1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 *	(c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * 	(c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
17 * or with a little more detail in;
18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 *	Jeff Bonwick (Sun Microsystems).
20 *	Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 *   full slabs with 0 free objects
38 *   partial slabs
39 *   empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 *  constructors and destructors are called without any locking.
58 *  Several members in struct kmem_cache and struct slab never change, they
59 *	are accessed without any locking.
60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 *  	and local interrupts are disabled so slab code is preempt-safe.
62 *  The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97.  Started multi-threading - markhe
71 *	The global cache-chain is protected by the mutex 'slab_mutex'.
72 *	The sem is only needed when accessing/extending the cache-chain, which
73 *	can never happen inside an interrupt (kmem_cache_create(),
74 *	kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 *	At present, each engine can be growing a cache.  This should be blocked.
77 *
78 * 15 March 2005. NUMA slab allocator.
79 *	Shai Fultheim <shai@scalex86.org>.
80 *	Shobhit Dayal <shobhit@calsoftinc.com>
81 *	Alok N Kataria <alokk@calsoftinc.com>
82 *	Christoph Lameter <christoph@lameter.com>
83 *
84 *	Modified the slab allocator to be node aware on NUMA systems.
85 *	Each node has its own list of partial, free and full slabs.
86 *	All object allocations for a node occur from node specific slab lists.
87 */
88
89#include	<linux/slab.h>
90#include	<linux/mm.h>
91#include	<linux/poison.h>
92#include	<linux/swap.h>
93#include	<linux/cache.h>
94#include	<linux/interrupt.h>
95#include	<linux/init.h>
96#include	<linux/compiler.h>
97#include	<linux/cpuset.h>
98#include	<linux/proc_fs.h>
99#include	<linux/seq_file.h>
100#include	<linux/notifier.h>
101#include	<linux/kallsyms.h>
102#include	<linux/cpu.h>
103#include	<linux/sysctl.h>
104#include	<linux/module.h>
105#include	<linux/rcupdate.h>
106#include	<linux/string.h>
107#include	<linux/uaccess.h>
108#include	<linux/nodemask.h>
109#include	<linux/kmemleak.h>
110#include	<linux/mempolicy.h>
111#include	<linux/mutex.h>
112#include	<linux/fault-inject.h>
113#include	<linux/rtmutex.h>
114#include	<linux/reciprocal_div.h>
115#include	<linux/debugobjects.h>
116#include	<linux/kmemcheck.h>
117#include	<linux/memory.h>
118#include	<linux/prefetch.h>
119
120#include	<net/sock.h>
121
122#include	<asm/cacheflush.h>
123#include	<asm/tlbflush.h>
124#include	<asm/page.h>
125
126#include <trace/events/kmem.h>
127
128#include	"internal.h"
129
130#include	"slab.h"
131
132/*
133 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 *		  0 for faster, smaller code (especially in the critical paths).
135 *
136 * STATS	- 1 to collect stats for /proc/slabinfo.
137 *		  0 for faster, smaller code (especially in the critical paths).
138 *
139 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
140 */
141
142#ifdef CONFIG_DEBUG_SLAB
143#define	DEBUG		1
144#define	STATS		1
145#define	FORCED_DEBUG	1
146#else
147#define	DEBUG		0
148#define	STATS		0
149#define	FORCED_DEBUG	0
150#endif
151
152/* Shouldn't this be in a header file somewhere? */
153#define	BYTES_PER_WORD		sizeof(void *)
154#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
155
156#ifndef ARCH_KMALLOC_FLAGS
157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158#endif
159
160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
162
163#if FREELIST_BYTE_INDEX
164typedef unsigned char freelist_idx_t;
165#else
166typedef unsigned short freelist_idx_t;
167#endif
168
169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170
171/*
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
174 */
175static bool pfmemalloc_active __read_mostly;
176
177/*
178 * struct array_cache
179 *
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
184 *
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
187 *
188 */
189struct array_cache {
190	unsigned int avail;
191	unsigned int limit;
192	unsigned int batchcount;
193	unsigned int touched;
194	void *entry[];	/*
195			 * Must have this definition in here for the proper
196			 * alignment of array_cache. Also simplifies accessing
197			 * the entries.
198			 *
199			 * Entries should not be directly dereferenced as
200			 * entries belonging to slabs marked pfmemalloc will
201			 * have the lower bits set SLAB_OBJ_PFMEMALLOC
202			 */
203};
204
205struct alien_cache {
206	spinlock_t lock;
207	struct array_cache ac;
208};
209
210#define SLAB_OBJ_PFMEMALLOC	1
211static inline bool is_obj_pfmemalloc(void *objp)
212{
213	return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
214}
215
216static inline void set_obj_pfmemalloc(void **objp)
217{
218	*objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219	return;
220}
221
222static inline void clear_obj_pfmemalloc(void **objp)
223{
224	*objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
225}
226
227/*
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
230 */
231#define BOOT_CPUCACHE_ENTRIES	1
232struct arraycache_init {
233	struct array_cache cache;
234	void *entries[BOOT_CPUCACHE_ENTRIES];
235};
236
237/*
238 * Need this for bootstrapping a per node allocator.
239 */
240#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242#define	CACHE_CACHE 0
243#define	SIZE_NODE (MAX_NUMNODES)
244
245static int drain_freelist(struct kmem_cache *cache,
246			struct kmem_cache_node *n, int tofree);
247static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248			int node, struct list_head *list);
249static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251static void cache_reap(struct work_struct *unused);
252
253static int slab_early_init = 1;
254
255#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
256
257static void kmem_cache_node_init(struct kmem_cache_node *parent)
258{
259	INIT_LIST_HEAD(&parent->slabs_full);
260	INIT_LIST_HEAD(&parent->slabs_partial);
261	INIT_LIST_HEAD(&parent->slabs_free);
262	parent->shared = NULL;
263	parent->alien = NULL;
264	parent->colour_next = 0;
265	spin_lock_init(&parent->list_lock);
266	parent->free_objects = 0;
267	parent->free_touched = 0;
268}
269
270#define MAKE_LIST(cachep, listp, slab, nodeid)				\
271	do {								\
272		INIT_LIST_HEAD(listp);					\
273		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
274	} while (0)
275
276#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
277	do {								\
278	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
279	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
281	} while (0)
282
283#define CFLGS_OFF_SLAB		(0x80000000UL)
284#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
285
286#define BATCHREFILL_LIMIT	16
287/*
288 * Optimization question: fewer reaps means less probability for unnessary
289 * cpucache drain/refill cycles.
290 *
291 * OTOH the cpuarrays can contain lots of objects,
292 * which could lock up otherwise freeable slabs.
293 */
294#define REAPTIMEOUT_AC		(2*HZ)
295#define REAPTIMEOUT_NODE	(4*HZ)
296
297#if STATS
298#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
299#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
300#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
301#define	STATS_INC_GROWN(x)	((x)->grown++)
302#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
303#define	STATS_SET_HIGH(x)						\
304	do {								\
305		if ((x)->num_active > (x)->high_mark)			\
306			(x)->high_mark = (x)->num_active;		\
307	} while (0)
308#define	STATS_INC_ERR(x)	((x)->errors++)
309#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
310#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
311#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
312#define	STATS_SET_FREEABLE(x, i)					\
313	do {								\
314		if ((x)->max_freeable < i)				\
315			(x)->max_freeable = i;				\
316	} while (0)
317#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
318#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
319#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
320#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
321#else
322#define	STATS_INC_ACTIVE(x)	do { } while (0)
323#define	STATS_DEC_ACTIVE(x)	do { } while (0)
324#define	STATS_INC_ALLOCED(x)	do { } while (0)
325#define	STATS_INC_GROWN(x)	do { } while (0)
326#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
327#define	STATS_SET_HIGH(x)	do { } while (0)
328#define	STATS_INC_ERR(x)	do { } while (0)
329#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
330#define	STATS_INC_NODEFREES(x)	do { } while (0)
331#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
332#define	STATS_SET_FREEABLE(x, i) do { } while (0)
333#define STATS_INC_ALLOCHIT(x)	do { } while (0)
334#define STATS_INC_ALLOCMISS(x)	do { } while (0)
335#define STATS_INC_FREEHIT(x)	do { } while (0)
336#define STATS_INC_FREEMISS(x)	do { } while (0)
337#endif
338
339#if DEBUG
340
341/*
342 * memory layout of objects:
343 * 0		: objp
344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
345 * 		the end of an object is aligned with the end of the real
346 * 		allocation. Catches writes behind the end of the allocation.
347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
348 * 		redzone word.
349 * cachep->obj_offset: The real object.
