1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15#include <linux/migrate.h>
16#include <linux/export.h>
17#include <linux/swap.h>
18#include <linux/swapops.h>
19#include <linux/pagemap.h>
20#include <linux/buffer_head.h>
21#include <linux/mm_inline.h>
22#include <linux/nsproxy.h>
23#include <linux/pagevec.h>
24#include <linux/ksm.h>
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
29#include <linux/writeback.h>
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
32#include <linux/security.h>
33#include <linux/memcontrol.h>
34#include <linux/syscalls.h>
35#include <linux/hugetlb.h>
36#include <linux/hugetlb_cgroup.h>
37#include <linux/gfp.h>
38#include <linux/balloon_compaction.h>
39#include <linux/mmu_notifier.h>
40
41#include <asm/tlbflush.h>
42
43#define CREATE_TRACE_POINTS
44#include <trace/events/migrate.h>
45
46#include "internal.h"
47
48/*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53int migrate_prep(void)
54{
55	/*
56	 * Clear the LRU lists so pages can be isolated.
57	 * Note that pages may be moved off the LRU after we have
58	 * drained them. Those pages will fail to migrate like other
59	 * pages that may be busy.
60	 */
61	lru_add_drain_all();
62
63	return 0;
64}
65
66/* Do the necessary work of migrate_prep but not if it involves other CPUs */
67int migrate_prep_local(void)
68{
69	lru_add_drain();
70
71	return 0;
72}
73
74/*
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
77 *
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
81 */
82void putback_movable_pages(struct list_head *l)
83{
84	struct page *page;
85	struct page *page2;
86
87	list_for_each_entry_safe(page, page2, l, lru) {
88		if (unlikely(PageHuge(page))) {
89			putback_active_hugepage(page);
90			continue;
91		}
92		list_del(&page->lru);
93		dec_zone_page_state(page, NR_ISOLATED_ANON +
94				page_is_file_cache(page));
95		if (unlikely(isolated_balloon_page(page)))
96			balloon_page_putback(page);
97		else
98			putback_lru_page(page);
99	}
100}
101
102/*
103 * Restore a potential migration pte to a working pte entry
104 */
105static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106				 unsigned long addr, void *old)
107{
108	struct mm_struct *mm = vma->vm_mm;
109	swp_entry_t entry;
110 	pmd_t *pmd;
111	pte_t *ptep, pte;
112 	spinlock_t *ptl;
113
114	if (unlikely(PageHuge(new))) {
115		ptep = huge_pte_offset(mm, addr);
116		if (!ptep)
117			goto out;
118		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119	} else {
120		pmd = mm_find_pmd(mm, addr);
121		if (!pmd)
122			goto out;
123
124		ptep = pte_offset_map(pmd, addr);
125
126		/*
127		 * Peek to check is_swap_pte() before taking ptlock?  No, we
128		 * can race mremap's move_ptes(), which skips anon_vma lock.
129		 */
130
131		ptl = pte_lockptr(mm, pmd);
132	}
133
134 	spin_lock(ptl);
135	pte = *ptep;
136	if (!is_swap_pte(pte))
137		goto unlock;
138
139	entry = pte_to_swp_entry(pte);
140
141	if (!is_migration_entry(entry) ||
142	    migration_entry_to_page(entry) != old)
143		goto unlock;
144
145	get_page(new);
146	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147	if (pte_swp_soft_dirty(*ptep))
148		pte = pte_mksoft_dirty(pte);
149
150	/* Recheck VMA as permissions can change since migration started  */
151	if (is_write_migration_entry(entry))
152		pte = maybe_mkwrite(pte, vma);
153
154#ifdef CONFIG_HUGETLB_PAGE
155	if (PageHuge(new)) {
156		pte = pte_mkhuge(pte);
157		pte = arch_make_huge_pte(pte, vma, new, 0);
158	}
159#endif
160	flush_dcache_page(new);
161	set_pte_at(mm, addr, ptep, pte);
162
163	if (PageHuge(new)) {
164		if (PageAnon(new))
165			hugepage_add_anon_rmap(new, vma, addr);
166		else
167			page_dup_rmap(new);
168	} else if (PageAnon(new))
169		page_add_anon_rmap(new, vma, addr);
170	else
171		page_add_file_rmap(new);
172
173	/* No need to invalidate - it was non-present before */
174	update_mmu_cache(vma, addr, ptep);
175unlock:
176	pte_unmap_unlock(ptep, ptl);
177out:
178	return SWAP_AGAIN;
179}
180
181/*
182 * Congratulations to trinity for discovering this bug.
183 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
184 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
185 * replace the specified range by file ptes throughout (maybe populated after).
186 * If page migration finds a page within that range, while it's still located
187 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
188 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
189 * But if the migrating page is in a part of the vma outside the range to be
190 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
191 * deal with it.  Fortunately, this part of the vma is of course still linear,
192 * so we just need to use linear location on the nonlinear list.
193 */
194static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
195		struct address_space *mapping, void *arg)
196{
197	struct vm_area_struct *vma;
198	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
199	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
200	unsigned long addr;
201
202	list_for_each_entry(vma,
203		&mapping->i_mmap_nonlinear, shared.nonlinear) {
204
205		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
206		if (addr >= vma->vm_start && addr < vma->vm_end)
207			remove_migration_pte(page, vma, addr, arg);
208	}
209	return SWAP_AGAIN;
210}
211
212/*
213 * Get rid of all migration entries and replace them by
214 * references to the indicated page.
215 */
216static void remove_migration_ptes(struct page *old, struct page *new)
217{
218	struct rmap_walk_control rwc = {
219		.rmap_one = remove_migration_pte,
220		.arg = old,
221		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
222	};
223
224	rmap_walk(new, &rwc);
225}
226
227/*
228 * Something used the pte of a page under migration. We need to
229 * get to the page and wait until migration is finished.
230 * When we return from this function the fault will be retried.
231 */
232static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
233				spinlock_t *ptl)
234{
235	pte_t pte;
236	swp_entry_t entry;
237	struct page *page;
238
239	spin_lock(ptl);
240	pte = *ptep;
241	if (!is_swap_pte(pte))
242		goto out;
243
244	entry = pte_to_swp_entry(pte);
245	if (!is_migration_entry(entry))
246		goto out;
247
248	page = migration_entry_to_page(entry);
249
250	/*
251	 * Once radix-tree replacement of page migration started, page_count
252	 * *must* be zero. And, we don't want to call wait_on_page_locked()
253	 * against a page without get_page().
254	 * So, we use get_page_unless_zero(), here. Even failed, page fault
255	 * will occur again.
