1/*
2 *  linux/kernel/hrtimer.c
3 *
4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 *
8 *  High-resolution kernel timers
9 *
10 *  In contrast to the low-resolution timeout API implemented in
11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12 *  depending on system configuration and capabilities.
13 *
14 *  These timers are currently used for:
15 *   - itimers
16 *   - POSIX timers
17 *   - nanosleep
18 *   - precise in-kernel timing
19 *
20 *  Started by: Thomas Gleixner and Ingo Molnar
21 *
22 *  Credits:
23 *	based on kernel/timer.c
24 *
25 *	Help, testing, suggestions, bugfixes, improvements were
26 *	provided by:
27 *
28 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 *	et. al.
30 *
31 *  For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/export.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
40#include <linux/kallsyms.h>
41#include <linux/interrupt.h>
42#include <linux/tick.h>
43#include <linux/seq_file.h>
44#include <linux/err.h>
45#include <linux/debugobjects.h>
46#include <linux/sched.h>
47#include <linux/sched/sysctl.h>
48#include <linux/sched/rt.h>
49#include <linux/sched/deadline.h>
50#include <linux/timer.h>
51#include <linux/freezer.h>
52
53#include <asm/uaccess.h>
54
55#include <trace/events/timer.h>
56
57#include "timekeeping.h"
58
59/*
60 * The timer bases:
61 *
62 * There are more clockids then hrtimer bases. Thus, we index
63 * into the timer bases by the hrtimer_base_type enum. When trying
64 * to reach a base using a clockid, hrtimer_clockid_to_base()
65 * is used to convert from clockid to the proper hrtimer_base_type.
66 */
67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68{
69
70	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71	.clock_base =
72	{
73		{
74			.index = HRTIMER_BASE_MONOTONIC,
75			.clockid = CLOCK_MONOTONIC,
76			.get_time = &ktime_get,
77			.resolution = KTIME_LOW_RES,
78		},
79		{
80			.index = HRTIMER_BASE_REALTIME,
81			.clockid = CLOCK_REALTIME,
82			.get_time = &ktime_get_real,
83			.resolution = KTIME_LOW_RES,
84		},
85		{
86			.index = HRTIMER_BASE_BOOTTIME,
87			.clockid = CLOCK_BOOTTIME,
88			.get_time = &ktime_get_boottime,
89			.resolution = KTIME_LOW_RES,
90		},
91		{
92			.index = HRTIMER_BASE_TAI,
93			.clockid = CLOCK_TAI,
94			.get_time = &ktime_get_clocktai,
95			.resolution = KTIME_LOW_RES,
96		},
97	}
98};
99
100static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
101	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
102	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
103	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
104	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
105};
106
107static inline int hrtimer_clockid_to_base(clockid_t clock_id)
108{
109	return hrtimer_clock_to_base_table[clock_id];
110}
111
112
113/*
114 * Get the coarse grained time at the softirq based on xtime and
115 * wall_to_monotonic.
116 */
117static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
118{
119	ktime_t xtim, mono, boot, tai;
120	ktime_t off_real, off_boot, off_tai;
121
122	mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
123	boot = ktime_add(mono, off_boot);
124	xtim = ktime_add(mono, off_real);
125	tai = ktime_add(xtim, off_tai);
126
127	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130	base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
131}
132
133/*
134 * Functions and macros which are different for UP/SMP systems are kept in a
135 * single place
136 */
137#ifdef CONFIG_SMP
138
139/*
140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141 * means that all timers which are tied to this base via timer->base are
142 * locked, and the base itself is locked too.
143 *
144 * So __run_timers/migrate_timers can safely modify all timers which could
145 * be found on the lists/queues.
146 *
147 * When the timer's base is locked, and the timer removed from list, it is
148 * possible to set timer->base = NULL and drop the lock: the timer remains
149 * locked.
150 */
151static
152struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153					     unsigned long *flags)
154{
155	struct hrtimer_clock_base *base;
156
157	for (;;) {
158		base = timer->base;
159		if (likely(base != NULL)) {
160			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161			if (likely(base == timer->base))
162				return base;
163			/* The timer has migrated to another CPU: */
164			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165		}
166		cpu_relax();
167	}
168}
169
170/*
171 * With HIGHRES=y we do not migrate the timer when it is expiring
172 * before the next event on the target cpu because we cannot reprogram
173 * the target cpu hardware and we would cause it to fire late.
174 *
175 * Called with cpu_base->lock of target cpu held.
176 */
177static int
178hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
179{
180#ifdef CONFIG_HIGH_RES_TIMERS
181	ktime_t expires;
182
183	if (!new_base->cpu_base->hres_active)
184		return 0;
185
186	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
187	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
188#else
189	return 0;
190#endif
191}
192
193/*
194 * Switch the timer base to the current CPU when possible.
195 */
196static inline struct hrtimer_clock_base *
197switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
198		    int pinned)
199{
200	struct hrtimer_clock_base *new_base;
201	struct hrtimer_cpu_base *new_cpu_base;
202	int this_cpu = smp_processor_id();
203	int cpu = get_nohz_timer_target(pinned);
204	int basenum = base->index;
205
206again:
207	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208	new_base = &new_cpu_base->clock_base[basenum];
209
210	if (base != new_base) {
211		/*
212		 * We are trying to move timer to new_base.
213		 * However we can't change timer's base while it is running,
214		 * so we keep it on the same CPU. No hassle vs. reprogramming
215		 * the event source in the high resolution case. The softirq
216		 * code will take care of this when the timer function has
217		 * completed. There is no conflict as we hold the lock until
218		 * the timer is enqueued.