350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351 * cachep->size - 1* BYTES_PER_WORD: last caller address
352 *					[BYTES_PER_WORD long]
353 */
354static int obj_offset(struct kmem_cache *cachep)
355{
356	return cachep->obj_offset;
357}
358
359static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
360{
361	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362	return (unsigned long long*) (objp + obj_offset(cachep) -
363				      sizeof(unsigned long long));
364}
365
366static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
367{
368	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369	if (cachep->flags & SLAB_STORE_USER)
370		return (unsigned long long *)(objp + cachep->size -
371					      sizeof(unsigned long long) -
372					      REDZONE_ALIGN);
373	return (unsigned long long *) (objp + cachep->size -
374				       sizeof(unsigned long long));
375}
376
377static void **dbg_userword(struct kmem_cache *cachep, void *objp)
378{
379	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380	return (void **)(objp + cachep->size - BYTES_PER_WORD);
381}
382
383#else
384
385#define obj_offset(x)			0
386#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
387#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
388#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
389
390#endif
391
392#define OBJECT_FREE (0)
393#define OBJECT_ACTIVE (1)
394
395#ifdef CONFIG_DEBUG_SLAB_LEAK
396
397static void set_obj_status(struct page *page, int idx, int val)
398{
399	int freelist_size;
400	char *status;
401	struct kmem_cache *cachep = page->slab_cache;
402
403	freelist_size = cachep->num * sizeof(freelist_idx_t);
404	status = (char *)page->freelist + freelist_size;
405	status[idx] = val;
406}
407
408static inline unsigned int get_obj_status(struct page *page, int idx)
409{
410	int freelist_size;
411	char *status;
412	struct kmem_cache *cachep = page->slab_cache;
413
414	freelist_size = cachep->num * sizeof(freelist_idx_t);
415	status = (char *)page->freelist + freelist_size;
416
417	return status[idx];
418}
419
420#else
421static inline void set_obj_status(struct page *page, int idx, int val) {}
422
423#endif
424
425/*
426 * Do not go above this order unless 0 objects fit into the slab or
427 * overridden on the command line.
428 */
429#define	SLAB_MAX_ORDER_HI	1
430#define	SLAB_MAX_ORDER_LO	0
431static int slab_max_order = SLAB_MAX_ORDER_LO;
432static bool slab_max_order_set __initdata;
433
434static inline struct kmem_cache *virt_to_cache(const void *obj)
435{
436	struct page *page = virt_to_head_page(obj);
437	return page->slab_cache;
438}
439
440static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441				 unsigned int idx)
442{
443	return page->s_mem + cache->size * idx;
444}
445
446/*
447 * We want to avoid an expensive divide : (offset / cache->size)
448 *   Using the fact that size is a constant for a particular cache,
449 *   we can replace (offset / cache->size) by
450 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
451 */
452static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453					const struct page *page, void *obj)
454{
455	u32 offset = (obj - page->s_mem);
456	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
457}
458
459/* internal cache of cache description objs */
460static struct kmem_cache kmem_cache_boot = {
461	.batchcount = 1,
462	.limit = BOOT_CPUCACHE_ENTRIES,
463	.shared = 1,
464	.size = sizeof(struct kmem_cache),
465	.name = "kmem_cache",
466};
467
468#define BAD_ALIEN_MAGIC 0x01020304ul
469
470static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
471
472static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
473{
474	return this_cpu_ptr(cachep->cpu_cache);
475}
476
477static size_t calculate_freelist_size(int nr_objs, size_t align)
478{
479	size_t freelist_size;
480
481	freelist_size = nr_objs * sizeof(freelist_idx_t);
482	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483		freelist_size += nr_objs * sizeof(char);
484
485	if (align)
486		freelist_size = ALIGN(freelist_size, align);
487
488	return freelist_size;
489}
490
491static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492				size_t idx_size, size_t align)
493{
494	int nr_objs;
495	size_t remained_size;
496	size_t freelist_size;
497	int extra_space = 0;
498
499	if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500		extra_space = sizeof(char);
501	/*
502	 * Ignore padding for the initial guess. The padding
503	 * is at most @align-1 bytes, and @buffer_size is at
504	 * least @align. In the worst case, this result will
505	 * be one greater than the number of objects that fit
506	 * into the memory allocation when taking the padding
507	 * into account.
508	 */
509	nr_objs = slab_size / (buffer_size + idx_size + extra_space);
510
511	/*
512	 * This calculated number will be either the right
513	 * amount, or one greater than what we want.
514	 */
515	remained_size = slab_size - nr_objs * buffer_size;
516	freelist_size = calculate_freelist_size(nr_objs, align);
517	if (remained_size < freelist_size)
518		nr_objs--;
519
520	return nr_objs;
521}
522
523/*
524 * Calculate the number of objects and left-over bytes for a given buffer size.
525 */
526static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527			   size_t align, int flags, size_t *left_over,
528			   unsigned int *num)
529{
530	int nr_objs;
531	size_t mgmt_size;
532	size_t slab_size = PAGE_SIZE << gfporder;
533
534	/*
535	 * The slab management structure can be either off the slab or
536	 * on it. For the latter case, the memory allocated for a
537	 * slab is used for:
538	 *
539	 * - One unsigned int for each object
540	 * - Padding to respect alignment of @align
541	 * - @buffer_size bytes for each object
542	 *
543	 * If the slab management structure is off the slab, then the
544	 * alignment will already be calculated into the size. Because
545	 * the slabs are all pages aligned, the objects will be at the
546	 * correct alignment when allocated.
547	 */
548	if (flags & CFLGS_OFF_SLAB) {
549		mgmt_size = 0;
550		nr_objs = slab_size / buffer_size;
551
552	} else {
553		nr_objs = calculate_nr_objs(slab_size, buffer_size,
554					sizeof(freelist_idx_t), align);
555		mgmt_size = calculate_freelist_size(nr_objs, align);
556	}
557	*num = nr_objs;
558	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
559}
560
561#if DEBUG
562#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
563
564static void __slab_error(const char *function, struct kmem_cache *cachep,
565			char *msg)
566{
567	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
568	       function, cachep->name, msg);
569	dump_stack();
570	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
571}
572#endif
573
574/*
575 * By default on NUMA we use alien caches to stage the freeing of
576 * objects allocated from other nodes. This causes massive memory
577 * inefficiencies when using fake NUMA setup to split memory into a
578 * large number of small nodes, so it can be disabled on the command
579 * line
580  */
581
582static int use_alien_caches __read_mostly = 1;
583static int __init noaliencache_setup(char *s)
584{
585	use_alien_caches = 0;
586	return 1;
587}
588__setup("noaliencache", noaliencache_setup);
589
590static int __init slab_max_order_setup(char *str)
591{
592	get_option(&str, &slab_max_order);
593	slab_max_order = slab_max_order < 0 ? 0 :
594				min(slab_max_order, MAX_ORDER - 1);
595	slab_max_order_set = true;
596
597	return 1;
598}
599__setup("slab_max_order=", slab_max_order_setup);
600
601#ifdef CONFIG_NUMA
602/*
603 * Special reaping functions for NUMA systems called from cache_reap().
604 * These take care of doing round robin flushing of alien caches (containing
605 * objects freed on different nodes from which they were allocated) and the
606 * flushing of remote pcps by calling drain_node_pages.
607 */
608static DEFINE_PER_CPU(unsigned long, slab_reap_node);
609
610static void init_reap_node(int cpu)
611{
612	int node;
613
614	node = next_node(cpu_to_mem(cpu), node_online_map);
615	if (node == MAX_NUMNODES)
616		node = first_node(node_online_map);
617
618	per_cpu(slab_reap_node, cpu) = node;
619}
620
621static void next_reap_node(void)
622{
623	int node = __this_cpu_read(slab_reap_node);
624
625	node = next_node(node, node_online_map);
626	if (unlikely(node >= MAX_NUMNODES))
627		node = first_node(node_online_map);
628	__this_cpu_write(slab_reap_node, node);
629}
630
631#else
632#define init_reap_node(cpu) do { } while (0)
633#define next_reap_node(void) do { } while (0)
634#endif
635
636/*
637 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
638 * via the workqueue/eventd.
639 * Add the CPU number into the expiration time to minimize the possibility of
640 * the CPUs getting into lockstep and contending for the global cache chain
641 * lock.
642 */
643static void start_cpu_timer(int cpu)
644{
645	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
646
647	/*
648	 * When this gets called from do_initcalls via cpucache_init(),
649	 * init_workqueues() has already run, so keventd will be setup
650	 * at that time.
