1/*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 *	Izik Eidus
10 *	Andrea Arcangeli
11 *	Chris Wright
12 *	Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/fs.h>
20#include <linux/mman.h>
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
32#include <linux/memory.h>
33#include <linux/mmu_notifier.h>
34#include <linux/swap.h>
35#include <linux/ksm.h>
36#include <linux/hashtable.h>
37#include <linux/freezer.h>
38#include <linux/oom.h>
39#include <linux/numa.h>
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44#ifdef CONFIG_NUMA
45#define NUMA(x)		(x)
46#define DO_NUMA(x)	do { (x); } while (0)
47#else
48#define NUMA(x)		(0)
49#define DO_NUMA(x)	do { } while (0)
50#endif
51
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents.  Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time".  The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 *    memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 *    has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 *    colors of the nodes and not on their contents, assuring that even when
83 *    the tree gets "corrupted" it won't get out of balance, so scanning time
84 *    remains the same (also, searching and inserting nodes in an rbtree uses
85 *    the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 *    take 10 attempts to find a page in the unstable tree, once it is found,
88 *    it is secured in the stable tree.  (When we scan a new page, we first
89 *    compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95/**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102struct mm_slot {
103	struct hlist_node link;
104	struct list_head mm_list;
105	struct rmap_item *rmap_list;
106	struct mm_struct *mm;
107};
108
109/**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118struct ksm_scan {
119	struct mm_slot *mm_slot;
120	unsigned long address;
121	struct rmap_item **rmap_list;
122	unsigned long seqnr;
123};
124
125/**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133 */
134struct stable_node {
135	union {
136		struct rb_node node;	/* when node of stable tree */
137		struct {		/* when listed for migration */
138			struct list_head *head;
139			struct list_head list;
140		};
141	};
142	struct hlist_head hlist;
143	unsigned long kpfn;
144#ifdef CONFIG_NUMA
145	int nid;
146#endif
147};
148
149/**
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
160 */
161struct rmap_item {
162	struct rmap_item *rmap_list;
163	union {
164		struct anon_vma *anon_vma;	/* when stable */
165#ifdef CONFIG_NUMA
166		int nid;		/* when node of unstable tree */
167#endif
168	};
169	struct mm_struct *mm;
170	unsigned long address;		/* + low bits used for flags below */
171	unsigned int oldchecksum;	/* when unstable */
172	union {
173		struct rb_node node;	/* when node of unstable tree */
174		struct {		/* when listed from stable tree */
175			struct stable_node *head;
176			struct hlist_node hlist;
177		};
178	};
179};
180
181#define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182#define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183#define STABLE_FLAG	0x200	/* is listed from the stable tree */
184
185/* The stable and unstable tree heads */
186static struct rb_root one_stable_tree[1] = { RB_ROOT };
187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188static struct rb_root *root_stable_tree = one_stable_tree;
189static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191/* Recently migrated nodes of stable tree, pending proper placement */
192static LIST_HEAD(migrate_nodes);
193
194#define MM_SLOTS_HASH_BITS 10
195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197static struct mm_slot ksm_mm_head = {
198	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199};
200static struct ksm_scan ksm_scan = {
201	.mm_slot = &ksm_mm_head,
202};
203
204static struct kmem_cache *rmap_item_cache;
205static struct kmem_cache *stable_node_cache;
206static struct kmem_cache *mm_slot_cache;
207
208/* The number of nodes in the stable tree */
209static unsigned long ksm_pages_shared;
210
211/* The number of page slots additionally sharing those nodes */
212static unsigned long ksm_pages_sharing;
213
214/* The number of nodes in the unstable tree */
215static unsigned long ksm_pages_unshared;
216
217/* The number of rmap_items in use: to calculate pages_volatile */
218static unsigned long ksm_rmap_items;
219
220/* Number of pages ksmd should scan in one batch */
221static unsigned int ksm_thread_pages_to_scan = 100;
222
223/* Milliseconds ksmd should sleep between batches */
224static unsigned int ksm_thread_sleep_millisecs = 20;
225
226#ifdef CONFIG_NUMA
227/* Zeroed when merging across nodes is not allowed */
228static unsigned int ksm_merge_across_nodes = 1;
229static int ksm_nr_node_ids = 1;
230#else
231#define ksm_merge_across_nodes	1U
232#define ksm_nr_node_ids		1
233#endif
234
235#define KSM_RUN_STOP	0
236#define KSM_RUN_MERGE	1
237#define KSM_RUN_UNMERGE	2
238#define KSM_RUN_OFFLINE	4
239static unsigned long ksm_run = KSM_RUN_STOP;
240static void wait_while_offlining(void);
241
242static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243static DEFINE_MUTEX(ksm_thread_mutex);
244static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247		sizeof(struct __struct), __alignof__(struct __struct),\
248		(__flags), NULL)
249
250static int __init ksm_slab_init(void)
251{
252	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253	if (!rmap_item_cache)
254		goto out;
255
256	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257	if (!stable_node_cache)
258		goto out_free1;
259
260	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261	if (!mm_slot_cache)
262		goto out_free2;
263
264	return 0;
265
266out_free2:
267	kmem_cache_destroy(stable_node_cache);
268out_free1:
269	kmem_cache_destroy(rmap_item_cache);
270out:
271	return -ENOMEM;
272}
273
274static void __init ksm_slab_free(void)
275{
276	kmem_cache_destroy(mm_slot_cache);
277	kmem_cache_destroy(stable_node_cache);
278	kmem_cache_destroy(rmap_item_cache);
279	mm_slot_cache = NULL;
280}
281
282static inline struct rmap_item *alloc_rmap_item(void)
283{
284	struct rmap_item *rmap_item;
285
286	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287	if (rmap_item)
288		ksm_rmap_items++;
289	return rmap_item;
290}
291
292static inline void free_rmap_item(struct rmap_item *rmap_item)
293{
294	ksm_rmap_items--;
295	rmap_item->mm = NULL;	/* debug safety */
296	kmem_cache_free(rmap_item_cache, rmap_item);
297}
298
299static inline struct stable_node *alloc_stable_node(void)
300{
301	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302}
303
304static inline void free_stable_node(struct stable_node *stable_node)
305{
306	kmem_cache_free(stable_node_cache, stable_node);
307}
308
309static inline struct mm_slot *alloc_mm_slot(void)
310{
311	if (!mm_slot_cache)	/* initialization failed */
312		return NULL;
313	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314}
315
316static inline void free_mm_slot(struct mm_slot *mm_slot)
317{
318	kmem_cache_free(mm_slot_cache, mm_slot);
319}
320
321static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322{
323	struct mm_slot *slot;
324
325	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326		if (slot->mm == mm)
327			return slot;
328
329	return NULL;
330}
331
332static void insert_to_mm_slots_hash(struct mm_struct *mm,
333				    struct mm_slot *mm_slot)
334{
335	mm_slot->mm = mm;
336	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337}
338
339/*
340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341 * page tables after it has passed through ksm_exit() - which, if necessary,
342 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343 * a special flag: they can just back out as soon as mm_users goes to zero.
344 * ksm_test_exit() is used throughout to make this test for exit: in some
345 * places for correctness, in some places just to avoid unnecessary work.
346 */
347static inline bool ksm_test_exit(struct mm_struct *mm)
348{
349	return atomic_read(&mm->mm_users) == 0;
350}
351
352/*
353 * We use break_ksm to break COW on a ksm page: it's a stripped down
354 *
355 *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356 *		put_page(page);
357 *
358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359 * in case the application has unmapped and remapped mm,addr meanwhile.
360 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362 */
363static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
364{
365	struct page *page;
366	int ret = 0;
367
368	do {
369		cond_resched();
370		page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
371		if (IS_ERR_OR_NULL(page))
372			break;
373		if (PageKsm(page))
374			ret = handle_mm_fault(vma->vm_mm, vma, addr,
375							FAULT_FLAG_WRITE);
376		else
377			ret = VM_FAULT_WRITE;
378		put_page(page);
379	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
380	/*
381	 * We must loop because handle_mm_fault() may back out if there's
382	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
383	 *
384	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385	 * COW has been broken, even if the vma does not permit VM_WRITE;
386	 * but note that a concurrent fault might break PageKsm for us.
387	 *
388	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
389	 * backing file, which also invalidates anonymous pages: that's
390	 * okay, that truncation will have unmapped the PageKsm for us.
391	 *
392	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394	 * current task has TIF_MEMDIE set, and will be OOM killed on return
395	 * to user; and ksmd, having no mm, would never be chosen for that.
396	 *
397	 * But if the mm is in a limited mem_cgroup, then the fault may fail
398	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399	 * even ksmd can fail in this way - though it's usually breaking ksm
400	 * just to undo a merge it made a moment before, so unlikely to oom.
