 1405 rcu_read_unlock(); 1406 return ret; 1407} 1408EXPORT_SYMBOL_GPL(kill_pid_info_as_cred); 1409 1410/* 1411 * kill_something_info() interprets pid in interesting ways just like kill(2). 1412 * 1413 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1414 * is probably wrong. Should make it like BSD or SYSV. 1415 */ 1416 1417static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1418{ 1419 int ret; 1420 1421 if (pid > 0) { 1422 rcu_read_lock(); 1423 ret = kill_pid_info(sig, info, find_vpid(pid)); 1424 rcu_read_unlock(); 1425 return ret; 1426 } 1427 1428 read_lock(&tasklist_lock); 1429 if (pid != -1) { 1430 ret = __kill_pgrp_info(sig, info, 1431 pid ? find_vpid(-pid) : task_pgrp(current)); 1432 } else { 1433 int retval = 0, count = 0; 1434 struct task_struct * p; 1435 1436 for_each_process(p) { 1437 if (task_pid_vnr(p) > 1 && 1438 !same_thread_group(p, current)) { 1439 int err = group_send_sig_info(sig, info, p); 1440 ++count; 1441 if (err != -EPERM) 1442 retval = err; 1443 } 1444 } 1445 ret = count ? retval : -ESRCH; 1446 } 1447 read_unlock(&tasklist_lock); 1448 1449 return ret; 1450} 1451 1452/* 1453 * These are for backward compatibility with the rest of the kernel source. 1454 */ 1455 1456int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1457{ 1458 /* 1459 * Make sure legacy kernel users don't send in bad values 1460 * (normal paths check this in check_kill_permission). 1461 */ 1462 if (!valid_signal(sig)) 1463 return -EINVAL; 1464 1465 return do_send_sig_info(sig, info, p, false); 1466} 1467 1468#define __si_special(priv) \ 1469 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1470 1471int 1472send_sig(int sig, struct task_struct *p, int priv) 1473{ 1474 return send_sig_info(sig, __si_special(priv), p); 1475} 1476 1477void 1478force_sig(int sig, struct task_struct *p) 1479{ 1480 force_sig_info(sig, SEND_SIG_PRIV, p); 1481} 1482 1483/* 1484 * When things go south during signal handling, we 1485 * will force a SIGSEGV. And if the signal that caused 1486 * the problem was already a SIGSEGV, we'll want to 1487 * make sure we don't even try to deliver the signal.. 1488 */ 1489int 1490force_sigsegv(int sig, struct task_struct *p) 1491{ 1492 if (sig == SIGSEGV) { 1493 unsigned long flags; 1494 spin_lock_irqsave(&p->sighand->siglock, flags); 1495 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1496 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1497 } 1498 force_sig(SIGSEGV, p); 1499 return 0; 1500} 1501 1502int kill_pgrp(struct pid *pid, int sig, int priv) 1503{ 1504 int ret; 1505 1506 read_lock(&tasklist_lock); 1507 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1508 read_unlock(&tasklist_lock); 1509 1510 return ret; 1511} 1512EXPORT_SYMBOL(kill_pgrp); 1513 1514int kill_pid(struct pid *pid, int sig, int priv) 1515{ 1516 return kill_pid_info(sig, __si_special(priv), pid); 1517} 1518EXPORT_SYMBOL(kill_pid); 1519 1520/* 1521 * These functions support sending signals using preallocated sigqueue 1522 * structures. This is needed "because realtime applications cannot 1523 * afford to lose notifications of asynchronous events, like timer 1524 * expirations or I/O completions". In the case of POSIX Timers 1525 * we allocate the sigqueue structure from the timer_create. If this 1526 * allocation fails we are able to report the failure to the application 1527 * with an EAGAIN error. 1528 */ 1529struct sigqueue *sigqueue_alloc(void) 1530{ 1531 struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); 1532 1533 if (q) 1534 q->flags |= SIGQUEUE_PREALLOC; 1535 1536 return q; 1537} 1538 1539void sigqueue_free(struct sigqueue *q) 1540{ 1541 unsigned long flags; 1542 spinlock_t *lock = ¤t->sighand->siglock; 1543 1544 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1545 /* 1546 * We must hold ->siglock while testing q->list 1547 * to serialize with collect_signal() or with 1548 * __exit_signal()->flush_sigqueue(). 1549 */ 1550 spin_lock_irqsave(lock, flags); 1551 q->flags &= ~SIGQUEUE_PREALLOC; 1552 /* 1553 * If it is queued it will be freed when dequeued, 1554 * like the "regular" sigqueue. 1555 */ 1556 if (!list_empty(&q->list)) 1557 q = NULL; 1558 spin_unlock_irqrestore(lock, flags); 1559 1560 if (q) 1561 __sigqueue_free(q); 1562} 1563 1564int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1565{ 1566 int sig = q->info.si_signo; 1567 struct sigpending *pending; 1568 unsigned long flags; 1569 int ret, result; 1570 1571 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1572 1573 ret = -1; 1574 if (!likely(lock_task_sighand(t, &flags))) 1575 goto ret; 1576 1577 ret = 1; /* the signal is ignored */ 1578 result = TRACE_SIGNAL_IGNORED; 1579 if (!prepare_signal(sig, t, false)) 1580 goto out; 1581 1582 ret = 0; 1583 if (unlikely(!list_empty(&q->list))) { 1584 /* 1585 * If an SI_TIMER entry is already queue just increment 1586 * the overrun count. 1587 */ 1588 BUG_ON(q->info.si_code != SI_TIMER); 1589 q->info.si_overrun++; 1590 result = TRACE_SIGNAL_ALREADY_PENDING; 1591 goto out; 1592 } 1593 q->info.si_overrun = 0; 1594 1595 signalfd_notify(t, sig); 1596 pending = group ? &t->signal->shared_pending : &t->pending; 1597 list_add_tail(&q->list, &pending->list); 1598 sigaddset(&pending->signal, sig); 1599 complete_signal(sig, t, group); 1600 result = TRACE_SIGNAL_DELIVERED; 1601out: 1602 trace_signal_generate(sig, &q->info, t, group, result); 1603 unlock_task_sighand(t, &flags); 1604ret: 1605 return ret; 1606} 1607 1608/* 1609 * Let a parent know about the death of a child. 1610 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1611 * 1612 * Returns true if our parent ignored us and so we've switched to 1613 * self-reaping. 1614 */ 1615bool do_notify_parent(struct task_struct *tsk, int sig) 1616{ 1617 struct siginfo info; 1618 unsigned long flags; 1619 struct sighand_struct *psig; 1620 bool autoreap = false; 1621 cputime_t utime, stime; 1622 1623 BUG_ON(sig == -1); 1624 1625 /* do_notify_parent_cldstop should have been called instead. */ 1626 BUG_ON(task_is_stopped_or_traced(tsk)); 1627 1628 BUG_ON(!tsk->ptrace && 1629 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1630 1631 if (sig != SIGCHLD) { 1632 /* 1633 * This is only possible if parent == real_parent. 1634 * Check if it has changed security domain. 1635 */ 1636 if (tsk->parent_exec_id != tsk->parent->self_exec_id) 1637 sig = SIGCHLD; 1638 } 1639 1640 info.si_signo = sig; 1641 info.si_errno = 0; 1642 /* 1643 * We are under tasklist_lock here so our parent is tied to 1644 * us and cannot change. 1645 * 1646 * task_active_pid_ns will always return the same pid namespace 1647 * until a task passes through release_task. 1648 * 1649 * write_lock() currently calls preempt_disable() which is the 1650 * same as rcu_read_lock(), but according to Oleg, this is not 1651 * correct to rely on this 1652 */ 1653 rcu_read_lock(); 1654 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent)); 1655 info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns), 1656 task_uid(tsk)); 1657 rcu_read_unlock(); 1658 1659 task_cputime(tsk, &utime, &stime); 1660 info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime); 1661 info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime); 1662 1663 info.si_status = tsk->exit_code & 0x7f; 1664 if (tsk->exit_code & 0x80) 1665 info.si_code = CLD_DUMPED; 1666 else if (tsk->exit_code & 0x7f) 1667 info.si_code = CLD_KILLED; 1668 else { 1669 info.si_code = CLD_EXITED; 1670 info.si_status = tsk->exit_code >> 8; 1671 } 1672 1673 psig = tsk->parent->sighand; 1674 spin_lock_irqsave(&psig->siglock, flags); 1675 if (!tsk->ptrace && sig == SIGCHLD && 1676 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1677 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1678 /* 1679 * We are exiting and our parent doesn't care. POSIX.1 1680 * defines special semantics for setting SIGCHLD to SIG_IGN 1681 * or setting the SA_NOCLDWAIT flag: we should be reaped 1682 * automatically and not left for our parent's wait4 call. 1683 * Rather than having the parent do it as a magic kind of 1684 * signal handler, we just set this to tell do_exit that we 1685 * can be cleaned up without becoming a zombie. Note that 1686 * we still call __wake_up_parent in this case, because a 1687 * blocked sys_wait4 might now return -ECHILD. 1688 * 1689 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1690 * is implementation-defined: we do (if you don't want 1691 * it, just use SIG_IGN instead). 