219		 */
220		if (unlikely(hrtimer_callback_running(timer)))
221			return base;
222
223		/* See the comment in lock_timer_base() */
224		timer->base = NULL;
225		raw_spin_unlock(&base->cpu_base->lock);
226		raw_spin_lock(&new_base->cpu_base->lock);
227
228		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
229			cpu = this_cpu;
230			raw_spin_unlock(&new_base->cpu_base->lock);
231			raw_spin_lock(&base->cpu_base->lock);
232			timer->base = base;
233			goto again;
234		}
235		timer->base = new_base;
236	} else {
237		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
238			cpu = this_cpu;
239			goto again;
240		}
241	}
242	return new_base;
243}
244
245#else /* CONFIG_SMP */
246
247static inline struct hrtimer_clock_base *
248lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
249{
250	struct hrtimer_clock_base *base = timer->base;
251
252	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
253
254	return base;
255}
256
257# define switch_hrtimer_base(t, b, p)	(b)
258
259#endif	/* !CONFIG_SMP */
260
261/*
262 * Functions for the union type storage format of ktime_t which are
263 * too large for inlining:
264 */
265#if BITS_PER_LONG < 64
266/*
267 * Divide a ktime value by a nanosecond value
268 */
269u64 ktime_divns(const ktime_t kt, s64 div)
270{
271	u64 dclc;
272	int sft = 0;
273
274	dclc = ktime_to_ns(kt);
275	/* Make sure the divisor is less than 2^32: */
276	while (div >> 32) {
277		sft++;
278		div >>= 1;
279	}
280	dclc >>= sft;
281	do_div(dclc, (unsigned long) div);
282
283	return dclc;
284}
285EXPORT_SYMBOL_GPL(ktime_divns);
286#endif /* BITS_PER_LONG >= 64 */
287
288/*
289 * Add two ktime values and do a safety check for overflow:
290 */
291ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
292{
293	ktime_t res = ktime_add(lhs, rhs);
294
295	/*
296	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
297	 * return to user space in a timespec:
298	 */
299	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
300		res = ktime_set(KTIME_SEC_MAX, 0);
301
302	return res;
303}
304
305EXPORT_SYMBOL_GPL(ktime_add_safe);
306
307#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
308
309static struct debug_obj_descr hrtimer_debug_descr;
310
311static void *hrtimer_debug_hint(void *addr)
312{
313	return ((struct hrtimer *) addr)->function;
314}
315
316/*
317 * fixup_init is called when:
318 * - an active object is initialized
319 */
320static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
321{
322	struct hrtimer *timer = addr;
323
324	switch (state) {
325	case ODEBUG_STATE_ACTIVE:
326		hrtimer_cancel(timer);
327		debug_object_init(timer, &hrtimer_debug_descr);
328		return 1;
329	default:
330		return 0;
331	}
332}
333
334/*
335 * fixup_activate is called when:
336 * - an active object is activated
337 * - an unknown object is activated (might be a statically initialized object)
338 */
339static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
340{
341	switch (state) {
342
343	case ODEBUG_STATE_NOTAVAILABLE:
344		WARN_ON_ONCE(1);
345		return 0;
346
347	case ODEBUG_STATE_ACTIVE:
348		WARN_ON(1);
349
350	default:
351		return 0;
352	}
353}
354
355/*
356 * fixup_free is called when:
357 * - an active object is freed
358 */
359static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
360{
361	struct hrtimer *timer = addr;
362
363	switch (state) {
364	case ODEBUG_STATE_ACTIVE:
365		hrtimer_cancel(timer);
366		debug_object_free(timer, &hrtimer_debug_descr);
367		return 1;
368	default:
369		return 0;
370	}
371}
372
373static struct debug_obj_descr hrtimer_debug_descr = {
374	.name		= "hrtimer",
375	.debug_hint	= hrtimer_debug_hint,
376	.fixup_init	= hrtimer_fixup_init,
377	.fixup_activate	= hrtimer_fixup_activate,
378	.fixup_free	= hrtimer_fixup_free,
379};
380
381static inline void debug_hrtimer_init(struct hrtimer *timer)
382{
383	debug_object_init(timer, &hrtimer_debug_descr);
384}
385
386static inline void debug_hrtimer_activate(struct hrtimer *timer)
387{
388	debug_object_activate(timer, &hrtimer_debug_descr);
389}
390
391static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
392{
393	debug_object_deactivate(timer, &hrtimer_debug_descr);
394}
395
396static inline void debug_hrtimer_free(struct hrtimer *timer)
397{
398	debug_object_free(timer, &hrtimer_debug_descr);
399}
400
401static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
402			   enum hrtimer_mode mode);
403
404void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
405			   enum hrtimer_mode mode)
406{
407	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
408	__hrtimer_init(timer, clock_id, mode);
409}
410EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
411
412void destroy_hrtimer_on_stack(struct hrtimer *timer)
413{
414	debug_object_free(timer, &hrtimer_debug_descr);
415}
416
417#else
418static inline void debug_hrtimer_init(struct hrtimer *timer) { }
419static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
420static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
421#endif
422
423static inline void
424debug_init(struct hrtimer *timer, clockid_t clockid,
425	   enum hrtimer_mode mode)
426{
427	debug_hrtimer_init(timer);
428	trace_hrtimer_init(timer, clockid, mode);
429}
430
431static inline void debug_activate(struct hrtimer *timer)
432{
433	debug_hrtimer_activate(timer);
434	trace_hrtimer_start(timer);
435}
436
437static inline void debug_deactivate(struct hrtimer *timer)
438{
439	debug_hrtimer_deactivate(timer);
440	trace_hrtimer_cancel(timer);
441}
442
443/* High resolution timer related functions */
444#ifdef CONFIG_HIGH_RES_TIMERS
445
446/*
447 * High resolution timer enabled ?
448 */
449static int hrtimer_hres_enabled __read_mostly  = 1;
450
451/*
452 * Enable / Disable high resolution mode
453 */
454static int __init setup_hrtimer_hres(char *str)
455{
456	if (!strcmp(str, "off"))
457		hrtimer_hres_enabled = 0;
458	else if (!strcmp(str, "on"))
459		hrtimer_hres_enabled = 1;
460	else
461		return 0;
462	return 1;
463}
464
465__setup("highres=", setup_hrtimer_hres);
466
467/*
468 * hrtimer_high_res_enabled - query, if the highres mode is enabled
469 */
470static inline int hrtimer_is_hres_enabled(void)
471{
472	return hrtimer_hres_enabled;
473}
474
475/*
476 * Is the high resolution mode active ?
477 */
478static inline int hrtimer_hres_active(void)
479{
480	return __this_cpu_read(hrtimer_bases.hres_active);
481}
482
483/*
484 * Reprogram the event source with checking both queues for the
485 * next event
486 * Called with interrupts disabled and base->lock held
487 */
488static void
489hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
490{
491	int i;
492	struct hrtimer_clock_base *base = cpu_base->clock_base;
493	ktime_t expires, expires_next;
494
495	expires_next.tv64 = KTIME_MAX;
496
497	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
498		struct hrtimer *timer;
499		struct timerqueue_node *next;
500
501		next = timerqueue_getnext(&base->active);
502		if (!next)
503			continue;
504		timer = container_of(next, struct hrtimer, node);
505
506		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
507		/*
508		 * clock_was_set() has changed base->offset so the
509		 * result might be negative. Fix it up to prevent a
510		 * false positive in clockevents_program_event()
511		 */
512		if (expires.tv64 < 0)
513			expires.tv64 = 0;
514		if (expires.tv64 < expires_next.tv64)
515			expires_next = expires;
516	}
517
518	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
519		return;
520
521	cpu_base->expires_next.tv64 = expires_next.tv64;
522
523	/*
524	 * If a hang was detected in the last timer interrupt then we
525	 * leave the hang delay active in the hardware. We want the
526	 * system to make progress. That also prevents the following
527	 * scenario:
528	 * T1 expires 50ms from now
529	 * T2 expires 5s from now
530	 *
531	 * T1 is removed, so this code is called and would reprogram
532	 * the hardware to 5s from now. Any hrtimer_start after that
533	 * will not reprogram the hardware due to hang_detected being
534	 * set. So we'd effectivly block all timers until the T2 event
535	 * fires.
