rmap.c revision 369a713e9678227e203b53931ad1a10cd8eac811
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex	(while writing or truncating, not reading or faulting)
24 *   mm->mmap_sem
25 *     page->flags PG_locked (lock_page)
26 *       mapping->i_mmap_mutex
27 *         anon_vma->rwsem
28 *           mm->page_table_lock or pte_lock
29 *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 *             swap_lock (in swap_duplicate, swap_info_get)
31 *               mmlist_lock (in mmput, drain_mmlist and others)
32 *               mapping->private_lock (in __set_page_dirty_buffers)
33 *               inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 *               bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 *                 sb_lock (within inode_lock in fs/fs-writeback.c)
36 *                 mapping->tree_lock (widely used, in set_page_dirty,
37 *                           in arch-dependent flush_dcache_mmap_lock,
38 *                           within bdi.wb->list_lock in __sync_single_inode)
39 *
40 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
41 *   ->tasklist_lock
42 *     pte map lock
43 */
44
45#include <linux/mm.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/slab.h>
50#include <linux/init.h>
51#include <linux/ksm.h>
52#include <linux/rmap.h>
53#include <linux/rcupdate.h>
54#include <linux/export.h>
55#include <linux/memcontrol.h>
56#include <linux/mmu_notifier.h>
57#include <linux/migrate.h>
58#include <linux/hugetlb.h>
59#include <linux/backing-dev.h>
60
61#include <asm/tlbflush.h>
62
63#include "internal.h"
64
65static struct kmem_cache *anon_vma_cachep;
66static struct kmem_cache *anon_vma_chain_cachep;
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70	struct anon_vma *anon_vma;
71
72	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73	if (anon_vma) {
74		atomic_set(&anon_vma->refcount, 1);
75		/*
76		 * Initialise the anon_vma root to point to itself. If called
77		 * from fork, the root will be reset to the parents anon_vma.
78		 */
79		anon_vma->root = anon_vma;
80	}
81
82	return anon_vma;
83}
84
85static inline void anon_vma_free(struct anon_vma *anon_vma)
86{
87	VM_BUG_ON(atomic_read(&anon_vma->refcount));
88
89	/*
90	 * Synchronize against page_lock_anon_vma_read() such that
91	 * we can safely hold the lock without the anon_vma getting
92	 * freed.
93	 *
94	 * Relies on the full mb implied by the atomic_dec_and_test() from
95	 * put_anon_vma() against the acquire barrier implied by
96	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
97	 *
98	 * page_lock_anon_vma_read()	VS	put_anon_vma()
99	 *   down_read_trylock()		  atomic_dec_and_test()
100	 *   LOCK				  MB
101	 *   atomic_read()			  rwsem_is_locked()
102	 *
103	 * LOCK should suffice since the actual taking of the lock must
104	 * happen _before_ what follows.
105	 */
106	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
107		anon_vma_lock_write(anon_vma);
108		anon_vma_unlock_write(anon_vma);
109	}
110
111	kmem_cache_free(anon_vma_cachep, anon_vma);
112}
113
114static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
115{
116	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
117}
118
119static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
120{
121	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122}
123
124static void anon_vma_chain_link(struct vm_area_struct *vma,
125				struct anon_vma_chain *avc,
126				struct anon_vma *anon_vma)
127{
128	avc->vma = vma;
129	avc->anon_vma = anon_vma;
130	list_add(&avc->same_vma, &vma->anon_vma_chain);
131	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
132}
133
134/**
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
137 *
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
141 *
142 * The common case will be that we already have one, but if
143 * not we either need to find an adjacent mapping that we
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
147 *
148 * Anon-vma allocations are very subtle, because we may have
149 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
153 *
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
157 * an anon_vma.
158 *
159 * This must be called with the mmap_sem held for reading.
160 */
161int anon_vma_prepare(struct vm_area_struct *vma)
162{
163	struct anon_vma *anon_vma = vma->anon_vma;
164	struct anon_vma_chain *avc;
165
166	might_sleep();
167	if (unlikely(!anon_vma)) {
168		struct mm_struct *mm = vma->vm_mm;
169		struct anon_vma *allocated;
170
171		avc = anon_vma_chain_alloc(GFP_KERNEL);
172		if (!avc)
173			goto out_enomem;
174
175		anon_vma = find_mergeable_anon_vma(vma);
176		allocated = NULL;
177		if (!anon_vma) {
178			anon_vma = anon_vma_alloc();
179			if (unlikely(!anon_vma))
180				goto out_enomem_free_avc;
181			allocated = anon_vma;
182		}
183
184		anon_vma_lock_write(anon_vma);
185		/* page_table_lock to protect against threads */
186		spin_lock(&mm->page_table_lock);
187		if (likely(!vma->anon_vma)) {
188			vma->anon_vma = anon_vma;
189			anon_vma_chain_link(vma, avc, anon_vma);
190			allocated = NULL;
191			avc = NULL;
192		}
193		spin_unlock(&mm->page_table_lock);
194		anon_vma_unlock_write(anon_vma);
195
196		if (unlikely(allocated))
197			put_anon_vma(allocated);
198		if (unlikely(avc))
199			anon_vma_chain_free(avc);
200	}
201	return 0;
202
203 out_enomem_free_avc:
204	anon_vma_chain_free(avc);
205 out_enomem:
206	return -ENOMEM;
207}
208
209/*
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212 * have the same vma.
213 *
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
216 */
217static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218{
219	struct anon_vma *new_root = anon_vma->root;
220	if (new_root != root) {
221		if (WARN_ON_ONCE(root))
222			up_write(&root->rwsem);
223		root = new_root;
224		down_write(&root->rwsem);
225	}
226	return root;
227}
228
229static inline void unlock_anon_vma_root(struct anon_vma *root)
230{
231	if (root)
232		up_write(&root->rwsem);
233}
234
235/*
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
238 */
239int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
240{
241	struct anon_vma_chain *avc, *pavc;
242	struct anon_vma *root = NULL;
243
244	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245		struct anon_vma *anon_vma;
246
247		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248		if (unlikely(!avc)) {
249			unlock_anon_vma_root(root);
250			root = NULL;
251			avc = anon_vma_chain_alloc(GFP_KERNEL);
252			if (!avc)
253				goto enomem_failure;
254		}
255		anon_vma = pavc->anon_vma;
256		root = lock_anon_vma_root(root, anon_vma);
257		anon_vma_chain_link(dst, avc, anon_vma);
258	}
259	unlock_anon_vma_root(root);
260	return 0;
261
262 enomem_failure:
263	unlink_anon_vmas(dst);
264	return -ENOMEM;
265}
266
267/*
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
271 */
272int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
273{
274	struct anon_vma_chain *avc;
275	struct anon_vma *anon_vma;
276
277	/* Don't bother if the parent process has no anon_vma here. */
278	if (!pvma->anon_vma)
279		return 0;
280
281	/*
282	 * First, attach the new VMA to the parent VMA's anon_vmas,
283	 * so rmap can find non-COWed pages in child processes.