401	 *
402	 * That's a pity: we might therefore have more kernel pages allocated
403	 * than we're counting as nodes in the stable tree; but ksm_do_scan
404	 * will retry to break_cow on each pass, so should recover the page
405	 * in due course.  The important thing is to not let VM_MERGEABLE
406	 * be cleared while any such pages might remain in the area.
407	 */
408	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
409}
410
411static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412		unsigned long addr)
413{
414	struct vm_area_struct *vma;
415	if (ksm_test_exit(mm))
416		return NULL;
417	vma = find_vma(mm, addr);
418	if (!vma || vma->vm_start > addr)
419		return NULL;
420	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421		return NULL;
422	return vma;
423}
424
425static void break_cow(struct rmap_item *rmap_item)
426{
427	struct mm_struct *mm = rmap_item->mm;
428	unsigned long addr = rmap_item->address;
429	struct vm_area_struct *vma;
430
431	/*
432	 * It is not an accident that whenever we want to break COW
433	 * to undo, we also need to drop a reference to the anon_vma.
434	 */
435	put_anon_vma(rmap_item->anon_vma);
436
437	down_read(&mm->mmap_sem);
438	vma = find_mergeable_vma(mm, addr);
439	if (vma)
440		break_ksm(vma, addr);
441	up_read(&mm->mmap_sem);
442}
443
444static struct page *page_trans_compound_anon(struct page *page)
445{
446	if (PageTransCompound(page)) {
447		struct page *head = compound_head(page);
448		/*
449		 * head may actually be splitted and freed from under
450		 * us but it's ok here.
451		 */
452		if (PageAnon(head))
453			return head;
454	}
455	return NULL;
456}
457
458static struct page *get_mergeable_page(struct rmap_item *rmap_item)
459{
460	struct mm_struct *mm = rmap_item->mm;
461	unsigned long addr = rmap_item->address;
462	struct vm_area_struct *vma;
463	struct page *page;
464
465	down_read(&mm->mmap_sem);
466	vma = find_mergeable_vma(mm, addr);
467	if (!vma)
468		goto out;
469
470	page = follow_page(vma, addr, FOLL_GET);
471	if (IS_ERR_OR_NULL(page))
472		goto out;
473	if (PageAnon(page) || page_trans_compound_anon(page)) {
474		flush_anon_page(vma, page, addr);
475		flush_dcache_page(page);
476	} else {
477		put_page(page);
478out:		page = NULL;
479	}
480	up_read(&mm->mmap_sem);
481	return page;
482}
483
484/*
485 * This helper is used for getting right index into array of tree roots.
486 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
487 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
488 * every node has its own stable and unstable tree.
489 */
490static inline int get_kpfn_nid(unsigned long kpfn)
491{
492	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
493}
494
495static void remove_node_from_stable_tree(struct stable_node *stable_node)
496{
497	struct rmap_item *rmap_item;
498
499	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
500		if (rmap_item->hlist.next)
501			ksm_pages_sharing--;
502		else
503			ksm_pages_shared--;
504		put_anon_vma(rmap_item->anon_vma);
505		rmap_item->address &= PAGE_MASK;
506		cond_resched();
507	}
508
509	if (stable_node->head == &migrate_nodes)
510		list_del(&stable_node->list);
511	else
512		rb_erase(&stable_node->node,
513			 root_stable_tree + NUMA(stable_node->nid));
514	free_stable_node(stable_node);
515}
516
517/*
518 * get_ksm_page: checks if the page indicated by the stable node
519 * is still its ksm page, despite having held no reference to it.
520 * In which case we can trust the content of the page, and it
521 * returns the gotten page; but if the page has now been zapped,
522 * remove the stale node from the stable tree and return NULL.
523 * But beware, the stable node's page might be being migrated.
524 *
525 * You would expect the stable_node to hold a reference to the ksm page.
526 * But if it increments the page's count, swapping out has to wait for
527 * ksmd to come around again before it can free the page, which may take
528 * seconds or even minutes: much too unresponsive.  So instead we use a
529 * "keyhole reference": access to the ksm page from the stable node peeps
530 * out through its keyhole to see if that page still holds the right key,
531 * pointing back to this stable node.  This relies on freeing a PageAnon
532 * page to reset its page->mapping to NULL, and relies on no other use of
533 * a page to put something that might look like our key in page->mapping.
534 * is on its way to being freed; but it is an anomaly to bear in mind.
535 */
536static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
537{
538	struct page *page;
539	void *expected_mapping;
540	unsigned long kpfn;
541
542	expected_mapping = (void *)stable_node +
543				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
544again:
545	kpfn = ACCESS_ONCE(stable_node->kpfn);
546	page = pfn_to_page(kpfn);
547
548	/*
549	 * page is computed from kpfn, so on most architectures reading
550	 * page->mapping is naturally ordered after reading node->kpfn,
551	 * but on Alpha we need to be more careful.
552	 */
553	smp_read_barrier_depends();
554	if (ACCESS_ONCE(page->mapping) != expected_mapping)
555		goto stale;
556
557	/*
558	 * We cannot do anything with the page while its refcount is 0.
559	 * Usually 0 means free, or tail of a higher-order page: in which
560	 * case this node is no longer referenced, and should be freed;
561	 * however, it might mean that the page is under page_freeze_refs().
562	 * The __remove_mapping() case is easy, again the node is now stale;
563	 * but if page is swapcache in migrate_page_move_mapping(), it might
564	 * still be our page, in which case it's essential to keep the node.
565	 */
566	while (!get_page_unless_zero(page)) {
567		/*
568		 * Another check for page->mapping != expected_mapping would
569		 * work here too.  We have chosen the !PageSwapCache test to
570		 * optimize the common case, when the page is or is about to
571		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
572		 * in the freeze_refs section of __remove_mapping(); but Anon
573		 * page->mapping reset to NULL later, in free_pages_prepare().
574		 */
575		if (!PageSwapCache(page))
576			goto stale;
577		cpu_relax();
578	}
579
580	if (ACCESS_ONCE(page->mapping) != expected_mapping) {
581		put_page(page);
582		goto stale;
583	}
584
585	if (lock_it) {
586		lock_page(page);
587		if (ACCESS_ONCE(page->mapping) != expected_mapping) {
588			unlock_page(page);
589			put_page(page);
590			goto stale;
591		}
592	}
593	return page;
594
595stale:
596	/*
597	 * We come here from above when page->mapping or !PageSwapCache
598	 * suggests that the node is stale; but it might be under migration.
599	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
600	 * before checking whether node->kpfn has been changed.
601	 */
602	smp_rmb();
603	if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
604		goto again;
605	remove_node_from_stable_tree(stable_node);
606	return NULL;
607}
608
609/*
610 * Removing rmap_item from stable or unstable tree.
611 * This function will clean the information from the stable/unstable tree.
612 */
613static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
614{
615	if (rmap_item->address & STABLE_FLAG) {
616		struct stable_node *stable_node;
617		struct page *page;
618
619		stable_node = rmap_item->head;
620		page = get_ksm_page(stable_node, true);
621		if (!page)
622			goto out;
623
624		hlist_del(&rmap_item->hlist);
625		unlock_page(page);
626		put_page(page);
627
628		if (stable_node->hlist.first)
629			ksm_pages_sharing--;
630		else
631			ksm_pages_shared--;
632
633		put_anon_vma(rmap_item->anon_vma);
634		rmap_item->address &= PAGE_MASK;
635
636	} else if (rmap_item->address & UNSTABLE_FLAG) {
637		unsigned char age;
638		/*
639		 * Usually ksmd can and must skip the rb_erase, because
640		 * root_unstable_tree was already reset to RB_ROOT.
641		 * But be careful when an mm is exiting: do the rb_erase
642		 * if this rmap_item was inserted by this scan, rather
643		 * than left over from before.
644		 */
645		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
646		BUG_ON(age > 1);
647		if (!age)
648			rb_erase(&rmap_item->node,
649				 root_unstable_tree + NUMA(rmap_item->nid));
650		ksm_pages_unshared--;
651		rmap_item->address &= PAGE_MASK;
652	}
653out:
654	cond_resched();		/* we're called from many long loops */
655}
656
657static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
658				       struct rmap_item **rmap_list)
659{
660	while (*rmap_list) {
661		struct rmap_item *rmap_item = *rmap_list;
662		*rmap_list = rmap_item->rmap_list;
663		remove_rmap_item_from_tree(rmap_item);
664		free_rmap_item(rmap_item);
665	}
666}
667
668/*
669 * Though it's very tempting to unmerge rmap_items from stable tree rather
670 * than check every pte of a given vma, the locking doesn't quite work for
671 * that - an rmap_item is assigned to the stable tree after inserting ksm
672 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
673 * rmap_items from parent to child at fork time (so as not to waste time
674 * if exit comes before the next scan reaches it).
675 *
676 * Similarly, although we'd like to remove rmap_items (so updating counts
677 * and freeing memory) when unmerging an area, it's easier to leave that
678 * to the next pass of ksmd - consider, for example, how ksmd might be
679 * in cmp_and_merge_page on one of the rmap_items we would be removing.