1692 */ 1693 autoreap = true; 1694 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1695 sig = 0; 1696 } 1697 if (valid_signal(sig) && sig) 1698 __group_send_sig_info(sig, &info, tsk->parent); 1699 __wake_up_parent(tsk, tsk->parent); 1700 spin_unlock_irqrestore(&psig->siglock, flags); 1701 1702 return autoreap; 1703} 1704 1705/** 1706 * do_notify_parent_cldstop - notify parent of stopped/continued state change 1707 * @tsk: task reporting the state change 1708 * @for_ptracer: the notification is for ptracer 1709 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report 1710 * 1711 * Notify @tsk's parent that the stopped/continued state has changed. If 1712 * @for_ptracer is %false, @tsk's group leader notifies to its real parent. 1713 * If %true, @tsk reports to @tsk->parent which should be the ptracer. 1714 * 1715 * CONTEXT: 1716 * Must be called with tasklist_lock at least read locked. 1717 */ 1718static void do_notify_parent_cldstop(struct task_struct *tsk, 1719 bool for_ptracer, int why) 1720{ 1721 struct siginfo info; 1722 unsigned long flags; 1723 struct task_struct *parent; 1724 struct sighand_struct *sighand; 1725 cputime_t utime, stime; 1726 1727 if (for_ptracer) { 1728 parent = tsk->parent; 1729 } else { 1730 tsk = tsk->group_leader; 1731 parent = tsk->real_parent; 1732 } 1733 1734 info.si_signo = SIGCHLD; 1735 info.si_errno = 0; 1736 /* 1737 * see comment in do_notify_parent() about the following 4 lines 1738 */ 1739 rcu_read_lock(); 1740 info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent)); 1741 info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk)); 1742 rcu_read_unlock(); 1743 1744 task_cputime(tsk, &utime, &stime); 1745 info.si_utime = cputime_to_clock_t(utime); 1746 info.si_stime = cputime_to_clock_t(stime); 1747 1748 info.si_code = why; 1749 switch (why) { 1750 case CLD_CONTINUED: 1751 info.si_status = SIGCONT; 1752 break; 1753 case CLD_STOPPED: 1754 info.si_status = tsk->signal->group_exit_code & 0x7f; 1755 break; 1756 case CLD_TRAPPED: 1757 info.si_status = tsk->exit_code & 0x7f; 1758 break; 1759 default: 1760 BUG(); 1761 } 1762 1763 sighand = parent->sighand; 1764 spin_lock_irqsave(&sighand->siglock, flags); 1765 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1766 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1767 __group_send_sig_info(SIGCHLD, &info, parent); 1768 /* 1769 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1770 */ 1771 __wake_up_parent(tsk, parent); 1772 spin_unlock_irqrestore(&sighand->siglock, flags); 1773} 1774 1775static inline int may_ptrace_stop(void) 1776{ 1777 if (!likely(current->ptrace)) 1778 return 0; 1779 /* 1780 * Are we in the middle of do_coredump? 1781 * If so and our tracer is also part of the coredump stopping 1782 * is a deadlock situation, and pointless because our tracer 1783 * is dead so don't allow us to stop. 1784 * If SIGKILL was already sent before the caller unlocked 1785 * ->siglock we must see ->core_state != NULL. Otherwise it 1786 * is safe to enter schedule(). 1787 * 1788 * This is almost outdated, a task with the pending SIGKILL can't 1789 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported 1790 * after SIGKILL was already dequeued. 1791 */ 1792 if (unlikely(current->mm->core_state) && 1793 unlikely(current->mm == current->parent->mm)) 1794 return 0; 1795 1796 return 1; 1797} 1798 1799/* 1800 * Return non-zero if there is a SIGKILL that should be waking us up. 1801 * Called with the siglock held. 1802 */ 1803static int sigkill_pending(struct task_struct *tsk) 1804{ 1805 return sigismember(&tsk->pending.signal, SIGKILL) || 1806 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1807} 1808 1809/* 1810 * This must be called with current->sighand->siglock held. 1811 * 1812 * This should be the path for all ptrace stops. 1813 * We always set current->last_siginfo while stopped here. 1814 * That makes it a way to test a stopped process for 1815 * being ptrace-stopped vs being job-control-stopped. 1816 * 1817 * If we actually decide not to stop at all because the tracer 1818 * is gone, we keep current->exit_code unless clear_code. 1819 */ 1820static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) 1821 __releases(¤t->sighand->siglock) 1822 __acquires(¤t->sighand->siglock) 1823{ 1824 bool gstop_done = false; 1825 1826 if (arch_ptrace_stop_needed(exit_code, info)) { 1827 /* 1828 * The arch code has something special to do before a 1829 * ptrace stop. This is allowed to block, e.g. for faults 1830 * on user stack pages. We can't keep the siglock while 1831 * calling arch_ptrace_stop, so we must release it now. 1832 * To preserve proper semantics, we must do this before 1833 * any signal bookkeeping like checking group_stop_count. 1834 * Meanwhile, a SIGKILL could come in before we retake the 1835 * siglock. That must prevent us from sleeping in TASK_TRACED. 1836 * So after regaining the lock, we must check for SIGKILL. 1837 */ 1838 spin_unlock_irq(¤t->sighand->siglock); 1839 arch_ptrace_stop(exit_code, info); 1840 spin_lock_irq(¤t->sighand->siglock); 1841 if (sigkill_pending(current)) 1842 return; 1843 } 1844 1845 /* 1846 * We're committing to trapping. TRACED should be visible before 1847 * TRAPPING is cleared; otherwise, the tracer might fail do_wait(). 1848 * Also, transition to TRACED and updates to ->jobctl should be 1849 * atomic with respect to siglock and should be done after the arch 1850 * hook as siglock is released and regrabbed across it. 1851 */ 1852 set_current_state(TASK_TRACED); 1853 1854 current->last_siginfo = info; 1855 current->exit_code = exit_code; 1856 1857 /* 1858 * If @why is CLD_STOPPED, we're trapping to participate in a group 1859 * stop. Do the bookkeeping. Note that if SIGCONT was delievered 1860 * across siglock relocks since INTERRUPT was scheduled, PENDING 1861 * could be clear now. We act as if SIGCONT is received after 1862 * TASK_TRACED is entered - ignore it. 1863 */ 1864 if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING)) 1865 gstop_done = task_participate_group_stop(current); 1866 1867 /* any trap clears pending STOP trap, STOP trap clears NOTIFY */ 1868 task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP); 1869 if (info && info->si_code >> 8 == PTRACE_EVENT_STOP) 1870 task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY); 1871 1872 /* entering a trap, clear TRAPPING */ 1873 task_clear_jobctl_trapping(current); 1874 1875 spin_unlock_irq(¤t->sighand->siglock); 1876 read_lock(&tasklist_lock); 1877 if (may_ptrace_stop()) { 1878 /* 1879 * Notify parents of the stop. 1880 * 1881 * While ptraced, there are two parents - the ptracer and 1882 * the real_parent of the group_leader. The ptracer should 1883 * know about every stop while the real parent is only 1884 * interested in the completion of group stop. The states 1885 * for the two don't interact with each other. Notify 1886 * separately unless they're gonna be duplicates. 1887 */ 1888 do_notify_parent_cldstop(current, true, why); 1889 if (gstop_done && ptrace_reparented(current)) 1890 do_notify_parent_cldstop(current, false, why); 1891 1892 /* 1893 * Don't want to allow preemption here, because 1894 * sys_ptrace() needs this task to be inactive. 1895 * 1896 * XXX: implement read_unlock_no_resched(). 1897 */ 1898 preempt_disable(); 1899 read_unlock(&tasklist_lock); 1900 preempt_enable_no_resched(); 1901 freezable_schedule(); 1902 } else { 1903 /* 1904 * By the time we got the lock, our tracer went away. 1905 * Don't drop the lock yet, another tracer may come. 1906 * 1907 * If @gstop_done, the ptracer went away between group stop 1908 * completion and here. During detach, it would have set 1909 * JOBCTL_STOP_PENDING on us and we'll re-enter 1910 * TASK_STOPPED in do_signal_stop() on return, so notifying 1911 * the real parent of the group stop completion is enough. 1912 */ 1913 if (gstop_done) 1914 do_notify_parent_cldstop(current, false, why); 1915 1916 /* tasklist protects us from ptrace_freeze_traced() */ 1917 __set_current_state(TASK_RUNNING); 1918 if (clear_code) 1919 current->exit_code = 0; 1920 read_unlock(&tasklist_lock); 1921 } 1922 1923 /* 1924 * We are back. Now reacquire the siglock before touching 1925 * last_siginfo, so that we are sure to have synchronized with 1926 * any signal-sending on another CPU that wants to examine it. 1927 */ 1928 spin_lock_irq(¤t->sighand->siglock); 1929 current->last_siginfo = NULL; 1930 1931 /* LISTENING can be set only during STOP traps, clear it */ 1932 current->jobctl &= ~JOBCTL_LISTENING; 1933 1934 /* 1935 * Queued signals ignored us while we were stopped for tracing. 