536	 */
537	if (cpu_base->hang_detected)
538		return;
539
540	if (cpu_base->expires_next.tv64 != KTIME_MAX)
541		tick_program_event(cpu_base->expires_next, 1);
542}
543
544/*
545 * Shared reprogramming for clock_realtime and clock_monotonic
546 *
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
550 *
551 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
552 * and no expiry check happens. The timer gets enqueued into the rbtree. The
553 * reprogramming and expiry check is done in the hrtimer_interrupt or in the
554 * softirq.
555 *
556 * Called with interrupts disabled and base->cpu_base.lock held
557 */
558static int hrtimer_reprogram(struct hrtimer *timer,
559			     struct hrtimer_clock_base *base)
560{
561	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
562	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
563	int res;
564
565	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
566
567	/*
568	 * When the callback is running, we do not reprogram the clock event
569	 * device. The timer callback is either running on a different CPU or
570	 * the callback is executed in the hrtimer_interrupt context. The
571	 * reprogramming is handled either by the softirq, which called the
572	 * callback or at the end of the hrtimer_interrupt.
573	 */
574	if (hrtimer_callback_running(timer))
575		return 0;
576
577	/*
578	 * CLOCK_REALTIME timer might be requested with an absolute
579	 * expiry time which is less than base->offset. Nothing wrong
580	 * about that, just avoid to call into the tick code, which
581	 * has now objections against negative expiry values.
582	 */
583	if (expires.tv64 < 0)
584		return -ETIME;
585
586	if (expires.tv64 >= cpu_base->expires_next.tv64)
587		return 0;
588
589	/*
590	 * If a hang was detected in the last timer interrupt then we
591	 * do not schedule a timer which is earlier than the expiry
592	 * which we enforced in the hang detection. We want the system
593	 * to make progress.
594	 */
595	if (cpu_base->hang_detected)
596		return 0;
597
598	/*
599	 * Clockevents returns -ETIME, when the event was in the past.
600	 */
601	res = tick_program_event(expires, 0);
602	if (!IS_ERR_VALUE(res))
603		cpu_base->expires_next = expires;
604	return res;
605}
606
607/*
608 * Initialize the high resolution related parts of cpu_base
609 */
610static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
611{
612	base->expires_next.tv64 = KTIME_MAX;
613	base->hres_active = 0;
614}
615
616static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
617{
618	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
619	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
620	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
621
622	return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
623}
624
625/*
626 * Retrigger next event is called after clock was set
627 *
628 * Called with interrupts disabled via on_each_cpu()
629 */
630static void retrigger_next_event(void *arg)
631{
632	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
633
634	if (!hrtimer_hres_active())
635		return;
636
637	raw_spin_lock(&base->lock);
638	hrtimer_update_base(base);
639	hrtimer_force_reprogram(base, 0);
640	raw_spin_unlock(&base->lock);
641}
642
643/*
644 * Switch to high resolution mode
645 */
646static int hrtimer_switch_to_hres(void)
647{
648	int i, cpu = smp_processor_id();
649	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
650	unsigned long flags;
651
652	if (base->hres_active)
653		return 1;
654
655	local_irq_save(flags);
656
657	if (tick_init_highres()) {
658		local_irq_restore(flags);
659		printk(KERN_WARNING "Could not switch to high resolution "
660				    "mode on CPU %d\n", cpu);
661		return 0;
662	}
663	base->hres_active = 1;
664	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
665		base->clock_base[i].resolution = KTIME_HIGH_RES;
666
667	tick_setup_sched_timer();
668	/* "Retrigger" the interrupt to get things going */
669	retrigger_next_event(NULL);
670	local_irq_restore(flags);
671	return 1;
672}
673
674static void clock_was_set_work(struct work_struct *work)
675{
676	clock_was_set();
677}
678
679static DECLARE_WORK(hrtimer_work, clock_was_set_work);
680
681/*
682 * Called from timekeeping and resume code to reprogramm the hrtimer
683 * interrupt device on all cpus.
684 */
685void clock_was_set_delayed(void)
686{
687	schedule_work(&hrtimer_work);
688}
689
690#else
691
692static inline int hrtimer_hres_active(void) { return 0; }
693static inline int hrtimer_is_hres_enabled(void) { return 0; }
694static inline int hrtimer_switch_to_hres(void) { return 0; }
695static inline void
696hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
697static inline int hrtimer_reprogram(struct hrtimer *timer,
698				    struct hrtimer_clock_base *base)
699{
700	return 0;
701}
702static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
703static inline void retrigger_next_event(void *arg) { }
704
705#endif /* CONFIG_HIGH_RES_TIMERS */
706
707/*
708 * Clock realtime was set
709 *
710 * Change the offset of the realtime clock vs. the monotonic
711 * clock.
712 *
713 * We might have to reprogram the high resolution timer interrupt. On
714 * SMP we call the architecture specific code to retrigger _all_ high
715 * resolution timer interrupts. On UP we just disable interrupts and
716 * call the high resolution interrupt code.
717 */
718void clock_was_set(void)
719{
720#ifdef CONFIG_HIGH_RES_TIMERS
721	/* Retrigger the CPU local events everywhere */
722	on_each_cpu(retrigger_next_event, NULL, 1);
723#endif
724	timerfd_clock_was_set();
725}
726
727/*
728 * During resume we might have to reprogram the high resolution timer
729 * interrupt on all online CPUs.  However, all other CPUs will be
730 * stopped with IRQs interrupts disabled so the clock_was_set() call
731 * must be deferred.
