1/*
2 * NTP state machine interfaces and logic.
3 *
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8#include <linux/capability.h>
9#include <linux/clocksource.h>
10#include <linux/workqueue.h>
11#include <linux/hrtimer.h>
12#include <linux/jiffies.h>
13#include <linux/math64.h>
14#include <linux/timex.h>
15#include <linux/time.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/rtc.h>
19
20#include "tick-internal.h"
21#include "ntp_internal.h"
22
23/*
24 * NTP timekeeping variables:
25 *
26 * Note: All of the NTP state is protected by the timekeeping locks.
27 */
28
29
30/* USER_HZ period (usecs): */
31unsigned long			tick_usec = TICK_USEC;
32
33/* SHIFTED_HZ period (nsecs): */
34unsigned long			tick_nsec;
35
36static u64			tick_length;
37static u64			tick_length_base;
38
39#define MAX_TICKADJ		500LL		/* usecs */
40#define MAX_TICKADJ_SCALED \
41	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42
43/*
44 * phase-lock loop variables
45 */
46
47/*
48 * clock synchronization status
49 *
50 * (TIME_ERROR prevents overwriting the CMOS clock)
51 */
52static int			time_state = TIME_OK;
53
54/* clock status bits:							*/
55static int			time_status = STA_UNSYNC;
56
57/* time adjustment (nsecs):						*/
58static s64			time_offset;
59
60/* pll time constant:							*/
61static long			time_constant = 2;
62
63/* maximum error (usecs):						*/
64static long			time_maxerror = NTP_PHASE_LIMIT;
65
66/* estimated error (usecs):						*/
67static long			time_esterror = NTP_PHASE_LIMIT;
68
69/* frequency offset (scaled nsecs/secs):				*/
70static s64			time_freq;
71
72/* time at last adjustment (secs):					*/
73static long			time_reftime;
74
75static long			time_adjust;
76
77/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
78static s64			ntp_tick_adj;
79
80#ifdef CONFIG_NTP_PPS
81
82/*
83 * The following variables are used when a pulse-per-second (PPS) signal
84 * is available. They establish the engineering parameters of the clock
85 * discipline loop when controlled by the PPS signal.
86 */
87#define PPS_VALID	10	/* PPS signal watchdog max (s) */
88#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
89#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
90#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
91#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
92				   increase pps_shift or consecutive bad
93				   intervals to decrease it */
94#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
95
96static int pps_valid;		/* signal watchdog counter */
97static long pps_tf[3];		/* phase median filter */
98static long pps_jitter;		/* current jitter (ns) */
99static struct timespec pps_fbase; /* beginning of the last freq interval */
100static int pps_shift;		/* current interval duration (s) (shift) */
101static int pps_intcnt;		/* interval counter */
102static s64 pps_freq;		/* frequency offset (scaled ns/s) */
103static long pps_stabil;		/* current stability (scaled ns/s) */
104
105/*
106 * PPS signal quality monitors
107 */
108static long pps_calcnt;		/* calibration intervals */
109static long pps_jitcnt;		/* jitter limit exceeded */
110static long pps_stbcnt;		/* stability limit exceeded */
111static long pps_errcnt;		/* calibration errors */
112
113
114/* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 */
117static inline s64 ntp_offset_chunk(s64 offset)
118{
119	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120		return offset;
121	else
122		return shift_right(offset, SHIFT_PLL + time_constant);
123}
124
125static inline void pps_reset_freq_interval(void)
126{
127	/* the PPS calibration interval may end
128	   surprisingly early */
129	pps_shift = PPS_INTMIN;
130	pps_intcnt = 0;
131}
132
133/**
134 * pps_clear - Clears the PPS state variables
135 */
136static inline void pps_clear(void)
137{
138	pps_reset_freq_interval();
139	pps_tf[0] = 0;
140	pps_tf[1] = 0;
141	pps_tf[2] = 0;
142	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
143	pps_freq = 0;
144}
145
146/* Decrease pps_valid to indicate that another second has passed since
147 * the last PPS signal. When it reaches 0, indicate that PPS signal is
148 * missing.
