1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   mm->mmap_sem
25 *     page->flags PG_locked (lock_page)
26 *       mapping->i_mmap_mutex
27 *         anon_vma->rwsem
28 *           mm->page_table_lock or pte_lock
29 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 *             swap_lock (in swap_duplicate, swap_info_get)
31 *               mmlist_lock (in mmput, drain_mmlist and others)
32 *               mapping->private_lock (in __set_page_dirty_buffers)
33 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41 *   ->tasklist_lock
42 *     pte map lock
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
51#include <linux/ksm.h>
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
54#include <linux/export.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/migrate.h>
58#include <linux/hugetlb.h>
59#include <linux/backing-dev.h>
60
61#include <asm/tlbflush.h>
62
63#include "internal.h"
64
65static struct kmem_cache *anon_vma_cachep;
66static struct kmem_cache *anon_vma_chain_cachep;
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70	struct anon_vma *anon_vma;
71
72	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73	if (anon_vma) {
74		atomic_set(&anon_vma->refcount, 1);
75		/*
76		 * Initialise the anon_vma root to point to itself. If called
77		 * from fork, the root will be reset to the parents anon_vma.
78		 */
79		anon_vma->root = anon_vma;
80	}
81
82	return anon_vma;
83}
84
85static inline void anon_vma_free(struct anon_vma *anon_vma)
86{
87	VM_BUG_ON(atomic_read(&anon_vma->refcount));
88
89	/*
90	 * Synchronize against page_lock_anon_vma_read() such that
91	 * we can safely hold the lock without the anon_vma getting
92	 * freed.
93	 *
94	 * Relies on the full mb implied by the atomic_dec_and_test() from
95	 * put_anon_vma() against the acquire barrier implied by
96	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97	 *
98	 * page_lock_anon_vma_read()	VS	put_anon_vma()
99	 *   down_read_trylock()		  atomic_dec_and_test()
100	 *   LOCK				  MB
101	 *   atomic_read()			  rwsem_is_locked()
102	 *
103	 * LOCK should suffice since the actual taking of the lock must
104	 * happen _before_ what follows.
105	 */
106	might_sleep();
107	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
108		anon_vma_lock_write(anon_vma);
109		anon_vma_unlock_write(anon_vma);
110	}
111
112	kmem_cache_free(anon_vma_cachep, anon_vma);
113}
114
115static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116{
117	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
118}
119
120static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121{
122	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123}
124
125static void anon_vma_chain_link(struct vm_area_struct *vma,
126				struct anon_vma_chain *avc,
127				struct anon_vma *anon_vma)
128{
129	avc->vma = vma;
130	avc->anon_vma = anon_vma;
131	list_add(&avc->same_vma, &vma->anon_vma_chain);
132	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
133}
134
135/**
136 * anon_vma_prepare - attach an anon_vma to a memory region
137 * @vma: the memory region in question
138 *
139 * This makes sure the memory mapping described by 'vma' has
140 * an 'anon_vma' attached to it, so that we can associate the
141 * anonymous pages mapped into it with that anon_vma.
142 *
143 * The common case will be that we already have one, but if
144 * not we either need to find an adjacent mapping that we
145 * can re-use the anon_vma from (very common when the only
146 * reason for splitting a vma has been mprotect()), or we
147 * allocate a new one.
148 *
149 * Anon-vma allocations are very subtle, because we may have
150 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
151 * and that may actually touch the spinlock even in the newly
152 * allocated vma (it depends on RCU to make sure that the
153 * anon_vma isn't actually destroyed).
154 *
155 * As a result, we need to do proper anon_vma locking even
156 * for the new allocation. At the same time, we do not want
157 * to do any locking for the common case of already having
158 * an anon_vma.
159 *
160 * This must be called with the mmap_sem held for reading.
161 */
162int anon_vma_prepare(struct vm_area_struct *vma)
163{
164	struct anon_vma *anon_vma = vma->anon_vma;
165	struct anon_vma_chain *avc;
166
167	might_sleep();
168	if (unlikely(!anon_vma)) {
169		struct mm_struct *mm = vma->vm_mm;
170		struct anon_vma *allocated;
171
172		avc = anon_vma_chain_alloc(GFP_KERNEL);
173		if (!avc)
174			goto out_enomem;
175
176		anon_vma = find_mergeable_anon_vma(vma);
177		allocated = NULL;
178		if (!anon_vma) {
179			anon_vma = anon_vma_alloc();
180			if (unlikely(!anon_vma))
181				goto out_enomem_free_avc;
182			allocated = anon_vma;
183		}
184
185		anon_vma_lock_write(anon_vma);
186		/* page_table_lock to protect against threads */
187		spin_lock(&mm->page_table_lock);
188		if (likely(!vma->anon_vma)) {
189			vma->anon_vma = anon_vma;
190			anon_vma_chain_link(vma, avc, anon_vma);
191			allocated = NULL;
192			avc = NULL;
193		}
194		spin_unlock(&mm->page_table_lock);
195		anon_vma_unlock_write(anon_vma);
196
197		if (unlikely(allocated))
198			put_anon_vma(allocated);
199		if (unlikely(avc))
200			anon_vma_chain_free(avc);
201	}
202	return 0;
203
204 out_enomem_free_avc:
205	anon_vma_chain_free(avc);
206 out_enomem:
207	return -ENOMEM;
208}
209
210/*
211 * This is a useful helper function for locking the anon_vma root as
212 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
213 * have the same vma.
214 *
215 * Such anon_vma's should have the same root, so you'd expect to see
216 * just a single mutex_lock for the whole traversal.
217 */
218static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219{
220	struct anon_vma *new_root = anon_vma->root;
221	if (new_root != root) {
222		if (WARN_ON_ONCE(root))
223			up_write(&root->rwsem);
224		root = new_root;
225		down_write(&root->rwsem);
226	}
227	return root;
228}
229
230static inline void unlock_anon_vma_root(struct anon_vma *root)
231{
232	if (root)
233		up_write(&root->rwsem);
234}
235
236/*
237 * Attach the anon_vmas from src to dst.
238 * Returns 0 on success, -ENOMEM on failure.
239 */
240int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
241{
242	struct anon_vma_chain *avc, *pavc;
243	struct anon_vma *root = NULL;
244
245	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
246		struct anon_vma *anon_vma;
247
248		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
249		if (unlikely(!avc)) {
250			unlock_anon_vma_root(root);
251			root = NULL;
252			avc = anon_vma_chain_alloc(GFP_KERNEL);
253			if (!avc)
254				goto enomem_failure;
255		}
256		anon_vma = pavc->anon_vma;
257		root = lock_anon_vma_root(root, anon_vma);
258		anon_vma_chain_link(dst, avc, anon_vma);
259	}
260	unlock_anon_vma_root(root);
261	return 0;
262
263 enomem_failure:
264	unlink_anon_vmas(dst);
265	return -ENOMEM;
266}
267
268/*
269 * Attach vma to its own anon_vma, as well as to the anon_vmas that
270 * the corresponding VMA in the parent process is attached to.