284	 */
285	if (anon_vma_clone(vma, pvma))
286		return -ENOMEM;
287
288	/* Then add our own anon_vma. */
289	anon_vma = anon_vma_alloc();
290	if (!anon_vma)
291		goto out_error;
292	avc = anon_vma_chain_alloc(GFP_KERNEL);
293	if (!avc)
294		goto out_error_free_anon_vma;
295
296	/*
297	 * The root anon_vma's spinlock is the lock actually used when we
298	 * lock any of the anon_vmas in this anon_vma tree.
299	 */
300	anon_vma->root = pvma->anon_vma->root;
301	/*
302	 * With refcounts, an anon_vma can stay around longer than the
303	 * process it belongs to. The root anon_vma needs to be pinned until
304	 * this anon_vma is freed, because the lock lives in the root.
305	 */
306	get_anon_vma(anon_vma->root);
307	/* Mark this anon_vma as the one where our new (COWed) pages go. */
308	vma->anon_vma = anon_vma;
309	anon_vma_lock_write(anon_vma);
310	anon_vma_chain_link(vma, avc, anon_vma);
311	anon_vma_unlock_write(anon_vma);
312
313	return 0;
314
315 out_error_free_anon_vma:
316	put_anon_vma(anon_vma);
317 out_error:
318	unlink_anon_vmas(vma);
319	return -ENOMEM;
320}
321
322void unlink_anon_vmas(struct vm_area_struct *vma)
323{
324	struct anon_vma_chain *avc, *next;
325	struct anon_vma *root = NULL;
326
327	/*
328	 * Unlink each anon_vma chained to the VMA.  This list is ordered
329	 * from newest to oldest, ensuring the root anon_vma gets freed last.
330	 */
331	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332		struct anon_vma *anon_vma = avc->anon_vma;
333
334		root = lock_anon_vma_root(root, anon_vma);
335		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
336
337		/*
338		 * Leave empty anon_vmas on the list - we'll need
339		 * to free them outside the lock.
340		 */
341		if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342			continue;
343
344		list_del(&avc->same_vma);
345		anon_vma_chain_free(avc);
346	}
347	unlock_anon_vma_root(root);
348
349	/*
350	 * Iterate the list once more, it now only contains empty and unlinked
351	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352	 * needing to write-acquire the anon_vma->root->rwsem.
353	 */
354	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355		struct anon_vma *anon_vma = avc->anon_vma;
356
357		put_anon_vma(anon_vma);
358
359		list_del(&avc->same_vma);
360		anon_vma_chain_free(avc);
361	}
362}
363
364static void anon_vma_ctor(void *data)
365{
366	struct anon_vma *anon_vma = data;
367
368	init_rwsem(&anon_vma->rwsem);
369	atomic_set(&anon_vma->refcount, 0);
370	anon_vma->rb_root = RB_ROOT;
371}
372
373void __init anon_vma_init(void)
374{
375	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
378}
379
380/*
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382 *
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
386 *
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
389 *
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394 *
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
398 *
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
402 */
403struct anon_vma *page_get_anon_vma(struct page *page)
404{
405	struct anon_vma *anon_vma = NULL;
406	unsigned long anon_mapping;
407
408	rcu_read_lock();
409	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411		goto out;
412	if (!page_mapped(page))
413		goto out;
414
415	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417		anon_vma = NULL;
418		goto out;
419	}
420
421	/*
422	 * If this page is still mapped, then its anon_vma cannot have been
423	 * freed.  But if it has been unmapped, we have no security against the
424	 * anon_vma structure being freed and reused (for another anon_vma:
425	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426	 * above cannot corrupt).
427	 */
428	if (!page_mapped(page)) {
429		put_anon_vma(anon_vma);
430		anon_vma = NULL;
431	}
432out:
433	rcu_read_unlock();
434
435	return anon_vma;
436}
437
438/*
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
440 *
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
444 */
445struct anon_vma *page_lock_anon_vma_read(struct page *page)
446{
447	struct anon_vma *anon_vma = NULL;
448	struct anon_vma *root_anon_vma;
449	unsigned long anon_mapping;
450
451	rcu_read_lock();
452	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454		goto out;
455	if (!page_mapped(page))
456		goto out;
457
458	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459	root_anon_vma = ACCESS_ONCE(anon_vma->root);
460	if (down_read_trylock(&root_anon_vma->rwsem)) {
461		/*
462		 * If the page is still mapped, then this anon_vma is still
463		 * its anon_vma, and holding the mutex ensures that it will
464		 * not go away, see anon_vma_free().
465		 */
466		if (!page_mapped(page)) {
467			up_read(&root_anon_vma->rwsem);
468			anon_vma = NULL;
469		}
470		goto out;
471	}
472
473	/* trylock failed, we got to sleep */
474	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475		anon_vma = NULL;
476		goto out;
477	}
478
479	if (!page_mapped(page)) {
480		put_anon_vma(anon_vma);
481		anon_vma = NULL;
482		goto out;
483	}
484
485	/* we pinned the anon_vma, its safe to sleep */
486	rcu_read_unlock();
487	anon_vma_lock_read(anon_vma);
488
489	if (atomic_dec_and_test(&anon_vma->refcount)) {
490		/*
491		 * Oops, we held the last refcount, release the lock
492		 * and bail -- can't simply use put_anon_vma() because
493		 * we'll deadlock on the anon_vma_lock_write() recursion.
494		 */
495		anon_vma_unlock_read(anon_vma);
496		__put_anon_vma(anon_vma);
497		anon_vma = NULL;
498	}
499
500	return anon_vma;
501
502out:
503	rcu_read_unlock();
504	return anon_vma;
505}
506
507void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
508{
509	anon_vma_unlock_read(anon_vma);
510}
511
512/*
513 * At what user virtual address is page expected in @vma?
514 */
515static inline unsigned long
516__vma_address(struct page *page, struct vm_area_struct *vma)
517{
518	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519
520	if (unlikely(is_vm_hugetlb_page(vma)))
521		pgoff = page->index << huge_page_order(page_hstate(page));
522
523	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524}
525
526inline unsigned long
527vma_address(struct page *page, struct vm_area_struct *vma)
528{
529	unsigned long address = __vma_address(page, vma);
530
531	/* page should be within @vma mapping range */
532	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533
534	return address;
535}
536
537/*
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
540 */
541unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542{
543	unsigned long address;
544	if (PageAnon(page)) {
545		struct anon_vma *page__anon_vma = page_anon_vma(page);
546		/*
547		 * Note: swapoff's unuse_vma() is more efficient with this
548		 * check, and needs it to match anon_vma when KSM is active.