680 */
681static int unmerge_ksm_pages(struct vm_area_struct *vma,
682			     unsigned long start, unsigned long end)
683{
684	unsigned long addr;
685	int err = 0;
686
687	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
688		if (ksm_test_exit(vma->vm_mm))
689			break;
690		if (signal_pending(current))
691			err = -ERESTARTSYS;
692		else
693			err = break_ksm(vma, addr);
694	}
695	return err;
696}
697
698#ifdef CONFIG_SYSFS
699/*
700 * Only called through the sysfs control interface:
701 */
702static int remove_stable_node(struct stable_node *stable_node)
703{
704	struct page *page;
705	int err;
706
707	page = get_ksm_page(stable_node, true);
708	if (!page) {
709		/*
710		 * get_ksm_page did remove_node_from_stable_tree itself.
711		 */
712		return 0;
713	}
714
715	if (WARN_ON_ONCE(page_mapped(page))) {
716		/*
717		 * This should not happen: but if it does, just refuse to let
718		 * merge_across_nodes be switched - there is no need to panic.
719		 */
720		err = -EBUSY;
721	} else {
722		/*
723		 * The stable node did not yet appear stale to get_ksm_page(),
724		 * since that allows for an unmapped ksm page to be recognized
725		 * right up until it is freed; but the node is safe to remove.
726		 * This page might be in a pagevec waiting to be freed,
727		 * or it might be PageSwapCache (perhaps under writeback),
728		 * or it might have been removed from swapcache a moment ago.
729		 */
730		set_page_stable_node(page, NULL);
731		remove_node_from_stable_tree(stable_node);
732		err = 0;
733	}
734
735	unlock_page(page);
736	put_page(page);
737	return err;
738}
739
740static int remove_all_stable_nodes(void)
741{
742	struct stable_node *stable_node;
743	struct list_head *this, *next;
744	int nid;
745	int err = 0;
746
747	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
748		while (root_stable_tree[nid].rb_node) {
749			stable_node = rb_entry(root_stable_tree[nid].rb_node,
750						struct stable_node, node);
751			if (remove_stable_node(stable_node)) {
752				err = -EBUSY;
753				break;	/* proceed to next nid */
754			}
755			cond_resched();
756		}
757	}
758	list_for_each_safe(this, next, &migrate_nodes) {
759		stable_node = list_entry(this, struct stable_node, list);
760		if (remove_stable_node(stable_node))
761			err = -EBUSY;
762		cond_resched();
763	}
764	return err;
765}
766
767static int unmerge_and_remove_all_rmap_items(void)
768{
769	struct mm_slot *mm_slot;
770	struct mm_struct *mm;
771	struct vm_area_struct *vma;
772	int err = 0;
773
774	spin_lock(&ksm_mmlist_lock);
775	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
776						struct mm_slot, mm_list);
777	spin_unlock(&ksm_mmlist_lock);
778
779	for (mm_slot = ksm_scan.mm_slot;
780			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
781		mm = mm_slot->mm;
782		down_read(&mm->mmap_sem);
783		for (vma = mm->mmap; vma; vma = vma->vm_next) {
784			if (ksm_test_exit(mm))
785				break;
786			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
787				continue;
788			err = unmerge_ksm_pages(vma,
789						vma->vm_start, vma->vm_end);
790			if (err)
791				goto error;
792		}
793
794		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
795
796		spin_lock(&ksm_mmlist_lock);
797		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
798						struct mm_slot, mm_list);
799		if (ksm_test_exit(mm)) {
800			hash_del(&mm_slot->link);
801			list_del(&mm_slot->mm_list);
802			spin_unlock(&ksm_mmlist_lock);
803
804			free_mm_slot(mm_slot);
805			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
806			up_read(&mm->mmap_sem);
807			mmdrop(mm);
808		} else {
809			spin_unlock(&ksm_mmlist_lock);
810			up_read(&mm->mmap_sem);
811		}
812	}
813
814	/* Clean up stable nodes, but don't worry if some are still busy */
815	remove_all_stable_nodes();
816	ksm_scan.seqnr = 0;
817	return 0;
818
819error:
820	up_read(&mm->mmap_sem);
821	spin_lock(&ksm_mmlist_lock);
822	ksm_scan.mm_slot = &ksm_mm_head;
823	spin_unlock(&ksm_mmlist_lock);
824	return err;
825}
826#endif /* CONFIG_SYSFS */
827
828static u32 calc_checksum(struct page *page)
829{
830	u32 checksum;
831	void *addr = kmap_atomic(page);
832	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
833	kunmap_atomic(addr);
834	return checksum;
835}
836
837static int memcmp_pages(struct page *page1, struct page *page2)
838{
839	char *addr1, *addr2;
840	int ret;
841
842	addr1 = kmap_atomic(page1);
843	addr2 = kmap_atomic(page2);
844	ret = memcmp(addr1, addr2, PAGE_SIZE);
845	kunmap_atomic(addr2);
846	kunmap_atomic(addr1);
847	return ret;
848}
849
850static inline int pages_identical(struct page *page1, struct page *page2)
851{
852	return !memcmp_pages(page1, page2);
853}
854
855static int write_protect_page(struct vm_area_struct *vma, struct page *page,
856			      pte_t *orig_pte)
857{
858	struct mm_struct *mm = vma->vm_mm;
859	unsigned long addr;
860	pte_t *ptep;
861	spinlock_t *ptl;
862	int swapped;
863	int err = -EFAULT;
864	unsigned long mmun_start;	/* For mmu_notifiers */
865	unsigned long mmun_end;		/* For mmu_notifiers */
866
867	addr = page_address_in_vma(page, vma);
868	if (addr == -EFAULT)
869		goto out;
870
871	BUG_ON(PageTransCompound(page));
872
873	mmun_start = addr;
874	mmun_end   = addr + PAGE_SIZE;
875	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
876
877	ptep = page_check_address(page, mm, addr, &ptl, 0);
878	if (!ptep)
879		goto out_mn;
880
881	if (pte_write(*ptep) || pte_dirty(*ptep)) {
882		pte_t entry;
883
884		swapped = PageSwapCache(page);
885		flush_cache_page(vma, addr, page_to_pfn(page));
886		/*
887		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
888		 * take any lock, therefore the check that we are going to make
889		 * with the pagecount against the mapcount is racey and
890		 * O_DIRECT can happen right after the check.
891		 * So we clear the pte and flush the tlb before the check
892		 * this assure us that no O_DIRECT can happen after the check
893		 * or in the middle of the check.
894		 */
895		entry = ptep_clear_flush(vma, addr, ptep);
896		/*
897		 * Check that no O_DIRECT or similar I/O is in progress on the
898		 * page
899		 */
900		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
901			set_pte_at(mm, addr, ptep, entry);
902			goto out_unlock;
903		}
904		if (pte_dirty(entry))
905			set_page_dirty(page);
906		entry = pte_mkclean(pte_wrprotect(entry));
907		set_pte_at_notify(mm, addr, ptep, entry);
908	}
909	*orig_pte = *ptep;
910	err = 0;
911
912out_unlock:
913	pte_unmap_unlock(ptep, ptl);
914out_mn:
915	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
916out:
917	return err;
918}
919
920/**
921 * replace_page - replace page in vma by new ksm page
922 * @vma:      vma that holds the pte pointing to page
923 * @page:     the page we are replacing by kpage
924 * @kpage:    the ksm page we replace page by
925 * @orig_pte: the original value of the pte
926 *
927 * Returns 0 on success, -EFAULT on failure.
928 */
929static int replace_page(struct vm_area_struct *vma, struct page *page,
930			struct page *kpage, pte_t orig_pte)
931{
932	struct mm_struct *mm = vma->vm_mm;
933	pmd_t *pmd;
934	pte_t *ptep;
935	spinlock_t *ptl;
936	unsigned long addr;
937	int err = -EFAULT;
938	unsigned long mmun_start;	/* For mmu_notifiers */
939	unsigned long mmun_end;		/* For mmu_notifiers */
940
941	addr = page_address_in_vma(page, vma);
942	if (addr == -EFAULT)
943		goto out;
944
945	pmd = mm_find_pmd(mm, addr);
946	if (!pmd)
947		goto out;
948
949	mmun_start = addr;
950	mmun_end   = addr + PAGE_SIZE;
951	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
952
953	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
954	if (!pte_same(*ptep, orig_pte)) {
955		pte_unmap_unlock(ptep, ptl);
956		goto out_mn;
957	}
958
959	get_page(kpage);
960	page_add_anon_rmap(kpage, vma, addr);
961
962	flush_cache_page(vma, addr, pte_pfn(*ptep));
963	ptep_clear_flush(vma, addr, ptep);
964	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
965
966	page_remove_rmap(page);
967	if (!page_mapped(page))
968		try_to_free_swap(page);
969	put_page(page);
970
971	pte_unmap_unlock(ptep, ptl);
972	err = 0;
973out_mn:
974	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
975out:
976	return err;
977}
978
979static int page_trans_compound_anon_split(struct page *page)
980{
981	int ret = 0;
982	struct page *transhuge_head = page_trans_compound_anon(page);
983	if (transhuge_head) {
984		/* Get the reference on the head to split it. */
985		if (get_page_unless_zero(transhuge_head)) {
986			/*
987			 * Recheck we got the reference while the head
988			 * was still anonymous.