256	 */
257	if (!get_page_unless_zero(page))
258		goto out;
259	pte_unmap_unlock(ptep, ptl);
260	wait_on_page_locked(page);
261	put_page(page);
262	return;
263out:
264	pte_unmap_unlock(ptep, ptl);
265}
266
267void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
268				unsigned long address)
269{
270	spinlock_t *ptl = pte_lockptr(mm, pmd);
271	pte_t *ptep = pte_offset_map(pmd, address);
272	__migration_entry_wait(mm, ptep, ptl);
273}
274
275void migration_entry_wait_huge(struct vm_area_struct *vma,
276		struct mm_struct *mm, pte_t *pte)
277{
278	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
279	__migration_entry_wait(mm, pte, ptl);
280}
281
282#ifdef CONFIG_BLOCK
283/* Returns true if all buffers are successfully locked */
284static bool buffer_migrate_lock_buffers(struct buffer_head *head,
285							enum migrate_mode mode)
286{
287	struct buffer_head *bh = head;
288
289	/* Simple case, sync compaction */
290	if (mode != MIGRATE_ASYNC) {
291		do {
292			get_bh(bh);
293			lock_buffer(bh);
294			bh = bh->b_this_page;
295
296		} while (bh != head);
297
298		return true;
299	}
300
301	/* async case, we cannot block on lock_buffer so use trylock_buffer */
302	do {
303		get_bh(bh);
304		if (!trylock_buffer(bh)) {
305			/*
306			 * We failed to lock the buffer and cannot stall in
307			 * async migration. Release the taken locks
308			 */
309			struct buffer_head *failed_bh = bh;
310			put_bh(failed_bh);
311			bh = head;
312			while (bh != failed_bh) {
313				unlock_buffer(bh);
314				put_bh(bh);
315				bh = bh->b_this_page;
316			}
317			return false;
318		}
319
320		bh = bh->b_this_page;
321	} while (bh != head);
322	return true;
323}
324#else
325static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
326							enum migrate_mode mode)
327{
328	return true;
329}
330#endif /* CONFIG_BLOCK */
331
332/*
333 * Replace the page in the mapping.
334 *
335 * The number of remaining references must be:
336 * 1 for anonymous pages without a mapping
337 * 2 for pages with a mapping
338 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
339 */
340int migrate_page_move_mapping(struct address_space *mapping,
341		struct page *newpage, struct page *page,
342		struct buffer_head *head, enum migrate_mode mode,
343		int extra_count)
344{
345	int expected_count = 1 + extra_count;
346	void **pslot;
347
348	if (!mapping) {
349		/* Anonymous page without mapping */
350		if (page_count(page) != expected_count)
351			return -EAGAIN;
352		return MIGRATEPAGE_SUCCESS;
353	}
354
355	spin_lock_irq(&mapping->tree_lock);
356
357	pslot = radix_tree_lookup_slot(&mapping->page_tree,
358 					page_index(page));
359
360	expected_count += 1 + page_has_private(page);
361	if (page_count(page) != expected_count ||
362		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
363		spin_unlock_irq(&mapping->tree_lock);
364		return -EAGAIN;
365	}
366
367	if (!page_freeze_refs(page, expected_count)) {
368		spin_unlock_irq(&mapping->tree_lock);
369		return -EAGAIN;
370	}
371
372	/*
373	 * In the async migration case of moving a page with buffers, lock the
374	 * buffers using trylock before the mapping is moved. If the mapping
375	 * was moved, we later failed to lock the buffers and could not move
376	 * the mapping back due to an elevated page count, we would have to
377	 * block waiting on other references to be dropped.
378	 */
379	if (mode == MIGRATE_ASYNC && head &&
380			!buffer_migrate_lock_buffers(head, mode)) {
381		page_unfreeze_refs(page, expected_count);
382		spin_unlock_irq(&mapping->tree_lock);
383		return -EAGAIN;
384	}
385
386	/*
387	 * Now we know that no one else is looking at the page.
388	 */
389	get_page(newpage);	/* add cache reference */
390	if (PageSwapCache(page)) {
391		SetPageSwapCache(newpage);
392		set_page_private(newpage, page_private(page));
393	}
394
395	radix_tree_replace_slot(pslot, newpage);
396
397	/*
398	 * Drop cache reference from old page by unfreezing
399	 * to one less reference.
400	 * We know this isn't the last reference.
401	 */
402	page_unfreeze_refs(page, expected_count - 1);
403
404	/*
405	 * If moved to a different zone then also account
406	 * the page for that zone. Other VM counters will be
407	 * taken care of when we establish references to the
408	 * new page and drop references to the old page.
409	 *
410	 * Note that anonymous pages are accounted for
411	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
412	 * are mapped to swap space.
413	 */
414	__dec_zone_page_state(page, NR_FILE_PAGES);
415	__inc_zone_page_state(newpage, NR_FILE_PAGES);
416	if (!PageSwapCache(page) && PageSwapBacked(page)) {
417		__dec_zone_page_state(page, NR_SHMEM);
418		__inc_zone_page_state(newpage, NR_SHMEM);
419	}
420	spin_unlock_irq(&mapping->tree_lock);
421
422	return MIGRATEPAGE_SUCCESS;
423}
424
425/*
426 * The expected number of remaining references is the same as that
427 * of migrate_page_move_mapping().
428 */
429int migrate_huge_page_move_mapping(struct address_space *mapping,
430				   struct page *newpage, struct page *page)
431{
432	int expected_count;
433	void **pslot;
434
435	if (!mapping) {
436		if (page_count(page) != 1)
437			return -EAGAIN;
438		return MIGRATEPAGE_SUCCESS;
439	}
440
441	spin_lock_irq(&mapping->tree_lock);
442
443	pslot = radix_tree_lookup_slot(&mapping->page_tree,
444					page_index(page));
445
446	expected_count = 2 + page_has_private(page);
447	if (page_count(page) != expected_count ||
448		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
449		spin_unlock_irq(&mapping->tree_lock);
450		return -EAGAIN;
451	}
452
453	if (!page_freeze_refs(page, expected_count)) {
454		spin_unlock_irq(&mapping->tree_lock);
455		return -EAGAIN;
456	}
457
458	get_page(newpage);
459
460	radix_tree_replace_slot(pslot, newpage);
461
462	page_unfreeze_refs(page, expected_count - 1);
463
464	spin_unlock_irq(&mapping->tree_lock);
465	return MIGRATEPAGE_SUCCESS;
466}
467
468/*
469 * Gigantic pages are so large that we do not guarantee that page++ pointer
470 * arithmetic will work across the entire page.  We need something more
471 * specialized.