732 */
733void hrtimers_resume(void)
734{
735	WARN_ONCE(!irqs_disabled(),
736		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
737
738	/* Retrigger on the local CPU */
739	retrigger_next_event(NULL);
740	/* And schedule a retrigger for all others */
741	clock_was_set_delayed();
742}
743
744static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
745{
746#ifdef CONFIG_TIMER_STATS
747	if (timer->start_site)
748		return;
749	timer->start_site = __builtin_return_address(0);
750	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
751	timer->start_pid = current->pid;
752#endif
753}
754
755static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
756{
757#ifdef CONFIG_TIMER_STATS
758	timer->start_site = NULL;
759#endif
760}
761
762static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
763{
764#ifdef CONFIG_TIMER_STATS
765	if (likely(!timer_stats_active))
766		return;
767	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
768				 timer->function, timer->start_comm, 0);
769#endif
770}
771
772/*
773 * Counterpart to lock_hrtimer_base above:
774 */
775static inline
776void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
777{
778	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
779}
780
781/**
782 * hrtimer_forward - forward the timer expiry
783 * @timer:	hrtimer to forward
784 * @now:	forward past this time
785 * @interval:	the interval to forward
786 *
787 * Forward the timer expiry so it will expire in the future.
788 * Returns the number of overruns.
789 */
790u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
791{
792	u64 orun = 1;
793	ktime_t delta;
794
795	delta = ktime_sub(now, hrtimer_get_expires(timer));
796
797	if (delta.tv64 < 0)
798		return 0;
799
800	if (interval.tv64 < timer->base->resolution.tv64)
801		interval.tv64 = timer->base->resolution.tv64;
802
803	if (unlikely(delta.tv64 >= interval.tv64)) {
804		s64 incr = ktime_to_ns(interval);
805
806		orun = ktime_divns(delta, incr);
807		hrtimer_add_expires_ns(timer, incr * orun);
808		if (hrtimer_get_expires_tv64(timer) > now.tv64)
809			return orun;
810		/*
811		 * This (and the ktime_add() below) is the
812		 * correction for exact:
813		 */
814		orun++;
815	}
816	hrtimer_add_expires(timer, interval);
817
818	return orun;
819}
820EXPORT_SYMBOL_GPL(hrtimer_forward);
821
822/*
823 * enqueue_hrtimer - internal function to (re)start a timer
824 *
825 * The timer is inserted in expiry order. Insertion into the
826 * red black tree is O(log(n)). Must hold the base lock.
827 *
828 * Returns 1 when the new timer is the leftmost timer in the tree.
829 */
830static int enqueue_hrtimer(struct hrtimer *timer,
831			   struct hrtimer_clock_base *base)
832{
833	debug_activate(timer);
834
835	timerqueue_add(&base->active, &timer->node);
836	base->cpu_base->active_bases |= 1 << base->index;
837
838	/*
839	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
840	 * state of a possibly running callback.
841	 */
842	timer->state |= HRTIMER_STATE_ENQUEUED;
843
844	return (&timer->node == base->active.next);
845}
846
847/*
848 * __remove_hrtimer - internal function to remove a timer
849 *
850 * Caller must hold the base lock.
851 *
852 * High resolution timer mode reprograms the clock event device when the
853 * timer is the one which expires next. The caller can disable this by setting
854 * reprogram to zero. This is useful, when the context does a reprogramming
855 * anyway (e.g. timer interrupt)
856 */
857static void __remove_hrtimer(struct hrtimer *timer,
858			     struct hrtimer_clock_base *base,
859			     unsigned long newstate, int reprogram)
860{
861	struct timerqueue_node *next_timer;
862	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
863		goto out;
864
865	next_timer = timerqueue_getnext(&base->active);
866	timerqueue_del(&base->active, &timer->node);
867	if (&timer->node == next_timer) {
868#ifdef CONFIG_HIGH_RES_TIMERS
869		/* Reprogram the clock event device. if enabled */
870		if (reprogram && hrtimer_hres_active()) {
871			ktime_t expires;
872
873			expires = ktime_sub(hrtimer_get_expires(timer),
874					    base->offset);
875			if (base->cpu_base->expires_next.tv64 == expires.tv64)
876				hrtimer_force_reprogram(base->cpu_base, 1);
877		}
878#endif
879	}
880	if (!timerqueue_getnext(&base->active))
881		base->cpu_base->active_bases &= ~(1 << base->index);
882out:
883	timer->state = newstate;
884}
885
886/*
887 * remove hrtimer, called with base lock held
888 */
889static inline int
890remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
891{
892	if (hrtimer_is_queued(timer)) {
893		unsigned long state;
894		int reprogram;
895
896		/*
897		 * Remove the timer and force reprogramming when high
898		 * resolution mode is active and the timer is on the current
899		 * CPU. If we remove a timer on another CPU, reprogramming is
900		 * skipped. The interrupt event on this CPU is fired and
901		 * reprogramming happens in the interrupt handler. This is a
902		 * rare case and less expensive than a smp call.
903		 */
904		debug_deactivate(timer);
905		timer_stats_hrtimer_clear_start_info(timer);
906		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
907		/*
908		 * We must preserve the CALLBACK state flag here,
909		 * otherwise we could move the timer base in
910		 * switch_hrtimer_base.
911		 */
912		state = timer->state & HRTIMER_STATE_CALLBACK;
913		__remove_hrtimer(timer, base, state, reprogram);
914		return 1;
915	}
916	return 0;
917}
918
919int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
920		unsigned long delta_ns, const enum hrtimer_mode mode,
921		int wakeup)
922{
923	struct hrtimer_clock_base *base, *new_base;
924	unsigned long flags;
925	int ret, leftmost;
926
927	base = lock_hrtimer_base(timer, &flags);
928
929	/* Remove an active timer from the queue: */
930	ret = remove_hrtimer(timer, base);
931
932	if (mode & HRTIMER_MODE_REL) {
933		tim = ktime_add_safe(tim, base->get_time());
934		/*
935		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
936		 * to signal that they simply return xtime in
937		 * do_gettimeoffset(). In this case we want to round up by
938		 * resolution when starting a relative timer, to avoid short
939		 * timeouts. This will go away with the GTOD framework.
940		 */
941#ifdef CONFIG_TIME_LOW_RES
942		tim = ktime_add_safe(tim, base->resolution);
943#endif
944	}
945
946	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
947
948	/* Switch the timer base, if necessary: */
949	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
950
951	timer_stats_hrtimer_set_start_info(timer);
952
953	leftmost = enqueue_hrtimer(timer, new_base);
954
955	if (!leftmost) {
956		unlock_hrtimer_base(timer, &flags);
957		return ret;
958	}
959
960	if (!hrtimer_is_hres_active(timer)) {
961		/*
962		 * Kick to reschedule the next tick to handle the new timer
963		 * on dynticks target.
964		 */
965		wake_up_nohz_cpu(new_base->cpu_base->cpu);
966	} else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
967			hrtimer_reprogram(timer, new_base)) {
968		/*
969		 * Only allow reprogramming if the new base is on this CPU.
970		 * (it might still be on another CPU if the timer was pending)
971		 *
972		 * XXX send_remote_softirq() ?