149 */
150static inline void pps_dec_valid(void)
151{
152	if (pps_valid > 0)
153		pps_valid--;
154	else {
155		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
156				 STA_PPSWANDER | STA_PPSERROR);
157		pps_clear();
158	}
159}
160
161static inline void pps_set_freq(s64 freq)
162{
163	pps_freq = freq;
164}
165
166static inline int is_error_status(int status)
167{
168	return (status & (STA_UNSYNC|STA_CLOCKERR))
169		/* PPS signal lost when either PPS time or
170		 * PPS frequency synchronization requested
171		 */
172		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
173			&& !(status & STA_PPSSIGNAL))
174		/* PPS jitter exceeded when
175		 * PPS time synchronization requested */
176		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
177			== (STA_PPSTIME|STA_PPSJITTER))
178		/* PPS wander exceeded or calibration error when
179		 * PPS frequency synchronization requested
180		 */
181		|| ((status & STA_PPSFREQ)
182			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
183}
184
185static inline void pps_fill_timex(struct timex *txc)
186{
187	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
188					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
189	txc->jitter	   = pps_jitter;
190	if (!(time_status & STA_NANO))
191		txc->jitter /= NSEC_PER_USEC;
192	txc->shift	   = pps_shift;
193	txc->stabil	   = pps_stabil;
194	txc->jitcnt	   = pps_jitcnt;
195	txc->calcnt	   = pps_calcnt;
196	txc->errcnt	   = pps_errcnt;
197	txc->stbcnt	   = pps_stbcnt;
198}
199
200#else /* !CONFIG_NTP_PPS */
201
202static inline s64 ntp_offset_chunk(s64 offset)
203{
204	return shift_right(offset, SHIFT_PLL + time_constant);
205}
206
207static inline void pps_reset_freq_interval(void) {}
208static inline void pps_clear(void) {}
209static inline void pps_dec_valid(void) {}
210static inline void pps_set_freq(s64 freq) {}
211
212static inline int is_error_status(int status)
213{
214	return status & (STA_UNSYNC|STA_CLOCKERR);
215}
216
217static inline void pps_fill_timex(struct timex *txc)
218{
219	/* PPS is not implemented, so these are zero */
220	txc->ppsfreq	   = 0;
221	txc->jitter	   = 0;
222	txc->shift	   = 0;
223	txc->stabil	   = 0;
224	txc->jitcnt	   = 0;
225	txc->calcnt	   = 0;
226	txc->errcnt	   = 0;
227	txc->stbcnt	   = 0;
228}
229
230#endif /* CONFIG_NTP_PPS */
231
232
233/**
234 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
235 *
236 */
237static inline int ntp_synced(void)
238{
239	return !(time_status & STA_UNSYNC);
240}
241
242
243/*
244 * NTP methods:
245 */
246
247/*
248 * Update (tick_length, tick_length_base, tick_nsec), based
249 * on (tick_usec, ntp_tick_adj, time_freq):
250 */
251static void ntp_update_frequency(void)
252{
253	u64 second_length;
254	u64 new_base;
255
256	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
257						<< NTP_SCALE_SHIFT;
258
259	second_length		+= ntp_tick_adj;
260	second_length		+= time_freq;
261
262	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
263	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
264
265	/*
266	 * Don't wait for the next second_overflow, apply
267	 * the change to the tick length immediately:
268	 */
269	tick_length		+= new_base - tick_length_base;
270	tick_length_base	 = new_base;
271}
272
273static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
274{
275	time_status &= ~STA_MODE;
276
277	if (secs < MINSEC)
278		return 0;
279
280	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
281		return 0;
282
283	time_status |= STA_MODE;
284
285	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
286}
287
288static void ntp_update_offset(long offset)
289{
290	s64 freq_adj;
291	s64 offset64;
292	long secs;
293
294	if (!(time_status & STA_PLL))
295		return;
296
297	if (!(time_status & STA_NANO))
298		offset *= NSEC_PER_USEC;
299
300	/*
301	 * Scale the phase adjustment and
302	 * clamp to the operating range.