472 */
473static void __copy_gigantic_page(struct page *dst, struct page *src,
474				int nr_pages)
475{
476	int i;
477	struct page *dst_base = dst;
478	struct page *src_base = src;
479
480	for (i = 0; i < nr_pages; ) {
481		cond_resched();
482		copy_highpage(dst, src);
483
484		i++;
485		dst = mem_map_next(dst, dst_base, i);
486		src = mem_map_next(src, src_base, i);
487	}
488}
489
490static void copy_huge_page(struct page *dst, struct page *src)
491{
492	int i;
493	int nr_pages;
494
495	if (PageHuge(src)) {
496		/* hugetlbfs page */
497		struct hstate *h = page_hstate(src);
498		nr_pages = pages_per_huge_page(h);
499
500		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
501			__copy_gigantic_page(dst, src, nr_pages);
502			return;
503		}
504	} else {
505		/* thp page */
506		BUG_ON(!PageTransHuge(src));
507		nr_pages = hpage_nr_pages(src);
508	}
509
510	for (i = 0; i < nr_pages; i++) {
511		cond_resched();
512		copy_highpage(dst + i, src + i);
513	}
514}
515
516/*
517 * Copy the page to its new location
518 */
519void migrate_page_copy(struct page *newpage, struct page *page)
520{
521	int cpupid;
522
523	if (PageHuge(page) || PageTransHuge(page))
524		copy_huge_page(newpage, page);
525	else
526		copy_highpage(newpage, page);
527
528	if (PageError(page))
529		SetPageError(newpage);
530	if (PageReferenced(page))
531		SetPageReferenced(newpage);
532	if (PageUptodate(page))
533		SetPageUptodate(newpage);
534	if (TestClearPageActive(page)) {
535		VM_BUG_ON_PAGE(PageUnevictable(page), page);
536		SetPageActive(newpage);
537	} else if (TestClearPageUnevictable(page))
538		SetPageUnevictable(newpage);
539	if (PageChecked(page))
540		SetPageChecked(newpage);
541	if (PageMappedToDisk(page))
542		SetPageMappedToDisk(newpage);
543
544	if (PageDirty(page)) {
545		clear_page_dirty_for_io(page);
546		/*
547		 * Want to mark the page and the radix tree as dirty, and
548		 * redo the accounting that clear_page_dirty_for_io undid,
549		 * but we can't use set_page_dirty because that function
550		 * is actually a signal that all of the page has become dirty.
551		 * Whereas only part of our page may be dirty.
552		 */
553		if (PageSwapBacked(page))
554			SetPageDirty(newpage);
555		else
556			__set_page_dirty_nobuffers(newpage);
557 	}
558
559	/*
560	 * Copy NUMA information to the new page, to prevent over-eager
561	 * future migrations of this same page.
562	 */
563	cpupid = page_cpupid_xchg_last(page, -1);
564	page_cpupid_xchg_last(newpage, cpupid);
565
566	mlock_migrate_page(newpage, page);
567	ksm_migrate_page(newpage, page);
568	/*
569	 * Please do not reorder this without considering how mm/ksm.c's
570	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
571	 */
572	ClearPageSwapCache(page);
573	ClearPagePrivate(page);
574	set_page_private(page, 0);
575
576	/*
577	 * If any waiters have accumulated on the new page then
578	 * wake them up.
579	 */
580	if (PageWriteback(newpage))
581		end_page_writeback(newpage);
582}
583
584/************************************************************
585 *                    Migration functions
586 ***********************************************************/
587
588/*
589 * Common logic to directly migrate a single page suitable for
590 * pages that do not use PagePrivate/PagePrivate2.
591 *
592 * Pages are locked upon entry and exit.
593 */
594int migrate_page(struct address_space *mapping,
595		struct page *newpage, struct page *page,
596		enum migrate_mode mode)
597{
598	int rc;
599
600	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
601
602	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
603
604	if (rc != MIGRATEPAGE_SUCCESS)
605		return rc;
606
607	migrate_page_copy(newpage, page);
608	return MIGRATEPAGE_SUCCESS;
609}
610EXPORT_SYMBOL(migrate_page);
611
612#ifdef CONFIG_BLOCK
613/*
614 * Migration function for pages with buffers. This function can only be used
615 * if the underlying filesystem guarantees that no other references to "page"
616 * exist.
617 */
618int buffer_migrate_page(struct address_space *mapping,
619		struct page *newpage, struct page *page, enum migrate_mode mode)
620{
621	struct buffer_head *bh, *head;
622	int rc;
623
624	if (!page_has_buffers(page))
625		return migrate_page(mapping, newpage, page, mode);
626
627	head = page_buffers(page);
628
629	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
630
631	if (rc != MIGRATEPAGE_SUCCESS)
632		return rc;
633
634	/*
635	 * In the async case, migrate_page_move_mapping locked the buffers
636	 * with an IRQ-safe spinlock held. In the sync case, the buffers
637	 * need to be locked now
638	 */
639	if (mode != MIGRATE_ASYNC)
640		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
641
642	ClearPagePrivate(page);
643	set_page_private(newpage, page_private(page));
644	set_page_private(page, 0);
645	put_page(page);
646	get_page(newpage);
647
648	bh = head;
649	do {
650		set_bh_page(bh, newpage, bh_offset(bh));
651		bh = bh->b_this_page;
652
653	} while (bh != head);
654
655	SetPagePrivate(newpage);
656
657	migrate_page_copy(newpage, page);
658
659	bh = head;
660	do {
661		unlock_buffer(bh);
662 		put_bh(bh);
663		bh = bh->b_this_page;
664
665	} while (bh != head);
666
667	return MIGRATEPAGE_SUCCESS;
668}
669EXPORT_SYMBOL(buffer_migrate_page);
670#endif
671
672/*
673 * Writeback a page to clean the dirty state
674 */
675static int writeout(struct address_space *mapping, struct page *page)
676{
677	struct writeback_control wbc = {
678		.sync_mode = WB_SYNC_NONE,
679		.nr_to_write = 1,
680		.range_start = 0,
681		.range_end = LLONG_MAX,
682		.for_reclaim = 1
683	};
684	int rc;
685
686	if (!mapping->a_ops->writepage)
687		/* No write method for the address space */
688		return -EINVAL;
689
690	if (!clear_page_dirty_for_io(page))
691		/* Someone else already triggered a write */
692		return -EAGAIN;
693
694	/*
695	 * A dirty page may imply that the underlying filesystem has
696	 * the page on some queue. So the page must be clean for
697	 * migration. Writeout may mean we loose the lock and the
698	 * page state is no longer what we checked for earlier.
699	 * At this point we know that the migration attempt cannot
700	 * be successful.
701	 */
702	remove_migration_ptes(page, page);
703
704	rc = mapping->a_ops->writepage(page, &wbc);
705
706	if (rc != AOP_WRITEPAGE_ACTIVATE)
707		/* unlocked. Relock */
708		lock_page(page);
709
710	return (rc < 0) ? -EIO : -EAGAIN;
711}
712
713/*
714 * Default handling if a filesystem does not provide a migration function.
715 */
716static int fallback_migrate_page(struct address_space *mapping,
717	struct page *newpage, struct page *page, enum migrate_mode mode)
718{
719	if (PageDirty(page)) {
720		/* Only writeback pages in full synchronous migration */
721		if (mode != MIGRATE_SYNC)
722			return -EBUSY;
723		return writeout(mapping, page);
724	}
725
726	/*
727	 * Buffers may be managed in a filesystem specific way.
728	 * We must have no buffers or drop them.
729	 */
730	if (page_has_private(page) &&
731	    !try_to_release_page(page, GFP_KERNEL))
732		return -EAGAIN;
733
734	return migrate_page(mapping, newpage, page, mode);
735}
736
737/*
738 * Move a page to a newly allocated page
739 * The page is locked and all ptes have been successfully removed.
740 *
741 * The new page will have replaced the old page if this function
742 * is successful.