973		 */
974		if (wakeup) {
975			/*
976			 * We need to drop cpu_base->lock to avoid a
977			 * lock ordering issue vs. rq->lock.
978			 */
979			raw_spin_unlock(&new_base->cpu_base->lock);
980			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
981			local_irq_restore(flags);
982			return ret;
983		} else {
984			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
985		}
986	}
987
988	unlock_hrtimer_base(timer, &flags);
989
990	return ret;
991}
992EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
993
994/**
995 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
996 * @timer:	the timer to be added
997 * @tim:	expiry time
998 * @delta_ns:	"slack" range for the timer
999 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1000 *		relative (HRTIMER_MODE_REL)
1001 *
1002 * Returns:
1003 *  0 on success
1004 *  1 when the timer was active
1005 */
1006int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1007		unsigned long delta_ns, const enum hrtimer_mode mode)
1008{
1009	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1010}
1011EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1012
1013/**
1014 * hrtimer_start - (re)start an hrtimer on the current CPU
1015 * @timer:	the timer to be added
1016 * @tim:	expiry time
1017 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1018 *		relative (HRTIMER_MODE_REL)
1019 *
1020 * Returns:
1021 *  0 on success
1022 *  1 when the timer was active
1023 */
1024int
1025hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1026{
1027	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1028}
1029EXPORT_SYMBOL_GPL(hrtimer_start);
1030
1031
1032/**
1033 * hrtimer_try_to_cancel - try to deactivate a timer
1034 * @timer:	hrtimer to stop
1035 *
1036 * Returns:
1037 *  0 when the timer was not active
1038 *  1 when the timer was active
1039 * -1 when the timer is currently excuting the callback function and
1040 *    cannot be stopped
1041 */
1042int hrtimer_try_to_cancel(struct hrtimer *timer)
1043{
1044	struct hrtimer_clock_base *base;
1045	unsigned long flags;
1046	int ret = -1;
1047
1048	base = lock_hrtimer_base(timer, &flags);
1049
1050	if (!hrtimer_callback_running(timer))
1051		ret = remove_hrtimer(timer, base);
1052
1053	unlock_hrtimer_base(timer, &flags);
1054
1055	return ret;
1056
1057}
1058EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1059
1060/**
1061 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1062 * @timer:	the timer to be cancelled
1063 *
1064 * Returns:
1065 *  0 when the timer was not active
1066 *  1 when the timer was active
1067 */
1068int hrtimer_cancel(struct hrtimer *timer)
1069{
1070	for (;;) {
1071		int ret = hrtimer_try_to_cancel(timer);
1072
1073		if (ret >= 0)
1074			return ret;
1075		cpu_relax();
1076	}
1077}
1078EXPORT_SYMBOL_GPL(hrtimer_cancel);
1079
1080/**
1081 * hrtimer_get_remaining - get remaining time for the timer
1082 * @timer:	the timer to read
1083 */
1084ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1085{
1086	unsigned long flags;
1087	ktime_t rem;
1088
1089	lock_hrtimer_base(timer, &flags);
1090	rem = hrtimer_expires_remaining(timer);
1091	unlock_hrtimer_base(timer, &flags);
1092
1093	return rem;
1094}
1095EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1096
1097#ifdef CONFIG_NO_HZ_COMMON
1098/**
1099 * hrtimer_get_next_event - get the time until next expiry event
1100 *
1101 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1102 * is pending.
1103 */
1104ktime_t hrtimer_get_next_event(void)
1105{
1106	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1107	struct hrtimer_clock_base *base = cpu_base->clock_base;
1108	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1109	unsigned long flags;
1110	int i;
1111
1112	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1113
1114	if (!hrtimer_hres_active()) {
1115		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1116			struct hrtimer *timer;
1117			struct timerqueue_node *next;
1118
1119			next = timerqueue_getnext(&base->active);
1120			if (!next)
1121				continue;
1122
1123			timer = container_of(next, struct hrtimer, node);
1124			delta.tv64 = hrtimer_get_expires_tv64(timer);
1125			delta = ktime_sub(delta, base->get_time());
1126			if (delta.tv64 < mindelta.tv64)
1127				mindelta.tv64 = delta.tv64;
1128		}
1129	}
1130
1131	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1132
1133	if (mindelta.tv64 < 0)
1134		mindelta.tv64 = 0;
1135	return mindelta;
1136}
1137#endif
1138
1139static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1140			   enum hrtimer_mode mode)
1141{
1142	struct hrtimer_cpu_base *cpu_base;
1143	int base;
1144
1145	memset(timer, 0, sizeof(struct hrtimer));
1146
1147	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1148
1149	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1150		clock_id = CLOCK_MONOTONIC;
1151
1152	base = hrtimer_clockid_to_base(clock_id);
1153	timer->base = &cpu_base->clock_base[base];
1154	timerqueue_init(&timer->node);
1155
1156#ifdef CONFIG_TIMER_STATS
1157	timer->start_site = NULL;
1158	timer->start_pid = -1;
1159	memset(timer->start_comm, 0, TASK_COMM_LEN);
1160#endif
1161}
1162
1163/**
1164 * hrtimer_init - initialize a timer to the given clock
1165 * @timer:	the timer to be initialized
1166 * @clock_id:	the clock to be used
1167 * @mode:	timer mode abs/rel
1168 */
1169void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1170		  enum hrtimer_mode mode)
1171{
1172	debug_init(timer, clock_id, mode);
1173	__hrtimer_init(timer, clock_id, mode);
1174}
1175EXPORT_SYMBOL_GPL(hrtimer_init);
1176
1177/**
1178 * hrtimer_get_res - get the timer resolution for a clock
1179 * @which_clock: which clock to query
1180 * @tp:		 pointer to timespec variable to store the resolution
1181 *
1182 * Store the resolution of the clock selected by @which_clock in the
1183 * variable pointed to by @tp.
1184 */
1185int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1186{
1187	struct hrtimer_cpu_base *cpu_base;
1188	int base = hrtimer_clockid_to_base(which_clock);
1189
1190	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1191	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1192
1193	return 0;
1194}
1195EXPORT_SYMBOL_GPL(hrtimer_get_res);
1196
1197static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1198{
1199	struct hrtimer_clock_base *base = timer->base;
1200	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1201	enum hrtimer_restart (*fn)(struct hrtimer *);
1202	int restart;
1203
1204	WARN_ON(!irqs_disabled());
1205
1206	debug_deactivate(timer);
1207	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1208	timer_stats_account_hrtimer(timer);
1209	fn = timer->function;
1210
1211	/*
1212	 * Because we run timers from hardirq context, there is no chance
1213	 * they get migrated to another cpu, therefore its safe to unlock
1214	 * the timer base.