303	 */
304	offset = min(offset, MAXPHASE);
305	offset = max(offset, -MAXPHASE);
306
307	/*
308	 * Select how the frequency is to be controlled
309	 * and in which mode (PLL or FLL).
310	 */
311	secs = get_seconds() - time_reftime;
312	if (unlikely(time_status & STA_FREQHOLD))
313		secs = 0;
314
315	time_reftime = get_seconds();
316
317	offset64    = offset;
318	freq_adj    = ntp_update_offset_fll(offset64, secs);
319
320	/*
321	 * Clamp update interval to reduce PLL gain with low
322	 * sampling rate (e.g. intermittent network connection)
323	 * to avoid instability.
324	 */
325	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
326		secs = 1 << (SHIFT_PLL + 1 + time_constant);
327
328	freq_adj    += (offset64 * secs) <<
329			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
330
331	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
332
333	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
334
335	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
336}
337
338/**
339 * ntp_clear - Clears the NTP state variables
340 */
341void ntp_clear(void)
342{
343	time_adjust	= 0;		/* stop active adjtime() */
344	time_status	|= STA_UNSYNC;
345	time_maxerror	= NTP_PHASE_LIMIT;
346	time_esterror	= NTP_PHASE_LIMIT;
347
348	ntp_update_frequency();
349
350	tick_length	= tick_length_base;
351	time_offset	= 0;
352
353	/* Clear PPS state variables */
354	pps_clear();
355}
356
357
358u64 ntp_tick_length(void)
359{
360	return tick_length;
361}
362
363
364/*
365 * this routine handles the overflow of the microsecond field
366 *
367 * The tricky bits of code to handle the accurate clock support
368 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
369 * They were originally developed for SUN and DEC kernels.
370 * All the kudos should go to Dave for this stuff.
371 *
372 * Also handles leap second processing, and returns leap offset
373 */
374int second_overflow(unsigned long secs)
375{
376	s64 delta;
377	int leap = 0;
378
379	/*
380	 * Leap second processing. If in leap-insert state at the end of the
381	 * day, the system clock is set back one second; if in leap-delete
382	 * state, the system clock is set ahead one second.
383	 */
384	switch (time_state) {
385	case TIME_OK:
386		if (time_status & STA_INS)
387			time_state = TIME_INS;
388		else if (time_status & STA_DEL)
389			time_state = TIME_DEL;
390		break;
391	case TIME_INS:
392		if (!(time_status & STA_INS))
393			time_state = TIME_OK;
394		else if (secs % 86400 == 0) {
395			leap = -1;
396			time_state = TIME_OOP;
397			printk(KERN_NOTICE
398				"Clock: inserting leap second 23:59:60 UTC\n");
399		}
400		break;
401	case TIME_DEL:
402		if (!(time_status & STA_DEL))
403			time_state = TIME_OK;
404		else if ((secs + 1) % 86400 == 0) {
405			leap = 1;
406			time_state = TIME_WAIT;
407			printk(KERN_NOTICE
408				"Clock: deleting leap second 23:59:59 UTC\n");
409		}
410		break;
411	case TIME_OOP:
412		time_state = TIME_WAIT;
413		break;
414
415	case TIME_WAIT:
416		if (!(time_status & (STA_INS | STA_DEL)))
417			time_state = TIME_OK;
418		break;
419	}
420
421
422	/* Bump the maxerror field */
423	time_maxerror += MAXFREQ / NSEC_PER_USEC;
424	if (time_maxerror > NTP_PHASE_LIMIT) {