1936 * So check for any that we should take before resuming user mode. 1937 * This sets TIF_SIGPENDING, but never clears it. 1938 */ 1939 recalc_sigpending_tsk(current); 1940} 1941 1942static void ptrace_do_notify(int signr, int exit_code, int why) 1943{ 1944 siginfo_t info; 1945 1946 memset(&info, 0, sizeof info); 1947 info.si_signo = signr; 1948 info.si_code = exit_code; 1949 info.si_pid = task_pid_vnr(current); 1950 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 1951 1952 /* Let the debugger run. */ 1953 ptrace_stop(exit_code, why, 1, &info); 1954} 1955 1956void ptrace_notify(int exit_code) 1957{ 1958 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1959 if (unlikely(current->task_works)) 1960 task_work_run(); 1961 1962 spin_lock_irq(¤t->sighand->siglock); 1963 ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED); 1964 spin_unlock_irq(¤t->sighand->siglock); 1965} 1966 1967/** 1968 * do_signal_stop - handle group stop for SIGSTOP and other stop signals 1969 * @signr: signr causing group stop if initiating 1970 * 1971 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr 1972 * and participate in it. If already set, participate in the existing 1973 * group stop. If participated in a group stop (and thus slept), %true is 1974 * returned with siglock released. 1975 * 1976 * If ptraced, this function doesn't handle stop itself. Instead, 1977 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock 1978 * untouched. The caller must ensure that INTERRUPT trap handling takes 1979 * places afterwards. 1980 * 1981 * CONTEXT: 1982 * Must be called with @current->sighand->siglock held, which is released 1983 * on %true return. 1984 * 1985 * RETURNS: 1986 * %false if group stop is already cancelled or ptrace trap is scheduled. 1987 * %true if participated in group stop. 1988 */ 1989static bool do_signal_stop(int signr) 1990 __releases(¤t->sighand->siglock) 1991{ 1992 struct signal_struct *sig = current->signal; 1993 1994 if (!(current->jobctl & JOBCTL_STOP_PENDING)) { 1995 unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME; 1996 struct task_struct *t; 1997 1998 /* signr will be recorded in task->jobctl for retries */ 1999 WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK); 2000 2001 if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) || 2002 unlikely(signal_group_exit(sig))) 2003 return false; 2004 /* 2005 * There is no group stop already in progress. We must 2006 * initiate one now. 2007 * 2008 * While ptraced, a task may be resumed while group stop is 2009 * still in effect and then receive a stop signal and 2010 * initiate another group stop. This deviates from the 2011 * usual behavior as two consecutive stop signals can't 2012 * cause two group stops when !ptraced. That is why we 2013 * also check !task_is_stopped(t) below. 2014 * 2015 * The condition can be distinguished by testing whether 2016 * SIGNAL_STOP_STOPPED is already set. Don't generate 2017 * group_exit_code in such case. 2018 * 2019 * This is not necessary for SIGNAL_STOP_CONTINUED because 2020 * an intervening stop signal is required to cause two 2021 * continued events regardless of ptrace. 2022 */ 2023 if (!(sig->flags & SIGNAL_STOP_STOPPED)) 2024 sig->group_exit_code = signr; 2025 2026 sig->group_stop_count = 0; 2027 2028 if (task_set_jobctl_pending(current, signr | gstop)) 2029 sig->group_stop_count++; 2030 2031 t = current; 2032 while_each_thread(current, t) { 2033 /* 2034 * Setting state to TASK_STOPPED for a group 2035 * stop is always done with the siglock held, 2036 * so this check has no races. 2037 */ 2038 if (!task_is_stopped(t) && 2039 task_set_jobctl_pending(t, signr | gstop)) { 2040 sig->group_stop_count++; 2041 if (likely(!(t->ptrace & PT_SEIZED))) 2042 signal_wake_up(t, 0); 2043 else 2044 ptrace_trap_notify(t); 2045 } 2046 } 2047 } 2048 2049 if (likely(!current->ptrace)) { 2050 int notify = 0; 2051 2052 /* 2053 * If there are no other threads in the group, or if there 2054 * is a group stop in progress and we are the last to stop, 2055 * report to the parent. 2056 */ 2057 if (task_participate_group_stop(current)) 2058 notify = CLD_STOPPED; 2059 2060 __set_current_state(TASK_STOPPED); 2061 spin_unlock_irq(¤t->sighand->siglock); 2062 2063 /* 2064 * Notify the parent of the group stop completion. Because 2065 * we're not holding either the siglock or tasklist_lock 2066 * here, ptracer may attach inbetween; however, this is for 2067 * group stop and should always be delivered to the real 2068 * parent of the group leader. The new ptracer will get 2069 * its notification when this task transitions into 2070 * TASK_TRACED. 2071 */ 2072 if (notify) { 2073 read_lock(&tasklist_lock); 2074 do_notify_parent_cldstop(current, false, notify); 2075 read_unlock(&tasklist_lock); 2076 } 2077 2078 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 2079 freezable_schedule(); 2080 return true; 2081 } else { 2082 /* 2083 * While ptraced, group stop is handled by STOP trap. 2084 * Schedule it and let the caller deal with it. 2085 */ 2086 task_set_jobctl_pending(current, JOBCTL_TRAP_STOP); 2087 return false; 2088 } 2089} 2090 2091/** 2092 * do_jobctl_trap - take care of ptrace jobctl traps 2093 * 2094 * When PT_SEIZED, it's used for both group stop and explicit 2095 * SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with 2096 * accompanying siginfo. If stopped, lower eight bits of exit_code contain 2097 * the stop signal; otherwise, %SIGTRAP. 2098 * 2099 * When !PT_SEIZED, it's used only for group stop trap with stop signal 2100 * number as exit_code and no siginfo. 2101 * 2102 * CONTEXT: 2103 * Must be called with @current->sighand->siglock held, which may be 2104 * released and re-acquired before returning with intervening sleep. 2105 */ 2106static void do_jobctl_trap(void) 2107{ 2108 struct signal_struct *signal = current->signal; 2109 int signr = current->jobctl & JOBCTL_STOP_SIGMASK; 2110 2111 if (current->ptrace & PT_SEIZED) { 2112 if (!signal->group_stop_count && 2113 !(signal->flags & SIGNAL_STOP_STOPPED)) 2114 signr = SIGTRAP; 2115 WARN_ON_ONCE(!signr); 2116 ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8), 2117 CLD_STOPPED); 2118 } else { 2119 WARN_ON_ONCE(!signr); 2120 ptrace_stop(signr, CLD_STOPPED, 0, NULL); 2121 current->exit_code = 0; 2122 } 2123} 2124 2125static int ptrace_signal(int signr, siginfo_t *info) 2126{ 2127 ptrace_signal_deliver(); 2128 /* 2129 * We do not check sig_kernel_stop(signr) but set this marker 2130 * unconditionally because we do not know whether debugger will 2131 * change signr. This flag has no meaning unless we are going 2132 * to stop after return from ptrace_stop(). In this case it will 2133 * be checked in do_signal_stop(), we should only stop if it was 2134 * not cleared by SIGCONT while we were sleeping. See also the 2135 * comment in dequeue_signal(). 2136 */ 2137 current->jobctl |= JOBCTL_STOP_DEQUEUED; 2138 ptrace_stop(signr, CLD_TRAPPED, 0, info); 2139 2140 /* We're back. Did the debugger cancel the sig? */ 2141 signr = current->exit_code; 2142 if (signr == 0) 2143 return signr; 2144 2145 current->exit_code = 0; 2146 2147 /* 2148 * Update the siginfo structure if the signal has 2149 * changed. If the debugger wanted something 2150 * specific in the siginfo structure then it should 2151 * have updated *info via PTRACE_SETSIGINFO. 2152 */ 2153 if (signr != info->si_signo) { 2154 info->si_signo = signr; 2155 info->si_errno = 0; 2156 info->si_code = SI_USER; 2157 rcu_read_lock(); 2158 info->si_pid = task_pid_vnr(current->parent); 2159 info->si_uid = from_kuid_munged(current_user_ns(), 2160 task_uid(current->parent)); 2161 rcu_read_unlock(); 2162 } 2163 2164 /* If the (new) signal is now blocked, requeue it. */ 2165 if (sigismember(¤t->blocked, signr)) { 2166 specific_send_sig_info(signr, info, current); 2167 signr = 0; 2168 } 2169 2170 return signr; 2171} 2172 2173int get_signal(struct ksignal *ksig) 2174{ 2175 struct sighand_struct *sighand = current->sighand; 2176 struct signal_struct *signal = current->signal; 2177 int signr; 2178 2179 if (unlikely(current->task_works)) 2180 task_work_run(); 2181 2182 if (unlikely(uprobe_deny_signal())) 2183 return 0; 2184 2185 /* 2186 * Do this once, we can't return to user-mode if freezing() == T. 2187 * do_signal_stop() and ptrace_stop() do freezable_schedule() and 2188 * thus do not need another check after return. 