1215	 */
1216	raw_spin_unlock(&cpu_base->lock);
1217	trace_hrtimer_expire_entry(timer, now);
1218	restart = fn(timer);
1219	trace_hrtimer_expire_exit(timer);
1220	raw_spin_lock(&cpu_base->lock);
1221
1222	/*
1223	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1224	 * we do not reprogramm the event hardware. Happens either in
1225	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1226	 */
1227	if (restart != HRTIMER_NORESTART) {
1228		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1229		enqueue_hrtimer(timer, base);
1230	}
1231
1232	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1233
1234	timer->state &= ~HRTIMER_STATE_CALLBACK;
1235}
1236
1237#ifdef CONFIG_HIGH_RES_TIMERS
1238
1239/*
1240 * High resolution timer interrupt
1241 * Called with interrupts disabled
1242 */
1243void hrtimer_interrupt(struct clock_event_device *dev)
1244{
1245	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1246	ktime_t expires_next, now, entry_time, delta;
1247	int i, retries = 0;
1248
1249	BUG_ON(!cpu_base->hres_active);
1250	cpu_base->nr_events++;
1251	dev->next_event.tv64 = KTIME_MAX;
1252
1253	raw_spin_lock(&cpu_base->lock);
1254	entry_time = now = hrtimer_update_base(cpu_base);
1255retry:
1256	expires_next.tv64 = KTIME_MAX;
1257	/*
1258	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1259	 * held to prevent that a timer is enqueued in our queue via
1260	 * the migration code. This does not affect enqueueing of
1261	 * timers which run their callback and need to be requeued on
1262	 * this CPU.
1263	 */
1264	cpu_base->expires_next.tv64 = KTIME_MAX;
1265
1266	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1267		struct hrtimer_clock_base *base;
1268		struct timerqueue_node *node;
1269		ktime_t basenow;
1270
1271		if (!(cpu_base->active_bases & (1 << i)))
1272			continue;
1273
1274		base = cpu_base->clock_base + i;
1275		basenow = ktime_add(now, base->offset);
1276
1277		while ((node = timerqueue_getnext(&base->active))) {
1278			struct hrtimer *timer;
1279
1280			timer = container_of(node, struct hrtimer, node);
1281
1282			/*
1283			 * The immediate goal for using the softexpires is
1284			 * minimizing wakeups, not running timers at the
1285			 * earliest interrupt after their soft expiration.
1286			 * This allows us to avoid using a Priority Search
1287			 * Tree, which can answer a stabbing querry for
1288			 * overlapping intervals and instead use the simple
1289			 * BST we already have.
1290			 * We don't add extra wakeups by delaying timers that
1291			 * are right-of a not yet expired timer, because that
1292			 * timer will have to trigger a wakeup anyway.
1293			 */
1294
1295			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1296				ktime_t expires;
1297
1298				expires = ktime_sub(hrtimer_get_expires(timer),
1299						    base->offset);
1300				if (expires.tv64 < 0)
1301					expires.tv64 = KTIME_MAX;
1302				if (expires.tv64 < expires_next.tv64)
1303					expires_next = expires;
1304				break;
1305			}
1306
1307			__run_hrtimer(timer, &basenow);
1308		}
1309	}
1310
1311	/*
1312	 * Store the new expiry value so the migration code can verify
1313	 * against it.
1314	 */
1315	cpu_base->expires_next = expires_next;
1316	raw_spin_unlock(&cpu_base->lock);
1317
1318	/* Reprogramming necessary ? */
1319	if (expires_next.tv64 == KTIME_MAX ||
1320	    !tick_program_event(expires_next, 0)) {
1321		cpu_base->hang_detected = 0;
1322		return;
1323	}
1324
1325	/*
1326	 * The next timer was already expired due to:
1327	 * - tracing
1328	 * - long lasting callbacks
1329	 * - being scheduled away when running in a VM
1330	 *
1331	 * We need to prevent that we loop forever in the hrtimer
1332	 * interrupt routine. We give it 3 attempts to avoid
1333	 * overreacting on some spurious event.
1334	 *
1335	 * Acquire base lock for updating the offsets and retrieving
1336	 * the current time.
1337	 */
1338	raw_spin_lock(&cpu_base->lock);
1339	now = hrtimer_update_base(cpu_base);
1340	cpu_base->nr_retries++;
1341	if (++retries < 3)
1342		goto retry;
1343	/*
1344	 * Give the system a chance to do something else than looping
1345	 * here. We stored the entry time, so we know exactly how long
1346	 * we spent here. We schedule the next event this amount of
1347	 * time away.
1348	 */
1349	cpu_base->nr_hangs++;
1350	cpu_base->hang_detected = 1;
1351	raw_spin_unlock(&cpu_base->lock);
1352	delta = ktime_sub(now, entry_time);
1353	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1354		cpu_base->max_hang_time = delta;
1355	/*
1356	 * Limit it to a sensible value as we enforce a longer
1357	 * delay. Give the CPU at least 100ms to catch up.
1358	 */
1359	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1360		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1361	else
1362		expires_next = ktime_add(now, delta);
1363	tick_program_event(expires_next, 1);
1364	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1365		    ktime_to_ns(delta));
1366}
1367
1368/*
1369 * local version of hrtimer_peek_ahead_timers() called with interrupts
1370 * disabled.
1371 */
1372static void __hrtimer_peek_ahead_timers(void)
1373{
1374	struct tick_device *td;
1375
1376	if (!hrtimer_hres_active())
1377		return;
1378
1379	td = this_cpu_ptr(&tick_cpu_device);
1380	if (td && td->evtdev)
1381		hrtimer_interrupt(td->evtdev);
1382}
1383
1384/**
1385 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1386 *
1387 * hrtimer_peek_ahead_timers will peek at the timer queue of
1388 * the current cpu and check if there are any timers for which
1389 * the soft expires time has passed. If any such timers exist,
1390 * they are run immediately and then removed from the timer queue.
1391 *
1392 */
1393void hrtimer_peek_ahead_timers(void)
1394{
1395	unsigned long flags;
1396
1397	local_irq_save(flags);
1398	__hrtimer_peek_ahead_timers();
1399	local_irq_restore(flags);
1400}
1401
1402static void run_hrtimer_softirq(struct softirq_action *h)
1403{
1404	hrtimer_peek_ahead_timers();
1405}
1406
1407#else /* CONFIG_HIGH_RES_TIMERS */
1408
1409static inline void __hrtimer_peek_ahead_timers(void) { }
1410
1411#endif	/* !CONFIG_HIGH_RES_TIMERS */
1412
1413/*
1414 * Called from timer softirq every jiffy, expire hrtimers:
1415 *
1416 * For HRT its the fall back code to run the softirq in the timer
1417 * softirq context in case the hrtimer initialization failed or has
1418 * not been done yet.