989			 */
990			if (PageAnon(transhuge_head))
991				ret = split_huge_page(transhuge_head);
992			else
993				/*
994				 * Retry later if split_huge_page run
995				 * from under us.
996				 */
997				ret = 1;
998			put_page(transhuge_head);
999		} else
1000			/* Retry later if split_huge_page run from under us. */
1001			ret = 1;
1002	}
1003	return ret;
1004}
1005
1006/*
1007 * try_to_merge_one_page - take two pages and merge them into one
1008 * @vma: the vma that holds the pte pointing to page
1009 * @page: the PageAnon page that we want to replace with kpage
1010 * @kpage: the PageKsm page that we want to map instead of page,
1011 *         or NULL the first time when we want to use page as kpage.
1012 *
1013 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1014 */
1015static int try_to_merge_one_page(struct vm_area_struct *vma,
1016				 struct page *page, struct page *kpage)
1017{
1018	pte_t orig_pte = __pte(0);
1019	int err = -EFAULT;
1020
1021	if (page == kpage)			/* ksm page forked */
1022		return 0;
1023
1024	if (!(vma->vm_flags & VM_MERGEABLE))
1025		goto out;
1026	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1027		goto out;
1028	BUG_ON(PageTransCompound(page));
1029	if (!PageAnon(page))
1030		goto out;
1031
1032	/*
1033	 * We need the page lock to read a stable PageSwapCache in
1034	 * write_protect_page().  We use trylock_page() instead of
1035	 * lock_page() because we don't want to wait here - we
1036	 * prefer to continue scanning and merging different pages,
1037	 * then come back to this page when it is unlocked.
1038	 */
1039	if (!trylock_page(page))
1040		goto out;
1041	/*
1042	 * If this anonymous page is mapped only here, its pte may need
1043	 * to be write-protected.  If it's mapped elsewhere, all of its
1044	 * ptes are necessarily already write-protected.  But in either
1045	 * case, we need to lock and check page_count is not raised.
1046	 */
1047	if (write_protect_page(vma, page, &orig_pte) == 0) {
1048		if (!kpage) {
1049			/*
1050			 * While we hold page lock, upgrade page from
1051			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1052			 * stable_tree_insert() will update stable_node.
1053			 */
1054			set_page_stable_node(page, NULL);
1055			mark_page_accessed(page);
1056			err = 0;
1057		} else if (pages_identical(page, kpage))
1058			err = replace_page(vma, page, kpage, orig_pte);
1059	}
1060
1061	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1062		munlock_vma_page(page);
1063		if (!PageMlocked(kpage)) {
1064			unlock_page(page);
1065			lock_page(kpage);
1066			mlock_vma_page(kpage);
1067			page = kpage;		/* for final unlock */
1068		}
1069	}
1070
1071	unlock_page(page);
1072out:
1073	return err;
1074}
1075
1076/*
1077 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1078 * but no new kernel page is allocated: kpage must already be a ksm page.
1079 *
1080 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1081 */
1082static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1083				      struct page *page, struct page *kpage)
1084{
1085	struct mm_struct *mm = rmap_item->mm;
1086	struct vm_area_struct *vma;
1087	int err = -EFAULT;
1088
1089	down_read(&mm->mmap_sem);
1090	if (ksm_test_exit(mm))
1091		goto out;
1092	vma = find_vma(mm, rmap_item->address);
1093	if (!vma || vma->vm_start > rmap_item->address)
1094		goto out;
1095
1096	err = try_to_merge_one_page(vma, page, kpage);
1097	if (err)
1098		goto out;
1099
1100	/* Unstable nid is in union with stable anon_vma: remove first */
1101	remove_rmap_item_from_tree(rmap_item);
1102
1103	/* Must get reference to anon_vma while still holding mmap_sem */
1104	rmap_item->anon_vma = vma->anon_vma;
1105	get_anon_vma(vma->anon_vma);
1106out:
1107	up_read(&mm->mmap_sem);
1108	return err;
1109}
1110
1111/*
1112 * try_to_merge_two_pages - take two identical pages and prepare them
1113 * to be merged into one page.
1114 *
1115 * This function returns the kpage if we successfully merged two identical
1116 * pages into one ksm page, NULL otherwise.
1117 *
1118 * Note that this function upgrades page to ksm page: if one of the pages
1119 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1120 */
1121static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1122					   struct page *page,
1123					   struct rmap_item *tree_rmap_item,
1124					   struct page *tree_page)
1125{
1126	int err;
1127
1128	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1129	if (!err) {
1130		err = try_to_merge_with_ksm_page(tree_rmap_item,
1131							tree_page, page);
1132		/*
1133		 * If that fails, we have a ksm page with only one pte
1134		 * pointing to it: so break it.
1135		 */
1136		if (err)
1137			break_cow(rmap_item);
1138	}
1139	return err ? NULL : page;
1140}
1141
1142/*
1143 * stable_tree_search - search for page inside the stable tree
1144 *
1145 * This function checks if there is a page inside the stable tree
1146 * with identical content to the page that we are scanning right now.
1147 *
1148 * This function returns the stable tree node of identical content if found,
1149 * NULL otherwise.
1150 */
1151static struct page *stable_tree_search(struct page *page)
1152{
1153	int nid;
1154	struct rb_root *root;
1155	struct rb_node **new;
1156	struct rb_node *parent;
1157	struct stable_node *stable_node;
1158	struct stable_node *page_node;
1159
1160	page_node = page_stable_node(page);
1161	if (page_node && page_node->head != &migrate_nodes) {
1162		/* ksm page forked */
1163		get_page(page);
1164		return page;
1165	}
1166
1167	nid = get_kpfn_nid(page_to_pfn(page));
1168	root = root_stable_tree + nid;
1169again:
1170	new = &root->rb_node;
1171	parent = NULL;
1172
1173	while (*new) {
1174		struct page *tree_page;
1175		int ret;
1176
1177		cond_resched();
1178		stable_node = rb_entry(*new, struct stable_node, node);
1179		tree_page = get_ksm_page(stable_node, false);
1180		if (!tree_page)
1181			return NULL;
1182
1183		ret = memcmp_pages(page, tree_page);
1184		put_page(tree_page);
1185
1186		parent = *new;
1187		if (ret < 0)
1188			new = &parent->rb_left;
1189		else if (ret > 0)
1190			new = &parent->rb_right;
1191		else {
1192			/*
1193			 * Lock and unlock the stable_node's page (which
1194			 * might already have been migrated) so that page
1195			 * migration is sure to notice its raised count.
1196			 * It would be more elegant to return stable_node
1197			 * than kpage, but that involves more changes.
1198			 */
1199			tree_page = get_ksm_page(stable_node, true);
1200			if (tree_page) {
1201				unlock_page(tree_page);
1202				if (get_kpfn_nid(stable_node->kpfn) !=
1203						NUMA(stable_node->nid)) {
1204					put_page(tree_page);
1205					goto replace;
1206				}
1207				return tree_page;
1208			}
1209			/*
1210			 * There is now a place for page_node, but the tree may
1211			 * have been rebalanced, so re-evaluate parent and new.
1212			 */
1213			if (page_node)
1214				goto again;
1215			return NULL;
1216		}
1217	}
1218
1219	if (!page_node)
1220		return NULL;
1221
1222	list_del(&page_node->list);
1223	DO_NUMA(page_node->nid = nid);
1224	rb_link_node(&page_node->node, parent, new);
1225	rb_insert_color(&page_node->node, root);
1226	get_page(page);
1227	return page;
1228
1229replace:
1230	if (page_node) {
1231		list_del(&page_node->list);
1232		DO_NUMA(page_node->nid = nid);
1233		rb_replace_node(&stable_node->node, &page_node->node, root);
1234		get_page(page);
1235	} else {
1236		rb_erase(&stable_node->node, root);
1237		page = NULL;
1238	}
1239	stable_node->head = &migrate_nodes;
1240	list_add(&stable_node->list, stable_node->head);
1241	return page;
1242}
1243
1244/*
1245 * stable_tree_insert - insert stable tree node pointing to new ksm page
1246 * into the stable tree.
1247 *
1248 * This function returns the stable tree node just allocated on success,
1249 * NULL otherwise.