743 *
744 * Return value:
745 *   < 0 - error code
746 *  MIGRATEPAGE_SUCCESS - success
747 */
748static int move_to_new_page(struct page *newpage, struct page *page,
749				int remap_swapcache, enum migrate_mode mode)
750{
751	struct address_space *mapping;
752	int rc;
753
754	/*
755	 * Block others from accessing the page when we get around to
756	 * establishing additional references. We are the only one
757	 * holding a reference to the new page at this point.
758	 */
759	if (!trylock_page(newpage))
760		BUG();
761
762	/* Prepare mapping for the new page.*/
763	newpage->index = page->index;
764	newpage->mapping = page->mapping;
765	if (PageSwapBacked(page))
766		SetPageSwapBacked(newpage);
767
768	mapping = page_mapping(page);
769	if (!mapping)
770		rc = migrate_page(mapping, newpage, page, mode);
771	else if (mapping->a_ops->migratepage)
772		/*
773		 * Most pages have a mapping and most filesystems provide a
774		 * migratepage callback. Anonymous pages are part of swap
775		 * space which also has its own migratepage callback. This
776		 * is the most common path for page migration.
777		 */
778		rc = mapping->a_ops->migratepage(mapping,
779						newpage, page, mode);
780	else
781		rc = fallback_migrate_page(mapping, newpage, page, mode);
782
783	if (rc != MIGRATEPAGE_SUCCESS) {
784		newpage->mapping = NULL;
785	} else {
786		mem_cgroup_migrate(page, newpage, false);
787		if (remap_swapcache)
788			remove_migration_ptes(page, newpage);
789		page->mapping = NULL;
790	}
791
792	unlock_page(newpage);
793
794	return rc;
795}
796
797static int __unmap_and_move(struct page *page, struct page *newpage,
798				int force, enum migrate_mode mode)
799{
800	int rc = -EAGAIN;
801	int remap_swapcache = 1;
802	struct anon_vma *anon_vma = NULL;
803
804	if (!trylock_page(page)) {
805		if (!force || mode == MIGRATE_ASYNC)
806			goto out;
807
808		/*
809		 * It's not safe for direct compaction to call lock_page.
810		 * For example, during page readahead pages are added locked
811		 * to the LRU. Later, when the IO completes the pages are
812		 * marked uptodate and unlocked. However, the queueing
813		 * could be merging multiple pages for one bio (e.g.
814		 * mpage_readpages). If an allocation happens for the
815		 * second or third page, the process can end up locking
816		 * the same page twice and deadlocking. Rather than
817		 * trying to be clever about what pages can be locked,
818		 * avoid the use of lock_page for direct compaction
819		 * altogether.
820		 */
821		if (current->flags & PF_MEMALLOC)
822			goto out;
823
824		lock_page(page);
825	}
826
827	if (PageWriteback(page)) {
828		/*
829		 * Only in the case of a full synchronous migration is it
830		 * necessary to wait for PageWriteback. In the async case,
831		 * the retry loop is too short and in the sync-light case,
832		 * the overhead of stalling is too much
833		 */
834		if (mode != MIGRATE_SYNC) {
835			rc = -EBUSY;
836			goto out_unlock;
837		}
838		if (!force)
839			goto out_unlock;
840		wait_on_page_writeback(page);
841	}
842	/*
843	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
844	 * we cannot notice that anon_vma is freed while we migrates a page.
845	 * This get_anon_vma() delays freeing anon_vma pointer until the end
846	 * of migration. File cache pages are no problem because of page_lock()
847	 * File Caches may use write_page() or lock_page() in migration, then,
848	 * just care Anon page here.
849	 */
850	if (PageAnon(page) && !PageKsm(page)) {
851		/*
852		 * Only page_lock_anon_vma_read() understands the subtleties of
853		 * getting a hold on an anon_vma from outside one of its mms.
854		 */
855		anon_vma = page_get_anon_vma(page);
856		if (anon_vma) {
857			/*
858			 * Anon page
859			 */
860		} else if (PageSwapCache(page)) {
861			/*
862			 * We cannot be sure that the anon_vma of an unmapped
863			 * swapcache page is safe to use because we don't
864			 * know in advance if the VMA that this page belonged
865			 * to still exists. If the VMA and others sharing the
866			 * data have been freed, then the anon_vma could
867			 * already be invalid.
868			 *
869			 * To avoid this possibility, swapcache pages get
870			 * migrated but are not remapped when migration
871			 * completes
872			 */
873			remap_swapcache = 0;
874		} else {
875			goto out_unlock;
876		}
877	}
878
879	if (unlikely(isolated_balloon_page(page))) {
880		/*
881		 * A ballooned page does not need any special attention from
882		 * physical to virtual reverse mapping procedures.
883		 * Skip any attempt to unmap PTEs or to remap swap cache,
884		 * in order to avoid burning cycles at rmap level, and perform
885		 * the page migration right away (proteced by page lock).
886		 */
887		rc = balloon_page_migrate(newpage, page, mode);
888		goto out_unlock;
889	}
890
891	/*
892	 * Corner case handling:
893	 * 1. When a new swap-cache page is read into, it is added to the LRU
894	 * and treated as swapcache but it has no rmap yet.
895	 * Calling try_to_unmap() against a page->mapping==NULL page will
896	 * trigger a BUG.  So handle it here.
897	 * 2. An orphaned page (see truncate_complete_page) might have
898	 * fs-private metadata. The page can be picked up due to memory
899	 * offlining.  Everywhere else except page reclaim, the page is
900	 * invisible to the vm, so the page can not be migrated.  So try to
901	 * free the metadata, so the page can be freed.
902	 */
903	if (!page->mapping) {
904		VM_BUG_ON_PAGE(PageAnon(page), page);
905		if (page_has_private(page)) {
906			try_to_free_buffers(page);
907			goto out_unlock;
908		}
909		goto skip_unmap;
910	}
911
912	/* Establish migration ptes or remove ptes */
913	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
914
915skip_unmap:
916	if (!page_mapped(page))
917		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
918
919	if (rc && remap_swapcache)
920		remove_migration_ptes(page, page);
921
922	/* Drop an anon_vma reference if we took one */
923	if (anon_vma)
924		put_anon_vma(anon_vma);
925
926out_unlock:
927	unlock_page(page);
928out:
929	return rc;
930}
931
932/*
933 * Obtain the lock on page, remove all ptes and migrate the page
934 * to the newly allocated page in newpage.
935 */
936static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
937			unsigned long private, struct page *page, int force,
938			enum migrate_mode mode)
939{
940	int rc = 0;
941	int *result = NULL;
942	struct page *newpage = get_new_page(page, private, &result);
943
944	if (!newpage)
945		return -ENOMEM;
946
947	if (page_count(page) == 1) {
948		/* page was freed from under us. So we are done. */
949		goto out;
950	}
951
952	if (unlikely(PageTransHuge(page)))
953		if (unlikely(split_huge_page(page)))
954			goto out;
955
956	rc = __unmap_and_move(page, newpage, force, mode);
957
958out:
959	if (rc != -EAGAIN) {
960		/*
961		 * A page that has been migrated has all references
962		 * removed and will be freed. A page that has not been
963		 * migrated will have kepts its references and be
964		 * restored.