549		 */
550		if (!vma->anon_vma || !page__anon_vma ||
551		    vma->anon_vma->root != page__anon_vma->root)
552			return -EFAULT;
553	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554		if (!vma->vm_file ||
555		    vma->vm_file->f_mapping != page->mapping)
556			return -EFAULT;
557	} else
558		return -EFAULT;
559	address = __vma_address(page, vma);
560	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561		return -EFAULT;
562	return address;
563}
564
565pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
566{
567	pgd_t *pgd;
568	pud_t *pud;
569	pmd_t *pmd = NULL;
570
571	pgd = pgd_offset(mm, address);
572	if (!pgd_present(*pgd))
573		goto out;
574
575	pud = pud_offset(pgd, address);
576	if (!pud_present(*pud))
577		goto out;
578
579	pmd = pmd_offset(pud, address);
580	if (!pmd_present(*pmd))
581		pmd = NULL;
582out:
583	return pmd;
584}
585
586/*
587 * Check that @page is mapped at @address into @mm.
588 *
589 * If @sync is false, page_check_address may perform a racy check to avoid
590 * the page table lock when the pte is not present (helpful when reclaiming
591 * highly shared pages).
592 *
593 * On success returns with pte mapped and locked.
594 */
595pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
596			  unsigned long address, spinlock_t **ptlp, int sync)
597{
598	pmd_t *pmd;
599	pte_t *pte;
600	spinlock_t *ptl;
601
602	if (unlikely(PageHuge(page))) {
603		pte = huge_pte_offset(mm, address);
604		ptl = &mm->page_table_lock;
605		goto check;
606	}
607
608	pmd = mm_find_pmd(mm, address);
609	if (!pmd)
610		return NULL;
611
612	if (pmd_trans_huge(*pmd))
613		return NULL;
614
615	pte = pte_offset_map(pmd, address);
616	/* Make a quick check before getting the lock */
617	if (!sync && !pte_present(*pte)) {
618		pte_unmap(pte);
619		return NULL;
620	}
621
622	ptl = pte_lockptr(mm, pmd);
623check:
624	spin_lock(ptl);
625	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
626		*ptlp = ptl;
627		return pte;
628	}
629	pte_unmap_unlock(pte, ptl);
630	return NULL;
631}
632
633/**
634 * page_mapped_in_vma - check whether a page is really mapped in a VMA
635 * @page: the page to test
636 * @vma: the VMA to test
637 *
638 * Returns 1 if the page is mapped into the page tables of the VMA, 0
639 * if the page is not mapped into the page tables of this VMA.  Only
640 * valid for normal file or anonymous VMAs.
641 */
642int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
643{
644	unsigned long address;
645	pte_t *pte;
646	spinlock_t *ptl;
647
648	address = __vma_address(page, vma);
649	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
650		return 0;
651	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
652	if (!pte)			/* the page is not in this mm */
653		return 0;
654	pte_unmap_unlock(pte, ptl);
655
656	return 1;
657}
658
659/*
660 * Subfunctions of page_referenced: page_referenced_one called
661 * repeatedly from either page_referenced_anon or page_referenced_file.
662 */
663int page_referenced_one(struct page *page, struct vm_area_struct *vma,
664			unsigned long address, unsigned int *mapcount,
665			unsigned long *vm_flags)
666{
667	struct mm_struct *mm = vma->vm_mm;
668	int referenced = 0;
669
670	if (unlikely(PageTransHuge(page))) {
671		pmd_t *pmd;
672
673		spin_lock(&mm->page_table_lock);
674		/*
675		 * rmap might return false positives; we must filter
676		 * these out using page_check_address_pmd().
677		 */
678		pmd = page_check_address_pmd(page, mm, address,
679					     PAGE_CHECK_ADDRESS_PMD_FLAG);
680		if (!pmd) {
681			spin_unlock(&mm->page_table_lock);
682			goto out;
683		}
684
685		if (vma->vm_flags & VM_LOCKED) {
686			spin_unlock(&mm->page_table_lock);
687			*mapcount = 0;	/* break early from loop */
688			*vm_flags |= VM_LOCKED;
689			goto out;
690		}
691
692		/* go ahead even if the pmd is pmd_trans_splitting() */
693		if (pmdp_clear_flush_young_notify(vma, address, pmd))
694			referenced++;
695		spin_unlock(&mm->page_table_lock);
696	} else {
697		pte_t *pte;
698		spinlock_t *ptl;
699
700		/*
701		 * rmap might return false positives; we must filter
702		 * these out using page_check_address().
703		 */
704		pte = page_check_address(page, mm, address, &ptl, 0);
705		if (!pte)
706			goto out;
707
708		if (vma->vm_flags & VM_LOCKED) {
709			pte_unmap_unlock(pte, ptl);
710			*mapcount = 0;	/* break early from loop */
711			*vm_flags |= VM_LOCKED;
712			goto out;
713		}
714
715		if (ptep_clear_flush_young_notify(vma, address, pte)) {
716			/*
717			 * Don't treat a reference through a sequentially read
718			 * mapping as such.  If the page has been used in
719			 * another mapping, we will catch it; if this other
720			 * mapping is already gone, the unmap path will have
721			 * set PG_referenced or activated the page.
722			 */
723			if (likely(!VM_SequentialReadHint(vma)))
724				referenced++;
725		}
726		pte_unmap_unlock(pte, ptl);
727	}
728
729	(*mapcount)--;
730
731	if (referenced)
732		*vm_flags |= vma->vm_flags;
733out:
734	return referenced;
735}
736
737static int page_referenced_anon(struct page *page,
738				struct mem_cgroup *memcg,
739				unsigned long *vm_flags)
740{
741	unsigned int mapcount;
742	struct anon_vma *anon_vma;
743	pgoff_t pgoff;
744	struct anon_vma_chain *avc;
745	int referenced = 0;
746
747	anon_vma = page_lock_anon_vma_read(page);
748	if (!anon_vma)
749		return referenced;
750
751	mapcount = page_mapcount(page);
752	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
753	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
754		struct vm_area_struct *vma = avc->vma;
755		unsigned long address = vma_address(page, vma);
756		/*
757		 * If we are reclaiming on behalf of a cgroup, skip
758		 * counting on behalf of references from different
759		 * cgroups
760		 */
761		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
762			continue;
763		referenced += page_referenced_one(page, vma, address,
764						  &mapcount, vm_flags);
765		if (!mapcount)
766			break;
767	}
768
769	page_unlock_anon_vma_read(anon_vma);
770	return referenced;
771}
772
773/**
774 * page_referenced_file - referenced check for object-based rmap
775 * @page: the page we're checking references on.
776 * @memcg: target memory control group
777 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
778 *
779 * For an object-based mapped page, find all the places it is mapped and
780 * check/clear the referenced flag.  This is done by following the page->mapping
781 * pointer, then walking the chain of vmas it holds.  It returns the number
782 * of references it found.