425		time_maxerror = NTP_PHASE_LIMIT;
426		time_status |= STA_UNSYNC;
427	}
428
429	/* Compute the phase adjustment for the next second */
430	tick_length	 = tick_length_base;
431
432	delta		 = ntp_offset_chunk(time_offset);
433	time_offset	-= delta;
434	tick_length	+= delta;
435
436	/* Check PPS signal */
437	pps_dec_valid();
438
439	if (!time_adjust)
440		goto out;
441
442	if (time_adjust > MAX_TICKADJ) {
443		time_adjust -= MAX_TICKADJ;
444		tick_length += MAX_TICKADJ_SCALED;
445		goto out;
446	}
447
448	if (time_adjust < -MAX_TICKADJ) {
449		time_adjust += MAX_TICKADJ;
450		tick_length -= MAX_TICKADJ_SCALED;
451		goto out;
452	}
453
454	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
455							 << NTP_SCALE_SHIFT;
456	time_adjust = 0;
457
458out:
459	return leap;
460}
461
462#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
463static void sync_cmos_clock(struct work_struct *work);
464
465static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
466
467static void sync_cmos_clock(struct work_struct *work)
468{
469	struct timespec64 now;
470	struct timespec next;
471	int fail = 1;
472
473	/*
474	 * If we have an externally synchronized Linux clock, then update
475	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
476	 * called as close as possible to 500 ms before the new second starts.
477	 * This code is run on a timer.  If the clock is set, that timer
478	 * may not expire at the correct time.  Thus, we adjust...
479	 * We want the clock to be within a couple of ticks from the target.
480	 */
481	if (!ntp_synced()) {
482		/*
483		 * Not synced, exit, do not restart a timer (if one is
484		 * running, let it run out).
485		 */
486		return;
487	}
488
489	getnstimeofday64(&now);
490	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
491		struct timespec adjust = timespec64_to_timespec(now);
492
493		fail = -ENODEV;
494		if (persistent_clock_is_local)
495			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
496#ifdef CONFIG_GENERIC_CMOS_UPDATE
497		fail = update_persistent_clock(adjust);
498#endif
499#ifdef CONFIG_RTC_SYSTOHC
500		if (fail == -ENODEV)
501			fail = rtc_set_ntp_time(adjust);
502#endif
503	}
504
505	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
506	if (next.tv_nsec <= 0)
507		next.tv_nsec += NSEC_PER_SEC;
508
509	if (!fail || fail == -ENODEV)
510		next.tv_sec = 659;
511	else
512		next.tv_sec = 0;
513
514	if (next.tv_nsec >= NSEC_PER_SEC) {
515		next.tv_sec++;
516		next.tv_nsec -= NSEC_PER_SEC;
517	}
518	queue_delayed_work(system_power_efficient_wq,
519			   &sync_cmos_work, timespec_to_jiffies(&next));
520}
521
522void ntp_notify_cmos_timer(void)
523{
524	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
525}
526
527#else
528void ntp_notify_cmos_timer(void) { }
529#endif
530
531
532/*
533 * Propagate a new txc->status value into the NTP state:
534 */
535static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
536{
537	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
538		time_state = TIME_OK;
539		time_status = STA_UNSYNC;
540		/* restart PPS frequency calibration */
541		pps_reset_freq_interval();
542	}
543
544	/*
545	 * If we turn on PLL adjustments then reset the
546	 * reference time to current time.