271 * Returns 0 on success, non-zero on failure.
272 */
273int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
274{
275	struct anon_vma_chain *avc;
276	struct anon_vma *anon_vma;
277	int error;
278
279	/* Don't bother if the parent process has no anon_vma here. */
280	if (!pvma->anon_vma)
281		return 0;
282
283	/*
284	 * First, attach the new VMA to the parent VMA's anon_vmas,
285	 * so rmap can find non-COWed pages in child processes.
286	 */
287	error = anon_vma_clone(vma, pvma);
288	if (error)
289		return error;
290
291	/* Then add our own anon_vma. */
292	anon_vma = anon_vma_alloc();
293	if (!anon_vma)
294		goto out_error;
295	avc = anon_vma_chain_alloc(GFP_KERNEL);
296	if (!avc)
297		goto out_error_free_anon_vma;
298
299	/*
300	 * The root anon_vma's spinlock is the lock actually used when we
301	 * lock any of the anon_vmas in this anon_vma tree.
302	 */
303	anon_vma->root = pvma->anon_vma->root;
304	/*
305	 * With refcounts, an anon_vma can stay around longer than the
306	 * process it belongs to. The root anon_vma needs to be pinned until
307	 * this anon_vma is freed, because the lock lives in the root.
308	 */
309	get_anon_vma(anon_vma->root);
310	/* Mark this anon_vma as the one where our new (COWed) pages go. */
311	vma->anon_vma = anon_vma;
312	anon_vma_lock_write(anon_vma);
313	anon_vma_chain_link(vma, avc, anon_vma);
314	anon_vma_unlock_write(anon_vma);
315
316	return 0;
317
318 out_error_free_anon_vma:
319	put_anon_vma(anon_vma);
320 out_error:
321	unlink_anon_vmas(vma);
322	return -ENOMEM;
323}
324
325void unlink_anon_vmas(struct vm_area_struct *vma)
326{
327	struct anon_vma_chain *avc, *next;
328	struct anon_vma *root = NULL;
329
330	/*
331	 * Unlink each anon_vma chained to the VMA.  This list is ordered
332	 * from newest to oldest, ensuring the root anon_vma gets freed last.
333	 */
334	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
335		struct anon_vma *anon_vma = avc->anon_vma;
336
337		root = lock_anon_vma_root(root, anon_vma);
338		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
339
340		/*
341		 * Leave empty anon_vmas on the list - we'll need
342		 * to free them outside the lock.
343		 */
344		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
345			continue;
346
347		list_del(&avc->same_vma);
348		anon_vma_chain_free(avc);
349	}
350	unlock_anon_vma_root(root);
351
352	/*
353	 * Iterate the list once more, it now only contains empty and unlinked
354	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
355	 * needing to write-acquire the anon_vma->root->rwsem.
356	 */
357	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
358		struct anon_vma *anon_vma = avc->anon_vma;
359
360		put_anon_vma(anon_vma);
361
362		list_del(&avc->same_vma);
363		anon_vma_chain_free(avc);
364	}
365}
366
367static void anon_vma_ctor(void *data)
368{
369	struct anon_vma *anon_vma = data;
370
371	init_rwsem(&anon_vma->rwsem);
372	atomic_set(&anon_vma->refcount, 0);
373	anon_vma->rb_root = RB_ROOT;
374}
375
376void __init anon_vma_init(void)
377{
378	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
379			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
380	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
381}
382
383/*
384 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
385 *
386 * Since there is no serialization what so ever against page_remove_rmap()
387 * the best this function can do is return a locked anon_vma that might
388 * have been relevant to this page.
389 *
390 * The page might have been remapped to a different anon_vma or the anon_vma
391 * returned may already be freed (and even reused).
392 *
393 * In case it was remapped to a different anon_vma, the new anon_vma will be a
394 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
395 * ensure that any anon_vma obtained from the page will still be valid for as
396 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
397 *
398 * All users of this function must be very careful when walking the anon_vma
399 * chain and verify that the page in question is indeed mapped in it
400 * [ something equivalent to page_mapped_in_vma() ].
401 *
402 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
403 * that the anon_vma pointer from page->mapping is valid if there is a
404 * mapcount, we can dereference the anon_vma after observing those.
405 */
406struct anon_vma *page_get_anon_vma(struct page *page)
407{
408	struct anon_vma *anon_vma = NULL;
409	unsigned long anon_mapping;
410
411	rcu_read_lock();
412	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
413	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
414		goto out;
415	if (!page_mapped(page))
416		goto out;
417
418	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
419	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
420		anon_vma = NULL;
421		goto out;
422	}
423
424	/*
425	 * If this page is still mapped, then its anon_vma cannot have been
426	 * freed.  But if it has been unmapped, we have no security against the
427	 * anon_vma structure being freed and reused (for another anon_vma:
428	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
429	 * above cannot corrupt).
430	 */
431	if (!page_mapped(page)) {
432		rcu_read_unlock();
433		put_anon_vma(anon_vma);
434		return NULL;
435	}
436out:
437	rcu_read_unlock();
438
439	return anon_vma;
440}
441
442/*
443 * Similar to page_get_anon_vma() except it locks the anon_vma.
444 *
445 * Its a little more complex as it tries to keep the fast path to a single
446 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
447 * reference like with page_get_anon_vma() and then block on the mutex.
448 */
449struct anon_vma *page_lock_anon_vma_read(struct page *page)
450{
451	struct anon_vma *anon_vma = NULL;
452	struct anon_vma *root_anon_vma;
453	unsigned long anon_mapping;
454
455	rcu_read_lock();
456	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
457	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
458		goto out;
459	if (!page_mapped(page))
460		goto out;
461
462	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
463	root_anon_vma = ACCESS_ONCE(anon_vma->root);
464	if (down_read_trylock(&root_anon_vma->rwsem)) {
465		/*
466		 * If the page is still mapped, then this anon_vma is still
467		 * its anon_vma, and holding the mutex ensures that it will
468		 * not go away, see anon_vma_free().
469		 */
470		if (!page_mapped(page)) {
471			up_read(&root_anon_vma->rwsem);
472			anon_vma = NULL;
473		}
474		goto out;
475	}
476
477	/* trylock failed, we got to sleep */
478	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
479		anon_vma = NULL;
480		goto out;
481	}
482
483	if (!page_mapped(page)) {
484		rcu_read_unlock();
485		put_anon_vma(anon_vma);
486		return NULL;
487	}
488
489	/* we pinned the anon_vma, its safe to sleep */
490	rcu_read_unlock();
491	anon_vma_lock_read(anon_vma);
492
493	if (atomic_dec_and_test(&anon_vma->refcount)) {
494		/*
495		 * Oops, we held the last refcount, release the lock
496		 * and bail -- can't simply use put_anon_vma() because
497		 * we'll deadlock on the anon_vma_lock_write() recursion.