965		 */
966		list_del(&page->lru);
967		dec_zone_page_state(page, NR_ISOLATED_ANON +
968				page_is_file_cache(page));
969		putback_lru_page(page);
970	}
971
972	/*
973	 * If migration was not successful and there's a freeing callback, use
974	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
975	 * during isolation.
976	 */
977	if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
978		ClearPageSwapBacked(newpage);
979		put_new_page(newpage, private);
980	} else if (unlikely(__is_movable_balloon_page(newpage))) {
981		/* drop our reference, page already in the balloon */
982		put_page(newpage);
983	} else
984		putback_lru_page(newpage);
985
986	if (result) {
987		if (rc)
988			*result = rc;
989		else
990			*result = page_to_nid(newpage);
991	}
992	return rc;
993}
994
995/*
996 * Counterpart of unmap_and_move_page() for hugepage migration.
997 *
998 * This function doesn't wait the completion of hugepage I/O
999 * because there is no race between I/O and migration for hugepage.
1000 * Note that currently hugepage I/O occurs only in direct I/O
1001 * where no lock is held and PG_writeback is irrelevant,
1002 * and writeback status of all subpages are counted in the reference
1003 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1004 * under direct I/O, the reference of the head page is 512 and a bit more.)
1005 * This means that when we try to migrate hugepage whose subpages are
1006 * doing direct I/O, some references remain after try_to_unmap() and
1007 * hugepage migration fails without data corruption.
1008 *
1009 * There is also no race when direct I/O is issued on the page under migration,
1010 * because then pte is replaced with migration swap entry and direct I/O code
1011 * will wait in the page fault for migration to complete.
1012 */
1013static int unmap_and_move_huge_page(new_page_t get_new_page,
1014				free_page_t put_new_page, unsigned long private,
1015				struct page *hpage, int force,
1016				enum migrate_mode mode)
1017{
1018	int rc = 0;
1019	int *result = NULL;
1020	struct page *new_hpage;
1021	struct anon_vma *anon_vma = NULL;
1022
1023	/*
1024	 * Movability of hugepages depends on architectures and hugepage size.
1025	 * This check is necessary because some callers of hugepage migration
1026	 * like soft offline and memory hotremove don't walk through page
1027	 * tables or check whether the hugepage is pmd-based or not before
1028	 * kicking migration.
1029	 */
1030	if (!hugepage_migration_supported(page_hstate(hpage))) {
1031		putback_active_hugepage(hpage);
1032		return -ENOSYS;
1033	}
1034
1035	new_hpage = get_new_page(hpage, private, &result);
1036	if (!new_hpage)
1037		return -ENOMEM;
1038
1039	rc = -EAGAIN;
1040
1041	if (!trylock_page(hpage)) {
1042		if (!force || mode != MIGRATE_SYNC)
1043			goto out;
1044		lock_page(hpage);
1045	}
1046
1047	if (PageAnon(hpage))
1048		anon_vma = page_get_anon_vma(hpage);
1049
1050	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1051
1052	if (!page_mapped(hpage))
1053		rc = move_to_new_page(new_hpage, hpage, 1, mode);
1054
1055	if (rc != MIGRATEPAGE_SUCCESS)
1056		remove_migration_ptes(hpage, hpage);
1057
1058	if (anon_vma)
1059		put_anon_vma(anon_vma);
1060
1061	if (rc == MIGRATEPAGE_SUCCESS)
1062		hugetlb_cgroup_migrate(hpage, new_hpage);
1063
1064	unlock_page(hpage);
1065out:
1066	if (rc != -EAGAIN)
1067		putback_active_hugepage(hpage);
1068
1069	/*
1070	 * If migration was not successful and there's a freeing callback, use
1071	 * it.  Otherwise, put_page() will drop the reference grabbed during
1072	 * isolation.
1073	 */
1074	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1075		put_new_page(new_hpage, private);
1076	else
1077		put_page(new_hpage);
1078
1079	if (result) {
1080		if (rc)
1081			*result = rc;
1082		else
1083			*result = page_to_nid(new_hpage);
1084	}
1085	return rc;
1086}
1087
1088/*
1089 * migrate_pages - migrate the pages specified in a list, to the free pages
1090 *		   supplied as the target for the page migration
1091 *
1092 * @from:		The list of pages to be migrated.
1093 * @get_new_page:	The function used to allocate free pages to be used
1094 *			as the target of the page migration.
1095 * @put_new_page:	The function used to free target pages if migration
1096 *			fails, or NULL if no special handling is necessary.
1097 * @private:		Private data to be passed on to get_new_page()
1098 * @mode:		The migration mode that specifies the constraints for
1099 *			page migration, if any.
1100 * @reason:		The reason for page migration.
1101 *
1102 * The function returns after 10 attempts or if no pages are movable any more
1103 * because the list has become empty or no retryable pages exist any more.
1104 * The caller should call putback_lru_pages() to return pages to the LRU
1105 * or free list only if ret != 0.
1106 *
1107 * Returns the number of pages that were not migrated, or an error code.
1108 */
1109int migrate_pages(struct list_head *from, new_page_t get_new_page,
1110		free_page_t put_new_page, unsigned long private,
1111		enum migrate_mode mode, int reason)
1112{
1113	int retry = 1;
1114	int nr_failed = 0;
1115	int nr_succeeded = 0;
1116	int pass = 0;
1117	struct page *page;
1118	struct page *page2;
1119	int swapwrite = current->flags & PF_SWAPWRITE;
1120	int rc;
1121
1122	if (!swapwrite)
1123		current->flags |= PF_SWAPWRITE;
1124
1125	for(pass = 0; pass < 10 && retry; pass++) {
1126		retry = 0;
1127
1128		list_for_each_entry_safe(page, page2, from, lru) {
1129			cond_resched();
1130
1131			if (PageHuge(page))
1132				rc = unmap_and_move_huge_page(get_new_page,
1133						put_new_page, private, page,
1134						pass > 2, mode);
1135			else
1136				rc = unmap_and_move(get_new_page, put_new_page,
1137						private, page, pass > 2, mode);
1138
1139			switch(rc) {
1140			case -ENOMEM:
1141				goto out;
1142			case -EAGAIN:
1143				retry++;
1144				break;
1145			case MIGRATEPAGE_SUCCESS:
1146				nr_succeeded++;
1147				break;
1148			default:
1149				/*
1150				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1151				 * unlike -EAGAIN case, the failed page is
1152				 * removed from migration page list and not
1153				 * retried in the next outer loop.