1250 */
1251static struct stable_node *stable_tree_insert(struct page *kpage)
1252{
1253	int nid;
1254	unsigned long kpfn;
1255	struct rb_root *root;
1256	struct rb_node **new;
1257	struct rb_node *parent = NULL;
1258	struct stable_node *stable_node;
1259
1260	kpfn = page_to_pfn(kpage);
1261	nid = get_kpfn_nid(kpfn);
1262	root = root_stable_tree + nid;
1263	new = &root->rb_node;
1264
1265	while (*new) {
1266		struct page *tree_page;
1267		int ret;
1268
1269		cond_resched();
1270		stable_node = rb_entry(*new, struct stable_node, node);
1271		tree_page = get_ksm_page(stable_node, false);
1272		if (!tree_page)
1273			return NULL;
1274
1275		ret = memcmp_pages(kpage, tree_page);
1276		put_page(tree_page);
1277
1278		parent = *new;
1279		if (ret < 0)
1280			new = &parent->rb_left;
1281		else if (ret > 0)
1282			new = &parent->rb_right;
1283		else {
1284			/*
1285			 * It is not a bug that stable_tree_search() didn't
1286			 * find this node: because at that time our page was
1287			 * not yet write-protected, so may have changed since.
1288			 */
1289			return NULL;
1290		}
1291	}
1292
1293	stable_node = alloc_stable_node();
1294	if (!stable_node)
1295		return NULL;
1296
1297	INIT_HLIST_HEAD(&stable_node->hlist);
1298	stable_node->kpfn = kpfn;
1299	set_page_stable_node(kpage, stable_node);
1300	DO_NUMA(stable_node->nid = nid);
1301	rb_link_node(&stable_node->node, parent, new);
1302	rb_insert_color(&stable_node->node, root);
1303
1304	return stable_node;
1305}
1306
1307/*
1308 * unstable_tree_search_insert - search for identical page,
1309 * else insert rmap_item into the unstable tree.
1310 *
1311 * This function searches for a page in the unstable tree identical to the
1312 * page currently being scanned; and if no identical page is found in the
1313 * tree, we insert rmap_item as a new object into the unstable tree.
1314 *
1315 * This function returns pointer to rmap_item found to be identical
1316 * to the currently scanned page, NULL otherwise.
1317 *
1318 * This function does both searching and inserting, because they share
1319 * the same walking algorithm in an rbtree.
1320 */
1321static
1322struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1323					      struct page *page,
1324					      struct page **tree_pagep)
1325{
1326	struct rb_node **new;
1327	struct rb_root *root;
1328	struct rb_node *parent = NULL;
1329	int nid;
1330
1331	nid = get_kpfn_nid(page_to_pfn(page));
1332	root = root_unstable_tree + nid;
1333	new = &root->rb_node;
1334
1335	while (*new) {
1336		struct rmap_item *tree_rmap_item;
1337		struct page *tree_page;
1338		int ret;
1339
1340		cond_resched();
1341		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1342		tree_page = get_mergeable_page(tree_rmap_item);
1343		if (IS_ERR_OR_NULL(tree_page))
1344			return NULL;
1345
1346		/*
1347		 * Don't substitute a ksm page for a forked page.
1348		 */
1349		if (page == tree_page) {
1350			put_page(tree_page);
1351			return NULL;
1352		}
1353
1354		ret = memcmp_pages(page, tree_page);
1355
1356		parent = *new;
1357		if (ret < 0) {
1358			put_page(tree_page);
1359			new = &parent->rb_left;
1360		} else if (ret > 0) {
1361			put_page(tree_page);
1362			new = &parent->rb_right;
1363		} else if (!ksm_merge_across_nodes &&
1364			   page_to_nid(tree_page) != nid) {
1365			/*
1366			 * If tree_page has been migrated to another NUMA node,
1367			 * it will be flushed out and put in the right unstable
1368			 * tree next time: only merge with it when across_nodes.
1369			 */
1370			put_page(tree_page);
1371			return NULL;
1372		} else {
1373			*tree_pagep = tree_page;
1374			return tree_rmap_item;
1375		}
1376	}
1377
1378	rmap_item->address |= UNSTABLE_FLAG;
1379	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1380	DO_NUMA(rmap_item->nid = nid);
1381	rb_link_node(&rmap_item->node, parent, new);
1382	rb_insert_color(&rmap_item->node, root);
1383
1384	ksm_pages_unshared++;
1385	return NULL;
1386}
1387
1388/*
1389 * stable_tree_append - add another rmap_item to the linked list of
1390 * rmap_items hanging off a given node of the stable tree, all sharing
1391 * the same ksm page.
1392 */
1393static void stable_tree_append(struct rmap_item *rmap_item,
1394			       struct stable_node *stable_node)
1395{
1396	rmap_item->head = stable_node;
1397	rmap_item->address |= STABLE_FLAG;
1398	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1399
1400	if (rmap_item->hlist.next)
1401		ksm_pages_sharing++;
1402	else
1403		ksm_pages_shared++;
1404}
1405
1406/*
1407 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1408 * if not, compare checksum to previous and if it's the same, see if page can
1409 * be inserted into the unstable tree, or merged with a page already there and
1410 * both transferred to the stable tree.
1411 *
1412 * @page: the page that we are searching identical page to.
1413 * @rmap_item: the reverse mapping into the virtual address of this page
1414 */
1415static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1416{
1417	struct rmap_item *tree_rmap_item;
1418	struct page *tree_page = NULL;
1419	struct stable_node *stable_node;
1420	struct page *kpage;
1421	unsigned int checksum;
1422	int err;
1423
1424	stable_node = page_stable_node(page);
1425	if (stable_node) {
1426		if (stable_node->head != &migrate_nodes &&
1427		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1428			rb_erase(&stable_node->node,
1429				 root_stable_tree + NUMA(stable_node->nid));
1430			stable_node->head = &migrate_nodes;
1431			list_add(&stable_node->list, stable_node->head);
1432		}
1433		if (stable_node->head != &migrate_nodes &&
1434		    rmap_item->head == stable_node)
1435			return;
1436	}
1437
1438	/* We first start with searching the page inside the stable tree */
1439	kpage = stable_tree_search(page);
1440	if (kpage == page && rmap_item->head == stable_node) {
1441		put_page(kpage);
1442		return;
1443	}
1444
1445	remove_rmap_item_from_tree(rmap_item);
1446
1447	if (kpage) {
1448		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1449		if (!err) {
1450			/*
1451			 * The page was successfully merged:
1452			 * add its rmap_item to the stable tree.
1453			 */
1454			lock_page(kpage);
1455			stable_tree_append(rmap_item, page_stable_node(kpage));
1456			unlock_page(kpage);
1457		}
1458		put_page(kpage);
1459		return;
1460	}
1461
1462	/*
1463	 * If the hash value of the page has changed from the last time
1464	 * we calculated it, this page is changing frequently: therefore we
1465	 * don't want to insert it in the unstable tree, and we don't want
1466	 * to waste our time searching for something identical to it there.
1467	 */
1468	checksum = calc_checksum(page);
1469	if (rmap_item->oldchecksum != checksum) {
1470		rmap_item->oldchecksum = checksum;
1471		return;
1472	}
1473
1474	tree_rmap_item =
1475		unstable_tree_search_insert(rmap_item, page, &tree_page);
1476	if (tree_rmap_item) {
1477		kpage = try_to_merge_two_pages(rmap_item, page,
1478						tree_rmap_item, tree_page);
1479		put_page(tree_page);
1480		if (kpage) {
1481			/*
1482			 * The pages were successfully merged: insert new
1483			 * node in the stable tree and add both rmap_items.
1484			 */
1485			lock_page(kpage);
1486			stable_node = stable_tree_insert(kpage);
1487			if (stable_node) {
1488				stable_tree_append(tree_rmap_item, stable_node);
1489				stable_tree_append(rmap_item, stable_node);
1490			}
1491			unlock_page(kpage);
1492
1493			/*
1494			 * If we fail to insert the page into the stable tree,
1495			 * we will have 2 virtual addresses that are pointing
1496			 * to a ksm page left outside the stable tree,
1497			 * in which case we need to break_cow on both.