498		 */
499		anon_vma_unlock_read(anon_vma);
500		__put_anon_vma(anon_vma);
501		anon_vma = NULL;
502	}
503
504	return anon_vma;
505
506out:
507	rcu_read_unlock();
508	return anon_vma;
509}
510
511void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
512{
513	anon_vma_unlock_read(anon_vma);
514}
515
516/*
517 * At what user virtual address is page expected in @vma?
518 */
519static inline unsigned long
520__vma_address(struct page *page, struct vm_area_struct *vma)
521{
522	pgoff_t pgoff = page_to_pgoff(page);
523	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524}
525
526inline unsigned long
527vma_address(struct page *page, struct vm_area_struct *vma)
528{
529	unsigned long address = __vma_address(page, vma);
530
531	/* page should be within @vma mapping range */
532	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
533
534	return address;
535}
536
537/*
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
540 */
541unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542{
543	unsigned long address;
544	if (PageAnon(page)) {
545		struct anon_vma *page__anon_vma = page_anon_vma(page);
546		/*
547		 * Note: swapoff's unuse_vma() is more efficient with this
548		 * check, and needs it to match anon_vma when KSM is active.
549		 */
550		if (!vma->anon_vma || !page__anon_vma ||
551		    vma->anon_vma->root != page__anon_vma->root)
552			return -EFAULT;
553	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554		if (!vma->vm_file ||
555		    vma->vm_file->f_mapping != page->mapping)
556			return -EFAULT;
557	} else
558		return -EFAULT;
559	address = __vma_address(page, vma);
560	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561		return -EFAULT;
562	return address;
563}
564
565pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566{
567	pgd_t *pgd;
568	pud_t *pud;
569	pmd_t *pmd = NULL;
570	pmd_t pmde;
571
572	pgd = pgd_offset(mm, address);
573	if (!pgd_present(*pgd))
574		goto out;
575
576	pud = pud_offset(pgd, address);
577	if (!pud_present(*pud))
578		goto out;
579
580	pmd = pmd_offset(pud, address);
581	/*
582	 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
583	 * without holding anon_vma lock for write.  So when looking for a
584	 * genuine pmde (in which to find pte), test present and !THP together.
585	 */
586	pmde = ACCESS_ONCE(*pmd);
587	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
588		pmd = NULL;
589out:
590	return pmd;
591}
592
593/*
594 * Check that @page is mapped at @address into @mm.
595 *
596 * If @sync is false, page_check_address may perform a racy check to avoid
597 * the page table lock when the pte is not present (helpful when reclaiming
598 * highly shared pages).
599 *
600 * On success returns with pte mapped and locked.
601 */
602pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
603			  unsigned long address, spinlock_t **ptlp, int sync)
604{
605	pmd_t *pmd;
606	pte_t *pte;
607	spinlock_t *ptl;
608
609	if (unlikely(PageHuge(page))) {
610		/* when pud is not present, pte will be NULL */
611		pte = huge_pte_offset(mm, address);
612		if (!pte)
613			return NULL;
614
615		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
616		goto check;
617	}
618
619	pmd = mm_find_pmd(mm, address);
620	if (!pmd)
621		return NULL;
622
623	pte = pte_offset_map(pmd, address);
624	/* Make a quick check before getting the lock */
625	if (!sync && !pte_present(*pte)) {
626		pte_unmap(pte);
627		return NULL;
628	}
629
630	ptl = pte_lockptr(mm, pmd);
631check:
632	spin_lock(ptl);
633	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
634		*ptlp = ptl;
635		return pte;
636	}
637	pte_unmap_unlock(pte, ptl);
638	return NULL;
639}
640
641/**
642 * page_mapped_in_vma - check whether a page is really mapped in a VMA
643 * @page: the page to test
644 * @vma: the VMA to test
645 *
646 * Returns 1 if the page is mapped into the page tables of the VMA, 0
647 * if the page is not mapped into the page tables of this VMA.  Only
648 * valid for normal file or anonymous VMAs.
649 */
650int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
651{
652	unsigned long address;
653	pte_t *pte;
654	spinlock_t *ptl;
655
656	address = __vma_address(page, vma);
657	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
658		return 0;
659	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
660	if (!pte)			/* the page is not in this mm */
661		return 0;
662	pte_unmap_unlock(pte, ptl);
663
664	return 1;
665}
666
667struct page_referenced_arg {
668	int mapcount;
669	int referenced;
670	unsigned long vm_flags;
671	struct mem_cgroup *memcg;
672};
673/*
674 * arg: page_referenced_arg will be passed
675 */
676static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
677			unsigned long address, void *arg)
678{
679	struct mm_struct *mm = vma->vm_mm;
680	spinlock_t *ptl;
681	int referenced = 0;
682	struct page_referenced_arg *pra = arg;
683
684	if (unlikely(PageTransHuge(page))) {
685		pmd_t *pmd;
686
687		/*
688		 * rmap might return false positives; we must filter
689		 * these out using page_check_address_pmd().
690		 */
691		pmd = page_check_address_pmd(page, mm, address,
692					     PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
693		if (!pmd)
694			return SWAP_AGAIN;
695
696		if (vma->vm_flags & VM_LOCKED) {
697			spin_unlock(ptl);
698			pra->vm_flags |= VM_LOCKED;
699			return SWAP_FAIL; /* To break the loop */
700		}
701
702		/* go ahead even if the pmd is pmd_trans_splitting() */
703		if (pmdp_clear_flush_young_notify(vma, address, pmd))
704			referenced++;
705		spin_unlock(ptl);
706	} else {
707		pte_t *pte;
708
709		/*
710		 * rmap might return false positives; we must filter
711		 * these out using page_check_address().
712		 */
713		pte = page_check_address(page, mm, address, &ptl, 0);
714		if (!pte)
715			return SWAP_AGAIN;
716
717		if (vma->vm_flags & VM_LOCKED) {
718			pte_unmap_unlock(pte, ptl);
719			pra->vm_flags |= VM_LOCKED;
720			return SWAP_FAIL; /* To break the loop */
721		}
722
723		if (ptep_clear_flush_young_notify(vma, address, pte)) {
724			/*
725			 * Don't treat a reference through a sequentially read
726			 * mapping as such.  If the page has been used in
727			 * another mapping, we will catch it; if this other
728			 * mapping is already gone, the unmap path will have
729			 * set PG_referenced or activated the page.