1154				 */
1155				nr_failed++;
1156				break;
1157			}
1158		}
1159	}
1160	rc = nr_failed + retry;
1161out:
1162	if (nr_succeeded)
1163		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1164	if (nr_failed)
1165		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1166	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1167
1168	if (!swapwrite)
1169		current->flags &= ~PF_SWAPWRITE;
1170
1171	return rc;
1172}
1173
1174#ifdef CONFIG_NUMA
1175/*
1176 * Move a list of individual pages
1177 */
1178struct page_to_node {
1179	unsigned long addr;
1180	struct page *page;
1181	int node;
1182	int status;
1183};
1184
1185static struct page *new_page_node(struct page *p, unsigned long private,
1186		int **result)
1187{
1188	struct page_to_node *pm = (struct page_to_node *)private;
1189
1190	while (pm->node != MAX_NUMNODES && pm->page != p)
1191		pm++;
1192
1193	if (pm->node == MAX_NUMNODES)
1194		return NULL;
1195
1196	*result = &pm->status;
1197
1198	if (PageHuge(p))
1199		return alloc_huge_page_node(page_hstate(compound_head(p)),
1200					pm->node);
1201	else
1202		return alloc_pages_exact_node(pm->node,
1203				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1204}
1205
1206/*
1207 * Move a set of pages as indicated in the pm array. The addr
1208 * field must be set to the virtual address of the page to be moved
1209 * and the node number must contain a valid target node.
1210 * The pm array ends with node = MAX_NUMNODES.
1211 */
1212static int do_move_page_to_node_array(struct mm_struct *mm,
1213				      struct page_to_node *pm,
1214				      int migrate_all)
1215{
1216	int err;
1217	struct page_to_node *pp;
1218	LIST_HEAD(pagelist);
1219
1220	down_read(&mm->mmap_sem);
1221
1222	/*
1223	 * Build a list of pages to migrate
1224	 */
1225	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1226		struct vm_area_struct *vma;
1227		struct page *page;
1228
1229		err = -EFAULT;
1230		vma = find_vma(mm, pp->addr);
1231		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1232			goto set_status;
1233
1234		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1235
1236		err = PTR_ERR(page);
1237		if (IS_ERR(page))
1238			goto set_status;
1239
1240		err = -ENOENT;
1241		if (!page)
1242			goto set_status;
1243
1244		/* Use PageReserved to check for zero page */
1245		if (PageReserved(page))
1246			goto put_and_set;
1247
1248		pp->page = page;
1249		err = page_to_nid(page);
1250
1251		if (err == pp->node)
1252			/*
1253			 * Node already in the right place
1254			 */
1255			goto put_and_set;
1256
1257		err = -EACCES;
1258		if (page_mapcount(page) > 1 &&
1259				!migrate_all)
1260			goto put_and_set;
1261
1262		if (PageHuge(page)) {
1263			isolate_huge_page(page, &pagelist);
1264			goto put_and_set;
1265		}
1266
1267		err = isolate_lru_page(page);
1268		if (!err) {
1269			list_add_tail(&page->lru, &pagelist);
1270			inc_zone_page_state(page, NR_ISOLATED_ANON +
1271					    page_is_file_cache(page));
1272		}
1273put_and_set:
1274		/*
1275		 * Either remove the duplicate refcount from
1276		 * isolate_lru_page() or drop the page ref if it was
1277		 * not isolated.
1278		 */
1279		put_page(page);
1280set_status:
1281		pp->status = err;
1282	}
1283
1284	err = 0;
1285	if (!list_empty(&pagelist)) {
1286		err = migrate_pages(&pagelist, new_page_node, NULL,
1287				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1288		if (err)
1289			putback_movable_pages(&pagelist);
1290	}
1291
1292	up_read(&mm->mmap_sem);
1293	return err;
1294}
1295
1296/*
1297 * Migrate an array of page address onto an array of nodes and fill
1298 * the corresponding array of status.
1299 */
1300static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1301			 unsigned long nr_pages,
1302			 const void __user * __user *pages,
1303			 const int __user *nodes,
1304			 int __user *status, int flags)
1305{
1306	struct page_to_node *pm;
1307	unsigned long chunk_nr_pages;
1308	unsigned long chunk_start;
1309	int err;
1310
1311	err = -ENOMEM;
1312	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1313	if (!pm)
1314		goto out;
1315
1316	migrate_prep();
1317
1318	/*
1319	 * Store a chunk of page_to_node array in a page,
1320	 * but keep the last one as a marker
1321	 */
1322	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1323
1324	for (chunk_start = 0;
1325	     chunk_start < nr_pages;
1326	     chunk_start += chunk_nr_pages) {
1327		int j;
1328
1329		if (chunk_start + chunk_nr_pages > nr_pages)
1330			chunk_nr_pages = nr_pages - chunk_start;
1331
1332		/* fill the chunk pm with addrs and nodes from user-space */
1333		for (j = 0; j < chunk_nr_pages; j++) {
1334			const void __user *p;
1335			int node;
1336
1337			err = -EFAULT;
1338			if (get_user(p, pages + j + chunk_start))
1339				goto out_pm;
1340			pm[j].addr = (unsigned long) p;
1341
1342			if (get_user(node, nodes + j + chunk_start))
1343				goto out_pm;
1344
1345			err = -ENODEV;
1346			if (node < 0 || node >= MAX_NUMNODES)
1347				goto out_pm;
1348
1349			if (!node_state(node, N_MEMORY))
1350				goto out_pm;
1351
1352			err = -EACCES;
1353			if (!node_isset(node, task_nodes))
1354				goto out_pm;
1355
1356			pm[j].node = node;
1357		}
1358
1359		/* End marker for this chunk */
1360		pm[chunk_nr_pages].node = MAX_NUMNODES;
1361
1362		/* Migrate this chunk */
1363		err = do_move_page_to_node_array(mm, pm,
1364						 flags & MPOL_MF_MOVE_ALL);
1365		if (err < 0)
1366			goto out_pm;
1367
1368		/* Return status information */
1369		for (j = 0; j < chunk_nr_pages; j++)
1370			if (put_user(pm[j].status, status + j + chunk_start)) {
1371				err = -EFAULT;
1372				goto out_pm;
1373			}
1374	}
1375	err = 0;
1376
1377out_pm:
1378	free_page((unsigned long)pm);
1379out:
1380	return err;
1381}
1382
1383/*
1384 * Determine the nodes of an array of pages and store it in an array of status.
1385 */
1386static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1387				const void __user **pages, int *status)
1388{
1389	unsigned long i;
1390
1391	down_read(&mm->mmap_sem);
1392
1393	for (i = 0; i < nr_pages; i++) {
1394		unsigned long addr = (unsigned long)(*pages);
1395		struct vm_area_struct *vma;
1396		struct page *page;
1397		int err = -EFAULT;
1398
1399		vma = find_vma(mm, addr);
1400		if (!vma || addr < vma->vm_start)
1401			goto set_status;
1402
1403		page = follow_page(vma, addr, 0);
1404
1405		err = PTR_ERR(page);
1406		if (IS_ERR(page))
1407			goto set_status;
1408
1409		err = -ENOENT;
1410		/* Use PageReserved to check for zero page */
1411		if (!page || PageReserved(page))
1412			goto set_status;
1413
1414		err = page_to_nid(page);
1415set_status:
1416		*status = err;
1417
1418		pages++;
1419		status++;
1420	}
1421
1422	up_read(&mm->mmap_sem);
1423}
1424
1425/*
1426 * Determine the nodes of a user array of pages and store it in
1427 * a user array of status.