2189 */ 2190 try_to_freeze(); 2191 2192relock: 2193 spin_lock_irq(&sighand->siglock); 2194 /* 2195 * Every stopped thread goes here after wakeup. Check to see if 2196 * we should notify the parent, prepare_signal(SIGCONT) encodes 2197 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 2198 */ 2199 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 2200 int why; 2201 2202 if (signal->flags & SIGNAL_CLD_CONTINUED) 2203 why = CLD_CONTINUED; 2204 else 2205 why = CLD_STOPPED; 2206 2207 signal->flags &= ~SIGNAL_CLD_MASK; 2208 2209 spin_unlock_irq(&sighand->siglock); 2210 2211 /* 2212 * Notify the parent that we're continuing. This event is 2213 * always per-process and doesn't make whole lot of sense 2214 * for ptracers, who shouldn't consume the state via 2215 * wait(2) either, but, for backward compatibility, notify 2216 * the ptracer of the group leader too unless it's gonna be 2217 * a duplicate. 2218 */ 2219 read_lock(&tasklist_lock); 2220 do_notify_parent_cldstop(current, false, why); 2221 2222 if (ptrace_reparented(current->group_leader)) 2223 do_notify_parent_cldstop(current->group_leader, 2224 true, why); 2225 read_unlock(&tasklist_lock); 2226 2227 goto relock; 2228 } 2229 2230 for (;;) { 2231 struct k_sigaction *ka; 2232 2233 if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) && 2234 do_signal_stop(0)) 2235 goto relock; 2236 2237 if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) { 2238 do_jobctl_trap(); 2239 spin_unlock_irq(&sighand->siglock); 2240 goto relock; 2241 } 2242 2243 signr = dequeue_signal(current, ¤t->blocked, &ksig->info); 2244 2245 if (!signr) 2246 break; /* will return 0 */ 2247 2248 if (unlikely(current->ptrace) && signr != SIGKILL) { 2249 signr = ptrace_signal(signr, &ksig->info); 2250 if (!signr) 2251 continue; 2252 } 2253 2254 ka = &sighand->action[signr-1]; 2255 2256 /* Trace actually delivered signals. */ 2257 trace_signal_deliver(signr, &ksig->info, ka); 2258 2259 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 2260 continue; 2261 if (ka->sa.sa_handler != SIG_DFL) { 2262 /* Run the handler. */ 2263 ksig->ka = *ka; 2264 2265 if (ka->sa.sa_flags & SA_ONESHOT) 2266 ka->sa.sa_handler = SIG_DFL; 2267 2268 break; /* will return non-zero "signr" value */ 2269 } 2270 2271 /* 2272 * Now we are doing the default action for this signal. 2273 */ 2274 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 2275 continue; 2276 2277 /* 2278 * Global init gets no signals it doesn't want. 2279 * Container-init gets no signals it doesn't want from same 2280 * container. 2281 * 2282 * Note that if global/container-init sees a sig_kernel_only() 2283 * signal here, the signal must have been generated internally 2284 * or must have come from an ancestor namespace. In either 2285 * case, the signal cannot be dropped. 2286 */ 2287 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 2288 !sig_kernel_only(signr)) 2289 continue; 2290 2291 if (sig_kernel_stop(signr)) { 2292 /* 2293 * The default action is to stop all threads in 2294 * the thread group. The job control signals 2295 * do nothing in an orphaned pgrp, but SIGSTOP 2296 * always works. Note that siglock needs to be 2297 * dropped during the call to is_orphaned_pgrp() 2298 * because of lock ordering with tasklist_lock. 2299 * This allows an intervening SIGCONT to be posted. 2300 * We need to check for that and bail out if necessary. 2301 */ 2302 if (signr != SIGSTOP) { 2303 spin_unlock_irq(&sighand->siglock); 2304 2305 /* signals can be posted during this window */ 2306 2307 if (is_current_pgrp_orphaned()) 2308 goto relock; 2309 2310 spin_lock_irq(&sighand->siglock); 2311 } 2312 2313 if (likely(do_signal_stop(ksig->info.si_signo))) { 2314 /* It released the siglock. */ 2315 goto relock; 2316 } 2317 2318 /* 2319 * We didn't actually stop, due to a race 2320 * with SIGCONT or something like that. 2321 */ 2322 continue; 2323 } 2324 2325 spin_unlock_irq(&sighand->siglock); 2326 2327 /* 2328 * Anything else is fatal, maybe with a core dump. 2329 */ 2330 current->flags |= PF_SIGNALED; 2331 2332 if (sig_kernel_coredump(signr)) { 2333 if (print_fatal_signals) 2334 print_fatal_signal(ksig->info.si_signo); 2335 proc_coredump_connector(current); 2336 /* 2337 * If it was able to dump core, this kills all 2338 * other threads in the group and synchronizes with 2339 * their demise. If we lost the race with another 2340 * thread getting here, it set group_exit_code 2341 * first and our do_group_exit call below will use 2342 * that value and ignore the one we pass it. 2343 */ 2344 do_coredump(&ksig->info); 2345 } 2346 2347 /* 2348 * Death signals, no core dump. 2349 */ 2350 do_group_exit(ksig->info.si_signo); 2351 /* NOTREACHED */ 2352 } 2353 spin_unlock_irq(&sighand->siglock); 2354 2355 ksig->sig = signr; 2356 return ksig->sig > 0; 2357} 2358 2359/** 2360 * signal_delivered - 2361 * @ksig: kernel signal struct 2362 * @stepping: nonzero if debugger single-step or block-step in use 2363 * 2364 * This function should be called when a signal has successfully been 2365 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask 2366 * is always blocked, and the signal itself is blocked unless %SA_NODEFER 2367 * is set in @ksig->ka.sa.sa_flags. Tracing is notified. 2368 */ 2369static void signal_delivered(struct ksignal *ksig, int stepping) 2370{ 2371 sigset_t blocked; 2372 2373 /* A signal was successfully delivered, and the 2374 saved sigmask was stored on the signal frame, 2375 and will be restored by sigreturn. So we can 2376 simply clear the restore sigmask flag. */ 2377 clear_restore_sigmask(); 2378 2379 sigorsets(&blocked, ¤t->blocked, &ksig->ka.sa.sa_mask); 2380 if (!(ksig->ka.sa.sa_flags & SA_NODEFER)) 2381 sigaddset(&blocked, ksig->sig); 2382 set_current_blocked(&blocked); 2383 tracehook_signal_handler(stepping); 2384} 2385 2386void signal_setup_done(int failed, struct ksignal *ksig, int stepping) 2387{ 2388 if (failed) 2389 force_sigsegv(ksig->sig, current); 2390 else 2391 signal_delivered(ksig, stepping); 2392} 2393 2394/* 2395 * It could be that complete_signal() picked us to notify about the 2396 * group-wide signal. Other threads should be notified now to take 2397 * the shared signals in @which since we will not. 2398 */ 2399static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) 2400{ 2401 sigset_t retarget; 2402 struct task_struct *t; 2403 2404 sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); 2405 if (sigisemptyset(&retarget)) 2406 return; 2407 2408 t = tsk; 2409 while_each_thread(tsk, t) { 2410 if (t->flags & PF_EXITING) 2411 continue; 2412 2413 if (!has_pending_signals(&retarget, &t->blocked)) 2414 continue; 2415 /* Remove the signals this thread can handle. */ 2416 sigandsets(&retarget, &retarget, &t->blocked); 2417 2418 if (!signal_pending(t)) 2419 signal_wake_up(t, 0); 2420 2421 if (sigisemptyset(&retarget)) 2422 break; 2423 } 2424} 2425 2426void exit_signals(struct task_struct *tsk) 2427{ 2428 int group_stop = 0; 2429 sigset_t unblocked; 2430 2431 /* 2432 * @tsk is about to have PF_EXITING set - lock out users which 2433 * expect stable threadgroup. 2434 */ 2435 threadgroup_change_begin(tsk); 2436 2437 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 2438 tsk->flags |= PF_EXITING; 2439 threadgroup_change_end(tsk); 2440 return; 2441 } 2442 2443 spin_lock_irq(&tsk->sighand->siglock); 2444 /* 2445 * From now this task is not visible for group-wide signals, 2446 * see wants_signal(), do_signal_stop(). 2447 */ 2448 tsk->flags |= PF_EXITING; 2449 2450 threadgroup_change_end(tsk); 2451 2452 if (!signal_pending(tsk)) 2453 goto out; 2454 2455 unblocked = tsk->blocked; 2456 signotset(&unblocked); 2457 retarget_shared_pending(tsk, &unblocked); 2458 2459 if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) && 2460 task_participate_group_stop(tsk)) 2461 group_stop = CLD_STOPPED; 2462out: 2463 spin_unlock_irq(&tsk->sighand->siglock); 2464 2465 /* 2466 * If group stop has completed, deliver the notification. This 2467 * should always go to the real parent of the group leader. 2468 */ 2469 if (unlikely(group_stop)) { 2470 read_lock(&tasklist_lock); 2471 do_notify_parent_cldstop(tsk, false, group_stop); 2472 read_unlock(&tasklist_lock); 2473 } 2474} 2475 2476EXPORT_SYMBOL(recalc_sigpending); 2477EXPORT_SYMBOL_GPL(dequeue_signal); 2478EXPORT_SYMBOL(flush_signals); 2479EXPORT_SYMBOL(force_sig); 2480EXPORT_SYMBOL(send_sig); 2481EXPORT_SYMBOL(send_sig_info); 2482EXPORT_SYMBOL(sigprocmask); 2483EXPORT_SYMBOL(block_all_signals); 2484EXPORT_SYMBOL(unblock_all_signals); 2485 2486 2487/* 2488 * System call entry points. 