730			 */
731			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
732				referenced++;
733		}
734		pte_unmap_unlock(pte, ptl);
735	}
736
737	if (referenced) {
738		pra->referenced++;
739		pra->vm_flags |= vma->vm_flags;
740	}
741
742	pra->mapcount--;
743	if (!pra->mapcount)
744		return SWAP_SUCCESS; /* To break the loop */
745
746	return SWAP_AGAIN;
747}
748
749static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
750{
751	struct page_referenced_arg *pra = arg;
752	struct mem_cgroup *memcg = pra->memcg;
753
754	if (!mm_match_cgroup(vma->vm_mm, memcg))
755		return true;
756
757	return false;
758}
759
760/**
761 * page_referenced - test if the page was referenced
762 * @page: the page to test
763 * @is_locked: caller holds lock on the page
764 * @memcg: target memory cgroup
765 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
766 *
767 * Quick test_and_clear_referenced for all mappings to a page,
768 * returns the number of ptes which referenced the page.
769 */
770int page_referenced(struct page *page,
771		    int is_locked,
772		    struct mem_cgroup *memcg,
773		    unsigned long *vm_flags)
774{
775	int ret;
776	int we_locked = 0;
777	struct page_referenced_arg pra = {
778		.mapcount = page_mapcount(page),
779		.memcg = memcg,
780	};
781	struct rmap_walk_control rwc = {
782		.rmap_one = page_referenced_one,
783		.arg = (void *)&pra,
784		.anon_lock = page_lock_anon_vma_read,
785	};
786
787	*vm_flags = 0;
788	if (!page_mapped(page))
789		return 0;
790
791	if (!page_rmapping(page))
792		return 0;
793
794	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
795		we_locked = trylock_page(page);
796		if (!we_locked)
797			return 1;
798	}
799
800	/*
801	 * If we are reclaiming on behalf of a cgroup, skip
802	 * counting on behalf of references from different
803	 * cgroups
804	 */
805	if (memcg) {
806		rwc.invalid_vma = invalid_page_referenced_vma;
807	}
808
809	ret = rmap_walk(page, &rwc);
810	*vm_flags = pra.vm_flags;
811
812	if (we_locked)
813		unlock_page(page);
814
815	return pra.referenced;
816}
817
818static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
819			    unsigned long address, void *arg)
820{
821	struct mm_struct *mm = vma->vm_mm;
822	pte_t *pte;
823	spinlock_t *ptl;
824	int ret = 0;
825	int *cleaned = arg;
826
827	pte = page_check_address(page, mm, address, &ptl, 1);
828	if (!pte)
829		goto out;
830
831	if (pte_dirty(*pte) || pte_write(*pte)) {
832		pte_t entry;
833
834		flush_cache_page(vma, address, pte_pfn(*pte));
835		entry = ptep_clear_flush(vma, address, pte);
836		entry = pte_wrprotect(entry);
837		entry = pte_mkclean(entry);
838		set_pte_at(mm, address, pte, entry);
839		ret = 1;
840	}
841
842	pte_unmap_unlock(pte, ptl);
843
844	if (ret) {
845		mmu_notifier_invalidate_page(mm, address);
846		(*cleaned)++;
847	}
848out:
849	return SWAP_AGAIN;
850}
851
852static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
853{
854	if (vma->vm_flags & VM_SHARED)
855		return false;
856
857	return true;
858}
859
860int page_mkclean(struct page *page)
861{
862	int cleaned = 0;
863	struct address_space *mapping;
864	struct rmap_walk_control rwc = {
865		.arg = (void *)&cleaned,
866		.rmap_one = page_mkclean_one,
867		.invalid_vma = invalid_mkclean_vma,
868	};
869
870	BUG_ON(!PageLocked(page));
871
872	if (!page_mapped(page))
873		return 0;
874
875	mapping = page_mapping(page);
876	if (!mapping)
877		return 0;
878
879	rmap_walk(page, &rwc);
880
881	return cleaned;
882}
883EXPORT_SYMBOL_GPL(page_mkclean);
884
885/**
886 * page_move_anon_rmap - move a page to our anon_vma
887 * @page:	the page to move to our anon_vma
888 * @vma:	the vma the page belongs to
889 * @address:	the user virtual address mapped
890 *
891 * When a page belongs exclusively to one process after a COW event,
892 * that page can be moved into the anon_vma that belongs to just that
893 * process, so the rmap code will not search the parent or sibling
894 * processes.
895 */
896void page_move_anon_rmap(struct page *page,
897	struct vm_area_struct *vma, unsigned long address)
898{
899	struct anon_vma *anon_vma = vma->anon_vma;
900
901	VM_BUG_ON_PAGE(!PageLocked(page), page);
902	VM_BUG_ON_VMA(!anon_vma, vma);
903	VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
904
905	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
906	page->mapping = (struct address_space *) anon_vma;
907}
908
909/**
910 * __page_set_anon_rmap - set up new anonymous rmap
911 * @page:	Page to add to rmap
912 * @vma:	VM area to add page to.
913 * @address:	User virtual address of the mapping
914 * @exclusive:	the page is exclusively owned by the current process
915 */
916static void __page_set_anon_rmap(struct page *page,
917	struct vm_area_struct *vma, unsigned long address, int exclusive)
918{
919	struct anon_vma *anon_vma = vma->anon_vma;
920
921	BUG_ON(!anon_vma);
922
923	if (PageAnon(page))
924		return;
925
926	/*
927	 * If the page isn't exclusively mapped into this vma,
928	 * we must use the _oldest_ possible anon_vma for the
929	 * page mapping!
930	 */
931	if (!exclusive)
932		anon_vma = anon_vma->root;
933
934	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
935	page->mapping = (struct address_space *) anon_vma;
936	page->index = linear_page_index(vma, address);
937}
938
939/**
940 * __page_check_anon_rmap - sanity check anonymous rmap addition
941 * @page:	the page to add the mapping to
942 * @vma:	the vm area in which the mapping is added
943 * @address:	the user virtual address mapped
944 */
945static void __page_check_anon_rmap(struct page *page,
946	struct vm_area_struct *vma, unsigned long address)
947{
948#ifdef CONFIG_DEBUG_VM
949	/*
950	 * The page's anon-rmap details (mapping and index) are guaranteed to
951	 * be set up correctly at this point.
952	 *
953	 * We have exclusion against page_add_anon_rmap because the caller
954	 * always holds the page locked, except if called from page_dup_rmap,
955	 * in which case the page is already known to be setup.
956	 *
957	 * We have exclusion against page_add_new_anon_rmap because those pages
958	 * are initially only visible via the pagetables, and the pte is locked
959	 * over the call to page_add_new_anon_rmap.