651	 */
652	if (keventd_up() && reap_work->work.func == NULL) {
653		init_reap_node(cpu);
654		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655		schedule_delayed_work_on(cpu, reap_work,
656					__round_jiffies_relative(HZ, cpu));
657	}
658}
659
660static void init_arraycache(struct array_cache *ac, int limit, int batch)
661{
662	/*
663	 * The array_cache structures contain pointers to free object.
664	 * However, when such objects are allocated or transferred to another
665	 * cache the pointers are not cleared and they could be counted as
666	 * valid references during a kmemleak scan. Therefore, kmemleak must
667	 * not scan such objects.
668	 */
669	kmemleak_no_scan(ac);
670	if (ac) {
671		ac->avail = 0;
672		ac->limit = limit;
673		ac->batchcount = batch;
674		ac->touched = 0;
675	}
676}
677
678static struct array_cache *alloc_arraycache(int node, int entries,
679					    int batchcount, gfp_t gfp)
680{
681	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682	struct array_cache *ac = NULL;
683
684	ac = kmalloc_node(memsize, gfp, node);
685	init_arraycache(ac, entries, batchcount);
686	return ac;
687}
688
689static inline bool is_slab_pfmemalloc(struct page *page)
690{
691	return PageSlabPfmemalloc(page);
692}
693
694/* Clears pfmemalloc_active if no slabs have pfmalloc set */
695static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696						struct array_cache *ac)
697{
698	struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699	struct page *page;
700	unsigned long flags;
701
702	if (!pfmemalloc_active)
703		return;
704
705	spin_lock_irqsave(&n->list_lock, flags);
706	list_for_each_entry(page, &n->slabs_full, lru)
707		if (is_slab_pfmemalloc(page))
708			goto out;
709
710	list_for_each_entry(page, &n->slabs_partial, lru)
711		if (is_slab_pfmemalloc(page))
712			goto out;
713
714	list_for_each_entry(page, &n->slabs_free, lru)
715		if (is_slab_pfmemalloc(page))
716			goto out;
717
718	pfmemalloc_active = false;
719out:
720	spin_unlock_irqrestore(&n->list_lock, flags);
721}
722
723static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724						gfp_t flags, bool force_refill)
725{
726	int i;
727	void *objp = ac->entry[--ac->avail];
728
729	/* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730	if (unlikely(is_obj_pfmemalloc(objp))) {
731		struct kmem_cache_node *n;
732
733		if (gfp_pfmemalloc_allowed(flags)) {
734			clear_obj_pfmemalloc(&objp);
735			return objp;
736		}
737
738		/* The caller cannot use PFMEMALLOC objects, find another one */
739		for (i = 0; i < ac->avail; i++) {
740			/* If a !PFMEMALLOC object is found, swap them */
741			if (!is_obj_pfmemalloc(ac->entry[i])) {
742				objp = ac->entry[i];
743				ac->entry[i] = ac->entry[ac->avail];
744				ac->entry[ac->avail] = objp;
745				return objp;
746			}
747		}
748
749		/*
750		 * If there are empty slabs on the slabs_free list and we are
751		 * being forced to refill the cache, mark this one !pfmemalloc.
752		 */
753		n = get_node(cachep, numa_mem_id());
754		if (!list_empty(&n->slabs_free) && force_refill) {
755			struct page *page = virt_to_head_page(objp);
756			ClearPageSlabPfmemalloc(page);
757			clear_obj_pfmemalloc(&objp);
758			recheck_pfmemalloc_active(cachep, ac);
759			return objp;
760		}
761
762		/* No !PFMEMALLOC objects available */
763		ac->avail++;
764		objp = NULL;
765	}
766
767	return objp;
768}
769
770static inline void *ac_get_obj(struct kmem_cache *cachep,
771			struct array_cache *ac, gfp_t flags, bool force_refill)
772{
773	void *objp;
774
775	if (unlikely(sk_memalloc_socks()))
776		objp = __ac_get_obj(cachep, ac, flags, force_refill);
777	else
778		objp = ac->entry[--ac->avail];
779
780	return objp;
781}
782
783static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784			struct array_cache *ac, void *objp)
785{
786	if (unlikely(pfmemalloc_active)) {
787		/* Some pfmemalloc slabs exist, check if this is one */
788		struct page *page = virt_to_head_page(objp);
789		if (PageSlabPfmemalloc(page))
790			set_obj_pfmemalloc(&objp);
791	}
792
793	return objp;
794}
795
796static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797								void *objp)
798{
799	if (unlikely(sk_memalloc_socks()))
800		objp = __ac_put_obj(cachep, ac, objp);
801
802	ac->entry[ac->avail++] = objp;
803}
804
805/*
806 * Transfer objects in one arraycache to another.
807 * Locking must be handled by the caller.
808 *
809 * Return the number of entries transferred.
810 */
811static int transfer_objects(struct array_cache *to,
812		struct array_cache *from, unsigned int max)
813{
814	/* Figure out how many entries to transfer */
815	int nr = min3(from->avail, max, to->limit - to->avail);
816
817	if (!nr)
818		return 0;
819
820	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821			sizeof(void *) *nr);
822
823	from->avail -= nr;
824	to->avail += nr;
825	return nr;
826}
827
828#ifndef CONFIG_NUMA
829
830#define drain_alien_cache(cachep, alien) do { } while (0)
831#define reap_alien(cachep, n) do { } while (0)
832
833static inline struct alien_cache **alloc_alien_cache(int node,
834						int limit, gfp_t gfp)
835{
836	return (struct alien_cache **)BAD_ALIEN_MAGIC;
837}
838
839static inline void free_alien_cache(struct alien_cache **ac_ptr)
840{
841}
842
843static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
844{
845	return 0;
846}
847
848static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849		gfp_t flags)
850{
851	return NULL;
852}
853
854static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855		 gfp_t flags, int nodeid)
856{
857	return NULL;
858}
859
860#else	/* CONFIG_NUMA */
861
862static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
863static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
864
865static struct alien_cache *__alloc_alien_cache(int node, int entries,
866						int batch, gfp_t gfp)
867{
868	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
869	struct alien_cache *alc = NULL;
870
871	alc = kmalloc_node(memsize, gfp, node);
872	init_arraycache(&alc->ac, entries, batch);
873	spin_lock_init(&alc->lock);
874	return alc;
875}
876
877static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
878{
879	struct alien_cache **alc_ptr;
880	size_t memsize = sizeof(void *) * nr_node_ids;
881	int i;
882
883	if (limit > 1)
884		limit = 12;
885	alc_ptr = kzalloc_node(memsize, gfp, node);
886	if (!alc_ptr)
887		return NULL;
888
889	for_each_node(i) {
890		if (i == node || !node_online(i))
891			continue;
892		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
893		if (!alc_ptr[i]) {
894			for (i--; i >= 0; i--)
895				kfree(alc_ptr[i]);
896			kfree(alc_ptr);
897			return NULL;
898		}
899	}
900	return alc_ptr;
901}
902
903static void free_alien_cache(struct alien_cache **alc_ptr)
904{
905	int i;
906
907	if (!alc_ptr)
908		return;
909	for_each_node(i)
910	    kfree(alc_ptr[i]);
911	kfree(alc_ptr);
912}
913
914static void __drain_alien_cache(struct kmem_cache *cachep,
915				struct array_cache *ac, int node,
916				struct list_head *list)
917{
918	struct kmem_cache_node *n = get_node(cachep, node);
919
920	if (ac->avail) {
921		spin_lock(&n->list_lock);
922		/*
923		 * Stuff objects into the remote nodes shared array first.
924		 * That way we could avoid the overhead of putting the objects
925		 * into the free lists and getting them back later.
926		 */
927		if (n->shared)
928			transfer_objects(n->shared, ac, ac->limit);
929
930		free_block(cachep, ac->entry, ac->avail, node, list);
931		ac->avail = 0;
932		spin_unlock(&n->list_lock);
933	}
934}
935
936/*
937 * Called from cache_reap() to regularly drain alien caches round robin.