1498			 */
1499			if (!stable_node) {
1500				break_cow(tree_rmap_item);
1501				break_cow(rmap_item);
1502			}
1503		}
1504	}
1505}
1506
1507static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1508					    struct rmap_item **rmap_list,
1509					    unsigned long addr)
1510{
1511	struct rmap_item *rmap_item;
1512
1513	while (*rmap_list) {
1514		rmap_item = *rmap_list;
1515		if ((rmap_item->address & PAGE_MASK) == addr)
1516			return rmap_item;
1517		if (rmap_item->address > addr)
1518			break;
1519		*rmap_list = rmap_item->rmap_list;
1520		remove_rmap_item_from_tree(rmap_item);
1521		free_rmap_item(rmap_item);
1522	}
1523
1524	rmap_item = alloc_rmap_item();
1525	if (rmap_item) {
1526		/* It has already been zeroed */
1527		rmap_item->mm = mm_slot->mm;
1528		rmap_item->address = addr;
1529		rmap_item->rmap_list = *rmap_list;
1530		*rmap_list = rmap_item;
1531	}
1532	return rmap_item;
1533}
1534
1535static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1536{
1537	struct mm_struct *mm;
1538	struct mm_slot *slot;
1539	struct vm_area_struct *vma;
1540	struct rmap_item *rmap_item;
1541	int nid;
1542
1543	if (list_empty(&ksm_mm_head.mm_list))
1544		return NULL;
1545
1546	slot = ksm_scan.mm_slot;
1547	if (slot == &ksm_mm_head) {
1548		/*
1549		 * A number of pages can hang around indefinitely on per-cpu
1550		 * pagevecs, raised page count preventing write_protect_page
1551		 * from merging them.  Though it doesn't really matter much,
1552		 * it is puzzling to see some stuck in pages_volatile until
1553		 * other activity jostles them out, and they also prevented
1554		 * LTP's KSM test from succeeding deterministically; so drain
1555		 * them here (here rather than on entry to ksm_do_scan(),
1556		 * so we don't IPI too often when pages_to_scan is set low).
1557		 */
1558		lru_add_drain_all();
1559
1560		/*
1561		 * Whereas stale stable_nodes on the stable_tree itself
1562		 * get pruned in the regular course of stable_tree_search(),
1563		 * those moved out to the migrate_nodes list can accumulate:
1564		 * so prune them once before each full scan.
1565		 */
1566		if (!ksm_merge_across_nodes) {
1567			struct stable_node *stable_node;
1568			struct list_head *this, *next;
1569			struct page *page;
1570
1571			list_for_each_safe(this, next, &migrate_nodes) {
1572				stable_node = list_entry(this,
1573						struct stable_node, list);
1574				page = get_ksm_page(stable_node, false);
1575				if (page)
1576					put_page(page);
1577				cond_resched();
1578			}
1579		}
1580
1581		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1582			root_unstable_tree[nid] = RB_ROOT;
1583
1584		spin_lock(&ksm_mmlist_lock);
1585		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1586		ksm_scan.mm_slot = slot;
1587		spin_unlock(&ksm_mmlist_lock);
1588		/*
1589		 * Although we tested list_empty() above, a racing __ksm_exit
1590		 * of the last mm on the list may have removed it since then.
1591		 */
1592		if (slot == &ksm_mm_head)
1593			return NULL;
1594next_mm:
1595		ksm_scan.address = 0;
1596		ksm_scan.rmap_list = &slot->rmap_list;
1597	}
1598
1599	mm = slot->mm;
1600	down_read(&mm->mmap_sem);
1601	if (ksm_test_exit(mm))
1602		vma = NULL;
1603	else
1604		vma = find_vma(mm, ksm_scan.address);
1605
1606	for (; vma; vma = vma->vm_next) {
1607		if (!(vma->vm_flags & VM_MERGEABLE))
1608			continue;
1609		if (ksm_scan.address < vma->vm_start)
1610			ksm_scan.address = vma->vm_start;
1611		if (!vma->anon_vma)
1612			ksm_scan.address = vma->vm_end;
1613
1614		while (ksm_scan.address < vma->vm_end) {
1615			if (ksm_test_exit(mm))
1616				break;
1617			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1618			if (IS_ERR_OR_NULL(*page)) {
1619				ksm_scan.address += PAGE_SIZE;
1620				cond_resched();
1621				continue;
1622			}
1623			if (PageAnon(*page) ||
1624			    page_trans_compound_anon(*page)) {
1625				flush_anon_page(vma, *page, ksm_scan.address);
1626				flush_dcache_page(*page);
1627				rmap_item = get_next_rmap_item(slot,
1628					ksm_scan.rmap_list, ksm_scan.address);
1629				if (rmap_item) {
1630					ksm_scan.rmap_list =
1631							&rmap_item->rmap_list;
1632					ksm_scan.address += PAGE_SIZE;
1633				} else
1634					put_page(*page);
1635				up_read(&mm->mmap_sem);
1636				return rmap_item;
1637			}
1638			put_page(*page);
1639			ksm_scan.address += PAGE_SIZE;
1640			cond_resched();
1641		}
1642	}
1643
1644	if (ksm_test_exit(mm)) {
1645		ksm_scan.address = 0;
1646		ksm_scan.rmap_list = &slot->rmap_list;
1647	}
1648	/*
1649	 * Nuke all the rmap_items that are above this current rmap:
1650	 * because there were no VM_MERGEABLE vmas with such addresses.
1651	 */
1652	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1653
1654	spin_lock(&ksm_mmlist_lock);
1655	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1656						struct mm_slot, mm_list);
1657	if (ksm_scan.address == 0) {
1658		/*
1659		 * We've completed a full scan of all vmas, holding mmap_sem
1660		 * throughout, and found no VM_MERGEABLE: so do the same as
1661		 * __ksm_exit does to remove this mm from all our lists now.
1662		 * This applies either when cleaning up after __ksm_exit
1663		 * (but beware: we can reach here even before __ksm_exit),
1664		 * or when all VM_MERGEABLE areas have been unmapped (and
1665		 * mmap_sem then protects against race with MADV_MERGEABLE).
1666		 */
1667		hash_del(&slot->link);
1668		list_del(&slot->mm_list);
1669		spin_unlock(&ksm_mmlist_lock);
1670
1671		free_mm_slot(slot);
1672		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1673		up_read(&mm->mmap_sem);
1674		mmdrop(mm);
1675	} else {
1676		spin_unlock(&ksm_mmlist_lock);
1677		up_read(&mm->mmap_sem);
1678	}
1679
1680	/* Repeat until we've completed scanning the whole list */
1681	slot = ksm_scan.mm_slot;
1682	if (slot != &ksm_mm_head)
1683		goto next_mm;
1684
1685	ksm_scan.seqnr++;
1686	return NULL;
1687}
1688
1689/**
1690 * ksm_do_scan  - the ksm scanner main worker function.
1691 * @scan_npages - number of pages we want to scan before we return.
1692 */
1693static void ksm_do_scan(unsigned int scan_npages)
1694{
1695	struct rmap_item *rmap_item;
1696	struct page *uninitialized_var(page);
1697
1698	while (scan_npages-- && likely(!freezing(current))) {
1699		cond_resched();
1700		rmap_item = scan_get_next_rmap_item(&page);
1701		if (!rmap_item)
1702			return;
1703		cmp_and_merge_page(page, rmap_item);
1704		put_page(page);
1705	}
1706}
1707
1708static int ksmd_should_run(void)
1709{
1710	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1711}
1712
1713static int ksm_scan_thread(void *nothing)
1714{
1715	set_freezable();
1716	set_user_nice(current, 5);
1717
1718	while (!kthread_should_stop()) {
1719		mutex_lock(&ksm_thread_mutex);
1720		wait_while_offlining();
1721		if (ksmd_should_run())
1722			ksm_do_scan(ksm_thread_pages_to_scan);
1723		mutex_unlock(&ksm_thread_mutex);
1724
1725		try_to_freeze();
1726
1727		if (ksmd_should_run()) {
1728			schedule_timeout_interruptible(
1729				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1730		} else {
1731			wait_event_freezable(ksm_thread_wait,
1732				ksmd_should_run() || kthread_should_stop());
1733		}
1734	}
1735	return 0;
1736}
1737
1738int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1739		unsigned long end, int advice, unsigned long *vm_flags)
1740{
1741	struct mm_struct *mm = vma->vm_mm;
1742	int err;
1743
1744	switch (advice) {
1745	case MADV_MERGEABLE:
1746		/*
1747		 * Be somewhat over-protective for now!
1748		 */
1749		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1750				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1751				 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1752			return 0;		/* just ignore the advice */
1753
1754#ifdef VM_SAO
1755		if (*vm_flags & VM_SAO)
1756			return 0;
1757#endif
1758
1759		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1760			err = __ksm_enter(mm);
1761			if (err)
1762				return err;
1763		}
1764
1765		*vm_flags |= VM_MERGEABLE;
1766		break;
1767
1768	case MADV_UNMERGEABLE:
1769		if (!(*vm_flags & VM_MERGEABLE))
1770			return 0;		/* just ignore the advice */
1771
1772		if (vma->anon_vma) {
1773			err = unmerge_ksm_pages(vma, start, end);
1774			if (err)
1775				return err;
1776		}
1777
1778		*vm_flags &= ~VM_MERGEABLE;
1779		break;
1780	}
1781
1782	return 0;
1783}
1784
1785int __ksm_enter(struct mm_struct *mm)
1786{
1787	struct mm_slot *mm_slot;
1788	int needs_wakeup;
1789
1790	mm_slot = alloc_mm_slot();
1791	if (!mm_slot)
1792		return -ENOMEM;
1793
1794	/* Check ksm_run too?  Would need tighter locking */
1795	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1796
1797	spin_lock(&ksm_mmlist_lock);
1798	insert_to_mm_slots_hash(mm, mm_slot);
1799	/*
1800	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1801	 * insert just behind the scanning cursor, to let the area settle
1802	 * down a little; when fork is followed by immediate exec, we don't
1803	 * want ksmd to waste time setting up and tearing down an rmap_list.