2489 */ 2490 2491/** 2492 * sys_restart_syscall - restart a system call 2493 */ 2494SYSCALL_DEFINE0(restart_syscall) 2495{ 2496 struct restart_block *restart = ¤t_thread_info()->restart_block; 2497 return restart->fn(restart); 2498} 2499 2500long do_no_restart_syscall(struct restart_block *param) 2501{ 2502 return -EINTR; 2503} 2504 2505static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) 2506{ 2507 if (signal_pending(tsk) && !thread_group_empty(tsk)) { 2508 sigset_t newblocked; 2509 /* A set of now blocked but previously unblocked signals. */ 2510 sigandnsets(&newblocked, newset, ¤t->blocked); 2511 retarget_shared_pending(tsk, &newblocked); 2512 } 2513 tsk->blocked = *newset; 2514 recalc_sigpending(); 2515} 2516 2517/** 2518 * set_current_blocked - change current->blocked mask 2519 * @newset: new mask 2520 * 2521 * It is wrong to change ->blocked directly, this helper should be used 2522 * to ensure the process can't miss a shared signal we are going to block. 2523 */ 2524void set_current_blocked(sigset_t *newset) 2525{ 2526 sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2527 __set_current_blocked(newset); 2528} 2529 2530void __set_current_blocked(const sigset_t *newset) 2531{ 2532 struct task_struct *tsk = current; 2533 2534 spin_lock_irq(&tsk->sighand->siglock); 2535 __set_task_blocked(tsk, newset); 2536 spin_unlock_irq(&tsk->sighand->siglock); 2537} 2538 2539/* 2540 * This is also useful for kernel threads that want to temporarily 2541 * (or permanently) block certain signals. 2542 * 2543 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2544 * interface happily blocks "unblockable" signals like SIGKILL 2545 * and friends. 2546 */ 2547int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2548{ 2549 struct task_struct *tsk = current; 2550 sigset_t newset; 2551 2552 /* Lockless, only current can change ->blocked, never from irq */ 2553 if (oldset) 2554 *oldset = tsk->blocked; 2555 2556 switch (how) { 2557 case SIG_BLOCK: 2558 sigorsets(&newset, &tsk->blocked, set); 2559 break; 2560 case SIG_UNBLOCK: 2561 sigandnsets(&newset, &tsk->blocked, set); 2562 break; 2563 case SIG_SETMASK: 2564 newset = *set; 2565 break; 2566 default: 2567 return -EINVAL; 2568 } 2569 2570 __set_current_blocked(&newset); 2571 return 0; 2572} 2573 2574/** 2575 * sys_rt_sigprocmask - change the list of currently blocked signals 2576 * @how: whether to add, remove, or set signals 2577 * @nset: stores pending signals 2578 * @oset: previous value of signal mask if non-null 2579 * @sigsetsize: size of sigset_t type 2580 */ 2581SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, 2582 sigset_t __user *, oset, size_t, sigsetsize) 2583{ 2584 sigset_t old_set, new_set; 2585 int error; 2586 2587 /* XXX: Don't preclude handling different sized sigset_t's. */ 2588 if (sigsetsize != sizeof(sigset_t)) 2589 return -EINVAL; 2590 2591 old_set = current->blocked; 2592 2593 if (nset) { 2594 if (copy_from_user(&new_set, nset, sizeof(sigset_t))) 2595 return -EFAULT; 2596 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2597 2598 error = sigprocmask(how, &new_set, NULL); 2599 if (error) 2600 return error; 2601 } 2602 2603 if (oset) { 2604 if (copy_to_user(oset, &old_set, sizeof(sigset_t))) 2605 return -EFAULT; 2606 } 2607 2608 return 0; 2609} 2610 2611#ifdef CONFIG_COMPAT 2612COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset, 2613 compat_sigset_t __user *, oset, compat_size_t, sigsetsize) 2614{ 2615#ifdef __BIG_ENDIAN 2616 sigset_t old_set = current->blocked; 2617 2618 /* XXX: Don't preclude handling different sized sigset_t's. */ 2619 if (sigsetsize != sizeof(sigset_t)) 2620 return -EINVAL; 2621 2622 if (nset) { 2623 compat_sigset_t new32; 2624 sigset_t new_set; 2625 int error; 2626 if (copy_from_user(&new32, nset, sizeof(compat_sigset_t))) 2627 return -EFAULT; 2628 2629 sigset_from_compat(&new_set, &new32); 2630 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2631 2632 error = sigprocmask(how, &new_set, NULL); 2633 if (error) 2634 return error; 2635 } 2636 if (oset) { 2637 compat_sigset_t old32; 2638 sigset_to_compat(&old32, &old_set); 2639 if (copy_to_user(oset, &old32, sizeof(compat_sigset_t))) 2640 return -EFAULT; 2641 } 2642 return 0; 2643#else 2644 return sys_rt_sigprocmask(how, (sigset_t __user *)nset, 2645 (sigset_t __user *)oset, sigsetsize); 2646#endif 2647} 2648#endif 2649 2650static int do_sigpending(void *set, unsigned long sigsetsize) 2651{ 2652 if (sigsetsize > sizeof(sigset_t)) 2653 return -EINVAL; 2654 2655 spin_lock_irq(¤t->sighand->siglock); 2656 sigorsets(set, ¤t->pending.signal, 2657 ¤t->signal->shared_pending.signal); 2658 spin_unlock_irq(¤t->sighand->siglock); 2659 2660 /* Outside the lock because only this thread touches it. */ 2661 sigandsets(set, ¤t->blocked, set); 2662 return 0; 2663} 2664 2665/** 2666 * sys_rt_sigpending - examine a pending signal that has been raised 2667 * while blocked 2668 * @uset: stores pending signals 2669 * @sigsetsize: size of sigset_t type or larger 2670 */ 2671SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize) 2672{ 2673 sigset_t set; 2674 int err = do_sigpending(&set, sigsetsize); 2675 if (!err && copy_to_user(uset, &set, sigsetsize)) 2676 err = -EFAULT; 2677 return err; 2678} 2679 2680#ifdef CONFIG_COMPAT 2681COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset, 2682 compat_size_t, sigsetsize) 2683{ 2684#ifdef __BIG_ENDIAN 2685 sigset_t set; 2686 int err = do_sigpending(&set, sigsetsize); 2687 if (!err) { 2688 compat_sigset_t set32; 2689 sigset_to_compat(&set32, &set); 2690 /* we can get here only if sigsetsize <= sizeof(set) */ 2691 if (copy_to_user(uset, &set32, sigsetsize)) 2692 err = -EFAULT; 2693 } 2694 return err; 2695#else 2696 return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize); 2697#endif 2698} 2699#endif 2700 2701#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2702 2703int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from) 2704{ 2705 int err; 2706 2707 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2708 return -EFAULT; 2709 if (from->si_code < 0) 2710 return __copy_to_user(to, from, sizeof(siginfo_t)) 2711 ? -EFAULT : 0; 2712 /* 2713 * If you change siginfo_t structure, please be sure 2714 * this code is fixed accordingly. 2715 * Please remember to update the signalfd_copyinfo() function 2716 * inside fs/signalfd.c too, in case siginfo_t changes. 2717 * It should never copy any pad contained in the structure 2718 * to avoid security leaks, but must copy the generic 2719 * 3 ints plus the relevant union member. 2720 */ 2721 err = __put_user(from->si_signo, &to->si_signo); 2722 err |= __put_user(from->si_errno, &to->si_errno); 2723 err |= __put_user((short)from->si_code, &to->si_code); 2724 switch (from->si_code & __SI_MASK) { 2725 case __SI_KILL: 2726 err |= __put_user(from->si_pid, &to->si_pid); 2727 err |= __put_user(from->si_uid, &to->si_uid); 2728 break; 2729 case __SI_TIMER: 2730 err |= __put_user(from->si_tid, &to->si_tid); 2731 err |= __put_user(from->si_overrun, &to->si_overrun); 2732 err |= __put_user(from->si_ptr, &to->si_ptr); 2733 break; 2734 case __SI_POLL: 2735 err |= __put_user(from->si_band, &to->si_band); 2736 err |= __put_user(from->si_fd, &to->si_fd); 2737 break; 2738 case __SI_FAULT: 2739 err |= __put_user(from->si_addr, &to->si_addr); 2740#ifdef __ARCH_SI_TRAPNO 2741 err |= __put_user(from->si_trapno, &to->si_trapno); 2742#endif 2743#ifdef BUS_MCEERR_AO 2744 /* 2745 * Other callers might not initialize the si_lsb field, 2746 * so check explicitly for the right codes here. 2747 */ 2748 if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) 2749 err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); 2750#endif 2751 break; 2752 case __SI_CHLD: 2753 err |= __put_user(from->si_pid, &to->si_pid); 2754 err |= __put_user(from->si_uid, &to->si_uid); 2755 err |= __put_user(from->si_status, &to->si_status); 2756 err |= __put_user(from->si_utime, &to->si_utime); 2757 err |= __put_user(from->si_stime, &to->si_stime); 2758 break; 2759 case __SI_RT: /* This is not generated by the kernel as of now. */ 2760 case __SI_MESGQ: /* But this is */ 2761 err |= __put_user(from->si_pid, &to->si_pid); 2762 err |= __put_user(from->si_uid, &to->si_uid); 2763 err |= __put_user(from->si_ptr, &to->si_ptr); 2764 break; 2765#ifdef __ARCH_SIGSYS 2766 case __SI_SYS: 2767 err |= __put_user(from->si_call_addr, &to->si_call_addr); 2768 err |= __put_user(from->si_syscall, &to->si_syscall); 2769 err |= __put_user(from->si_arch, &to->si_arch); 2770 break; 2771#endif 2772 default: /* this is just in case for now ... */ 2773 err |= __put_user(from->si_pid, &to->si_pid); 2774 err |= __put_user(from->si_uid, &to->si_uid); 2775 break; 2776 } 2777 return err; 2778} 2779 2780#endif 2781 2782/** 2783 * do_sigtimedwait - wait for queued signals specified in @which 2784 * @which: queued signals to wait for 2785 * @info: if non-null, the signal's siginfo is returned here 2786 * @ts: upper bound on process time suspension 2787 */ 2788int do_sigtimedwait(const sigset_t *which, siginfo_t *info, 2789 const struct timespec *ts) 2790{ 2791 struct task_struct *tsk = current; 2792 long timeout = MAX_SCHEDULE_TIMEOUT; 2793 sigset_t mask = *which; 2794 int sig; 2795 2796 if (ts) { 2797 if (!timespec_valid(ts)) 2798 return -EINVAL; 2799 timeout = timespec_to_jiffies(ts); 2800 /* 2801 * We can be close to the next tick, add another one 2802 * to ensure we will wait at least the time asked for. 2803 */ 2804 if (ts->tv_sec || ts->tv_nsec) 2805 timeout++; 2806 } 2807 2808 /* 2809 * Invert the set of allowed signals to get those we want to block. 