938 */
939static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
940{
941	int node = __this_cpu_read(slab_reap_node);
942
943	if (n->alien) {
944		struct alien_cache *alc = n->alien[node];
945		struct array_cache *ac;
946
947		if (alc) {
948			ac = &alc->ac;
949			if (ac->avail && spin_trylock_irq(&alc->lock)) {
950				LIST_HEAD(list);
951
952				__drain_alien_cache(cachep, ac, node, &list);
953				spin_unlock_irq(&alc->lock);
954				slabs_destroy(cachep, &list);
955			}
956		}
957	}
958}
959
960static void drain_alien_cache(struct kmem_cache *cachep,
961				struct alien_cache **alien)
962{
963	int i = 0;
964	struct alien_cache *alc;
965	struct array_cache *ac;
966	unsigned long flags;
967
968	for_each_online_node(i) {
969		alc = alien[i];
970		if (alc) {
971			LIST_HEAD(list);
972
973			ac = &alc->ac;
974			spin_lock_irqsave(&alc->lock, flags);
975			__drain_alien_cache(cachep, ac, i, &list);
976			spin_unlock_irqrestore(&alc->lock, flags);
977			slabs_destroy(cachep, &list);
978		}
979	}
980}
981
982static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
983				int node, int page_node)
984{
985	struct kmem_cache_node *n;
986	struct alien_cache *alien = NULL;
987	struct array_cache *ac;
988	LIST_HEAD(list);
989
990	n = get_node(cachep, node);
991	STATS_INC_NODEFREES(cachep);
992	if (n->alien && n->alien[page_node]) {
993		alien = n->alien[page_node];
994		ac = &alien->ac;
995		spin_lock(&alien->lock);
996		if (unlikely(ac->avail == ac->limit)) {
997			STATS_INC_ACOVERFLOW(cachep);
998			__drain_alien_cache(cachep, ac, page_node, &list);
999		}
1000		ac_put_obj(cachep, ac, objp);
1001		spin_unlock(&alien->lock);
1002		slabs_destroy(cachep, &list);
1003	} else {
1004		n = get_node(cachep, page_node);
1005		spin_lock(&n->list_lock);
1006		free_block(cachep, &objp, 1, page_node, &list);
1007		spin_unlock(&n->list_lock);
1008		slabs_destroy(cachep, &list);
1009	}
1010	return 1;
1011}
1012
1013static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1014{
1015	int page_node = page_to_nid(virt_to_page(objp));
1016	int node = numa_mem_id();
1017	/*
1018	 * Make sure we are not freeing a object from another node to the array
1019	 * cache on this cpu.
1020	 */
1021	if (likely(node == page_node))
1022		return 0;
1023
1024	return __cache_free_alien(cachep, objp, node, page_node);
1025}
1026#endif
1027
1028/*
1029 * Allocates and initializes node for a node on each slab cache, used for
1030 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
1031 * will be allocated off-node since memory is not yet online for the new node.
1032 * When hotplugging memory or a cpu, existing node are not replaced if
1033 * already in use.
1034 *
1035 * Must hold slab_mutex.
1036 */
1037static int init_cache_node_node(int node)
1038{
1039	struct kmem_cache *cachep;
1040	struct kmem_cache_node *n;
1041	const size_t memsize = sizeof(struct kmem_cache_node);
1042
1043	list_for_each_entry(cachep, &slab_caches, list) {
1044		/*
1045		 * Set up the kmem_cache_node for cpu before we can
1046		 * begin anything. Make sure some other cpu on this
1047		 * node has not already allocated this
1048		 */
1049		n = get_node(cachep, node);
1050		if (!n) {
1051			n = kmalloc_node(memsize, GFP_KERNEL, node);
1052			if (!n)
1053				return -ENOMEM;
1054			kmem_cache_node_init(n);
1055			n->next_reap = jiffies + REAPTIMEOUT_NODE +
1056			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1057
1058			/*
1059			 * The kmem_cache_nodes don't come and go as CPUs
1060			 * come and go.  slab_mutex is sufficient
1061			 * protection here.
1062			 */
1063			cachep->node[node] = n;
1064		}
1065
1066		spin_lock_irq(&n->list_lock);
1067		n->free_limit =
1068			(1 + nr_cpus_node(node)) *
1069			cachep->batchcount + cachep->num;
1070		spin_unlock_irq(&n->list_lock);
1071	}
1072	return 0;
1073}
1074
1075static inline int slabs_tofree(struct kmem_cache *cachep,
1076						struct kmem_cache_node *n)
1077{
1078	return (n->free_objects + cachep->num - 1) / cachep->num;
1079}
1080
1081static void cpuup_canceled(long cpu)
1082{
1083	struct kmem_cache *cachep;
1084	struct kmem_cache_node *n = NULL;
1085	int node = cpu_to_mem(cpu);
1086	const struct cpumask *mask = cpumask_of_node(node);
1087
1088	list_for_each_entry(cachep, &slab_caches, list) {
1089		struct array_cache *nc;
1090		struct array_cache *shared;
1091		struct alien_cache **alien;
1092		LIST_HEAD(list);
1093
1094		n = get_node(cachep, node);
1095		if (!n)
1096			continue;
1097
1098		spin_lock_irq(&n->list_lock);
1099
1100		/* Free limit for this kmem_cache_node */
1101		n->free_limit -= cachep->batchcount;
1102
1103		/* cpu is dead; no one can alloc from it. */
1104		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1105		if (nc) {
1106			free_block(cachep, nc->entry, nc->avail, node, &list);
1107			nc->avail = 0;
1108		}
1109
1110		if (!cpumask_empty(mask)) {
1111			spin_unlock_irq(&n->list_lock);
1112			goto free_slab;
1113		}
1114
1115		shared = n->shared;
1116		if (shared) {
1117			free_block(cachep, shared->entry,
1118				   shared->avail, node, &list);
1119			n->shared = NULL;
1120		}
1121
1122		alien = n->alien;
1123		n->alien = NULL;
1124
1125		spin_unlock_irq(&n->list_lock);
1126
1127		kfree(shared);
1128		if (alien) {
1129			drain_alien_cache(cachep, alien);
1130			free_alien_cache(alien);
1131		}
1132
1133free_slab:
1134		slabs_destroy(cachep, &list);
1135	}
1136	/*
1137	 * In the previous loop, all the objects were freed to
1138	 * the respective cache's slabs,  now we can go ahead and
1139	 * shrink each nodelist to its limit.
1140	 */
1141	list_for_each_entry(cachep, &slab_caches, list) {
1142		n = get_node(cachep, node);
1143		if (!n)
1144			continue;
1145		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1146	}
1147}
1148
1149static int cpuup_prepare(long cpu)
1150{
1151	struct kmem_cache *cachep;
1152	struct kmem_cache_node *n = NULL;
1153	int node = cpu_to_mem(cpu);
1154	int err;
1155
1156	/*
1157	 * We need to do this right in the beginning since
1158	 * alloc_arraycache's are going to use this list.
1159	 * kmalloc_node allows us to add the slab to the right
1160	 * kmem_cache_node and not this cpu's kmem_cache_node
1161	 */
1162	err = init_cache_node_node(node);
1163	if (err < 0)
1164		goto bad;
1165
1166	/*
1167	 * Now we can go ahead with allocating the shared arrays and
1168	 * array caches
1169	 */
1170	list_for_each_entry(cachep, &slab_caches, list) {
1171		struct array_cache *shared = NULL;
1172		struct alien_cache **alien = NULL;
1173
1174		if (cachep->shared) {
1175			shared = alloc_arraycache(node,
1176				cachep->shared * cachep->batchcount,
1177				0xbaadf00d, GFP_KERNEL);
1178			if (!shared)
1179				goto bad;
1180		}
1181		if (use_alien_caches) {
1182			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1183			if (!alien) {
1184				kfree(shared);
1185				goto bad;
1186			}
1187		}
1188		n = get_node(cachep, node);
1189		BUG_ON(!n);
1190
1191		spin_lock_irq(&n->list_lock);
1192		if (!n->shared) {
1193			/*
1194			 * We are serialised from CPU_DEAD or
1195			 * CPU_UP_CANCELLED by the cpucontrol lock
1196			 */
1197			n->shared = shared;
1198			shared = NULL;
1199		}
1200#ifdef CONFIG_NUMA
1201		if (!n->alien) {
1202			n->alien = alien;
1203			alien = NULL;
1204		}
1205#endif
1206		spin_unlock_irq(&n->list_lock);
1207		kfree(shared);
1208		free_alien_cache(alien);
1209	}
1210
1211	return 0;
1212bad:
1213	cpuup_canceled(cpu);
1214	return -ENOMEM;
1215}
1216
1217static int cpuup_callback(struct notifier_block *nfb,
1218				    unsigned long action, void *hcpu)
1219{
1220	long cpu = (long)hcpu;
1221	int err = 0;
1222
1223	switch (action) {
1224	case CPU_UP_PREPARE:
1225	case CPU_UP_PREPARE_FROZEN:
1226		mutex_lock(&slab_mutex);
1227		err = cpuup_prepare(cpu);
1228		mutex_unlock(&slab_mutex);
1229		break;
1230	case CPU_ONLINE:
1231	case CPU_ONLINE_FROZEN:
1232		start_cpu_timer(cpu);
1233		break;
1234#ifdef CONFIG_HOTPLUG_CPU
1235  	case CPU_DOWN_PREPARE:
1236  	case CPU_DOWN_PREPARE_FROZEN:
1237		/*
1238		 * Shutdown cache reaper. Note that the slab_mutex is
1239		 * held so that if cache_reap() is invoked it cannot do
1240		 * anything expensive but will only modify reap_work
1241		 * and reschedule the timer.