1804	 *
1805	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1806	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1807	 * missed: then we might as well insert at the end of the list.
1808	 */
1809	if (ksm_run & KSM_RUN_UNMERGE)
1810		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1811	else
1812		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1813	spin_unlock(&ksm_mmlist_lock);
1814
1815	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1816	atomic_inc(&mm->mm_count);
1817
1818	if (needs_wakeup)
1819		wake_up_interruptible(&ksm_thread_wait);
1820
1821	return 0;
1822}
1823
1824void __ksm_exit(struct mm_struct *mm)
1825{
1826	struct mm_slot *mm_slot;
1827	int easy_to_free = 0;
1828
1829	/*
1830	 * This process is exiting: if it's straightforward (as is the
1831	 * case when ksmd was never running), free mm_slot immediately.
1832	 * But if it's at the cursor or has rmap_items linked to it, use
1833	 * mmap_sem to synchronize with any break_cows before pagetables
1834	 * are freed, and leave the mm_slot on the list for ksmd to free.
1835	 * Beware: ksm may already have noticed it exiting and freed the slot.
1836	 */
1837
1838	spin_lock(&ksm_mmlist_lock);
1839	mm_slot = get_mm_slot(mm);
1840	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1841		if (!mm_slot->rmap_list) {
1842			hash_del(&mm_slot->link);
1843			list_del(&mm_slot->mm_list);
1844			easy_to_free = 1;
1845		} else {
1846			list_move(&mm_slot->mm_list,
1847				  &ksm_scan.mm_slot->mm_list);
1848		}
1849	}
1850	spin_unlock(&ksm_mmlist_lock);
1851
1852	if (easy_to_free) {
1853		free_mm_slot(mm_slot);
1854		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1855		mmdrop(mm);
1856	} else if (mm_slot) {
1857		down_write(&mm->mmap_sem);
1858		up_write(&mm->mmap_sem);
1859	}
1860}
1861
1862struct page *ksm_might_need_to_copy(struct page *page,
1863			struct vm_area_struct *vma, unsigned long address)
1864{
1865	struct anon_vma *anon_vma = page_anon_vma(page);
1866	struct page *new_page;
1867
1868	if (PageKsm(page)) {
1869		if (page_stable_node(page) &&
1870		    !(ksm_run & KSM_RUN_UNMERGE))
1871			return page;	/* no need to copy it */
1872	} else if (!anon_vma) {
1873		return page;		/* no need to copy it */
1874	} else if (anon_vma->root == vma->anon_vma->root &&
1875		 page->index == linear_page_index(vma, address)) {
1876		return page;		/* still no need to copy it */
1877	}
1878	if (!PageUptodate(page))
1879		return page;		/* let do_swap_page report the error */
1880
1881	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1882	if (new_page) {
1883		copy_user_highpage(new_page, page, address, vma);
1884
1885		SetPageDirty(new_page);
1886		__SetPageUptodate(new_page);
1887		__set_page_locked(new_page);
1888	}
1889
1890	return new_page;
1891}
1892
1893int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1894{
1895	struct stable_node *stable_node;
1896	struct rmap_item *rmap_item;
1897	int ret = SWAP_AGAIN;
1898	int search_new_forks = 0;
1899
1900	VM_BUG_ON_PAGE(!PageKsm(page), page);
1901
1902	/*
1903	 * Rely on the page lock to protect against concurrent modifications
1904	 * to that page's node of the stable tree.
1905	 */
1906	VM_BUG_ON_PAGE(!PageLocked(page), page);
1907
1908	stable_node = page_stable_node(page);
1909	if (!stable_node)
1910		return ret;
1911again:
1912	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1913		struct anon_vma *anon_vma = rmap_item->anon_vma;
1914		struct anon_vma_chain *vmac;
1915		struct vm_area_struct *vma;
1916
1917		anon_vma_lock_read(anon_vma);
1918		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1919					       0, ULONG_MAX) {
1920			vma = vmac->vma;
1921			if (rmap_item->address < vma->vm_start ||
1922			    rmap_item->address >= vma->vm_end)
1923				continue;
1924			/*
1925			 * Initially we examine only the vma which covers this
1926			 * rmap_item; but later, if there is still work to do,
1927			 * we examine covering vmas in other mms: in case they
1928			 * were forked from the original since ksmd passed.
1929			 */
1930			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1931				continue;
1932
1933			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1934				continue;
1935
1936			ret = rwc->rmap_one(page, vma,
1937					rmap_item->address, rwc->arg);
1938			if (ret != SWAP_AGAIN) {
1939				anon_vma_unlock_read(anon_vma);
1940				goto out;
1941			}
1942			if (rwc->done && rwc->done(page)) {
1943				anon_vma_unlock_read(anon_vma);
1944				goto out;
1945			}
1946		}
1947		anon_vma_unlock_read(anon_vma);
1948	}
1949	if (!search_new_forks++)
1950		goto again;
1951out:
1952	return ret;
1953}
1954
1955#ifdef CONFIG_MIGRATION
1956void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1957{
1958	struct stable_node *stable_node;
1959
1960	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1961	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1962	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1963
1964	stable_node = page_stable_node(newpage);
1965	if (stable_node) {
1966		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1967		stable_node->kpfn = page_to_pfn(newpage);
1968		/*
1969		 * newpage->mapping was set in advance; now we need smp_wmb()
1970		 * to make sure that the new stable_node->kpfn is visible
1971		 * to get_ksm_page() before it can see that oldpage->mapping
1972		 * has gone stale (or that PageSwapCache has been cleared).
1973		 */
1974		smp_wmb();
1975		set_page_stable_node(oldpage, NULL);
1976	}
1977}
1978#endif /* CONFIG_MIGRATION */
1979
1980#ifdef CONFIG_MEMORY_HOTREMOVE
1981static void wait_while_offlining(void)
1982{
1983	while (ksm_run & KSM_RUN_OFFLINE) {
1984		mutex_unlock(&ksm_thread_mutex);
1985		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1986			    TASK_UNINTERRUPTIBLE);
1987		mutex_lock(&ksm_thread_mutex);
1988	}
1989}
1990
1991static void ksm_check_stable_tree(unsigned long start_pfn,
1992				  unsigned long end_pfn)
1993{
1994	struct stable_node *stable_node;
1995	struct list_head *this, *next;
1996	struct rb_node *node;
1997	int nid;
1998
1999	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2000		node = rb_first(root_stable_tree + nid);
2001		while (node) {
2002			stable_node = rb_entry(node, struct stable_node, node);
2003			if (stable_node->kpfn >= start_pfn &&
2004			    stable_node->kpfn < end_pfn) {
2005				/*
2006				 * Don't get_ksm_page, page has already gone:
2007				 * which is why we keep kpfn instead of page*
2008				 */
2009				remove_node_from_stable_tree(stable_node);
2010				node = rb_first(root_stable_tree + nid);
2011			} else
2012				node = rb_next(node);
2013			cond_resched();
2014		}
2015	}
2016	list_for_each_safe(this, next, &migrate_nodes) {
2017		stable_node = list_entry(this, struct stable_node, list);
2018		if (stable_node->kpfn >= start_pfn &&
2019		    stable_node->kpfn < end_pfn)
2020			remove_node_from_stable_tree(stable_node);
2021		cond_resched();
2022	}
2023}
2024
2025static int ksm_memory_callback(struct notifier_block *self,
2026			       unsigned long action, void *arg)
2027{
2028	struct memory_notify *mn = arg;
2029
2030	switch (action) {
2031	case MEM_GOING_OFFLINE:
2032		/*
2033		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2034		 * and remove_all_stable_nodes() while memory is going offline:
2035		 * it is unsafe for them to touch the stable tree at this time.
2036		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2037		 * which do not need the ksm_thread_mutex are all safe.
2038		 */
2039		mutex_lock(&ksm_thread_mutex);
2040		ksm_run |= KSM_RUN_OFFLINE;
2041		mutex_unlock(&ksm_thread_mutex);
2042		break;
2043
2044	case MEM_OFFLINE:
2045		/*
2046		 * Most of the work is done by page migration; but there might
2047		 * be a few stable_nodes left over, still pointing to struct
2048		 * pages which have been offlined: prune those from the tree,
2049		 * otherwise get_ksm_page() might later try to access a
2050		 * non-existent struct page.