547	 */
548	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
549		time_reftime = get_seconds();
550
551	/* only set allowed bits */
552	time_status &= STA_RONLY;
553	time_status |= txc->status & ~STA_RONLY;
554}
555
556
557static inline void process_adjtimex_modes(struct timex *txc,
558						struct timespec64 *ts,
559						s32 *time_tai)
560{
561	if (txc->modes & ADJ_STATUS)
562		process_adj_status(txc, ts);
563
564	if (txc->modes & ADJ_NANO)
565		time_status |= STA_NANO;
566
567	if (txc->modes & ADJ_MICRO)
568		time_status &= ~STA_NANO;
569
570	if (txc->modes & ADJ_FREQUENCY) {
571		time_freq = txc->freq * PPM_SCALE;
572		time_freq = min(time_freq, MAXFREQ_SCALED);
573		time_freq = max(time_freq, -MAXFREQ_SCALED);
574		/* update pps_freq */
575		pps_set_freq(time_freq);
576	}
577
578	if (txc->modes & ADJ_MAXERROR)
579		time_maxerror = txc->maxerror;
580
581	if (txc->modes & ADJ_ESTERROR)
582		time_esterror = txc->esterror;
583
584	if (txc->modes & ADJ_TIMECONST) {
585		time_constant = txc->constant;
586		if (!(time_status & STA_NANO))
587			time_constant += 4;
588		time_constant = min(time_constant, (long)MAXTC);
589		time_constant = max(time_constant, 0l);
590	}
591
592	if (txc->modes & ADJ_TAI && txc->constant > 0)
593		*time_tai = txc->constant;
594
595	if (txc->modes & ADJ_OFFSET)
596		ntp_update_offset(txc->offset);
597
598	if (txc->modes & ADJ_TICK)
599		tick_usec = txc->tick;
600
601	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
602		ntp_update_frequency();
603}
604
605
606
607/**
608 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
609 */
610int ntp_validate_timex(struct timex *txc)
611{
612	if (txc->modes & ADJ_ADJTIME) {
613		/* singleshot must not be used with any other mode bits */
614		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
615			return -EINVAL;
616		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
617		    !capable(CAP_SYS_TIME))
618			return -EPERM;
619	} else {
620		/* In order to modify anything, you gotta be super-user! */
621		 if (txc->modes && !capable(CAP_SYS_TIME))
622			return -EPERM;
623		/*
624		 * if the quartz is off by more than 10% then
625		 * something is VERY wrong!
626		 */
627		if (txc->modes & ADJ_TICK &&
628		    (txc->tick <  900000/USER_HZ ||
629		     txc->tick > 1100000/USER_HZ))
630			return -EINVAL;
631	}
632
633	if ((txc->modes & ADJ_SETOFFSET) && (!capable(CAP_SYS_TIME)))
634		return -EPERM;
635
636	return 0;
637}
638
639
640/*
641 * adjtimex mainly allows reading (and writing, if superuser) of
642 * kernel time-keeping variables. used by xntpd.
643 */
644int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
645{
646	int result;
647
648	if (txc->modes & ADJ_ADJTIME) {
649		long save_adjust = time_adjust;
650
651		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
652			/* adjtime() is independent from ntp_adjtime() */
653			time_adjust = txc->offset;
654			ntp_update_frequency();
655		}
656		txc->offset = save_adjust;
657	} else {
658
659		/* If there are input parameters, then process them: */
660		if (txc->modes)
661			process_adjtimex_modes(txc, ts, time_tai);
662
663		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
664				  NTP_SCALE_SHIFT);
665		if (!(time_status & STA_NANO))
666			txc->offset /= NSEC_PER_USEC;
667	}
668
669	result = time_state;	/* mostly `TIME_OK' */
670	/* check for errors */
671	if (is_error_status(time_status))
672		result = TIME_ERROR;
673
674	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
675					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