1242		*/
1243		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1244		/* Now the cache_reaper is guaranteed to be not running. */
1245		per_cpu(slab_reap_work, cpu).work.func = NULL;
1246  		break;
1247  	case CPU_DOWN_FAILED:
1248  	case CPU_DOWN_FAILED_FROZEN:
1249		start_cpu_timer(cpu);
1250  		break;
1251	case CPU_DEAD:
1252	case CPU_DEAD_FROZEN:
1253		/*
1254		 * Even if all the cpus of a node are down, we don't free the
1255		 * kmem_cache_node of any cache. This to avoid a race between
1256		 * cpu_down, and a kmalloc allocation from another cpu for
1257		 * memory from the node of the cpu going down.  The node
1258		 * structure is usually allocated from kmem_cache_create() and
1259		 * gets destroyed at kmem_cache_destroy().
1260		 */
1261		/* fall through */
1262#endif
1263	case CPU_UP_CANCELED:
1264	case CPU_UP_CANCELED_FROZEN:
1265		mutex_lock(&slab_mutex);
1266		cpuup_canceled(cpu);
1267		mutex_unlock(&slab_mutex);
1268		break;
1269	}
1270	return notifier_from_errno(err);
1271}
1272
1273static struct notifier_block cpucache_notifier = {
1274	&cpuup_callback, NULL, 0
1275};
1276
1277#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1278/*
1279 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1280 * Returns -EBUSY if all objects cannot be drained so that the node is not
1281 * removed.
1282 *
1283 * Must hold slab_mutex.
1284 */
1285static int __meminit drain_cache_node_node(int node)
1286{
1287	struct kmem_cache *cachep;
1288	int ret = 0;
1289
1290	list_for_each_entry(cachep, &slab_caches, list) {
1291		struct kmem_cache_node *n;
1292
1293		n = get_node(cachep, node);
1294		if (!n)
1295			continue;
1296
1297		drain_freelist(cachep, n, slabs_tofree(cachep, n));
1298
1299		if (!list_empty(&n->slabs_full) ||
1300		    !list_empty(&n->slabs_partial)) {
1301			ret = -EBUSY;
1302			break;
1303		}
1304	}
1305	return ret;
1306}
1307
1308static int __meminit slab_memory_callback(struct notifier_block *self,
1309					unsigned long action, void *arg)
1310{
1311	struct memory_notify *mnb = arg;
1312	int ret = 0;
1313	int nid;
1314
1315	nid = mnb->status_change_nid;
1316	if (nid < 0)
1317		goto out;
1318
1319	switch (action) {
1320	case MEM_GOING_ONLINE:
1321		mutex_lock(&slab_mutex);
1322		ret = init_cache_node_node(nid);
1323		mutex_unlock(&slab_mutex);
1324		break;
1325	case MEM_GOING_OFFLINE:
1326		mutex_lock(&slab_mutex);
1327		ret = drain_cache_node_node(nid);
1328		mutex_unlock(&slab_mutex);
1329		break;
1330	case MEM_ONLINE:
1331	case MEM_OFFLINE:
1332	case MEM_CANCEL_ONLINE:
1333	case MEM_CANCEL_OFFLINE:
1334		break;
1335	}
1336out:
1337	return notifier_from_errno(ret);
1338}
1339#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1340
1341/*
1342 * swap the static kmem_cache_node with kmalloced memory
1343 */
1344static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1345				int nodeid)
1346{
1347	struct kmem_cache_node *ptr;
1348
1349	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1350	BUG_ON(!ptr);
1351
1352	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1353	/*
1354	 * Do not assume that spinlocks can be initialized via memcpy:
1355	 */
1356	spin_lock_init(&ptr->list_lock);
1357
1358	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1359	cachep->node[nodeid] = ptr;
1360}
1361
1362/*
1363 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1364 * size of kmem_cache_node.
1365 */
1366static void __init set_up_node(struct kmem_cache *cachep, int index)
1367{
1368	int node;
1369
1370	for_each_online_node(node) {
1371		cachep->node[node] = &init_kmem_cache_node[index + node];
1372		cachep->node[node]->next_reap = jiffies +
1373		    REAPTIMEOUT_NODE +
1374		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1375	}
1376}
1377
1378/*
1379 * Initialisation.  Called after the page allocator have been initialised and
1380 * before smp_init().
1381 */
1382void __init kmem_cache_init(void)
1383{
1384	int i;
1385
1386	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1387					sizeof(struct rcu_head));
1388	kmem_cache = &kmem_cache_boot;
1389
1390	if (num_possible_nodes() == 1)
1391		use_alien_caches = 0;
1392
1393	for (i = 0; i < NUM_INIT_LISTS; i++)
1394		kmem_cache_node_init(&init_kmem_cache_node[i]);
1395
1396	/*
1397	 * Fragmentation resistance on low memory - only use bigger
1398	 * page orders on machines with more than 32MB of memory if
1399	 * not overridden on the command line.
1400	 */
1401	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1402		slab_max_order = SLAB_MAX_ORDER_HI;
1403
1404	/* Bootstrap is tricky, because several objects are allocated
1405	 * from caches that do not exist yet:
1406	 * 1) initialize the kmem_cache cache: it contains the struct
1407	 *    kmem_cache structures of all caches, except kmem_cache itself:
1408	 *    kmem_cache is statically allocated.
1409	 *    Initially an __init data area is used for the head array and the
1410	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1411	 *    array at the end of the bootstrap.
1412	 * 2) Create the first kmalloc cache.
1413	 *    The struct kmem_cache for the new cache is allocated normally.
1414	 *    An __init data area is used for the head array.
1415	 * 3) Create the remaining kmalloc caches, with minimally sized
1416	 *    head arrays.
1417	 * 4) Replace the __init data head arrays for kmem_cache and the first
1418	 *    kmalloc cache with kmalloc allocated arrays.
1419	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1420	 *    the other cache's with kmalloc allocated memory.
1421	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1422	 */
1423
1424	/* 1) create the kmem_cache */
1425
1426	/*
1427	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1428	 */
1429	create_boot_cache(kmem_cache, "kmem_cache",
1430		offsetof(struct kmem_cache, node) +
1431				  nr_node_ids * sizeof(struct kmem_cache_node *),
1432				  SLAB_HWCACHE_ALIGN);
1433	list_add(&kmem_cache->list, &slab_caches);
1434	slab_state = PARTIAL;
1435
1436	/*
1437	 * Initialize the caches that provide memory for the  kmem_cache_node
1438	 * structures first.  Without this, further allocations will bug.
1439	 */
1440	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1441				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1442	slab_state = PARTIAL_NODE;
1443
1444	slab_early_init = 0;
1445
1446	/* 5) Replace the bootstrap kmem_cache_node */
1447	{
1448		int nid;
1449
1450		for_each_online_node(nid) {
1451			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1452
1453			init_list(kmalloc_caches[INDEX_NODE],
1454					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1455		}
1456	}
1457
1458	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1459}
1460
1461void __init kmem_cache_init_late(void)
1462{
1463	struct kmem_cache *cachep;
1464
1465	slab_state = UP;
1466
1467	/* 6) resize the head arrays to their final sizes */
1468	mutex_lock(&slab_mutex);
1469	list_for_each_entry(cachep, &slab_caches, list)
1470		if (enable_cpucache(cachep, GFP_NOWAIT))
1471			BUG();
1472	mutex_unlock(&slab_mutex);
1473
1474	/* Done! */
1475	slab_state = FULL;
1476
1477	/*
1478	 * Register a cpu startup notifier callback that initializes
1479	 * cpu_cache_get for all new cpus
1480	 */
1481	register_cpu_notifier(&cpucache_notifier);
1482
1483#ifdef CONFIG_NUMA
1484	/*
1485	 * Register a memory hotplug callback that initializes and frees
1486	 * node.
1487	 */
1488	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1489#endif
1490
1491	/*
1492	 * The reap timers are started later, with a module init call: That part
1493	 * of the kernel is not yet operational.