2051		 */
2052		ksm_check_stable_tree(mn->start_pfn,
2053				      mn->start_pfn + mn->nr_pages);
2054		/* fallthrough */
2055
2056	case MEM_CANCEL_OFFLINE:
2057		mutex_lock(&ksm_thread_mutex);
2058		ksm_run &= ~KSM_RUN_OFFLINE;
2059		mutex_unlock(&ksm_thread_mutex);
2060
2061		smp_mb();	/* wake_up_bit advises this */
2062		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2063		break;
2064	}
2065	return NOTIFY_OK;
2066}
2067#else
2068static void wait_while_offlining(void)
2069{
2070}
2071#endif /* CONFIG_MEMORY_HOTREMOVE */
2072
2073#ifdef CONFIG_SYSFS
2074/*
2075 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2076 */
2077
2078#define KSM_ATTR_RO(_name) \
2079	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2080#define KSM_ATTR(_name) \
2081	static struct kobj_attribute _name##_attr = \
2082		__ATTR(_name, 0644, _name##_show, _name##_store)
2083
2084static ssize_t sleep_millisecs_show(struct kobject *kobj,
2085				    struct kobj_attribute *attr, char *buf)
2086{
2087	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2088}
2089
2090static ssize_t sleep_millisecs_store(struct kobject *kobj,
2091				     struct kobj_attribute *attr,
2092				     const char *buf, size_t count)
2093{
2094	unsigned long msecs;
2095	int err;
2096
2097	err = kstrtoul(buf, 10, &msecs);
2098	if (err || msecs > UINT_MAX)
2099		return -EINVAL;
2100
2101	ksm_thread_sleep_millisecs = msecs;
2102
2103	return count;
2104}
2105KSM_ATTR(sleep_millisecs);
2106
2107static ssize_t pages_to_scan_show(struct kobject *kobj,
2108				  struct kobj_attribute *attr, char *buf)
2109{
2110	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2111}
2112
2113static ssize_t pages_to_scan_store(struct kobject *kobj,
2114				   struct kobj_attribute *attr,
2115				   const char *buf, size_t count)
2116{
2117	int err;
2118	unsigned long nr_pages;
2119
2120	err = kstrtoul(buf, 10, &nr_pages);
2121	if (err || nr_pages > UINT_MAX)
2122		return -EINVAL;
2123
2124	ksm_thread_pages_to_scan = nr_pages;
2125
2126	return count;
2127}
2128KSM_ATTR(pages_to_scan);
2129
2130static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2131			char *buf)
2132{
2133	return sprintf(buf, "%lu\n", ksm_run);
2134}
2135
2136static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2137			 const char *buf, size_t count)
2138{
2139	int err;
2140	unsigned long flags;
2141
2142	err = kstrtoul(buf, 10, &flags);
2143	if (err || flags > UINT_MAX)
2144		return -EINVAL;
2145	if (flags > KSM_RUN_UNMERGE)
2146		return -EINVAL;
2147
2148	/*
2149	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2150	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2151	 * breaking COW to free the pages_shared (but leaves mm_slots
2152	 * on the list for when ksmd may be set running again).
2153	 */
2154
2155	mutex_lock(&ksm_thread_mutex);
2156	wait_while_offlining();
2157	if (ksm_run != flags) {
2158		ksm_run = flags;
2159		if (flags & KSM_RUN_UNMERGE) {
2160			set_current_oom_origin();
2161			err = unmerge_and_remove_all_rmap_items();
2162			clear_current_oom_origin();
2163			if (err) {
2164				ksm_run = KSM_RUN_STOP;
2165				count = err;
2166			}
2167		}
2168	}
2169	mutex_unlock(&ksm_thread_mutex);
2170
2171	if (flags & KSM_RUN_MERGE)
2172		wake_up_interruptible(&ksm_thread_wait);
2173
2174	return count;
2175}
2176KSM_ATTR(run);
2177
2178#ifdef CONFIG_NUMA
2179static ssize_t merge_across_nodes_show(struct kobject *kobj,
2180				struct kobj_attribute *attr, char *buf)
2181{
2182	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2183}
2184
2185static ssize_t merge_across_nodes_store(struct kobject *kobj,
2186				   struct kobj_attribute *attr,
2187				   const char *buf, size_t count)
2188{
2189	int err;
2190	unsigned long knob;
2191
2192	err = kstrtoul(buf, 10, &knob);
2193	if (err)
2194		return err;
2195	if (knob > 1)
2196		return -EINVAL;
2197
2198	mutex_lock(&ksm_thread_mutex);
2199	wait_while_offlining();
2200	if (ksm_merge_across_nodes != knob) {
2201		if (ksm_pages_shared || remove_all_stable_nodes())
2202			err = -EBUSY;
2203		else if (root_stable_tree == one_stable_tree) {
2204			struct rb_root *buf;
2205			/*
2206			 * This is the first time that we switch away from the
2207			 * default of merging across nodes: must now allocate
2208			 * a buffer to hold as many roots as may be needed.
2209			 * Allocate stable and unstable together:
2210			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2211			 */
2212			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2213				      GFP_KERNEL);
2214			/* Let us assume that RB_ROOT is NULL is zero */
2215			if (!buf)
2216				err = -ENOMEM;
2217			else {
2218				root_stable_tree = buf;
2219				root_unstable_tree = buf + nr_node_ids;
2220				/* Stable tree is empty but not the unstable */
2221				root_unstable_tree[0] = one_unstable_tree[0];
2222			}
2223		}
2224		if (!err) {
2225			ksm_merge_across_nodes = knob;
2226			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2227		}
2228	}
2229	mutex_unlock(&ksm_thread_mutex);
2230
2231	return err ? err : count;
2232}
2233KSM_ATTR(merge_across_nodes);
2234#endif
2235
2236static ssize_t pages_shared_show(struct kobject *kobj,
2237				 struct kobj_attribute *attr, char *buf)
2238{
2239	return sprintf(buf, "%lu\n", ksm_pages_shared);
2240}
2241KSM_ATTR_RO(pages_shared);
2242
2243static ssize_t pages_sharing_show(struct kobject *kobj,
2244				  struct kobj_attribute *attr, char *buf)
2245{
2246	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2247}
2248KSM_ATTR_RO(pages_sharing);
2249
2250static ssize_t pages_unshared_show(struct kobject *kobj,
2251				   struct kobj_attribute *attr, char *buf)
2252{
2253	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2254}
2255KSM_ATTR_RO(pages_unshared);
2256
2257static ssize_t pages_volatile_show(struct kobject *kobj,
2258				   struct kobj_attribute *attr, char *buf)
2259{
2260	long ksm_pages_volatile;
2261
2262	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2263				- ksm_pages_sharing - ksm_pages_unshared;
2264	/*
2265	 * It was not worth any locking to calculate that statistic,
2266	 * but it might therefore sometimes be negative: conceal that.
2267	 */
2268	if (ksm_pages_volatile < 0)
2269		ksm_pages_volatile = 0;
2270	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2271}
2272KSM_ATTR_RO(pages_volatile);
2273
2274static ssize_t full_scans_show(struct kobject *kobj,
2275			       struct kobj_attribute *attr, char *buf)
2276{
2277	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2278}
2279KSM_ATTR_RO(full_scans);
2280
2281static struct attribute *ksm_attrs[] = {
2282	&sleep_millisecs_attr.attr,
2283	&pages_to_scan_attr.attr,
2284	&run_attr.attr,
2285	&pages_shared_attr.attr,
2286	&pages_sharing_attr.attr,
2287	&pages_unshared_attr.attr,
2288	&pages_volatile_attr.attr,
2289	&full_scans_attr.attr,
2290#ifdef CONFIG_NUMA
2291	&merge_across_nodes_attr.attr,
2292#endif
2293	NULL,
2294};
2295
2296static struct attribute_group ksm_attr_group = {
2297	.attrs = ksm_attrs,
2298	.name = "ksm",
2299};
2300#endif /* CONFIG_SYSFS */
2301
2302static int __init ksm_init(void)
2303{
2304	struct task_struct *ksm_thread;
2305	int err;
2306
2307	err = ksm_slab_init();
2308	if (err)
2309		goto out;
2310
2311	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2312	if (IS_ERR(ksm_thread)) {
2313		pr_err("ksm: creating kthread failed\n");
2314		err = PTR_ERR(ksm_thread);
2315		goto out_free;
2316	}
2317
2318#ifdef CONFIG_SYSFS
2319	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2320	if (err) {
2321		pr_err("ksm: register sysfs failed\n");
2322		kthread_stop(ksm_thread);
2323		goto out_free;
2324	}
2325#else
2326	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2327
2328#endif /* CONFIG_SYSFS */
2329
2330#ifdef CONFIG_MEMORY_HOTREMOVE
2331	/* There is no significance to this priority 100 */
2332	hotplug_memory_notifier(ksm_memory_callback, 100);
2333#endif
2334	return 0;
2335
2336out_free:
2337	ksm_slab_free();
2338out:
2339	return err;
2340}
2341subsys_initcall(ksm_init);
2342