1419 */
1420void hrtimer_run_pending(void)
1421{
1422	if (hrtimer_hres_active())
1423		return;
1424
1425	/*
1426	 * This _is_ ugly: We have to check in the softirq context,
1427	 * whether we can switch to highres and / or nohz mode. The
1428	 * clocksource switch happens in the timer interrupt with
1429	 * xtime_lock held. Notification from there only sets the
1430	 * check bit in the tick_oneshot code, otherwise we might
1431	 * deadlock vs. xtime_lock.
1432	 */
1433	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1434		hrtimer_switch_to_hres();
1435}
1436
1437/*
1438 * Called from hardirq context every jiffy
1439 */
1440void hrtimer_run_queues(void)
1441{
1442	struct timerqueue_node *node;
1443	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1444	struct hrtimer_clock_base *base;
1445	int index, gettime = 1;
1446
1447	if (hrtimer_hres_active())
1448		return;
1449
1450	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1451		base = &cpu_base->clock_base[index];
1452		if (!timerqueue_getnext(&base->active))
1453			continue;
1454
1455		if (gettime) {
1456			hrtimer_get_softirq_time(cpu_base);
1457			gettime = 0;
1458		}
1459
1460		raw_spin_lock(&cpu_base->lock);
1461
1462		while ((node = timerqueue_getnext(&base->active))) {
1463			struct hrtimer *timer;
1464
1465			timer = container_of(node, struct hrtimer, node);
1466			if (base->softirq_time.tv64 <=
1467					hrtimer_get_expires_tv64(timer))
1468				break;
1469
1470			__run_hrtimer(timer, &base->softirq_time);
1471		}
1472		raw_spin_unlock(&cpu_base->lock);
1473	}
1474}
1475
1476/*
1477 * Sleep related functions:
1478 */
1479static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1480{
1481	struct hrtimer_sleeper *t =
1482		container_of(timer, struct hrtimer_sleeper, timer);
1483	struct task_struct *task = t->task;
1484
1485	t->task = NULL;
1486	if (task)
1487		wake_up_process(task);
1488
1489	return HRTIMER_NORESTART;
1490}
1491
1492void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1493{
1494	sl->timer.function = hrtimer_wakeup;
1495	sl->task = task;
1496}
1497EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1498
1499static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1500{
1501	hrtimer_init_sleeper(t, current);
1502
1503	do {
1504		set_current_state(TASK_INTERRUPTIBLE);
1505		hrtimer_start_expires(&t->timer, mode);
1506		if (!hrtimer_active(&t->timer))
1507			t->task = NULL;
1508
1509		if (likely(t->task))
1510			freezable_schedule();
1511
1512		hrtimer_cancel(&t->timer);
1513		mode = HRTIMER_MODE_ABS;
1514
1515	} while (t->task && !signal_pending(current));
1516
1517	__set_current_state(TASK_RUNNING);
1518
1519	return t->task == NULL;
1520}
1521
1522static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1523{
1524	struct timespec rmt;
1525	ktime_t rem;
1526
1527	rem = hrtimer_expires_remaining(timer);
1528	if (rem.tv64 <= 0)
1529		return 0;
1530	rmt = ktime_to_timespec(rem);
1531
1532	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1533		return -EFAULT;
1534
1535	return 1;
1536}
1537
1538long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1539{
1540	struct hrtimer_sleeper t;
1541	struct timespec __user  *rmtp;
1542	int ret = 0;
1543
1544	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1545				HRTIMER_MODE_ABS);
1546	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1547
1548	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1549		goto out;
1550
1551	rmtp = restart->nanosleep.rmtp;
1552	if (rmtp) {
1553		ret = update_rmtp(&t.timer, rmtp);
1554		if (ret <= 0)
1555			goto out;
1556	}
1557
1558	/* The other values in restart are already filled in */
1559	ret = -ERESTART_RESTARTBLOCK;
1560out:
1561	destroy_hrtimer_on_stack(&t.timer);
1562	return ret;
1563}
1564
1565long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1566		       const enum hrtimer_mode mode, const clockid_t clockid)
1567{
1568	struct restart_block *restart;
1569	struct hrtimer_sleeper t;
1570	int ret = 0;
1571	unsigned long slack;
1572
1573	slack = current->timer_slack_ns;
1574	if (dl_task(current) || rt_task(current))
1575		slack = 0;
1576
1577	hrtimer_init_on_stack(&t.timer, clockid, mode);
1578	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1579	if (do_nanosleep(&t, mode))
1580		goto out;
1581
1582	/* Absolute timers do not update the rmtp value and restart: */
1583	if (mode == HRTIMER_MODE_ABS) {
1584		ret = -ERESTARTNOHAND;
1585		goto out;
1586	}
1587
1588	if (rmtp) {
1589		ret = update_rmtp(&t.timer, rmtp);
1590		if (ret <= 0)
1591			goto out;
1592	}
1593
1594	restart = &current_thread_info()->restart_block;
1595	restart->fn = hrtimer_nanosleep_restart;
1596	restart->nanosleep.clockid = t.timer.base->clockid;
1597	restart->nanosleep.rmtp = rmtp;
1598	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1599
1600	ret = -ERESTART_RESTARTBLOCK;
1601out:
1602	destroy_hrtimer_on_stack(&t.timer);
1603	return ret;
1604}
1605
1606SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1607		struct timespec __user *, rmtp)
1608{
1609	struct timespec tu;
1610
1611	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1612		return -EFAULT;
1613
1614	if (!timespec_valid(&tu))
1615		return -EINVAL;
1616
1617	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1618}
1619
1620/*
1621 * Functions related to boot-time initialization:
1622 */
1623static void init_hrtimers_cpu(int cpu)
1624{
1625	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1626	int i;
1627
1628	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1629		cpu_base->clock_base[i].cpu_base = cpu_base;
1630		timerqueue_init_head(&cpu_base->clock_base[i].active);
1631	}
1632
1633	cpu_base->cpu = cpu;
1634	hrtimer_init_hres(cpu_base);
1635}
1636
1637#ifdef CONFIG_HOTPLUG_CPU
1638
1639static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1640				struct hrtimer_clock_base *new_base)
1641{
1642	struct hrtimer *timer;
1643	struct timerqueue_node *node;
1644
1645	while ((node = timerqueue_getnext(&old_base->active))) {
1646		timer = container_of(node, struct hrtimer, node);
1647		BUG_ON(hrtimer_callback_running(timer));
1648		debug_deactivate(timer);
1649
1650		/*
1651		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1652		 * timer could be seen as !active and just vanish away
1653		 * under us on another CPU
1654		 */
1655		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1656		timer->base = new_base;
1657		/*
1658		 * Enqueue the timers on the new cpu. This does not
1659		 * reprogram the event device in case the timer
1660		 * expires before the earliest on this CPU, but we run
1661		 * hrtimer_interrupt after we migrated everything to
1662		 * sort out already expired timers and reprogram the
1663		 * event device.