1494	 */
1495}
1496
1497static int __init cpucache_init(void)
1498{
1499	int cpu;
1500
1501	/*
1502	 * Register the timers that return unneeded pages to the page allocator
1503	 */
1504	for_each_online_cpu(cpu)
1505		start_cpu_timer(cpu);
1506
1507	/* Done! */
1508	slab_state = FULL;
1509	return 0;
1510}
1511__initcall(cpucache_init);
1512
1513static noinline void
1514slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1515{
1516#if DEBUG
1517	struct kmem_cache_node *n;
1518	struct page *page;
1519	unsigned long flags;
1520	int node;
1521	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1522				      DEFAULT_RATELIMIT_BURST);
1523
1524	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1525		return;
1526
1527	printk(KERN_WARNING
1528		"SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1529		nodeid, gfpflags);
1530	printk(KERN_WARNING "  cache: %s, object size: %d, order: %d\n",
1531		cachep->name, cachep->size, cachep->gfporder);
1532
1533	for_each_kmem_cache_node(cachep, node, n) {
1534		unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1535		unsigned long active_slabs = 0, num_slabs = 0;
1536
1537		spin_lock_irqsave(&n->list_lock, flags);
1538		list_for_each_entry(page, &n->slabs_full, lru) {
1539			active_objs += cachep->num;
1540			active_slabs++;
1541		}
1542		list_for_each_entry(page, &n->slabs_partial, lru) {
1543			active_objs += page->active;
1544			active_slabs++;
1545		}
1546		list_for_each_entry(page, &n->slabs_free, lru)
1547			num_slabs++;
1548
1549		free_objects += n->free_objects;
1550		spin_unlock_irqrestore(&n->list_lock, flags);
1551
1552		num_slabs += active_slabs;
1553		num_objs = num_slabs * cachep->num;
1554		printk(KERN_WARNING
1555			"  node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1556			node, active_slabs, num_slabs, active_objs, num_objs,
1557			free_objects);
1558	}
1559#endif
1560}
1561
1562/*
1563 * Interface to system's page allocator. No need to hold the
1564 * kmem_cache_node ->list_lock.
1565 *
1566 * If we requested dmaable memory, we will get it. Even if we
1567 * did not request dmaable memory, we might get it, but that
1568 * would be relatively rare and ignorable.
1569 */
1570static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1571								int nodeid)
1572{
1573	struct page *page;
1574	int nr_pages;
1575
1576	flags |= cachep->allocflags;
1577	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1578		flags |= __GFP_RECLAIMABLE;
1579
1580	if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1581		return NULL;
1582
1583	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1584	if (!page) {
1585		memcg_uncharge_slab(cachep, cachep->gfporder);
1586		slab_out_of_memory(cachep, flags, nodeid);
1587		return NULL;
1588	}
1589
1590	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1591	if (unlikely(page->pfmemalloc))
1592		pfmemalloc_active = true;
1593
1594	nr_pages = (1 << cachep->gfporder);
1595	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1596		add_zone_page_state(page_zone(page),
1597			NR_SLAB_RECLAIMABLE, nr_pages);
1598	else
1599		add_zone_page_state(page_zone(page),
1600			NR_SLAB_UNRECLAIMABLE, nr_pages);
1601	__SetPageSlab(page);
1602	if (page->pfmemalloc)
1603		SetPageSlabPfmemalloc(page);
1604
1605	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1606		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1607
1608		if (cachep->ctor)
1609			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1610		else
1611			kmemcheck_mark_unallocated_pages(page, nr_pages);
1612	}
1613
1614	return page;
1615}
1616
1617/*
1618 * Interface to system's page release.
1619 */
1620static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1621{
1622	const unsigned long nr_freed = (1 << cachep->gfporder);
1623
1624	kmemcheck_free_shadow(page, cachep->gfporder);
1625
1626	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1627		sub_zone_page_state(page_zone(page),
1628				NR_SLAB_RECLAIMABLE, nr_freed);
1629	else
1630		sub_zone_page_state(page_zone(page),
1631				NR_SLAB_UNRECLAIMABLE, nr_freed);
1632
1633	BUG_ON(!PageSlab(page));
1634	__ClearPageSlabPfmemalloc(page);
1635	__ClearPageSlab(page);
1636	page_mapcount_reset(page);
1637	page->mapping = NULL;
1638
1639	if (current->reclaim_state)
1640		current->reclaim_state->reclaimed_slab += nr_freed;
1641	__free_pages(page, cachep->gfporder);
1642	memcg_uncharge_slab(cachep, cachep->gfporder);
1643}
1644
1645static void kmem_rcu_free(struct rcu_head *head)
1646{
1647	struct kmem_cache *cachep;
1648	struct page *page;
1649
1650	page = container_of(head, struct page, rcu_head);
1651	cachep = page->slab_cache;
1652
1653	kmem_freepages(cachep, page);
1654}
1655
1656#if DEBUG
1657
1658#ifdef CONFIG_DEBUG_PAGEALLOC
1659static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1660			    unsigned long caller)
1661{
1662	int size = cachep->object_size;
1663
1664	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1665
1666	if (size < 5 * sizeof(unsigned long))
1667		return;
1668
1669	*addr++ = 0x12345678;
1670	*addr++ = caller;
1671	*addr++ = smp_processor_id();
1672	size -= 3 * sizeof(unsigned long);
1673	{
1674		unsigned long *sptr = &caller;
1675		unsigned long svalue;
1676
1677		while (!kstack_end(sptr)) {
1678			svalue = *sptr++;
1679			if (kernel_text_address(svalue)) {
1680				*addr++ = svalue;
1681				size -= sizeof(unsigned long);
1682				if (size <= sizeof(unsigned long))
1683					break;
1684			}
1685		}
1686
1687	}
1688	*addr++ = 0x87654321;
1689}
1690#endif
1691
1692static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1693{
1694	int size = cachep->object_size;
1695	addr = &((char *)addr)[obj_offset(cachep)];
1696
1697	memset(addr, val, size);
1698	*(unsigned char *)(addr + size - 1) = POISON_END;
1699}
1700
1701static void dump_line(char *data, int offset, int limit)
1702{
1703	int i;
1704	unsigned char error = 0;
1705	int bad_count = 0;
1706
1707	printk(KERN_ERR "%03x: ", offset);
1708	for (i = 0; i < limit; i++) {
1709		if (data[offset + i] != POISON_FREE) {
1710			error = data[offset + i];
1711			bad_count++;
1712		}
1713	}
1714	print_hex_dump(KERN_CONT, "", 0, 16, 1,
1715			&data[offset], limit, 1);
1716
1717	if (bad_count == 1) {
1718		error ^= POISON_FREE;
1719		if (!(error & (error - 1))) {
1720			printk(KERN_ERR "Single bit error detected. Probably "
1721					"bad RAM.\n");
1722#ifdef CONFIG_X86
1723			printk(KERN_ERR "Run memtest86+ or a similar memory "
1724					"test tool.\n");
1725#else
1726			printk(KERN_ERR "Run a memory test tool.\n");
1727#endif
1728		}
1729	}
1730}
1731#endif
1732
1733#if DEBUG
1734
1735static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1736{
1737	int i, size;
1738	char *realobj;
1739
1740	if (cachep->flags & SLAB_RED_ZONE) {
1741		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1742			*dbg_redzone1(cachep, objp),
1743			*dbg_redzone2(cachep, objp));
1744	}
1745
1746	if (cachep->flags & SLAB_STORE_USER) {
1747		printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1748		       *dbg_userword(cachep, objp),
1749		       *dbg_userword(cachep, objp));
1750	}
1751	realobj = (char *)objp + obj_offset(cachep);
1752	size = cachep->object_size;
1753	for (i = 0; i < size && lines; i += 16, lines--) {
1754		int limit;
1755		limit = 16;
1756		if (i + limit > size)
1757			limit = size - i;
1758		dump_line(realobj, i, limit);
1759	}
1760}
1761
1762static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1763{
1764	char *realobj;
1765	int size, i;
1766	int lines = 0;
1767
1768	realobj = (char *)objp + obj_offset(cachep);
1769	size = cachep->object_size;
1770
1771	for (i = 0; i < size; i++) {
1772		char exp = POISON_FREE;
1773		if (i == size - 1)
1774			exp = POISON_END;
1775		if (realobj[i] != exp) {
1776			int limit;
1777			/* Mismatch ! */
1778			/* Print header */
1779			if (lines == 0) {
1780				printk(KERN_ERR
1781					"Slab corruption (%s): %s start=%p, len=%d\n",
1782					print_tainted(), cachep->name, realobj, size);
1783				print_objinfo(cachep, objp, 0);
1784			}
1785			/* Hexdump the affected line */
1786			i = (i / 16) * 16;
1787			limit = 16;
1788			if (i + limit > size)
1789				limit = size - i;
1790			dump_line(realobj, i, limit);
1791			i += 16;
1792			lines++;
1793			/* Limit to 5 lines */
1794			if (lines > 5)
1795				break;
1796		}
1797	}
1798	if (lines != 0) {
1799		/* Print some data about the neighboring objects, if they
1800		 * exist:
1801		 */
1802		struct page *page = virt_to_head_page(objp);
1803		unsigned int objnr;
1804
1805		objnr = obj_to_index(cachep, page, objp);
1806		if (objnr) {
1807			objp = index_to_obj(cachep, page, objnr - 1);
1808			realobj = (char *)objp + obj_offset(cachep);
1809			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1810			       realobj, size);
1811			print_objinfo(cachep, objp, 2);
1812		}
1813		if (objnr + 1 < cachep->num) {
1814			objp = index_to_obj(cachep, page, objnr + 1);
1815			realobj = (char *)objp + obj_offset(cachep);
1816			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1817			       realobj, size);
1818			print_objinfo(cachep, objp, 2);
1819		}
1820	}
1821}
1822#endif
1823
1824#if DEBUG
1825static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1826						struct page *page)
1827{
1828	int i;
1829	for (i = 0; i < cachep->num; i++) {
1830		void *objp = index_to_obj(cachep, page, i);
1831
1832		if (cachep->flags & SLAB_POISON) {
1833#ifdef CONFIG_DEBUG_PAGEALLOC
1834			if (cachep->size % PAGE_SIZE == 0 &&
1835					OFF_SLAB(cachep))
1836				kernel_map_pages(virt_to_page(objp),
1837					cachep->size / PAGE_SIZE, 1);
1838			else
1839				check_poison_obj(cachep, objp);
1840#else
1841			check_poison_obj(cachep, objp);
1842#endif
1843		}
1844		if (cachep->flags & SLAB_RED_ZONE) {
1845			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1846				slab_error(cachep, "start of a freed object "
1847					   "was overwritten");
1848			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1849				slab_error(cachep, "end of a freed object "
1850					   "was overwritten");
1851		}
1852	}
1853}
1854#else
1855static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1856						struct page *page)
1857{
1858}
1859#endif
1860
1861/**
1862 * slab_destroy - destroy and release all objects in a slab
1863 * @cachep: cache pointer being destroyed
1864 * @page: page pointer being destroyed
1865 *
1866 * Destroy all the objs in a slab page, and release the mem back to the system.