2810 */ 2811 sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2812 signotset(&mask); 2813 2814 spin_lock_irq(&tsk->sighand->siglock); 2815 sig = dequeue_signal(tsk, &mask, info); 2816 if (!sig && timeout) { 2817 /* 2818 * None ready, temporarily unblock those we're interested 2819 * while we are sleeping in so that we'll be awakened when 2820 * they arrive. Unblocking is always fine, we can avoid 2821 * set_current_blocked(). 2822 */ 2823 tsk->real_blocked = tsk->blocked; 2824 sigandsets(&tsk->blocked, &tsk->blocked, &mask); 2825 recalc_sigpending(); 2826 spin_unlock_irq(&tsk->sighand->siglock); 2827 2828 timeout = freezable_schedule_timeout_interruptible(timeout); 2829 2830 spin_lock_irq(&tsk->sighand->siglock); 2831 __set_task_blocked(tsk, &tsk->real_blocked); 2832 sigemptyset(&tsk->real_blocked); 2833 sig = dequeue_signal(tsk, &mask, info); 2834 } 2835 spin_unlock_irq(&tsk->sighand->siglock); 2836 2837 if (sig) 2838 return sig; 2839 return timeout ? -EINTR : -EAGAIN; 2840} 2841 2842/** 2843 * sys_rt_sigtimedwait - synchronously wait for queued signals specified 2844 * in @uthese 2845 * @uthese: queued signals to wait for 2846 * @uinfo: if non-null, the signal's siginfo is returned here 2847 * @uts: upper bound on process time suspension 2848 * @sigsetsize: size of sigset_t type 2849 */ 2850SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2851 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2852 size_t, sigsetsize) 2853{ 2854 sigset_t these; 2855 struct timespec ts; 2856 siginfo_t info; 2857 int ret; 2858 2859 /* XXX: Don't preclude handling different sized sigset_t's. */ 2860 if (sigsetsize != sizeof(sigset_t)) 2861 return -EINVAL; 2862 2863 if (copy_from_user(&these, uthese, sizeof(these))) 2864 return -EFAULT; 2865 2866 if (uts) { 2867 if (copy_from_user(&ts, uts, sizeof(ts))) 2868 return -EFAULT; 2869 } 2870 2871 ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); 2872 2873 if (ret > 0 && uinfo) { 2874 if (copy_siginfo_to_user(uinfo, &info)) 2875 ret = -EFAULT; 2876 } 2877 2878 return ret; 2879} 2880 2881/** 2882 * sys_kill - send a signal to a process 2883 * @pid: the PID of the process 2884 * @sig: signal to be sent 2885 */ 2886SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2887{ 2888 struct siginfo info; 2889 2890 info.si_signo = sig; 2891 info.si_errno = 0; 2892 info.si_code = SI_USER; 2893 info.si_pid = task_tgid_vnr(current); 2894 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2895 2896 return kill_something_info(sig, &info, pid); 2897} 2898 2899static int 2900do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2901{ 2902 struct task_struct *p; 2903 int error = -ESRCH; 2904 2905 rcu_read_lock(); 2906 p = find_task_by_vpid(pid); 2907 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2908 error = check_kill_permission(sig, info, p); 2909 /* 2910 * The null signal is a permissions and process existence 2911 * probe. No signal is actually delivered. 2912 */ 2913 if (!error && sig) { 2914 error = do_send_sig_info(sig, info, p, false); 2915 /* 2916 * If lock_task_sighand() failed we pretend the task 2917 * dies after receiving the signal. The window is tiny, 2918 * and the signal is private anyway. 2919 */ 2920 if (unlikely(error == -ESRCH)) 2921 error = 0; 2922 } 2923 } 2924 rcu_read_unlock(); 2925 2926 return error; 2927} 2928 2929static int do_tkill(pid_t tgid, pid_t pid, int sig) 2930{ 2931 struct siginfo info = {}; 2932 2933 info.si_signo = sig; 2934 info.si_errno = 0; 2935 info.si_code = SI_TKILL; 2936 info.si_pid = task_tgid_vnr(current); 2937 info.si_uid = from_kuid_munged(current_user_ns(), current_uid()); 2938 2939 return do_send_specific(tgid, pid, sig, &info); 2940} 2941 2942/** 2943 * sys_tgkill - send signal to one specific thread 2944 * @tgid: the thread group ID of the thread 2945 * @pid: the PID of the thread 2946 * @sig: signal to be sent 2947 * 2948 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2949 * exists but it's not belonging to the target process anymore. This 2950 * method solves the problem of threads exiting and PIDs getting reused. 2951 */ 2952SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2953{ 2954 /* This is only valid for single tasks */ 2955 if (pid <= 0 || tgid <= 0) 2956 return -EINVAL; 2957 2958 return do_tkill(tgid, pid, sig); 2959} 2960 2961/** 2962 * sys_tkill - send signal to one specific task 2963 * @pid: the PID of the task 2964 * @sig: signal to be sent 2965 * 2966 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2967 */ 2968SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2969{ 2970 /* This is only valid for single tasks */ 2971 if (pid <= 0) 2972 return -EINVAL; 2973 2974 return do_tkill(0, pid, sig); 2975} 2976 2977static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info) 2978{ 2979 /* Not even root can pretend to send signals from the kernel. 2980 * Nor can they impersonate a kill()/tgkill(), which adds source info. 2981 */ 2982 if ((info->si_code >= 0 || info->si_code == SI_TKILL) && 2983 (task_pid_vnr(current) != pid)) { 2984 /* We used to allow any < 0 si_code */ 2985 WARN_ON_ONCE(info->si_code < 0); 2986 return -EPERM; 2987 } 2988 info->si_signo = sig; 2989 2990 /* POSIX.1b doesn't mention process groups. */ 2991 return kill_proc_info(sig, info, pid); 2992} 2993 2994/** 2995 * sys_rt_sigqueueinfo - send signal information to a signal 2996 * @pid: the PID of the thread 2997 * @sig: signal to be sent 2998 * @uinfo: signal info to be sent 2999 */ 3000SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 3001 siginfo_t __user *, uinfo) 3002{ 3003 siginfo_t info; 3004 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3005 return -EFAULT; 3006 return do_rt_sigqueueinfo(pid, sig, &info); 3007} 3008 3009#ifdef CONFIG_COMPAT 3010COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo, 3011 compat_pid_t, pid, 3012 int, sig, 3013 struct compat_siginfo __user *, uinfo) 3014{ 3015 siginfo_t info; 3016 int ret = copy_siginfo_from_user32(&info, uinfo); 3017 if (unlikely(ret)) 3018 return ret; 3019 return do_rt_sigqueueinfo(pid, sig, &info); 3020} 3021#endif 3022 3023static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 3024{ 3025 /* This is only valid for single tasks */ 3026 if (pid <= 0 || tgid <= 0) 3027 return -EINVAL; 3028 3029 /* Not even root can pretend to send signals from the kernel. 