960	 */
961	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
962	BUG_ON(page->index != linear_page_index(vma, address));
963#endif
964}
965
966/**
967 * page_add_anon_rmap - add pte mapping to an anonymous page
968 * @page:	the page to add the mapping to
969 * @vma:	the vm area in which the mapping is added
970 * @address:	the user virtual address mapped
971 *
972 * The caller needs to hold the pte lock, and the page must be locked in
973 * the anon_vma case: to serialize mapping,index checking after setting,
974 * and to ensure that PageAnon is not being upgraded racily to PageKsm
975 * (but PageKsm is never downgraded to PageAnon).
976 */
977void page_add_anon_rmap(struct page *page,
978	struct vm_area_struct *vma, unsigned long address)
979{
980	do_page_add_anon_rmap(page, vma, address, 0);
981}
982
983/*
984 * Special version of the above for do_swap_page, which often runs
985 * into pages that are exclusively owned by the current process.
986 * Everybody else should continue to use page_add_anon_rmap above.
987 */
988void do_page_add_anon_rmap(struct page *page,
989	struct vm_area_struct *vma, unsigned long address, int exclusive)
990{
991	int first = atomic_inc_and_test(&page->_mapcount);
992	if (first) {
993		/*
994		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
995		 * these counters are not modified in interrupt context, and
996		 * pte lock(a spinlock) is held, which implies preemption
997		 * disabled.
998		 */
999		if (PageTransHuge(page))
1000			__inc_zone_page_state(page,
1001					      NR_ANON_TRANSPARENT_HUGEPAGES);
1002		__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1003				hpage_nr_pages(page));
1004	}
1005	if (unlikely(PageKsm(page)))
1006		return;
1007
1008	VM_BUG_ON_PAGE(!PageLocked(page), page);
1009	/* address might be in next vma when migration races vma_adjust */
1010	if (first)
1011		__page_set_anon_rmap(page, vma, address, exclusive);
1012	else
1013		__page_check_anon_rmap(page, vma, address);
1014}
1015
1016/**
1017 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1018 * @page:	the page to add the mapping to
1019 * @vma:	the vm area in which the mapping is added
1020 * @address:	the user virtual address mapped
1021 *
1022 * Same as page_add_anon_rmap but must only be called on *new* pages.
1023 * This means the inc-and-test can be bypassed.
1024 * Page does not have to be locked.
1025 */
1026void page_add_new_anon_rmap(struct page *page,
1027	struct vm_area_struct *vma, unsigned long address)
1028{
1029	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1030	SetPageSwapBacked(page);
1031	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1032	if (PageTransHuge(page))
1033		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1034	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1035			hpage_nr_pages(page));
1036	__page_set_anon_rmap(page, vma, address, 1);
1037}
1038
1039/**
1040 * page_add_file_rmap - add pte mapping to a file page
1041 * @page: the page to add the mapping to
1042 *
1043 * The caller needs to hold the pte lock.
1044 */
1045void page_add_file_rmap(struct page *page)
1046{
1047	struct mem_cgroup *memcg;
1048	unsigned long flags;
1049	bool locked;
1050
1051	memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1052	if (atomic_inc_and_test(&page->_mapcount)) {
1053		__inc_zone_page_state(page, NR_FILE_MAPPED);
1054		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1055	}
1056	mem_cgroup_end_page_stat(memcg, locked, flags);
1057}
1058
1059static void page_remove_file_rmap(struct page *page)
1060{
1061	struct mem_cgroup *memcg;
1062	unsigned long flags;
1063	bool locked;
1064
1065	memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1066
1067	/* page still mapped by someone else? */
1068	if (!atomic_add_negative(-1, &page->_mapcount))
1069		goto out;
1070
1071	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1072	if (unlikely(PageHuge(page)))
1073		goto out;
1074
1075	/*
1076	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1077	 * these counters are not modified in interrupt context, and
1078	 * pte lock(a spinlock) is held, which implies preemption disabled.
1079	 */
1080	__dec_zone_page_state(page, NR_FILE_MAPPED);
1081	mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
1082
1083	if (unlikely(PageMlocked(page)))
1084		clear_page_mlock(page);
1085out:
1086	mem_cgroup_end_page_stat(memcg, locked, flags);
1087}
1088
1089/**
1090 * page_remove_rmap - take down pte mapping from a page
1091 * @page: page to remove mapping from
1092 *
1093 * The caller needs to hold the pte lock.
1094 */
1095void page_remove_rmap(struct page *page)
1096{
1097	if (!PageAnon(page)) {
1098		page_remove_file_rmap(page);
1099		return;
1100	}
1101
1102	/* page still mapped by someone else? */
1103	if (!atomic_add_negative(-1, &page->_mapcount))
1104		return;
1105
1106	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1107	if (unlikely(PageHuge(page)))
1108		return;
1109
1110	/*
1111	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1112	 * these counters are not modified in interrupt context, and
1113	 * pte lock(a spinlock) is held, which implies preemption disabled.
1114	 */
1115	if (PageTransHuge(page))
1116		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1117
1118	__mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1119			      -hpage_nr_pages(page));
1120
1121	if (unlikely(PageMlocked(page)))
1122		clear_page_mlock(page);
1123
1124	/*
1125	 * It would be tidy to reset the PageAnon mapping here,
1126	 * but that might overwrite a racing page_add_anon_rmap
1127	 * which increments mapcount after us but sets mapping
1128	 * before us: so leave the reset to free_hot_cold_page,
1129	 * and remember that it's only reliable while mapped.
1130	 * Leaving it set also helps swapoff to reinstate ptes
1131	 * faster for those pages still in swapcache.
1132	 */
1133}
1134
1135/*
1136 * @arg: enum ttu_flags will be passed to this argument
1137 */
1138static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1139		     unsigned long address, void *arg)
1140{
1141	struct mm_struct *mm = vma->vm_mm;
1142	pte_t *pte;
1143	pte_t pteval;
1144	spinlock_t *ptl;
1145	int ret = SWAP_AGAIN;
1146	enum ttu_flags flags = (enum ttu_flags)arg;
1147
1148	pte = page_check_address(page, mm, address, &ptl, 0);
1149	if (!pte)
1150		goto out;
1151
1152	/*
1153	 * If the page is mlock()d, we cannot swap it out.
1154	 * If it's recently referenced (perhaps page_referenced
1155	 * skipped over this mm) then we should reactivate it.