1867 * Before calling the slab page must have been unlinked from the cache. The
1868 * kmem_cache_node ->list_lock is not held/needed.
1869 */
1870static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1871{
1872	void *freelist;
1873
1874	freelist = page->freelist;
1875	slab_destroy_debugcheck(cachep, page);
1876	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1877		struct rcu_head *head;
1878
1879		/*
1880		 * RCU free overloads the RCU head over the LRU.
1881		 * slab_page has been overloeaded over the LRU,
1882		 * however it is not used from now on so that
1883		 * we can use it safely.
1884		 */
1885		head = (void *)&page->rcu_head;
1886		call_rcu(head, kmem_rcu_free);
1887
1888	} else {
1889		kmem_freepages(cachep, page);
1890	}
1891
1892	/*
1893	 * From now on, we don't use freelist
1894	 * although actual page can be freed in rcu context
1895	 */
1896	if (OFF_SLAB(cachep))
1897		kmem_cache_free(cachep->freelist_cache, freelist);
1898}
1899
1900static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1901{
1902	struct page *page, *n;
1903
1904	list_for_each_entry_safe(page, n, list, lru) {
1905		list_del(&page->lru);
1906		slab_destroy(cachep, page);
1907	}
1908}
1909
1910/**
1911 * calculate_slab_order - calculate size (page order) of slabs
1912 * @cachep: pointer to the cache that is being created
1913 * @size: size of objects to be created in this cache.
1914 * @align: required alignment for the objects.
1915 * @flags: slab allocation flags
1916 *
1917 * Also calculates the number of objects per slab.
1918 *
1919 * This could be made much more intelligent.  For now, try to avoid using
1920 * high order pages for slabs.  When the gfp() functions are more friendly
1921 * towards high-order requests, this should be changed.
1922 */
1923static size_t calculate_slab_order(struct kmem_cache *cachep,
1924			size_t size, size_t align, unsigned long flags)
1925{
1926	unsigned long offslab_limit;
1927	size_t left_over = 0;
1928	int gfporder;
1929
1930	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1931		unsigned int num;
1932		size_t remainder;
1933
1934		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1935		if (!num)
1936			continue;
1937
1938		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1939		if (num > SLAB_OBJ_MAX_NUM)
1940			break;
1941
1942		if (flags & CFLGS_OFF_SLAB) {
1943			size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1944			/*
1945			 * Max number of objs-per-slab for caches which
1946			 * use off-slab slabs. Needed to avoid a possible
1947			 * looping condition in cache_grow().
1948			 */
1949			if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1950				freelist_size_per_obj += sizeof(char);
1951			offslab_limit = size;
1952			offslab_limit /= freelist_size_per_obj;
1953
1954 			if (num > offslab_limit)
1955				break;
1956		}
1957
1958		/* Found something acceptable - save it away */
1959		cachep->num = num;
1960		cachep->gfporder = gfporder;
1961		left_over = remainder;
1962
1963		/*
1964		 * A VFS-reclaimable slab tends to have most allocations
1965		 * as GFP_NOFS and we really don't want to have to be allocating
1966		 * higher-order pages when we are unable to shrink dcache.
1967		 */
1968		if (flags & SLAB_RECLAIM_ACCOUNT)
1969			break;
1970
1971		/*
1972		 * Large number of objects is good, but very large slabs are
1973		 * currently bad for the gfp()s.
1974		 */
1975		if (gfporder >= slab_max_order)
1976			break;
1977
1978		/*
1979		 * Acceptable internal fragmentation?
1980		 */
1981		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1982			break;
1983	}
1984	return left_over;
1985}
1986
1987static struct array_cache __percpu *alloc_kmem_cache_cpus(
1988		struct kmem_cache *cachep, int entries, int batchcount)
1989{
1990	int cpu;
1991	size_t size;
1992	struct array_cache __percpu *cpu_cache;
1993
1994	size = sizeof(void *) * entries + sizeof(struct array_cache);
1995	cpu_cache = __alloc_percpu(size, sizeof(void *));
1996
1997	if (!cpu_cache)
1998		return NULL;
1999
2000	for_each_possible_cpu(cpu) {
2001		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2002				entries, batchcount);
2003	}
2004
2005	return cpu_cache;
2006}
2007
2008static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2009{
2010	if (slab_state >= FULL)
2011		return enable_cpucache(cachep, gfp);
2012
2013	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2014	if (!cachep->cpu_cache)
2015		return 1;
2016
2017	if (slab_state == DOWN) {
2018		/* Creation of first cache (kmem_cache). */
2019		set_up_node(kmem_cache, CACHE_CACHE);
2020	} else if (slab_state == PARTIAL) {
2021		/* For kmem_cache_node */
2022		set_up_node(cachep, SIZE_NODE);
2023	} else {
2024		int node;
2025
2026		for_each_online_node(node) {
2027			cachep->node[node] = kmalloc_node(
2028				sizeof(struct kmem_cache_node), gfp, node);
2029			BUG_ON(!cachep->node[node]);
2030			kmem_cache_node_init(cachep->node[node]);
2031		}
2032	}
2033
2034	cachep->node[numa_mem_id()]->next_reap =
2035			jiffies + REAPTIMEOUT_NODE +
2036			((unsigned long)cachep) % REAPTIMEOUT_NODE;
2037
2038	cpu_cache_get(cachep)->avail = 0;
2039	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2040	cpu_cache_get(cachep)->batchcount = 1;
2041	cpu_cache_get(cachep)->touched = 0;
2042	cachep->batchcount = 1;
2043	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2044	return 0;
2045}
2046
2047unsigned long kmem_cache_flags(unsigned long object_size,
2048	unsigned long flags, const char *name,
2049	void (*ctor)(void *))
2050{
2051	return flags;
2052}
2053
2054struct kmem_cache *
2055__kmem_cache_alias(const char *name, size_t size, size_t align,
2056		   unsigned long flags, void (*ctor)(void *))
2057{
2058	struct kmem_cache *cachep;
2059
2060	cachep = find_mergeable(size, align, flags, name, ctor);
2061	if (cachep) {
2062		cachep->refcount++;
2063
2064		/*
2065		 * Adjust the object sizes so that we clear
2066		 * the complete object on kzalloc.