1428 */
1429static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1430			 const void __user * __user *pages,
1431			 int __user *status)
1432{
1433#define DO_PAGES_STAT_CHUNK_NR 16
1434	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1435	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1436
1437	while (nr_pages) {
1438		unsigned long chunk_nr;
1439
1440		chunk_nr = nr_pages;
1441		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1442			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1443
1444		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1445			break;
1446
1447		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1448
1449		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1450			break;
1451
1452		pages += chunk_nr;
1453		status += chunk_nr;
1454		nr_pages -= chunk_nr;
1455	}
1456	return nr_pages ? -EFAULT : 0;
1457}
1458
1459/*
1460 * Move a list of pages in the address space of the currently executing
1461 * process.
1462 */
1463SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1464		const void __user * __user *, pages,
1465		const int __user *, nodes,
1466		int __user *, status, int, flags)
1467{
1468	const struct cred *cred = current_cred(), *tcred;
1469	struct task_struct *task;
1470	struct mm_struct *mm;
1471	int err;
1472	nodemask_t task_nodes;
1473
1474	/* Check flags */
1475	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1476		return -EINVAL;
1477
1478	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1479		return -EPERM;
1480
1481	/* Find the mm_struct */
1482	rcu_read_lock();
1483	task = pid ? find_task_by_vpid(pid) : current;
1484	if (!task) {
1485		rcu_read_unlock();
1486		return -ESRCH;
1487	}
1488	get_task_struct(task);
1489
1490	/*
1491	 * Check if this process has the right to modify the specified
1492	 * process. The right exists if the process has administrative
1493	 * capabilities, superuser privileges or the same
1494	 * userid as the target process.
1495	 */
1496	tcred = __task_cred(task);
1497	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1498	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1499	    !capable(CAP_SYS_NICE)) {
1500		rcu_read_unlock();
1501		err = -EPERM;
1502		goto out;
1503	}
1504	rcu_read_unlock();
1505
1506 	err = security_task_movememory(task);
1507 	if (err)
1508		goto out;
1509
1510	task_nodes = cpuset_mems_allowed(task);
1511	mm = get_task_mm(task);
1512	put_task_struct(task);
1513
1514	if (!mm)
1515		return -EINVAL;
1516
1517	if (nodes)
1518		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1519				    nodes, status, flags);
1520	else
1521		err = do_pages_stat(mm, nr_pages, pages, status);
1522
1523	mmput(mm);
1524	return err;
1525
1526out:
1527	put_task_struct(task);
1528	return err;
1529}
1530
1531/*
1532 * Call migration functions in the vma_ops that may prepare
1533 * memory in a vm for migration. migration functions may perform
1534 * the migration for vmas that do not have an underlying page struct.
1535 */
1536int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1537	const nodemask_t *from, unsigned long flags)
1538{
1539 	struct vm_area_struct *vma;
1540 	int err = 0;
1541
1542	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1543 		if (vma->vm_ops && vma->vm_ops->migrate) {
1544 			err = vma->vm_ops->migrate(vma, to, from, flags);
1545 			if (err)
1546 				break;
1547 		}
1548 	}
1549 	return err;
1550}
1551
1552#ifdef CONFIG_NUMA_BALANCING
1553/*
1554 * Returns true if this is a safe migration target node for misplaced NUMA
1555 * pages. Currently it only checks the watermarks which crude
1556 */
1557static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1558				   unsigned long nr_migrate_pages)
1559{
1560	int z;
1561	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1562		struct zone *zone = pgdat->node_zones + z;
1563
1564		if (!populated_zone(zone))
1565			continue;
1566
1567		if (!zone_reclaimable(zone))
1568			continue;
1569
1570		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1571		if (!zone_watermark_ok(zone, 0,
1572				       high_wmark_pages(zone) +
1573				       nr_migrate_pages,
1574				       0, 0))
1575			continue;
1576		return true;
1577	}
1578	return false;
1579}
1580
1581static struct page *alloc_misplaced_dst_page(struct page *page,
1582					   unsigned long data,
1583					   int **result)
1584{
1585	int nid = (int) data;
1586	struct page *newpage;
1587
1588	newpage = alloc_pages_exact_node(nid,
1589					 (GFP_HIGHUSER_MOVABLE |
1590					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1591					  __GFP_NORETRY | __GFP_NOWARN) &
1592					 ~GFP_IOFS, 0);
1593
1594	return newpage;
1595}
1596
1597/*
1598 * page migration rate limiting control.
1599 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1600 * window of time. Default here says do not migrate more than 1280M per second.
1601 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1602 * as it is faults that reset the window, pte updates will happen unconditionally
1603 * if there has not been a fault since @pteupdate_interval_millisecs after the
1604 * throttle window closed.
1605 */
1606static unsigned int migrate_interval_millisecs __read_mostly = 100;
1607static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1608static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1609
1610/* Returns true if NUMA migration is currently rate limited */
1611bool migrate_ratelimited(int node)
1612{
1613	pg_data_t *pgdat = NODE_DATA(node);
1614
1615	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1616				msecs_to_jiffies(pteupdate_interval_millisecs)))
1617		return false;
1618
1619	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1620		return false;
1621
1622	return true;
1623}
1624
1625/* Returns true if the node is migrate rate-limited after the update */
1626static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1627					unsigned long nr_pages)
1628{
1629	/*
1630	 * Rate-limit the amount of data that is being migrated to a node.
1631	 * Optimal placement is no good if the memory bus is saturated and
1632	 * all the time is being spent migrating!
1633	 */
1634	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1635		spin_lock(&pgdat->numabalancing_migrate_lock);
1636		pgdat->numabalancing_migrate_nr_pages = 0;
1637		pgdat->numabalancing_migrate_next_window = jiffies +
1638			msecs_to_jiffies(migrate_interval_millisecs);
1639		spin_unlock(&pgdat->numabalancing_migrate_lock);
1640	}
1641	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1642		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1643								nr_pages);
1644		return true;
1645	}
1646
1647	/*
1648	 * This is an unlocked non-atomic update so errors are possible.
1649	 * The consequences are failing to migrate when we potentiall should
1650	 * have which is not severe enough to warrant locking. If it is ever
1651	 * a problem, it can be converted to a per-cpu counter.
1652	 */
1653	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1654	return false;
1655}
1656
1657static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1658{
1659	int page_lru;
1660
1661	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1662
1663	/* Avoid migrating to a node that is nearly full */
1664	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1665		return 0;
1666
1667	if (isolate_lru_page(page))
1668		return 0;
1669
1670	/*
1671	 * migrate_misplaced_transhuge_page() skips page migration's usual
1672	 * check on page_count(), so we must do it here, now that the page
1673	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1674	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1675	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1676	 */
1677	if (PageTransHuge(page) && page_count(page) != 3) {
1678		putback_lru_page(page);
1679		return 0;
1680	}
1681
1682	page_lru = page_is_file_cache(page);
1683	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1684				hpage_nr_pages(page));
1685
1686	/*
1687	 * Isolating the page has taken another reference, so the
1688	 * caller's reference can be safely dropped without the page
1689	 * disappearing underneath us during migration.