1156	 */
1157	if (!(flags & TTU_IGNORE_MLOCK)) {
1158		if (vma->vm_flags & VM_LOCKED)
1159			goto out_mlock;
1160
1161		if (flags & TTU_MUNLOCK)
1162			goto out_unmap;
1163	}
1164	if (!(flags & TTU_IGNORE_ACCESS)) {
1165		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1166			ret = SWAP_FAIL;
1167			goto out_unmap;
1168		}
1169  	}
1170
1171	/* Nuke the page table entry. */
1172	flush_cache_page(vma, address, page_to_pfn(page));
1173	pteval = ptep_clear_flush(vma, address, pte);
1174
1175	/* Move the dirty bit to the physical page now the pte is gone. */
1176	if (pte_dirty(pteval))
1177		set_page_dirty(page);
1178
1179	/* Update high watermark before we lower rss */
1180	update_hiwater_rss(mm);
1181
1182	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1183		if (!PageHuge(page)) {
1184			if (PageAnon(page))
1185				dec_mm_counter(mm, MM_ANONPAGES);
1186			else
1187				dec_mm_counter(mm, MM_FILEPAGES);
1188		}
1189		set_pte_at(mm, address, pte,
1190			   swp_entry_to_pte(make_hwpoison_entry(page)));
1191	} else if (pte_unused(pteval)) {
1192		/*
1193		 * The guest indicated that the page content is of no
1194		 * interest anymore. Simply discard the pte, vmscan
1195		 * will take care of the rest.
1196		 */
1197		if (PageAnon(page))
1198			dec_mm_counter(mm, MM_ANONPAGES);
1199		else
1200			dec_mm_counter(mm, MM_FILEPAGES);
1201	} else if (PageAnon(page)) {
1202		swp_entry_t entry = { .val = page_private(page) };
1203		pte_t swp_pte;
1204
1205		if (PageSwapCache(page)) {
1206			/*
1207			 * Store the swap location in the pte.
1208			 * See handle_pte_fault() ...
1209			 */
1210			if (swap_duplicate(entry) < 0) {
1211				set_pte_at(mm, address, pte, pteval);
1212				ret = SWAP_FAIL;
1213				goto out_unmap;
1214			}
1215			if (list_empty(&mm->mmlist)) {
1216				spin_lock(&mmlist_lock);
1217				if (list_empty(&mm->mmlist))
1218					list_add(&mm->mmlist, &init_mm.mmlist);
1219				spin_unlock(&mmlist_lock);
1220			}
1221			dec_mm_counter(mm, MM_ANONPAGES);
1222			inc_mm_counter(mm, MM_SWAPENTS);
1223		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1224			/*
1225			 * Store the pfn of the page in a special migration
1226			 * pte. do_swap_page() will wait until the migration
1227			 * pte is removed and then restart fault handling.
1228			 */
1229			BUG_ON(!(flags & TTU_MIGRATION));
1230			entry = make_migration_entry(page, pte_write(pteval));
1231		}
1232		swp_pte = swp_entry_to_pte(entry);
1233		if (pte_soft_dirty(pteval))
1234			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1235		set_pte_at(mm, address, pte, swp_pte);
1236		BUG_ON(pte_file(*pte));
1237	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1238		   (flags & TTU_MIGRATION)) {
1239		/* Establish migration entry for a file page */
1240		swp_entry_t entry;
1241		entry = make_migration_entry(page, pte_write(pteval));
1242		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1243	} else
1244		dec_mm_counter(mm, MM_FILEPAGES);
1245
1246	page_remove_rmap(page);
1247	page_cache_release(page);
1248
1249out_unmap:
1250	pte_unmap_unlock(pte, ptl);
1251	if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
1252		mmu_notifier_invalidate_page(mm, address);
1253out:
1254	return ret;
1255
1256out_mlock:
1257	pte_unmap_unlock(pte, ptl);
1258
1259
1260	/*
1261	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1262	 * unstable result and race. Plus, We can't wait here because
1263	 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1264	 * if trylock failed, the page remain in evictable lru and later
1265	 * vmscan could retry to move the page to unevictable lru if the
1266	 * page is actually mlocked.
1267	 */
1268	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1269		if (vma->vm_flags & VM_LOCKED) {
1270			mlock_vma_page(page);
1271			ret = SWAP_MLOCK;
1272		}
1273		up_read(&vma->vm_mm->mmap_sem);
1274	}
1275	return ret;
1276}
1277
1278/*
1279 * objrmap doesn't work for nonlinear VMAs because the assumption that
1280 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1281 * Consequently, given a particular page and its ->index, we cannot locate the
1282 * ptes which are mapping that page without an exhaustive linear search.
1283 *
1284 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1285 * maps the file to which the target page belongs.  The ->vm_private_data field
1286 * holds the current cursor into that scan.  Successive searches will circulate
1287 * around the vma's virtual address space.
1288 *
1289 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1290 * more scanning pressure is placed against them as well.   Eventually pages
1291 * will become fully unmapped and are eligible for eviction.
1292 *
1293 * For very sparsely populated VMAs this is a little inefficient - chances are
1294 * there there won't be many ptes located within the scan cluster.  In this case
1295 * maybe we could scan further - to the end of the pte page, perhaps.
1296 *
1297 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1298 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1299 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1300 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1301 */
1302#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1303#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1304
1305static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1306		struct vm_area_struct *vma, struct page *check_page)
1307{
1308	struct mm_struct *mm = vma->vm_mm;
1309	pmd_t *pmd;
1310	pte_t *pte;
1311	pte_t pteval;
1312	spinlock_t *ptl;
1313	struct page *page;
1314	unsigned long address;
1315	unsigned long mmun_start;	/* For mmu_notifiers */
1316	unsigned long mmun_end;		/* For mmu_notifiers */
1317	unsigned long end;
1318	int ret = SWAP_AGAIN;
1319	int locked_vma = 0;
1320
1321	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1322	end = address + CLUSTER_SIZE;
1323	if (address < vma->vm_start)
1324		address = vma->vm_start;
1325	if (end > vma->vm_end)
1326		end = vma->vm_end;
1327
1328	pmd = mm_find_pmd(mm, address);
1329	if (!pmd)
1330		return ret;
1331
1332	mmun_start = address;
1333	mmun_end   = end;
1334	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1335
1336	/*
1337	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1338	 * keep the sem while scanning the cluster for mlocking pages.
1339	 */
1340	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1341		locked_vma = (vma->vm_flags & VM_LOCKED);
1342		if (!locked_vma)
1343			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1344	}
1345
1346	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1347
1348	/* Update high watermark before we lower rss */
1349	update_hiwater_rss(mm);
1350
1351	for (; address < end; pte++, address += PAGE_SIZE) {
1352		if (!pte_present(*pte))
1353			continue;
1354		page = vm_normal_page(vma, address, *pte);
1355		BUG_ON(!page || PageAnon(page));
1356
1357		if (locked_vma) {
1358			if (page == check_page) {
1359				/* we know we have check_page locked */
1360				mlock_vma_page(page);
1361				ret = SWAP_MLOCK;
1362			} else if (trylock_page(page)) {
1363				/*
1364				 * If we can lock the page, perform mlock.