676	txc->maxerror	   = time_maxerror;
677	txc->esterror	   = time_esterror;
678	txc->status	   = time_status;
679	txc->constant	   = time_constant;
680	txc->precision	   = 1;
681	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
682	txc->tick	   = tick_usec;
683	txc->tai	   = *time_tai;
684
685	/* fill PPS status fields */
686	pps_fill_timex(txc);
687
688	txc->time.tv_sec = (time_t)ts->tv_sec;
689	txc->time.tv_usec = ts->tv_nsec;
690	if (!(time_status & STA_NANO))
691		txc->time.tv_usec /= NSEC_PER_USEC;
692
693	return result;
694}
695
696#ifdef	CONFIG_NTP_PPS
697
698/* actually struct pps_normtime is good old struct timespec, but it is
699 * semantically different (and it is the reason why it was invented):
700 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
701 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
702struct pps_normtime {
703	__kernel_time_t	sec;	/* seconds */
704	long		nsec;	/* nanoseconds */
705};
706
707/* normalize the timestamp so that nsec is in the
708   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
709static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
710{
711	struct pps_normtime norm = {
712		.sec = ts.tv_sec,
713		.nsec = ts.tv_nsec
714	};
715
716	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
717		norm.nsec -= NSEC_PER_SEC;
718		norm.sec++;
719	}
720
721	return norm;
722}
723
724/* get current phase correction and jitter */
725static inline long pps_phase_filter_get(long *jitter)
726{
727	*jitter = pps_tf[0] - pps_tf[1];
728	if (*jitter < 0)
729		*jitter = -*jitter;
730
731	/* TODO: test various filters */
732	return pps_tf[0];
733}
734
735/* add the sample to the phase filter */
736static inline void pps_phase_filter_add(long err)
737{
738	pps_tf[2] = pps_tf[1];
739	pps_tf[1] = pps_tf[0];
740	pps_tf[0] = err;
741}
742
743/* decrease frequency calibration interval length.
744 * It is halved after four consecutive unstable intervals.
745 */
746static inline void pps_dec_freq_interval(void)
747{
748	if (--pps_intcnt <= -PPS_INTCOUNT) {
749		pps_intcnt = -PPS_INTCOUNT;
750		if (pps_shift > PPS_INTMIN) {
751			pps_shift--;
752			pps_intcnt = 0;
753		}
754	}
755}
756
757/* increase frequency calibration interval length.
758 * It is doubled after four consecutive stable intervals.
759 */
760static inline void pps_inc_freq_interval(void)
761{
762	if (++pps_intcnt >= PPS_INTCOUNT) {
763		pps_intcnt = PPS_INTCOUNT;
764		if (pps_shift < PPS_INTMAX) {
765			pps_shift++;
766			pps_intcnt = 0;
767		}
768	}
769}
770
771/* update clock frequency based on MONOTONIC_RAW clock PPS signal
772 * timestamps
773 *
774 * At the end of the calibration interval the difference between the
775 * first and last MONOTONIC_RAW clock timestamps divided by the length
776 * of the interval becomes the frequency update. If the interval was
777 * too long, the data are discarded.
778 * Returns the difference between old and new frequency values.
779 */
780static long hardpps_update_freq(struct pps_normtime freq_norm)
781{
782	long delta, delta_mod;
783	s64 ftemp;
784
785	/* check if the frequency interval was too long */
786	if (freq_norm.sec > (2 << pps_shift)) {
787		time_status |= STA_PPSERROR;
788		pps_errcnt++;
789		pps_dec_freq_interval();
790		printk_deferred(KERN_ERR
791			"hardpps: PPSERROR: interval too long - %ld s\n",
792			freq_norm.sec);
793		return 0;
794	}
795
796	/* here the raw frequency offset and wander (stability) is
797	 * calculated. If the wander is less than the wander threshold
798	 * the interval is increased; otherwise it is decreased.