3030 * Nor can they impersonate a kill()/tgkill(), which adds source info. 3031 */ 3032 if (((info->si_code >= 0 || info->si_code == SI_TKILL)) && 3033 (task_pid_vnr(current) != pid)) { 3034 /* We used to allow any < 0 si_code */ 3035 WARN_ON_ONCE(info->si_code < 0); 3036 return -EPERM; 3037 } 3038 info->si_signo = sig; 3039 3040 return do_send_specific(tgid, pid, sig, info); 3041} 3042 3043SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 3044 siginfo_t __user *, uinfo) 3045{ 3046 siginfo_t info; 3047 3048 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 3049 return -EFAULT; 3050 3051 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3052} 3053 3054#ifdef CONFIG_COMPAT 3055COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo, 3056 compat_pid_t, tgid, 3057 compat_pid_t, pid, 3058 int, sig, 3059 struct compat_siginfo __user *, uinfo) 3060{ 3061 siginfo_t info; 3062 3063 if (copy_siginfo_from_user32(&info, uinfo)) 3064 return -EFAULT; 3065 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 3066} 3067#endif 3068 3069/* 3070 * For kthreads only, must not be used if cloned with CLONE_SIGHAND 3071 */ 3072void kernel_sigaction(int sig, __sighandler_t action) 3073{ 3074 spin_lock_irq(¤t->sighand->siglock); 3075 current->sighand->action[sig - 1].sa.sa_handler = action; 3076 if (action == SIG_IGN) { 3077 sigset_t mask; 3078 3079 sigemptyset(&mask); 3080 sigaddset(&mask, sig); 3081 3082 flush_sigqueue_mask(&mask, ¤t->signal->shared_pending); 3083 flush_sigqueue_mask(&mask, ¤t->pending); 3084 recalc_sigpending(); 3085 } 3086 spin_unlock_irq(¤t->sighand->siglock); 3087} 3088EXPORT_SYMBOL(kernel_sigaction); 3089 3090int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 3091{ 3092 struct task_struct *p = current, *t; 3093 struct k_sigaction *k; 3094 sigset_t mask; 3095 3096 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 3097 return -EINVAL; 3098 3099 k = &p->sighand->action[sig-1]; 3100 3101 spin_lock_irq(&p->sighand->siglock); 3102 if (oact) 3103 *oact = *k; 3104 3105 if (act) { 3106 sigdelsetmask(&act->sa.sa_mask, 3107 sigmask(SIGKILL) | sigmask(SIGSTOP)); 3108 *k = *act; 3109 /* 3110 * POSIX 3.3.1.3: 3111 * "Setting a signal action to SIG_IGN for a signal that is 3112 * pending shall cause the pending signal to be discarded, 3113 * whether or not it is blocked." 3114 * 3115 * "Setting a signal action to SIG_DFL for a signal that is 3116 * pending and whose default action is to ignore the signal 3117 * (for example, SIGCHLD), shall cause the pending signal to 3118 * be discarded, whether or not it is blocked" 3119 */ 3120 if (sig_handler_ignored(sig_handler(p, sig), sig)) { 3121 sigemptyset(&mask); 3122 sigaddset(&mask, sig); 3123 flush_sigqueue_mask(&mask, &p->signal->shared_pending); 3124 for_each_thread(p, t) 3125 flush_sigqueue_mask(&mask, &t->pending); 3126 } 3127 } 3128 3129 spin_unlock_irq(&p->sighand->siglock); 3130 return 0; 3131} 3132 3133static int 3134do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 3135{ 3136 stack_t oss; 3137 int error; 3138 3139 oss.ss_sp = (void __user *) current->sas_ss_sp; 3140 oss.ss_size = current->sas_ss_size; 3141 oss.ss_flags = sas_ss_flags(sp); 3142 3143 if (uss) { 3144 void __user *ss_sp; 3145 size_t ss_size; 3146 int ss_flags; 3147 3148 error = -EFAULT; 3149 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 3150 goto out; 3151 error = __get_user(ss_sp, &uss->ss_sp) | 3152 __get_user(ss_flags, &uss->ss_flags) | 3153 __get_user(ss_size, &uss->ss_size); 3154 if (error) 3155 goto out; 3156 3157 error = -EPERM; 3158 if (on_sig_stack(sp)) 3159 goto out; 3160 3161 error = -EINVAL; 3162 /* 3163 * Note - this code used to test ss_flags incorrectly: 3164 * old code may have been written using ss_flags==0 3165 * to mean ss_flags==SS_ONSTACK (as this was the only 3166 * way that worked) - this fix preserves that older 3167 * mechanism. 3168 */ 3169 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 3170 goto out; 3171 3172 if (ss_flags == SS_DISABLE) { 3173 ss_size = 0; 3174 ss_sp = NULL; 3175 } else { 3176 error = -ENOMEM; 3177 if (ss_size < MINSIGSTKSZ) 3178 goto out; 3179 } 3180 3181 current->sas_ss_sp = (unsigned long) ss_sp; 3182 current->sas_ss_size = ss_size; 3183 } 3184 3185 error = 0; 3186 if (uoss) { 3187 error = -EFAULT; 3188 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 3189 goto out; 3190 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 3191 __put_user(oss.ss_size, &uoss->ss_size) | 3192 __put_user(oss.ss_flags, &uoss->ss_flags); 3193 } 3194 3195out: 3196 return error; 3197} 3198SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss) 3199{ 3200 return do_sigaltstack(uss, uoss, current_user_stack_pointer()); 3201} 3202 3203int restore_altstack(const stack_t __user *uss) 3204{ 3205 int err = do_sigaltstack(uss, NULL, current_user_stack_pointer()); 3206 /* squash all but EFAULT for now */ 3207 return err == -EFAULT ? err : 0; 3208} 3209 3210int __save_altstack(stack_t __user *uss, unsigned long sp) 3211{ 3212 struct task_struct *t = current; 3213 return __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) | 3214 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3215 __put_user(t->sas_ss_size, &uss->ss_size); 3216} 3217 3218#ifdef CONFIG_COMPAT 3219COMPAT_SYSCALL_DEFINE2(sigaltstack, 3220 const compat_stack_t __user *, uss_ptr, 3221 compat_stack_t __user *, uoss_ptr) 3222{ 3223 stack_t uss, uoss; 3224 int ret; 3225 mm_segment_t seg; 3226 3227 if (uss_ptr) { 3228 compat_stack_t uss32; 3229 3230 memset(&uss, 0, sizeof(stack_t)); 3231 if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t))) 3232 return -EFAULT; 3233 uss.ss_sp = compat_ptr(uss32.ss_sp); 3234 uss.ss_flags = uss32.ss_flags; 3235 uss.ss_size = uss32.ss_size; 3236 } 3237 seg = get_fs(); 3238 set_fs(KERNEL_DS); 3239 ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL), 3240 (stack_t __force __user *) &uoss, 3241 compat_user_stack_pointer()); 3242 set_fs(seg); 3243 if (ret >= 0 && uoss_ptr) { 3244 if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) || 3245 __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) || 3246 __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) || 3247 __put_user(uoss.ss_size, &uoss_ptr->ss_size)) 3248 ret = -EFAULT; 3249 } 3250 return ret; 3251} 3252 3253int compat_restore_altstack(const compat_stack_t __user *uss) 3254{ 3255 int err = compat_sys_sigaltstack(uss, NULL); 3256 /* squash all but -EFAULT for now */ 3257 return err == -EFAULT ? err : 0; 3258} 3259 3260int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp) 3261{ 3262 struct task_struct *t = current; 3263 return __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) | 3264 __put_user(sas_ss_flags(sp), &uss->ss_flags) | 3265 __put_user(t->sas_ss_size, &uss->ss_size); 3266} 3267#endif 3268 3269#ifdef __ARCH_WANT_SYS_SIGPENDING 3270 3271/** 3272 * sys_sigpending - examine pending signals 3273 * @set: where mask of pending signal is returned 3274 */ 3275SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 3276{ 3277 return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 3278} 3279 3280#endif 3281 3282#ifdef __ARCH_WANT_SYS_SIGPROCMASK 3283/** 3284 * sys_sigprocmask - examine and change blocked signals 3285 * @how: whether to add, remove, or set signals 3286 * @nset: signals to add or remove (if non-null) 3287 * @oset: previous value of signal mask if non-null 3288 * 3289 * Some platforms have their own version with special arguments; 3290 * others support only sys_rt_sigprocmask. 3291 */ 3292 3293SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, 3294 old_sigset_t __user *, oset) 3295{ 3296 old_sigset_t old_set, new_set; 3297 sigset_t new_blocked; 3298 3299 old_set = current->blocked.sig[0]; 3300 3301 if (nset) { 3302 if (copy_from_user(&new_set, nset, sizeof(*nset))) 3303 return -EFAULT; 3304 3305 new_blocked = current->blocked; 3306 3307 switch (how) { 3308 case SIG_BLOCK: 3309 sigaddsetmask(&new_blocked, new_set); 3310 break; 3311 case SIG_UNBLOCK: 3312 sigdelsetmask(&new_blocked, new_set); 3313 break; 3314 case SIG_SETMASK: 3315 new_blocked.sig[0] = new_set; 3316 break; 3317 default: 3318 return -EINVAL; 3319 } 3320 3321 set_current_blocked(&new_blocked); 3322 } 3323 3324 if (oset) { 3325 if (copy_to_user(oset, &old_set, sizeof(*oset))) 3326 return -EFAULT; 3327 } 3328 3329 return 0; 3330} 3331#endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 3332 3333#ifndef CONFIG_ODD_RT_SIGACTION 3334/** 3335 * sys_rt_sigaction - alter an action taken by a process 3336 * @sig: signal to be sent 3337 * @act: new sigaction 3338 * @oact: used to save the previous sigaction 3339 * @sigsetsize: size of sigset_t type 3340 */ 3341SYSCALL_DEFINE4(rt_sigaction, int, sig, 3342 const struct sigaction __user *, act, 3343 struct sigaction __user *, oact, 3344 size_t, sigsetsize) 3345{ 3346 struct k_sigaction new_sa, old_sa; 3347 int ret = -EINVAL; 3348 3349 /* XXX: Don't preclude handling different sized sigset_t's. */ 3350 if (sigsetsize != sizeof(sigset_t)) 3351 goto out; 3352 3353 if (act) { 3354 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 3355 return -EFAULT; 3356 } 3357 3358 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 3359 3360 if (!ret && oact) { 3361 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 3362 return -EFAULT; 3363 } 3364out: 3365 return ret; 3366} 3367#ifdef CONFIG_COMPAT 3368COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig, 3369 const struct compat_sigaction __user *, act, 3370 struct compat_sigaction __user *, oact, 3371 compat_size_t, sigsetsize) 3372{ 3373 struct k_sigaction new_ka, old_ka; 3374 compat_sigset_t mask; 3375#ifdef __ARCH_HAS_SA_RESTORER 3376 compat_uptr_t restorer; 3377#endif 3378 int ret; 3379 3380 /* XXX: Don't preclude handling different sized sigset_t's. */ 3381 if (sigsetsize != sizeof(compat_sigset_t)) 3382 return -EINVAL; 3383 3384 if (act) { 3385 compat_uptr_t handler; 3386 ret = get_user(handler, &act->sa_handler); 3387 new_ka.sa.sa_handler = compat_ptr(handler); 3388#ifdef __ARCH_HAS_SA_RESTORER 3389 ret |= get_user(restorer, &act->sa_restorer); 3390 new_ka.sa.sa_restorer = compat_ptr(restorer); 3391#endif 3392 ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask)); 3393 ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags); 3394 if (ret) 3395 return -EFAULT; 3396 sigset_from_compat(&new_ka.sa.sa_mask, &mask); 3397 } 3398 3399 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3400 if (!ret && oact) { 3401 sigset_to_compat(&mask, &old_ka.sa.sa_mask); 3402 ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 3403 &oact->sa_handler); 3404 ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask)); 3405 ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags); 3406#ifdef __ARCH_HAS_SA_RESTORER 3407 ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3408 &oact->sa_restorer); 3409#endif 3410 } 3411 return ret; 3412} 3413#endif 3414#endif /* !CONFIG_ODD_RT_SIGACTION */ 3415 3416#ifdef CONFIG_OLD_SIGACTION 3417SYSCALL_DEFINE3(sigaction, int, sig, 3418 const struct old_sigaction __user *, act, 3419 struct old_sigaction __user *, oact) 3420{ 3421 struct k_sigaction new_ka, old_ka; 3422 int ret; 3423 3424 if (act) { 3425 old_sigset_t mask; 3426 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3427 __get_user(new_ka.sa.sa_handler, &act->sa_handler) || 3428 __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) || 3429 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3430 __get_user(mask, &act->sa_mask)) 3431 return -EFAULT; 3432#ifdef __ARCH_HAS_KA_RESTORER 3433 new_ka.ka_restorer = NULL; 3434#endif 3435 siginitset(&new_ka.sa.sa_mask, mask); 3436 } 3437 3438 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3439 3440 if (!ret && oact) { 3441 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3442 __put_user(old_ka.sa.sa_handler, &oact->sa_handler) || 3443 __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) || 3444 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3445 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3446 return -EFAULT; 3447 } 3448 3449 return ret; 3450} 3451#endif 3452#ifdef CONFIG_COMPAT_OLD_SIGACTION 3453COMPAT_SYSCALL_DEFINE3(sigaction, int, sig, 3454 const struct compat_old_sigaction __user *, act, 3455 struct compat_old_sigaction __user *, oact) 3456{ 3457 struct k_sigaction new_ka, old_ka; 3458 int ret; 3459 compat_old_sigset_t mask; 3460 compat_uptr_t handler, restorer; 3461 3462 if (act) { 3463 if (!access_ok(VERIFY_READ, act, sizeof(*act)) || 3464 __get_user(handler, &act->sa_handler) || 3465 __get_user(restorer, &act->sa_restorer) || 3466 __get_user(new_ka.sa.sa_flags, &act->sa_flags) || 3467 __get_user(mask, &act->sa_mask)) 3468 return -EFAULT; 3469 3470#ifdef __ARCH_HAS_KA_RESTORER 3471 new_ka.ka_restorer = NULL; 3472#endif 3473 new_ka.sa.sa_handler = compat_ptr(handler); 3474 new_ka.sa.sa_restorer = compat_ptr(restorer); 3475 siginitset(&new_ka.sa.sa_mask, mask); 3476 } 3477 3478 ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); 3479 3480 if (!ret && oact) { 3481 if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) || 3482 __put_user(ptr_to_compat(old_ka.sa.sa_handler), 3483 &oact->sa_handler) || 3484 __put_user(ptr_to_compat(old_ka.sa.sa_restorer), 3485 &oact->sa_restorer) || 3486 __put_user(old_ka.sa.sa_flags, &oact->sa_flags) || 3487 __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask)) 3488 return -EFAULT; 3489 } 3490 return ret; 3491} 3492#endif 3493 3494#ifdef CONFIG_SGETMASK_SYSCALL 3495 3496/* 3497 * For backwards compatibility. Functionality superseded by sigprocmask. 3498 */ 3499SYSCALL_DEFINE0(sgetmask) 3500{ 3501 /* SMP safe */ 3502 return current->blocked.sig[0]; 3503} 3504 3505SYSCALL_DEFINE1(ssetmask, int, newmask) 3506{ 3507 int old = current->blocked.sig[0]; 3508 sigset_t newset; 3509 3510 siginitset(&newset, newmask); 3511 set_current_blocked(&newset); 3512 3513 return old; 3514} 3515#endif /* CONFIG_SGETMASK_SYSCALL */ 3516 3517#ifdef __ARCH_WANT_SYS_SIGNAL 3518/* 3519 * For backwards compatibility. Functionality superseded by sigaction. 3520 */ 3521SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 3522{ 3523 struct k_sigaction new_sa, old_sa; 3524 int ret; 3525 3526 new_sa.sa.sa_handler = handler; 3527 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 3528 sigemptyset(&new_sa.sa.sa_mask); 3529 3530 ret = do_sigaction(sig, &new_sa, &old_sa); 3531 3532 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 3533} 3534#endif /* __ARCH_WANT_SYS_SIGNAL */ 3535 3536#ifdef __ARCH_WANT_SYS_PAUSE 3537 3538SYSCALL_DEFINE0(pause) 3539{ 3540 while (!signal_pending(current)) { 3541 current->state = TASK_INTERRUPTIBLE; 3542 schedule(); 3543 } 3544 return -ERESTARTNOHAND; 3545} 3546 3547#endif 3548 3549int sigsuspend(sigset_t *set) 3550{ 3551 current->saved_sigmask = current->blocked; 3552 set_current_blocked(set); 3553 3554 current->state = TASK_INTERRUPTIBLE; 3555 schedule(); 3556 set_restore_sigmask(); 3557 return -ERESTARTNOHAND; 3558} 3559 3560/** 3561 * sys_rt_sigsuspend - replace the signal mask for a value with the 3562 * @unewset value until a signal is received 3563 * @unewset: new signal mask value 3564 * @sigsetsize: size of sigset_t type 3565 */ 3566SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 3567{ 3568 sigset_t newset; 3569 3570 /* XXX: Don't preclude handling different sized sigset_t's. */ 3571 if (sigsetsize != sizeof(sigset_t)) 3572 return -EINVAL; 3573 3574 if (copy_from_user(&newset, unewset, sizeof(newset))) 3575 return -EFAULT; 3576 return sigsuspend(&newset); 3577} 3578 3579#ifdef CONFIG_COMPAT 3580COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize) 3581{ 3582#ifdef __BIG_ENDIAN 3583 sigset_t newset; 3584 compat_sigset_t newset32; 3585 3586 /* XXX: Don't preclude handling different sized sigset_t's. */ 3587 if (sigsetsize != sizeof(sigset_t)) 3588 return -EINVAL; 3589 3590 if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t))) 3591 return -EFAULT; 3592 sigset_from_compat(&newset, &newset32); 3593 return sigsuspend(&newset); 3594#else 3595 /* on little-endian bitmaps don't care about granularity */ 3596 return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize); 3597#endif 3598} 3599#endif 3600 3601#ifdef CONFIG_OLD_SIGSUSPEND 3602SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask) 3603{ 3604 sigset_t blocked; 3605 siginitset(&blocked, mask); 3606 return sigsuspend(&blocked); 3607} 3608#endif 3609#ifdef CONFIG_OLD_SIGSUSPEND3 3610SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask) 3611{ 3612 sigset_t blocked; 3613 siginitset(&blocked, mask); 3614 return sigsuspend(&blocked); 3615} 3616#endif 3617 3618__weak const char *arch_vma_name(struct vm_area_struct *vma) 3619{ 3620 return NULL; 3621} 3622 3623void __init signals_init(void) 3624{ 3625 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 3626} 3627 3628#ifdef CONFIG_KGDB_KDB 3629#include <linux/kdb.h> 3630/* 3631 * kdb_send_sig_info - Allows kdb to send signals without exposing 3632 * signal internals. This function checks if the required locks are 3633 * available before calling the main signal code, to avoid kdb 3634 * deadlocks. 3635 */ 3636void 3637kdb_send_sig_info(struct task_struct *t, struct siginfo *info) 3638{ 3639 static struct task_struct *kdb_prev_t; 3640 int sig, new_t; 3641 if (!spin_trylock(&t->sighand->siglock)) { 3642 kdb_printf("Can't do kill command now.\n" 3643 "The sigmask lock is held somewhere else in " 3644 "kernel, try again later\n"); 3645 return; 3646 } 3647 spin_unlock(&t->sighand->siglock); 3648 new_t = kdb_prev_t != t; 3649 kdb_prev_t = t; 3650 if (t->state != TASK_RUNNING && new_t) { 3651 kdb_printf("Process is not RUNNING, sending a signal from " 3652 "kdb risks deadlock\n" 3653 "on the run queue locks. " 3654 "The signal has _not_ been sent.\n" 3655 "Reissue the kill command if you want to risk " 3656 "the deadlock.\n"); 3657 return; 3658 } 3659 sig = info->si_signo; 3660 if (send_sig_info(sig, info, t)) 3661 kdb_printf("Fail to deliver Signal %d to process %d.\n", 3662 sig, t->pid); 3663 else 3664 kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); 3665} 3666#endif /* CONFIG_KGDB_KDB */ 3667