783 *
784 * This function is only called from page_referenced for object-based pages.
785 */
786static int page_referenced_file(struct page *page,
787				struct mem_cgroup *memcg,
788				unsigned long *vm_flags)
789{
790	unsigned int mapcount;
791	struct address_space *mapping = page->mapping;
792	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
793	struct vm_area_struct *vma;
794	int referenced = 0;
795
796	/*
797	 * The caller's checks on page->mapping and !PageAnon have made
798	 * sure that this is a file page: the check for page->mapping
799	 * excludes the case just before it gets set on an anon page.
800	 */
801	BUG_ON(PageAnon(page));
802
803	/*
804	 * The page lock not only makes sure that page->mapping cannot
805	 * suddenly be NULLified by truncation, it makes sure that the
806	 * structure at mapping cannot be freed and reused yet,
807	 * so we can safely take mapping->i_mmap_mutex.
808	 */
809	BUG_ON(!PageLocked(page));
810
811	mutex_lock(&mapping->i_mmap_mutex);
812
813	/*
814	 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
815	 * is more likely to be accurate if we note it after spinning.
816	 */
817	mapcount = page_mapcount(page);
818
819	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
820		unsigned long address = vma_address(page, vma);
821		/*
822		 * If we are reclaiming on behalf of a cgroup, skip
823		 * counting on behalf of references from different
824		 * cgroups
825		 */
826		if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
827			continue;
828		referenced += page_referenced_one(page, vma, address,
829						  &mapcount, vm_flags);
830		if (!mapcount)
831			break;
832	}
833
834	mutex_unlock(&mapping->i_mmap_mutex);
835	return referenced;
836}
837
838/**
839 * page_referenced - test if the page was referenced
840 * @page: the page to test
841 * @is_locked: caller holds lock on the page
842 * @memcg: target memory cgroup
843 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
844 *
845 * Quick test_and_clear_referenced for all mappings to a page,
846 * returns the number of ptes which referenced the page.
847 */
848int page_referenced(struct page *page,
849		    int is_locked,
850		    struct mem_cgroup *memcg,
851		    unsigned long *vm_flags)
852{
853	int referenced = 0;
854	int we_locked = 0;
855
856	*vm_flags = 0;
857	if (page_mapped(page) && page_rmapping(page)) {
858		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
859			we_locked = trylock_page(page);
860			if (!we_locked) {
861				referenced++;
862				goto out;
863			}
864		}
865		if (unlikely(PageKsm(page)))
866			referenced += page_referenced_ksm(page, memcg,
867								vm_flags);
868		else if (PageAnon(page))
869			referenced += page_referenced_anon(page, memcg,
870								vm_flags);
871		else if (page->mapping)
872			referenced += page_referenced_file(page, memcg,
873								vm_flags);
874		if (we_locked)
875			unlock_page(page);
876
877		if (page_test_and_clear_young(page_to_pfn(page)))
878			referenced++;
879	}
880out:
881	return referenced;
882}
883
884static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
885			    unsigned long address)
886{
887	struct mm_struct *mm = vma->vm_mm;
888	pte_t *pte;
889	spinlock_t *ptl;
890	int ret = 0;
891
892	pte = page_check_address(page, mm, address, &ptl, 1);
893	if (!pte)
894		goto out;
895
896	if (pte_dirty(*pte) || pte_write(*pte)) {
897		pte_t entry;
898
899		flush_cache_page(vma, address, pte_pfn(*pte));
900		entry = ptep_clear_flush(vma, address, pte);
901		entry = pte_wrprotect(entry);
902		entry = pte_mkclean(entry);
903		set_pte_at(mm, address, pte, entry);
904		ret = 1;
905	}
906
907	pte_unmap_unlock(pte, ptl);
908
909	if (ret)
910		mmu_notifier_invalidate_page(mm, address);
911out:
912	return ret;
913}
914
915static int page_mkclean_file(struct address_space *mapping, struct page *page)
916{
917	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
918	struct vm_area_struct *vma;
919	int ret = 0;
920
921	BUG_ON(PageAnon(page));
922
923	mutex_lock(&mapping->i_mmap_mutex);
924	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
925		if (vma->vm_flags & VM_SHARED) {
926			unsigned long address = vma_address(page, vma);
927			ret += page_mkclean_one(page, vma, address);
928		}
929	}
930	mutex_unlock(&mapping->i_mmap_mutex);
931	return ret;
932}
933
934int page_mkclean(struct page *page)
935{
936	int ret = 0;
937
938	BUG_ON(!PageLocked(page));
939
940	if (page_mapped(page)) {
941		struct address_space *mapping = page_mapping(page);
942		if (mapping)
943			ret = page_mkclean_file(mapping, page);
944	}
945
946	return ret;
947}
948EXPORT_SYMBOL_GPL(page_mkclean);
949
950/**
951 * page_move_anon_rmap - move a page to our anon_vma
952 * @page:	the page to move to our anon_vma
953 * @vma:	the vma the page belongs to
954 * @address:	the user virtual address mapped
955 *
956 * When a page belongs exclusively to one process after a COW event,
957 * that page can be moved into the anon_vma that belongs to just that
958 * process, so the rmap code will not search the parent or sibling
959 * processes.
960 */
961void page_move_anon_rmap(struct page *page,
962	struct vm_area_struct *vma, unsigned long address)
963{
964	struct anon_vma *anon_vma = vma->anon_vma;
965
966	VM_BUG_ON(!PageLocked(page));
967	VM_BUG_ON(!anon_vma);
968	VM_BUG_ON(page->index != linear_page_index(vma, address));
969
970	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
971	page->mapping = (struct address_space *) anon_vma;
972}
973
974/**
975 * __page_set_anon_rmap - set up new anonymous rmap
976 * @page:	Page to add to rmap
977 * @vma:	VM area to add page to.
978 * @address:	User virtual address of the mapping
979 * @exclusive:	the page is exclusively owned by the current process
980 */
981static void __page_set_anon_rmap(struct page *page,
982	struct vm_area_struct *vma, unsigned long address, int exclusive)
983{
984	struct anon_vma *anon_vma = vma->anon_vma;
985
986	BUG_ON(!anon_vma);
987
988	if (PageAnon(page))
989		return;
990
991	/*
992	 * If the page isn't exclusively mapped into this vma,
993	 * we must use the _oldest_ possible anon_vma for the
994	 * page mapping!