1365				 * Otherwise leave the page alone, it will be
1366				 * eventually encountered again later.
1367				 */
1368				mlock_vma_page(page);
1369				unlock_page(page);
1370			}
1371			continue;	/* don't unmap */
1372		}
1373
1374		/*
1375		 * No need for _notify because we're within an
1376		 * mmu_notifier_invalidate_range_ {start|end} scope.
1377		 */
1378		if (ptep_clear_flush_young(vma, address, pte))
1379			continue;
1380
1381		/* Nuke the page table entry. */
1382		flush_cache_page(vma, address, pte_pfn(*pte));
1383		pteval = ptep_clear_flush(vma, address, pte);
1384
1385		/* If nonlinear, store the file page offset in the pte. */
1386		if (page->index != linear_page_index(vma, address)) {
1387			pte_t ptfile = pgoff_to_pte(page->index);
1388			if (pte_soft_dirty(pteval))
1389				ptfile = pte_file_mksoft_dirty(ptfile);
1390			set_pte_at(mm, address, pte, ptfile);
1391		}
1392
1393		/* Move the dirty bit to the physical page now the pte is gone. */
1394		if (pte_dirty(pteval))
1395			set_page_dirty(page);
1396
1397		page_remove_rmap(page);
1398		page_cache_release(page);
1399		dec_mm_counter(mm, MM_FILEPAGES);
1400		(*mapcount)--;
1401	}
1402	pte_unmap_unlock(pte - 1, ptl);
1403	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1404	if (locked_vma)
1405		up_read(&vma->vm_mm->mmap_sem);
1406	return ret;
1407}
1408
1409static int try_to_unmap_nonlinear(struct page *page,
1410		struct address_space *mapping, void *arg)
1411{
1412	struct vm_area_struct *vma;
1413	int ret = SWAP_AGAIN;
1414	unsigned long cursor;
1415	unsigned long max_nl_cursor = 0;
1416	unsigned long max_nl_size = 0;
1417	unsigned int mapcount;
1418
1419	list_for_each_entry(vma,
1420		&mapping->i_mmap_nonlinear, shared.nonlinear) {
1421
1422		cursor = (unsigned long) vma->vm_private_data;
1423		if (cursor > max_nl_cursor)
1424			max_nl_cursor = cursor;
1425		cursor = vma->vm_end - vma->vm_start;
1426		if (cursor > max_nl_size)
1427			max_nl_size = cursor;
1428	}
1429
1430	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1431		return SWAP_FAIL;
1432	}
1433
1434	/*
1435	 * We don't try to search for this page in the nonlinear vmas,
1436	 * and page_referenced wouldn't have found it anyway.  Instead
1437	 * just walk the nonlinear vmas trying to age and unmap some.
1438	 * The mapcount of the page we came in with is irrelevant,
1439	 * but even so use it as a guide to how hard we should try?
1440	 */
1441	mapcount = page_mapcount(page);
1442	if (!mapcount)
1443		return ret;
1444
1445	cond_resched();
1446
1447	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1448	if (max_nl_cursor == 0)
1449		max_nl_cursor = CLUSTER_SIZE;
1450
1451	do {
1452		list_for_each_entry(vma,
1453			&mapping->i_mmap_nonlinear, shared.nonlinear) {
1454
1455			cursor = (unsigned long) vma->vm_private_data;
1456			while (cursor < max_nl_cursor &&
1457				cursor < vma->vm_end - vma->vm_start) {
1458				if (try_to_unmap_cluster(cursor, &mapcount,
1459						vma, page) == SWAP_MLOCK)
1460					ret = SWAP_MLOCK;
1461				cursor += CLUSTER_SIZE;
1462				vma->vm_private_data = (void *) cursor;
1463				if ((int)mapcount <= 0)
1464					return ret;
1465			}
1466			vma->vm_private_data = (void *) max_nl_cursor;
1467		}
1468		cond_resched();
1469		max_nl_cursor += CLUSTER_SIZE;
1470	} while (max_nl_cursor <= max_nl_size);
1471
1472	/*
1473	 * Don't loop forever (perhaps all the remaining pages are
1474	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1475	 * vmas, now forgetting on which ones it had fallen behind.
1476	 */
1477	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1478		vma->vm_private_data = NULL;
1479
1480	return ret;
1481}
1482
1483bool is_vma_temporary_stack(struct vm_area_struct *vma)
1484{
1485	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1486
1487	if (!maybe_stack)
1488		return false;
1489
1490	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1491						VM_STACK_INCOMPLETE_SETUP)
1492		return true;
1493
1494	return false;
1495}
1496
1497static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1498{
1499	return is_vma_temporary_stack(vma);
1500}
1501
1502static int page_not_mapped(struct page *page)
1503{
1504	return !page_mapped(page);
1505};
1506
1507/**
1508 * try_to_unmap - try to remove all page table mappings to a page
1509 * @page: the page to get unmapped
1510 * @flags: action and flags
1511 *
1512 * Tries to remove all the page table entries which are mapping this
1513 * page, used in the pageout path.  Caller must hold the page lock.
1514 * Return values are:
1515 *
1516 * SWAP_SUCCESS	- we succeeded in removing all mappings
1517 * SWAP_AGAIN	- we missed a mapping, try again later
1518 * SWAP_FAIL	- the page is unswappable
1519 * SWAP_MLOCK	- page is mlocked.
1520 */
1521int try_to_unmap(struct page *page, enum ttu_flags flags)
1522{
1523	int ret;
1524	struct rmap_walk_control rwc = {
1525		.rmap_one = try_to_unmap_one,
1526		.arg = (void *)flags,
1527		.done = page_not_mapped,
1528		.file_nonlinear = try_to_unmap_nonlinear,
1529		.anon_lock = page_lock_anon_vma_read,
1530	};
1531
1532	VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
1533
1534	/*
1535	 * During exec, a temporary VMA is setup and later moved.
1536	 * The VMA is moved under the anon_vma lock but not the
1537	 * page tables leading to a race where migration cannot
1538	 * find the migration ptes. Rather than increasing the
1539	 * locking requirements of exec(), migration skips
1540	 * temporary VMAs until after exec() completes.
1541	 */
1542	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1543		rwc.invalid_vma = invalid_migration_vma;
1544
1545	ret = rmap_walk(page, &rwc);
1546
1547	if (ret != SWAP_MLOCK && !page_mapped(page))
1548		ret = SWAP_SUCCESS;
1549	return ret;
1550}
1551
1552/**
1553 * try_to_munlock - try to munlock a page
1554 * @page: the page to be munlocked
1555 *
1556 * Called from munlock code.  Checks all of the VMAs mapping the page
1557 * to make sure nobody else has this page mlocked. The page will be
1558 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1559 *
1560 * Return values are:
1561 *
1562 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1563 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1564 * SWAP_FAIL	- page cannot be located at present
1565 * SWAP_MLOCK	- page is now mlocked.