799	 */
800	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
801			freq_norm.sec);
802	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
803	pps_freq = ftemp;
804	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
805		printk_deferred(KERN_WARNING
806				"hardpps: PPSWANDER: change=%ld\n", delta);
807		time_status |= STA_PPSWANDER;
808		pps_stbcnt++;
809		pps_dec_freq_interval();
810	} else {	/* good sample */
811		pps_inc_freq_interval();
812	}
813
814	/* the stability metric is calculated as the average of recent
815	 * frequency changes, but is used only for performance
816	 * monitoring
817	 */
818	delta_mod = delta;
819	if (delta_mod < 0)
820		delta_mod = -delta_mod;
821	pps_stabil += (div_s64(((s64)delta_mod) <<
822				(NTP_SCALE_SHIFT - SHIFT_USEC),
823				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
824
825	/* if enabled, the system clock frequency is updated */
826	if ((time_status & STA_PPSFREQ) != 0 &&
827	    (time_status & STA_FREQHOLD) == 0) {
828		time_freq = pps_freq;
829		ntp_update_frequency();
830	}
831
832	return delta;
833}
834
835/* correct REALTIME clock phase error against PPS signal */
836static void hardpps_update_phase(long error)
837{
838	long correction = -error;
839	long jitter;
840
841	/* add the sample to the median filter */
842	pps_phase_filter_add(correction);
843	correction = pps_phase_filter_get(&jitter);
844
845	/* Nominal jitter is due to PPS signal noise. If it exceeds the
846	 * threshold, the sample is discarded; otherwise, if so enabled,
847	 * the time offset is updated.
848	 */
849	if (jitter > (pps_jitter << PPS_POPCORN)) {
850		printk_deferred(KERN_WARNING
851				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
852				jitter, (pps_jitter << PPS_POPCORN));
853		time_status |= STA_PPSJITTER;
854		pps_jitcnt++;
855	} else if (time_status & STA_PPSTIME) {
856		/* correct the time using the phase offset */
857		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
858				NTP_INTERVAL_FREQ);
859		/* cancel running adjtime() */
860		time_adjust = 0;
861	}
862	/* update jitter */
863	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
864}
865
866/*
867 * __hardpps() - discipline CPU clock oscillator to external PPS signal
868 *
869 * This routine is called at each PPS signal arrival in order to
870 * discipline the CPU clock oscillator to the PPS signal. It takes two
871 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
872 * is used to correct clock phase error and the latter is used to
873 * correct the frequency.
874 *
875 * This code is based on David Mills's reference nanokernel
876 * implementation. It was mostly rewritten but keeps the same idea.
877 */
878void __hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
879{
880	struct pps_normtime pts_norm, freq_norm;
881
882	pts_norm = pps_normalize_ts(*phase_ts);
883
884	/* clear the error bits, they will be set again if needed */
885	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
886
887	/* indicate signal presence */
888	time_status |= STA_PPSSIGNAL;
889	pps_valid = PPS_VALID;
890
891	/* when called for the first time,
892	 * just start the frequency interval */
893	if (unlikely(pps_fbase.tv_sec == 0)) {
894		pps_fbase = *raw_ts;
895		return;
896	}
897
898	/* ok, now we have a base for frequency calculation */
899	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
900
901	/* check that the signal is in the range
902	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
903	if ((freq_norm.sec == 0) ||
904			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
905			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
906		time_status |= STA_PPSJITTER;
907		/* restart the frequency calibration interval */
908		pps_fbase = *raw_ts;
909		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
910		return;
911	}
912
913	/* signal is ok */
914
915	/* check if the current frequency interval is finished */
916	if (freq_norm.sec >= (1 << pps_shift)) {
917		pps_calcnt++;
918		/* restart the frequency calibration interval */
919		pps_fbase = *raw_ts;
920		hardpps_update_freq(freq_norm);
921	}
922
923	hardpps_update_phase(pts_norm.nsec);
924
925}
926#endif	/* CONFIG_NTP_PPS */
927
928static int __init ntp_tick_adj_setup(char *str)
929{
930	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
931
932	if (rc)
933		return rc;
934	ntp_tick_adj <<= NTP_SCALE_SHIFT;
935
936	return 1;
937}
938
939__setup("ntp_tick_adj=", ntp_tick_adj_setup);
940
941void __init ntp_init(void)
942{
943	ntp_clear();
944}
945