995	 */
996	if (!exclusive)
997		anon_vma = anon_vma->root;
998
999	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1000	page->mapping = (struct address_space *) anon_vma;
1001	page->index = linear_page_index(vma, address);
1002}
1003
1004/**
1005 * __page_check_anon_rmap - sanity check anonymous rmap addition
1006 * @page:	the page to add the mapping to
1007 * @vma:	the vm area in which the mapping is added
1008 * @address:	the user virtual address mapped
1009 */
1010static void __page_check_anon_rmap(struct page *page,
1011	struct vm_area_struct *vma, unsigned long address)
1012{
1013#ifdef CONFIG_DEBUG_VM
1014	/*
1015	 * The page's anon-rmap details (mapping and index) are guaranteed to
1016	 * be set up correctly at this point.
1017	 *
1018	 * We have exclusion against page_add_anon_rmap because the caller
1019	 * always holds the page locked, except if called from page_dup_rmap,
1020	 * in which case the page is already known to be setup.
1021	 *
1022	 * We have exclusion against page_add_new_anon_rmap because those pages
1023	 * are initially only visible via the pagetables, and the pte is locked
1024	 * over the call to page_add_new_anon_rmap.
1025	 */
1026	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1027	BUG_ON(page->index != linear_page_index(vma, address));
1028#endif
1029}
1030
1031/**
1032 * page_add_anon_rmap - add pte mapping to an anonymous page
1033 * @page:	the page to add the mapping to
1034 * @vma:	the vm area in which the mapping is added
1035 * @address:	the user virtual address mapped
1036 *
1037 * The caller needs to hold the pte lock, and the page must be locked in
1038 * the anon_vma case: to serialize mapping,index checking after setting,
1039 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1040 * (but PageKsm is never downgraded to PageAnon).
1041 */
1042void page_add_anon_rmap(struct page *page,
1043	struct vm_area_struct *vma, unsigned long address)
1044{
1045	do_page_add_anon_rmap(page, vma, address, 0);
1046}
1047
1048/*
1049 * Special version of the above for do_swap_page, which often runs
1050 * into pages that are exclusively owned by the current process.
1051 * Everybody else should continue to use page_add_anon_rmap above.
1052 */
1053void do_page_add_anon_rmap(struct page *page,
1054	struct vm_area_struct *vma, unsigned long address, int exclusive)
1055{
1056	int first = atomic_inc_and_test(&page->_mapcount);
1057	if (first) {
1058		if (!PageTransHuge(page))
1059			__inc_zone_page_state(page, NR_ANON_PAGES);
1060		else
1061			__inc_zone_page_state(page,
1062					      NR_ANON_TRANSPARENT_HUGEPAGES);
1063	}
1064	if (unlikely(PageKsm(page)))
1065		return;
1066
1067	VM_BUG_ON(!PageLocked(page));
1068	/* address might be in next vma when migration races vma_adjust */
1069	if (first)
1070		__page_set_anon_rmap(page, vma, address, exclusive);
1071	else
1072		__page_check_anon_rmap(page, vma, address);
1073}
1074
1075/**
1076 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1077 * @page:	the page to add the mapping to
1078 * @vma:	the vm area in which the mapping is added
1079 * @address:	the user virtual address mapped
1080 *
1081 * Same as page_add_anon_rmap but must only be called on *new* pages.
1082 * This means the inc-and-test can be bypassed.
1083 * Page does not have to be locked.
1084 */
1085void page_add_new_anon_rmap(struct page *page,
1086	struct vm_area_struct *vma, unsigned long address)
1087{
1088	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1089	SetPageSwapBacked(page);
1090	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1091	if (!PageTransHuge(page))
1092		__inc_zone_page_state(page, NR_ANON_PAGES);
1093	else
1094		__inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1095	__page_set_anon_rmap(page, vma, address, 1);
1096	if (!mlocked_vma_newpage(vma, page))
1097		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1098	else
1099		add_page_to_unevictable_list(page);
1100}
1101
1102/**
1103 * page_add_file_rmap - add pte mapping to a file page
1104 * @page: the page to add the mapping to
1105 *
1106 * The caller needs to hold the pte lock.
1107 */
1108void page_add_file_rmap(struct page *page)
1109{
1110	bool locked;
1111	unsigned long flags;
1112
1113	mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1114	if (atomic_inc_and_test(&page->_mapcount)) {
1115		__inc_zone_page_state(page, NR_FILE_MAPPED);
1116		mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1117	}
1118	mem_cgroup_end_update_page_stat(page, &locked, &flags);
1119}
1120
1121/**
1122 * page_remove_rmap - take down pte mapping from a page
1123 * @page: page to remove mapping from
1124 *
1125 * The caller needs to hold the pte lock.
1126 */
1127void page_remove_rmap(struct page *page)
1128{
1129	bool anon = PageAnon(page);
1130	bool locked;
1131	unsigned long flags;
1132
1133	/*
1134	 * The anon case has no mem_cgroup page_stat to update; but may
1135	 * uncharge_page() below, where the lock ordering can deadlock if
1136	 * we hold the lock against page_stat move: so avoid it on anon.
1137	 */
1138	if (!anon)
1139		mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1140
1141	/* page still mapped by someone else? */
1142	if (!atomic_add_negative(-1, &page->_mapcount))
1143		goto out;
1144
1145	/*
1146	 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1147	 * and not charged by memcg for now.
1148	 */
1149	if (unlikely(PageHuge(page)))
1150		goto out;
1151	if (anon) {
1152		mem_cgroup_uncharge_page(page);
1153		if (!PageTransHuge(page))
1154			__dec_zone_page_state(page, NR_ANON_PAGES);
1155		else
1156			__dec_zone_page_state(page,
1157					      NR_ANON_TRANSPARENT_HUGEPAGES);
1158	} else {
1159		__dec_zone_page_state(page, NR_FILE_MAPPED);
1160		mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1161		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1162	}
1163	if (unlikely(PageMlocked(page)))
1164		clear_page_mlock(page);
1165	/*
1166	 * It would be tidy to reset the PageAnon mapping here,
1167	 * but that might overwrite a racing page_add_anon_rmap
1168	 * which increments mapcount after us but sets mapping
1169	 * before us: so leave the reset to free_hot_cold_page,
1170	 * and remember that it's only reliable while mapped.
1171	 * Leaving it set also helps swapoff to reinstate ptes
1172	 * faster for those pages still in swapcache.
1173	 */
1174	return;
1175out:
1176	if (!anon)
1177		mem_cgroup_end_update_page_stat(page, &locked, &flags);
1178}
1179
1180/*
1181 * Subfunctions of try_to_unmap: try_to_unmap_one called
1182 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1183 */
1184int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1185		     unsigned long address, enum ttu_flags flags)
1186{
1187	struct mm_struct *mm = vma->vm_mm;
1188	pte_t *pte;
1189	pte_t pteval;
1190	spinlock_t *ptl;
1191	int ret = SWAP_AGAIN;
1192
1193	pte = page_check_address(page, mm, address, &ptl, 0);
1194	if (!pte)
1195		goto out;
1196
1197	/*
1198	 * If the page is mlock()d, we cannot swap it out.