1566 */
1567int try_to_munlock(struct page *page)
1568{
1569	int ret;
1570	struct rmap_walk_control rwc = {
1571		.rmap_one = try_to_unmap_one,
1572		.arg = (void *)TTU_MUNLOCK,
1573		.done = page_not_mapped,
1574		/*
1575		 * We don't bother to try to find the munlocked page in
1576		 * nonlinears. It's costly. Instead, later, page reclaim logic
1577		 * may call try_to_unmap() and recover PG_mlocked lazily.
1578		 */
1579		.file_nonlinear = NULL,
1580		.anon_lock = page_lock_anon_vma_read,
1581
1582	};
1583
1584	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1585
1586	ret = rmap_walk(page, &rwc);
1587	return ret;
1588}
1589
1590void __put_anon_vma(struct anon_vma *anon_vma)
1591{
1592	struct anon_vma *root = anon_vma->root;
1593
1594	anon_vma_free(anon_vma);
1595	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1596		anon_vma_free(root);
1597}
1598
1599static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1600					struct rmap_walk_control *rwc)
1601{
1602	struct anon_vma *anon_vma;
1603
1604	if (rwc->anon_lock)
1605		return rwc->anon_lock(page);
1606
1607	/*
1608	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1609	 * because that depends on page_mapped(); but not all its usages
1610	 * are holding mmap_sem. Users without mmap_sem are required to
1611	 * take a reference count to prevent the anon_vma disappearing
1612	 */
1613	anon_vma = page_anon_vma(page);
1614	if (!anon_vma)
1615		return NULL;
1616
1617	anon_vma_lock_read(anon_vma);
1618	return anon_vma;
1619}
1620
1621/*
1622 * rmap_walk_anon - do something to anonymous page using the object-based
1623 * rmap method
1624 * @page: the page to be handled
1625 * @rwc: control variable according to each walk type
1626 *
1627 * Find all the mappings of a page using the mapping pointer and the vma chains
1628 * contained in the anon_vma struct it points to.
1629 *
1630 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1631 * where the page was found will be held for write.  So, we won't recheck
1632 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1633 * LOCKED.
1634 */
1635static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
1636{
1637	struct anon_vma *anon_vma;
1638	pgoff_t pgoff = page_to_pgoff(page);
1639	struct anon_vma_chain *avc;
1640	int ret = SWAP_AGAIN;
1641
1642	anon_vma = rmap_walk_anon_lock(page, rwc);
1643	if (!anon_vma)
1644		return ret;
1645
1646	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1647		struct vm_area_struct *vma = avc->vma;
1648		unsigned long address = vma_address(page, vma);
1649
1650		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1651			continue;
1652
1653		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1654		if (ret != SWAP_AGAIN)
1655			break;
1656		if (rwc->done && rwc->done(page))
1657			break;
1658	}
1659	anon_vma_unlock_read(anon_vma);
1660	return ret;
1661}
1662
1663/*
1664 * rmap_walk_file - do something to file page using the object-based rmap method
1665 * @page: the page to be handled
1666 * @rwc: control variable according to each walk type
1667 *
1668 * Find all the mappings of a page using the mapping pointer and the vma chains
1669 * contained in the address_space struct it points to.
1670 *
1671 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1672 * where the page was found will be held for write.  So, we won't recheck
1673 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1674 * LOCKED.
1675 */
1676static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
1677{
1678	struct address_space *mapping = page->mapping;
1679	pgoff_t pgoff = page_to_pgoff(page);
1680	struct vm_area_struct *vma;
1681	int ret = SWAP_AGAIN;
1682
1683	/*
1684	 * The page lock not only makes sure that page->mapping cannot
1685	 * suddenly be NULLified by truncation, it makes sure that the
1686	 * structure at mapping cannot be freed and reused yet,
1687	 * so we can safely take mapping->i_mmap_mutex.
1688	 */
1689	VM_BUG_ON_PAGE(!PageLocked(page), page);
1690
1691	if (!mapping)
1692		return ret;
1693	mutex_lock(&mapping->i_mmap_mutex);
1694	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1695		unsigned long address = vma_address(page, vma);
1696
1697		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1698			continue;
1699
1700		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1701		if (ret != SWAP_AGAIN)
1702			goto done;
1703		if (rwc->done && rwc->done(page))
1704			goto done;
1705	}
1706
1707	if (!rwc->file_nonlinear)
1708		goto done;
1709
1710	if (list_empty(&mapping->i_mmap_nonlinear))
1711		goto done;
1712
1713	ret = rwc->file_nonlinear(page, mapping, rwc->arg);
1714
1715done:
1716	mutex_unlock(&mapping->i_mmap_mutex);
1717	return ret;
1718}
1719
1720int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1721{
1722	if (unlikely(PageKsm(page)))
1723		return rmap_walk_ksm(page, rwc);
1724	else if (PageAnon(page))
1725		return rmap_walk_anon(page, rwc);
1726	else
1727		return rmap_walk_file(page, rwc);
1728}
1729
1730#ifdef CONFIG_HUGETLB_PAGE
1731/*
1732 * The following three functions are for anonymous (private mapped) hugepages.
1733 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1734 * and no lru code, because we handle hugepages differently from common pages.
1735 */
1736static void __hugepage_set_anon_rmap(struct page *page,
1737	struct vm_area_struct *vma, unsigned long address, int exclusive)
1738{
1739	struct anon_vma *anon_vma = vma->anon_vma;
1740
1741	BUG_ON(!anon_vma);
1742
1743	if (PageAnon(page))
1744		return;
1745	if (!exclusive)
1746		anon_vma = anon_vma->root;
1747
1748	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1749	page->mapping = (struct address_space *) anon_vma;
1750	page->index = linear_page_index(vma, address);
1751}
1752
1753void hugepage_add_anon_rmap(struct page *page,
1754			    struct vm_area_struct *vma, unsigned long address)
1755{
1756	struct anon_vma *anon_vma = vma->anon_vma;
1757	int first;
1758
1759	BUG_ON(!PageLocked(page));
1760	BUG_ON(!anon_vma);
1761	/* address might be in next vma when migration races vma_adjust */
1762	first = atomic_inc_and_test(&page->_mapcount);
1763	if (first)
1764		__hugepage_set_anon_rmap(page, vma, address, 0);
1765}
1766
1767void hugepage_add_new_anon_rmap(struct page *page,
1768			struct vm_area_struct *vma, unsigned long address)
1769{
1770	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1771	atomic_set(&page->_mapcount, 0);
1772	__hugepage_set_anon_rmap(page, vma, address, 1);
1773}
1774#endif /* CONFIG_HUGETLB_PAGE */
1775