1690	 */
1691	put_page(page);
1692	return 1;
1693}
1694
1695bool pmd_trans_migrating(pmd_t pmd)
1696{
1697	struct page *page = pmd_page(pmd);
1698	return PageLocked(page);
1699}
1700
1701void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1702{
1703	struct page *page = pmd_page(*pmd);
1704	wait_on_page_locked(page);
1705}
1706
1707/*
1708 * Attempt to migrate a misplaced page to the specified destination
1709 * node. Caller is expected to have an elevated reference count on
1710 * the page that will be dropped by this function before returning.
1711 */
1712int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1713			   int node)
1714{
1715	pg_data_t *pgdat = NODE_DATA(node);
1716	int isolated;
1717	int nr_remaining;
1718	LIST_HEAD(migratepages);
1719
1720	/*
1721	 * Don't migrate file pages that are mapped in multiple processes
1722	 * with execute permissions as they are probably shared libraries.
1723	 */
1724	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1725	    (vma->vm_flags & VM_EXEC))
1726		goto out;
1727
1728	/*
1729	 * Rate-limit the amount of data that is being migrated to a node.
1730	 * Optimal placement is no good if the memory bus is saturated and
1731	 * all the time is being spent migrating!
1732	 */
1733	if (numamigrate_update_ratelimit(pgdat, 1))
1734		goto out;
1735
1736	isolated = numamigrate_isolate_page(pgdat, page);
1737	if (!isolated)
1738		goto out;
1739
1740	list_add(&page->lru, &migratepages);
1741	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1742				     NULL, node, MIGRATE_ASYNC,
1743				     MR_NUMA_MISPLACED);
1744	if (nr_remaining) {
1745		if (!list_empty(&migratepages)) {
1746			list_del(&page->lru);
1747			dec_zone_page_state(page, NR_ISOLATED_ANON +
1748					page_is_file_cache(page));
1749			putback_lru_page(page);
1750		}
1751		isolated = 0;
1752	} else
1753		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1754	BUG_ON(!list_empty(&migratepages));
1755	return isolated;
1756
1757out:
1758	put_page(page);
1759	return 0;
1760}
1761#endif /* CONFIG_NUMA_BALANCING */
1762
1763#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1764/*
1765 * Migrates a THP to a given target node. page must be locked and is unlocked
1766 * before returning.
1767 */
1768int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1769				struct vm_area_struct *vma,
1770				pmd_t *pmd, pmd_t entry,
1771				unsigned long address,
1772				struct page *page, int node)
1773{
1774	spinlock_t *ptl;
1775	pg_data_t *pgdat = NODE_DATA(node);
1776	int isolated = 0;
1777	struct page *new_page = NULL;
1778	int page_lru = page_is_file_cache(page);
1779	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1780	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1781	pmd_t orig_entry;
1782
1783	/*
1784	 * Rate-limit the amount of data that is being migrated to a node.
1785	 * Optimal placement is no good if the memory bus is saturated and
1786	 * all the time is being spent migrating!
1787	 */
1788	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1789		goto out_dropref;
1790
1791	new_page = alloc_pages_node(node,
1792		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1793		HPAGE_PMD_ORDER);
1794	if (!new_page)
1795		goto out_fail;
1796
1797	isolated = numamigrate_isolate_page(pgdat, page);
1798	if (!isolated) {
1799		put_page(new_page);
1800		goto out_fail;
1801	}
1802
1803	if (mm_tlb_flush_pending(mm))
1804		flush_tlb_range(vma, mmun_start, mmun_end);
1805
1806	/* Prepare a page as a migration target */
1807	__set_page_locked(new_page);
1808	SetPageSwapBacked(new_page);
1809
1810	/* anon mapping, we can simply copy page->mapping to the new page: */
1811	new_page->mapping = page->mapping;
1812	new_page->index = page->index;
1813	migrate_page_copy(new_page, page);
1814	WARN_ON(PageLRU(new_page));
1815
1816	/* Recheck the target PMD */
1817	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1818	ptl = pmd_lock(mm, pmd);
1819	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1820fail_putback:
1821		spin_unlock(ptl);
1822		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1823
1824		/* Reverse changes made by migrate_page_copy() */
1825		if (TestClearPageActive(new_page))
1826			SetPageActive(page);
1827		if (TestClearPageUnevictable(new_page))
1828			SetPageUnevictable(page);
1829		mlock_migrate_page(page, new_page);
1830
1831		unlock_page(new_page);
1832		put_page(new_page);		/* Free it */
1833
1834		/* Retake the callers reference and putback on LRU */
1835		get_page(page);
1836		putback_lru_page(page);
1837		mod_zone_page_state(page_zone(page),
1838			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1839
1840		goto out_unlock;
1841	}
1842
1843	orig_entry = *pmd;
1844	entry = mk_pmd(new_page, vma->vm_page_prot);
1845	entry = pmd_mkhuge(entry);
1846	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1847
1848	/*
1849	 * Clear the old entry under pagetable lock and establish the new PTE.
1850	 * Any parallel GUP will either observe the old page blocking on the
1851	 * page lock, block on the page table lock or observe the new page.
1852	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1853	 * guarantee the copy is visible before the pagetable update.
1854	 */
1855	flush_cache_range(vma, mmun_start, mmun_end);
1856	page_add_anon_rmap(new_page, vma, mmun_start);
1857	pmdp_clear_flush(vma, mmun_start, pmd);
1858	set_pmd_at(mm, mmun_start, pmd, entry);
1859	flush_tlb_range(vma, mmun_start, mmun_end);
1860	update_mmu_cache_pmd(vma, address, &entry);
1861
1862	if (page_count(page) != 2) {
1863		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1864		flush_tlb_range(vma, mmun_start, mmun_end);
1865		update_mmu_cache_pmd(vma, address, &entry);
1866		page_remove_rmap(new_page);
1867		goto fail_putback;
1868	}
1869
1870	mem_cgroup_migrate(page, new_page, false);
1871
1872	page_remove_rmap(page);
1873
1874	spin_unlock(ptl);
1875	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1876
1877	/* Take an "isolate" reference and put new page on the LRU. */
1878	get_page(new_page);
1879	putback_lru_page(new_page);
1880
1881	unlock_page(new_page);
1882	unlock_page(page);
1883	put_page(page);			/* Drop the rmap reference */
1884	put_page(page);			/* Drop the LRU isolation reference */
1885
1886	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1887	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1888
1889	mod_zone_page_state(page_zone(page),
1890			NR_ISOLATED_ANON + page_lru,
1891			-HPAGE_PMD_NR);
1892	return isolated;
1893
1894out_fail:
1895	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1896out_dropref:
1897	ptl = pmd_lock(mm, pmd);
1898	if (pmd_same(*pmd, entry)) {
1899		entry = pmd_mknonnuma(entry);
1900		set_pmd_at(mm, mmun_start, pmd, entry);
1901		update_mmu_cache_pmd(vma, address, &entry);
1902	}
1903	spin_unlock(ptl);
1904
1905out_unlock:
1906	unlock_page(page);
1907	put_page(page);
1908	return 0;
1909}
1910#endif /* CONFIG_NUMA_BALANCING */
1911
1912#endif /* CONFIG_NUMA */
1913