1199	 * If it's recently referenced (perhaps page_referenced
1200	 * skipped over this mm) then we should reactivate it.
1201	 */
1202	if (!(flags & TTU_IGNORE_MLOCK)) {
1203		if (vma->vm_flags & VM_LOCKED)
1204			goto out_mlock;
1205
1206		if (TTU_ACTION(flags) == TTU_MUNLOCK)
1207			goto out_unmap;
1208	}
1209	if (!(flags & TTU_IGNORE_ACCESS)) {
1210		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1211			ret = SWAP_FAIL;
1212			goto out_unmap;
1213		}
1214  	}
1215
1216	/* Nuke the page table entry. */
1217	flush_cache_page(vma, address, page_to_pfn(page));
1218	pteval = ptep_clear_flush(vma, address, pte);
1219
1220	/* Move the dirty bit to the physical page now the pte is gone. */
1221	if (pte_dirty(pteval))
1222		set_page_dirty(page);
1223
1224	/* Update high watermark before we lower rss */
1225	update_hiwater_rss(mm);
1226
1227	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1228		if (!PageHuge(page)) {
1229			if (PageAnon(page))
1230				dec_mm_counter(mm, MM_ANONPAGES);
1231			else
1232				dec_mm_counter(mm, MM_FILEPAGES);
1233		}
1234		set_pte_at(mm, address, pte,
1235			   swp_entry_to_pte(make_hwpoison_entry(page)));
1236	} else if (PageAnon(page)) {
1237		swp_entry_t entry = { .val = page_private(page) };
1238
1239		if (PageSwapCache(page)) {
1240			/*
1241			 * Store the swap location in the pte.
1242			 * See handle_pte_fault() ...
1243			 */
1244			if (swap_duplicate(entry) < 0) {
1245				set_pte_at(mm, address, pte, pteval);
1246				ret = SWAP_FAIL;
1247				goto out_unmap;
1248			}
1249			if (list_empty(&mm->mmlist)) {
1250				spin_lock(&mmlist_lock);
1251				if (list_empty(&mm->mmlist))
1252					list_add(&mm->mmlist, &init_mm.mmlist);
1253				spin_unlock(&mmlist_lock);
1254			}
1255			dec_mm_counter(mm, MM_ANONPAGES);
1256			inc_mm_counter(mm, MM_SWAPENTS);
1257		} else if (IS_ENABLED(CONFIG_MIGRATION)) {
1258			/*
1259			 * Store the pfn of the page in a special migration
1260			 * pte. do_swap_page() will wait until the migration
1261			 * pte is removed and then restart fault handling.
1262			 */
1263			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1264			entry = make_migration_entry(page, pte_write(pteval));
1265		}
1266		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1267		BUG_ON(pte_file(*pte));
1268	} else if (IS_ENABLED(CONFIG_MIGRATION) &&
1269		   (TTU_ACTION(flags) == TTU_MIGRATION)) {
1270		/* Establish migration entry for a file page */
1271		swp_entry_t entry;
1272		entry = make_migration_entry(page, pte_write(pteval));
1273		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1274	} else
1275		dec_mm_counter(mm, MM_FILEPAGES);
1276
1277	page_remove_rmap(page);
1278	page_cache_release(page);
1279
1280out_unmap:
1281	pte_unmap_unlock(pte, ptl);
1282	if (ret != SWAP_FAIL)
1283		mmu_notifier_invalidate_page(mm, address);
1284out:
1285	return ret;
1286
1287out_mlock:
1288	pte_unmap_unlock(pte, ptl);
1289
1290
1291	/*
1292	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1293	 * unstable result and race. Plus, We can't wait here because
1294	 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1295	 * if trylock failed, the page remain in evictable lru and later
1296	 * vmscan could retry to move the page to unevictable lru if the
1297	 * page is actually mlocked.
1298	 */
1299	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1300		if (vma->vm_flags & VM_LOCKED) {
1301			mlock_vma_page(page);
1302			ret = SWAP_MLOCK;
1303		}
1304		up_read(&vma->vm_mm->mmap_sem);
1305	}
1306	return ret;
1307}
1308
1309/*
1310 * objrmap doesn't work for nonlinear VMAs because the assumption that
1311 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1312 * Consequently, given a particular page and its ->index, we cannot locate the
1313 * ptes which are mapping that page without an exhaustive linear search.
1314 *
1315 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1316 * maps the file to which the target page belongs.  The ->vm_private_data field
1317 * holds the current cursor into that scan.  Successive searches will circulate
1318 * around the vma's virtual address space.
1319 *
1320 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1321 * more scanning pressure is placed against them as well.   Eventually pages
1322 * will become fully unmapped and are eligible for eviction.
1323 *
1324 * For very sparsely populated VMAs this is a little inefficient - chances are
1325 * there there won't be many ptes located within the scan cluster.  In this case
1326 * maybe we could scan further - to the end of the pte page, perhaps.
1327 *
1328 * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
1329 * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
1330 * rather than unmapping them.  If we encounter the "check_page" that vmscan is
1331 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1332 */
1333#define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
1334#define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
1335
1336static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1337		struct vm_area_struct *vma, struct page *check_page)
1338{
1339	struct mm_struct *mm = vma->vm_mm;
1340	pmd_t *pmd;
1341	pte_t *pte;
1342	pte_t pteval;
1343	spinlock_t *ptl;
1344	struct page *page;
1345	unsigned long address;
1346	unsigned long mmun_start;	/* For mmu_notifiers */
1347	unsigned long mmun_end;		/* For mmu_notifiers */
1348	unsigned long end;
1349	int ret = SWAP_AGAIN;
1350	int locked_vma = 0;
1351
1352	address = (vma->vm_start + cursor) & CLUSTER_MASK;
1353	end = address + CLUSTER_SIZE;
1354	if (address < vma->vm_start)
1355		address = vma->vm_start;
1356	if (end > vma->vm_end)
1357		end = vma->vm_end;
1358
1359	pmd = mm_find_pmd(mm, address);
1360	if (!pmd)
1361		return ret;
1362
1363	mmun_start = address;
1364	mmun_end   = end;
1365	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1366
1367	/*
1368	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1369	 * keep the sem while scanning the cluster for mlocking pages.