1664		 */
1665		enqueue_hrtimer(timer, new_base);
1666
1667		/* Clear the migration state bit */
1668		timer->state &= ~HRTIMER_STATE_MIGRATE;
1669	}
1670}
1671
1672static void migrate_hrtimers(int scpu)
1673{
1674	struct hrtimer_cpu_base *old_base, *new_base;
1675	int i;
1676
1677	BUG_ON(cpu_online(scpu));
1678	tick_cancel_sched_timer(scpu);
1679
1680	local_irq_disable();
1681	old_base = &per_cpu(hrtimer_bases, scpu);
1682	new_base = this_cpu_ptr(&hrtimer_bases);
1683	/*
1684	 * The caller is globally serialized and nobody else
1685	 * takes two locks at once, deadlock is not possible.
1686	 */
1687	raw_spin_lock(&new_base->lock);
1688	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1689
1690	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1691		migrate_hrtimer_list(&old_base->clock_base[i],
1692				     &new_base->clock_base[i]);
1693	}
1694
1695	raw_spin_unlock(&old_base->lock);
1696	raw_spin_unlock(&new_base->lock);
1697
1698	/* Check, if we got expired work to do */
1699	__hrtimer_peek_ahead_timers();
1700	local_irq_enable();
1701}
1702
1703#endif /* CONFIG_HOTPLUG_CPU */
1704
1705static int hrtimer_cpu_notify(struct notifier_block *self,
1706					unsigned long action, void *hcpu)
1707{
1708	int scpu = (long)hcpu;
1709
1710	switch (action) {
1711
1712	case CPU_UP_PREPARE:
1713	case CPU_UP_PREPARE_FROZEN:
1714		init_hrtimers_cpu(scpu);
1715		break;
1716
1717#ifdef CONFIG_HOTPLUG_CPU
1718	case CPU_DYING:
1719	case CPU_DYING_FROZEN:
1720		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1721		break;
1722	case CPU_DEAD:
1723	case CPU_DEAD_FROZEN:
1724	{
1725		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1726		migrate_hrtimers(scpu);
1727		break;
1728	}
1729#endif
1730
1731	default:
1732		break;
1733	}
1734
1735	return NOTIFY_OK;
1736}
1737
1738static struct notifier_block hrtimers_nb = {
1739	.notifier_call = hrtimer_cpu_notify,
1740};
1741
1742void __init hrtimers_init(void)
1743{
1744	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1745			  (void *)(long)smp_processor_id());
1746	register_cpu_notifier(&hrtimers_nb);
1747#ifdef CONFIG_HIGH_RES_TIMERS
1748	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1749#endif
1750}
1751
1752/**
1753 * schedule_hrtimeout_range_clock - sleep until timeout
1754 * @expires:	timeout value (ktime_t)
1755 * @delta:	slack in expires timeout (ktime_t)
1756 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1757 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1758 */
1759int __sched
1760schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1761			       const enum hrtimer_mode mode, int clock)
1762{
1763	struct hrtimer_sleeper t;
1764
1765	/*
1766	 * Optimize when a zero timeout value is given. It does not
1767	 * matter whether this is an absolute or a relative time.
1768	 */
1769	if (expires && !expires->tv64) {
1770		__set_current_state(TASK_RUNNING);
1771		return 0;
1772	}
1773
1774	/*
1775	 * A NULL parameter means "infinite"
1776	 */
1777	if (!expires) {
1778		schedule();
1779		return -EINTR;
1780	}
1781
1782	hrtimer_init_on_stack(&t.timer, clock, mode);
1783	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1784
1785	hrtimer_init_sleeper(&t, current);
1786
1787	hrtimer_start_expires(&t.timer, mode);
1788	if (!hrtimer_active(&t.timer))
1789		t.task = NULL;
1790
1791	if (likely(t.task))
1792		schedule();
1793
1794	hrtimer_cancel(&t.timer);
1795	destroy_hrtimer_on_stack(&t.timer);
1796
1797	__set_current_state(TASK_RUNNING);
1798
1799	return !t.task ? 0 : -EINTR;
1800}
1801
1802/**
1803 * schedule_hrtimeout_range - sleep until timeout
1804 * @expires:	timeout value (ktime_t)
1805 * @delta:	slack in expires timeout (ktime_t)
1806 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1807 *
1808 * Make the current task sleep until the given expiry time has
1809 * elapsed. The routine will return immediately unless
1810 * the current task state has been set (see set_current_state()).
1811 *
1812 * The @delta argument gives the kernel the freedom to schedule the
1813 * actual wakeup to a time that is both power and performance friendly.
1814 * The kernel give the normal best effort behavior for "@expires+@delta",
1815 * but may decide to fire the timer earlier, but no earlier than @expires.
1816 *
1817 * You can set the task state as follows -
1818 *
1819 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1820 * pass before the routine returns.
1821 *
1822 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1823 * delivered to the current task.
1824 *
1825 * The current task state is guaranteed to be TASK_RUNNING when this
1826 * routine returns.
1827 *
1828 * Returns 0 when the timer has expired otherwise -EINTR
1829 */
1830int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1831				     const enum hrtimer_mode mode)
1832{
1833	return schedule_hrtimeout_range_clock(expires, delta, mode,
1834					      CLOCK_MONOTONIC);
1835}
1836EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1837
1838/**
1839 * schedule_hrtimeout - sleep until timeout
1840 * @expires:	timeout value (ktime_t)
1841 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1842 *
1843 * Make the current task sleep until the given expiry time has
1844 * elapsed. The routine will return immediately unless
1845 * the current task state has been set (see set_current_state()).
1846 *
1847 * You can set the task state as follows -
1848 *
1849 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1850 * pass before the routine returns.
1851 *
1852 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1853 * delivered to the current task.
1854 *
1855 * The current task state is guaranteed to be TASK_RUNNING when this
1856 * routine returns.
1857 *
1858 * Returns 0 when the timer has expired otherwise -EINTR
1859 */
1860int __sched schedule_hrtimeout(ktime_t *expires,
1861			       const enum hrtimer_mode mode)
1862{
1863	return schedule_hrtimeout_range(expires, 0, mode);
1864}
1865EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1866