1370	 */
1371	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1372		locked_vma = (vma->vm_flags & VM_LOCKED);
1373		if (!locked_vma)
1374			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1375	}
1376
1377	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1378
1379	/* Update high watermark before we lower rss */
1380	update_hiwater_rss(mm);
1381
1382	for (; address < end; pte++, address += PAGE_SIZE) {
1383		if (!pte_present(*pte))
1384			continue;
1385		page = vm_normal_page(vma, address, *pte);
1386		BUG_ON(!page || PageAnon(page));
1387
1388		if (locked_vma) {
1389			mlock_vma_page(page);   /* no-op if already mlocked */
1390			if (page == check_page)
1391				ret = SWAP_MLOCK;
1392			continue;	/* don't unmap */
1393		}
1394
1395		if (ptep_clear_flush_young_notify(vma, address, pte))
1396			continue;
1397
1398		/* Nuke the page table entry. */
1399		flush_cache_page(vma, address, pte_pfn(*pte));
1400		pteval = ptep_clear_flush(vma, address, pte);
1401
1402		/* If nonlinear, store the file page offset in the pte. */
1403		if (page->index != linear_page_index(vma, address))
1404			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1405
1406		/* Move the dirty bit to the physical page now the pte is gone. */
1407		if (pte_dirty(pteval))
1408			set_page_dirty(page);
1409
1410		page_remove_rmap(page);
1411		page_cache_release(page);
1412		dec_mm_counter(mm, MM_FILEPAGES);
1413		(*mapcount)--;
1414	}
1415	pte_unmap_unlock(pte - 1, ptl);
1416	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1417	if (locked_vma)
1418		up_read(&vma->vm_mm->mmap_sem);
1419	return ret;
1420}
1421
1422bool is_vma_temporary_stack(struct vm_area_struct *vma)
1423{
1424	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1425
1426	if (!maybe_stack)
1427		return false;
1428
1429	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1430						VM_STACK_INCOMPLETE_SETUP)
1431		return true;
1432
1433	return false;
1434}
1435
1436/**
1437 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1438 * rmap method
1439 * @page: the page to unmap/unlock
1440 * @flags: action and flags
1441 *
1442 * Find all the mappings of a page using the mapping pointer and the vma chains
1443 * contained in the anon_vma struct it points to.
1444 *
1445 * This function is only called from try_to_unmap/try_to_munlock for
1446 * anonymous pages.
1447 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1448 * where the page was found will be held for write.  So, we won't recheck
1449 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1450 * 'LOCKED.
1451 */
1452static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1453{
1454	struct anon_vma *anon_vma;
1455	pgoff_t pgoff;
1456	struct anon_vma_chain *avc;
1457	int ret = SWAP_AGAIN;
1458
1459	anon_vma = page_lock_anon_vma_read(page);
1460	if (!anon_vma)
1461		return ret;
1462
1463	pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1464	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1465		struct vm_area_struct *vma = avc->vma;
1466		unsigned long address;
1467
1468		/*
1469		 * During exec, a temporary VMA is setup and later moved.
1470		 * The VMA is moved under the anon_vma lock but not the
1471		 * page tables leading to a race where migration cannot
1472		 * find the migration ptes. Rather than increasing the
1473		 * locking requirements of exec(), migration skips
1474		 * temporary VMAs until after exec() completes.
1475		 */
1476		if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1477				is_vma_temporary_stack(vma))
1478			continue;
1479
1480		address = vma_address(page, vma);
1481		ret = try_to_unmap_one(page, vma, address, flags);
1482		if (ret != SWAP_AGAIN || !page_mapped(page))
1483			break;
1484	}
1485
1486	page_unlock_anon_vma_read(anon_vma);
1487	return ret;
1488}
1489
1490/**
1491 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1492 * @page: the page to unmap/unlock
1493 * @flags: action and flags
1494 *
1495 * Find all the mappings of a page using the mapping pointer and the vma chains
1496 * contained in the address_space struct it points to.
1497 *
1498 * This function is only called from try_to_unmap/try_to_munlock for
1499 * object-based pages.
1500 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1501 * where the page was found will be held for write.  So, we won't recheck
1502 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1503 * 'LOCKED.
1504 */
1505static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1506{
1507	struct address_space *mapping = page->mapping;
1508	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1509	struct vm_area_struct *vma;
1510	int ret = SWAP_AGAIN;
1511	unsigned long cursor;
1512	unsigned long max_nl_cursor = 0;
1513	unsigned long max_nl_size = 0;
1514	unsigned int mapcount;
1515
1516	if (PageHuge(page))
1517		pgoff = page->index << compound_order(page);
1518
1519	mutex_lock(&mapping->i_mmap_mutex);
1520	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1521		unsigned long address = vma_address(page, vma);
1522		ret = try_to_unmap_one(page, vma, address, flags);
1523		if (ret != SWAP_AGAIN || !page_mapped(page))
1524			goto out;
1525	}
1526
1527	if (list_empty(&mapping->i_mmap_nonlinear))
1528		goto out;
1529
1530	/*
1531	 * We don't bother to try to find the munlocked page in nonlinears.
1532	 * It's costly. Instead, later, page reclaim logic may call
1533	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1534	 */
1535	if (TTU_ACTION(flags) == TTU_MUNLOCK)
1536		goto out;
1537
1538	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1539							shared.nonlinear) {
1540		cursor = (unsigned long) vma->vm_private_data;
1541		if (cursor > max_nl_cursor)
1542			max_nl_cursor = cursor;
1543		cursor = vma->vm_end - vma->vm_start;
1544		if (cursor > max_nl_size)
1545			max_nl_size = cursor;
1546	}
1547
1548	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
1549		ret = SWAP_FAIL;
1550		goto out;
1551	}
1552
1553	/*
1554	 * We don't try to search for this page in the nonlinear vmas,
1555	 * and page_referenced wouldn't have found it anyway.  Instead
1556	 * just walk the nonlinear vmas trying to age and unmap some.
1557	 * The mapcount of the page we came in with is irrelevant,
1558	 * but even so use it as a guide to how hard we should try?
1559	 */
1560	mapcount = page_mapcount(page);
1561	if (!mapcount)
1562		goto out;
1563	cond_resched();
1564
1565	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1566	if (max_nl_cursor == 0)
1567		max_nl_cursor = CLUSTER_SIZE;
1568
1569	do {
1570		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1571							shared.nonlinear) {
1572			cursor = (unsigned long) vma->vm_private_data;
1573			while ( cursor < max_nl_cursor &&
1574				cursor < vma->vm_end - vma->vm_start) {
1575				if (try_to_unmap_cluster(cursor, &mapcount,
1576						vma, page) == SWAP_MLOCK)
1577					ret = SWAP_MLOCK;
1578				cursor += CLUSTER_SIZE;
1579				vma->vm_private_data = (void *) cursor;
1580				if ((int)mapcount <= 0)
1581					goto out;
1582			}
1583			vma->vm_private_data = (void *) max_nl_cursor;
1584		}
1585		cond_resched();
1586		max_nl_cursor += CLUSTER_SIZE;
1587	} while (max_nl_cursor <= max_nl_size);
1588
1589	/*
1590	 * Don't loop forever (perhaps all the remaining pages are
1591	 * in locked vmas).  Reset cursor on all unreserved nonlinear
1592	 * vmas, now forgetting on which ones it had fallen behind.
1593	 */
1594	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1595		vma->vm_private_data = NULL;
1596out:
1597	mutex_unlock(&mapping->i_mmap_mutex);
1598	return ret;
1599}
1600
1601/**
1602 * try_to_unmap - try to remove all page table mappings to a page
1603 * @page: the page to get unmapped
1604 * @flags: action and flags
1605 *
1606 * Tries to remove all the page table entries which are mapping this
1607 * page, used in the pageout path.  Caller must hold the page lock.
1608 * Return values are:
1609 *
1610 * SWAP_SUCCESS	- we succeeded in removing all mappings
1611 * SWAP_AGAIN	- we missed a mapping, try again later
1612 * SWAP_FAIL	- the page is unswappable
1613 * SWAP_MLOCK	- page is mlocked.
1614 */
1615int try_to_unmap(struct page *page, enum ttu_flags flags)
1616{
1617	int ret;
1618
1619	BUG_ON(!PageLocked(page));
1620	VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1621
1622	if (unlikely(PageKsm(page)))
1623		ret = try_to_unmap_ksm(page, flags);
1624	else if (PageAnon(page))
1625		ret = try_to_unmap_anon(page, flags);
1626	else
1627		ret = try_to_unmap_file(page, flags);
1628	if (ret != SWAP_MLOCK && !page_mapped(page))
1629		ret = SWAP_SUCCESS;
1630	return ret;
1631}
1632
1633/**
1634 * try_to_munlock - try to munlock a page
1635 * @page: the page to be munlocked
1636 *
1637 * Called from munlock code.  Checks all of the VMAs mapping the page
1638 * to make sure nobody else has this page mlocked. The page will be
1639 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1640 *
1641 * Return values are:
1642 *
1643 * SWAP_AGAIN	- no vma is holding page mlocked, or,
1644 * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1645 * SWAP_FAIL	- page cannot be located at present
1646 * SWAP_MLOCK	- page is now mlocked.
1647 */
1648int try_to_munlock(struct page *page)
1649{
1650	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1651
1652	if (unlikely(PageKsm(page)))
1653		return try_to_unmap_ksm(page, TTU_MUNLOCK);
1654	else if (PageAnon(page))
1655		return try_to_unmap_anon(page, TTU_MUNLOCK);
1656	else
1657		return try_to_unmap_file(page, TTU_MUNLOCK);
1658}
1659
1660void __put_anon_vma(struct anon_vma *anon_vma)
1661{
1662	struct anon_vma *root = anon_vma->root;
1663
1664	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1665		anon_vma_free(root);
1666
1667	anon_vma_free(anon_vma);
1668}
1669
1670#ifdef CONFIG_MIGRATION
1671/*
1672 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1673 * Called by migrate.c to remove migration ptes, but might be used more later.
1674 */
1675static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1676		struct vm_area_struct *, unsigned long, void *), void *arg)
1677{
1678	struct anon_vma *anon_vma;
1679	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1680	struct anon_vma_chain *avc;
1681	int ret = SWAP_AGAIN;
1682
1683	/*
1684	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1685	 * because that depends on page_mapped(); but not all its usages
1686	 * are holding mmap_sem. Users without mmap_sem are required to
1687	 * take a reference count to prevent the anon_vma disappearing
1688	 */
1689	anon_vma = page_anon_vma(page);
1690	if (!anon_vma)
1691		return ret;
1692	anon_vma_lock_read(anon_vma);
1693	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1694		struct vm_area_struct *vma = avc->vma;
1695		unsigned long address = vma_address(page, vma);
1696		ret = rmap_one(page, vma, address, arg);
1697		if (ret != SWAP_AGAIN)
1698			break;
1699	}
1700	anon_vma_unlock_read(anon_vma);
1701	return ret;
1702}
1703
1704static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1705		struct vm_area_struct *, unsigned long, void *), void *arg)
1706{
1707	struct address_space *mapping = page->mapping;
1708	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1709	struct vm_area_struct *vma;
1710	int ret = SWAP_AGAIN;
1711
1712	if (!mapping)
1713		return ret;
1714	mutex_lock(&mapping->i_mmap_mutex);
1715	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1716		unsigned long address = vma_address(page, vma);
1717		ret = rmap_one(page, vma, address, arg);
1718		if (ret != SWAP_AGAIN)
1719			break;
1720	}
1721	/*
1722	 * No nonlinear handling: being always shared, nonlinear vmas
1723	 * never contain migration ptes.  Decide what to do about this
1724	 * limitation to linear when we need rmap_walk() on nonlinear.
1725	 */
1726	mutex_unlock(&mapping->i_mmap_mutex);
1727	return ret;
1728}
1729
1730int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1731		struct vm_area_struct *, unsigned long, void *), void *arg)
1732{
1733	VM_BUG_ON(!PageLocked(page));
1734
1735	if (unlikely(PageKsm(page)))
1736		return rmap_walk_ksm(page, rmap_one, arg);
1737	else if (PageAnon(page))
1738		return rmap_walk_anon(page, rmap_one, arg);
1739	else
1740		return rmap_walk_file(page, rmap_one, arg);
1741}
1742#endif /* CONFIG_MIGRATION */
1743
1744#ifdef CONFIG_HUGETLB_PAGE
1745/*
1746 * The following three functions are for anonymous (private mapped) hugepages.
1747 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1748 * and no lru code, because we handle hugepages differently from common pages.
1749 */
1750static void __hugepage_set_anon_rmap(struct page *page,
1751	struct vm_area_struct *vma, unsigned long address, int exclusive)
1752{
1753	struct anon_vma *anon_vma = vma->anon_vma;
1754
1755	BUG_ON(!anon_vma);
1756
1757	if (PageAnon(page))
1758		return;
1759	if (!exclusive)
1760		anon_vma = anon_vma->root;
1761
1762	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1763	page->mapping = (struct address_space *) anon_vma;
1764	page->index = linear_page_index(vma, address);
1765}
1766
1767void hugepage_add_anon_rmap(struct page *page,
1768			    struct vm_area_struct *vma, unsigned long address)
1769{
1770	struct anon_vma *anon_vma = vma->anon_vma;
1771	int first;
1772
1773	BUG_ON(!PageLocked(page));
1774	BUG_ON(!anon_vma);
1775	/* address might be in next vma when migration races vma_adjust */
1776	first = atomic_inc_and_test(&page->_mapcount);
1777	if (first)
1778		__hugepage_set_anon_rmap(page, vma, address, 0);
1779}
1780
1781void hugepage_add_new_anon_rmap(struct page *page,
1782			struct vm_area_struct *vma, unsigned long address)
1783{
1784	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1785	atomic_set(&page->_mapcount, 0);
1786	__hugepage_set_anon_rmap(page, vma, address, 1);
1787}
1788#endif /* CONFIG_HUGETLB_PAGE */
1789