2067		 */
2068		cachep->object_size = max_t(int, cachep->object_size, size);
2069	}
2070	return cachep;
2071}
2072
2073/**
2074 * __kmem_cache_create - Create a cache.
2075 * @cachep: cache management descriptor
2076 * @flags: SLAB flags
2077 *
2078 * Returns a ptr to the cache on success, NULL on failure.
2079 * Cannot be called within a int, but can be interrupted.
2080 * The @ctor is run when new pages are allocated by the cache.
2081 *
2082 * The flags are
2083 *
2084 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2085 * to catch references to uninitialised memory.
2086 *
2087 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2088 * for buffer overruns.
2089 *
2090 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2091 * cacheline.  This can be beneficial if you're counting cycles as closely
2092 * as davem.
2093 */
2094int
2095__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2096{
2097	size_t left_over, freelist_size;
2098	size_t ralign = BYTES_PER_WORD;
2099	gfp_t gfp;
2100	int err;
2101	size_t size = cachep->size;
2102
2103#if DEBUG
2104#if FORCED_DEBUG
2105	/*
2106	 * Enable redzoning and last user accounting, except for caches with
2107	 * large objects, if the increased size would increase the object size
2108	 * above the next power of two: caches with object sizes just above a
2109	 * power of two have a significant amount of internal fragmentation.
2110	 */
2111	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2112						2 * sizeof(unsigned long long)))
2113		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2114	if (!(flags & SLAB_DESTROY_BY_RCU))
2115		flags |= SLAB_POISON;
2116#endif
2117	if (flags & SLAB_DESTROY_BY_RCU)
2118		BUG_ON(flags & SLAB_POISON);
2119#endif
2120
2121	/*
2122	 * Check that size is in terms of words.  This is needed to avoid
2123	 * unaligned accesses for some archs when redzoning is used, and makes
2124	 * sure any on-slab bufctl's are also correctly aligned.
2125	 */
2126	if (size & (BYTES_PER_WORD - 1)) {
2127		size += (BYTES_PER_WORD - 1);
2128		size &= ~(BYTES_PER_WORD - 1);
2129	}
2130
2131	if (flags & SLAB_RED_ZONE) {
2132		ralign = REDZONE_ALIGN;
2133		/* If redzoning, ensure that the second redzone is suitably
2134		 * aligned, by adjusting the object size accordingly. */
2135		size += REDZONE_ALIGN - 1;
2136		size &= ~(REDZONE_ALIGN - 1);
2137	}
2138
2139	/* 3) caller mandated alignment */
2140	if (ralign < cachep->align) {
2141		ralign = cachep->align;
2142	}
2143	/* disable debug if necessary */
2144	if (ralign > __alignof__(unsigned long long))
2145		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2146	/*
2147	 * 4) Store it.
2148	 */
2149	cachep->align = ralign;
2150
2151	if (slab_is_available())
2152		gfp = GFP_KERNEL;
2153	else
2154		gfp = GFP_NOWAIT;
2155
2156#if DEBUG
2157
2158	/*
2159	 * Both debugging options require word-alignment which is calculated
2160	 * into align above.
2161	 */
2162	if (flags & SLAB_RED_ZONE) {
2163		/* add space for red zone words */
2164		cachep->obj_offset += sizeof(unsigned long long);
2165		size += 2 * sizeof(unsigned long long);
2166	}
2167	if (flags & SLAB_STORE_USER) {
2168		/* user store requires one word storage behind the end of
2169		 * the real object. But if the second red zone needs to be
2170		 * aligned to 64 bits, we must allow that much space.
2171		 */
2172		if (flags & SLAB_RED_ZONE)
2173			size += REDZONE_ALIGN;
2174		else
2175			size += BYTES_PER_WORD;
2176	}
2177#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2178	if (size >= kmalloc_size(INDEX_NODE + 1)
2179	    && cachep->object_size > cache_line_size()
2180	    && ALIGN(size, cachep->align) < PAGE_SIZE) {
2181		cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2182		size = PAGE_SIZE;
2183	}
2184#endif
2185#endif
2186
2187	/*
2188	 * Determine if the slab management is 'on' or 'off' slab.
2189	 * (bootstrapping cannot cope with offslab caches so don't do
2190	 * it too early on. Always use on-slab management when
2191	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2192	 */
2193	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2194	    !(flags & SLAB_NOLEAKTRACE))
2195		/*
2196		 * Size is large, assume best to place the slab management obj
2197		 * off-slab (should allow better packing of objs).
2198		 */
2199		flags |= CFLGS_OFF_SLAB;
2200
2201	size = ALIGN(size, cachep->align);
2202	/*
2203	 * We should restrict the number of objects in a slab to implement
2204	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2205	 */
2206	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2207		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2208
2209	left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2210
2211	if (!cachep->num)
2212		return -E2BIG;
2213
2214	freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2215
2216	/*
2217	 * If the slab has been placed off-slab, and we have enough space then
2218	 * move it on-slab. This is at the expense of any extra colouring.
2219	 */
2220	if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2221		flags &= ~CFLGS_OFF_SLAB;
2222		left_over -= freelist_size;
2223	}
2224
2225	if (flags & CFLGS_OFF_SLAB) {
2226		/* really off slab. No need for manual alignment */
2227		freelist_size = calculate_freelist_size(cachep->num, 0);
2228
2229#ifdef CONFIG_PAGE_POISONING
2230		/* If we're going to use the generic kernel_map_pages()
2231		 * poisoning, then it's going to smash the contents of
2232		 * the redzone and userword anyhow, so switch them off.
2233		 */
2234		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2235			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2236#endif
2237	}
2238
2239	cachep->colour_off = cache_line_size();
2240	/* Offset must be a multiple of the alignment. */
2241	if (cachep->colour_off < cachep->align)
2242		cachep->colour_off = cachep->align;
2243	cachep->colour = left_over / cachep->colour_off;
2244	cachep->freelist_size = freelist_size;
2245	cachep->flags = flags;
2246	cachep->allocflags = __GFP_COMP;
2247	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2248		cachep->allocflags |= GFP_DMA;
2249	cachep->size = size;
2250	cachep->reciprocal_buffer_size = reciprocal_value(size);
2251
2252	if (flags & CFLGS_OFF_SLAB) {
2253		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2254		/*
2255		 * This is a possibility for one of the kmalloc_{dma,}_caches.
2256		 * But since we go off slab only for object size greater than
2257		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2258		 * in ascending order,this should not happen at all.
2259		 * But leave a BUG_ON for some lucky dude.
2260		 */
2261		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2262	}
2263
2264	err = setup_cpu_cache(cachep, gfp);
2265	if (err) {
2266		__kmem_cache_shutdown(cachep);
2267		return err;
2268	}
2269
2270	return 0;
2271}
2272
2273#if DEBUG
2274static void check_irq_off(void)
2275{
2276	BUG_ON(!irqs_disabled());
2277}
2278
2279static void check_irq_on(void)
2280{
2281	BUG_ON(irqs_disabled());
2282}
2283
2284static void check_spinlock_acquired(struct kmem_cache *cachep)
2285{
2286#ifdef CONFIG_SMP
2287	check_irq_off();
2288	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2289#endif
2290}
2291
2292static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2293{
2294#ifdef CONFIG_SMP
2295	check_irq_off();
2296	assert_spin_locked(&get_node(cachep, node)->list_lock);
2297#endif
2298}
2299
2300#else
2301#define check_irq_off()	do { } while(0)
2302#define check_irq_on()	do { } while(0)
2303#define check_spinlock_acquired(x) do { } while(0)
2304#define check_spinlock_acquired_node(x, y) do { } while(0)
2305#endif
2306
2307static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2308			struct array_cache *ac,
2309			int force, int node);
2310
2311static void do_drain(void *arg)
2312{
2313	struct kmem_cache *cachep = arg;
2314	struct array_cache *ac;
2315	int node = numa_mem_id();
2316	struct kmem_cache_node *n;
2317	LIST_HEAD(list);
2318
2319	check_irq_off();
2320	ac = cpu_cache_get(cachep);
2321	n = get_node(cachep, node);
2322	spin_lock(&n->list_lock);
2323	free_block(cachep, ac->entry, ac->avail, node, &list);
2324	spin_unlock(&n->list_lock);
2325	slabs_destroy(cachep, &list);
2326	ac->avail = 0;
2327}
2328
2329static void drain_cpu_caches(struct kmem_cache *cachep)
2330{
2331	struct kmem_cache_node *n;
2332	int node;
2333
2334	on_each_cpu(do_drain, cachep, 1);
2335	check_irq_on();
2336	for_each_kmem_cache_node(cachep, node, n)
2337		if (n->alien)
2338			drain_alien_cache(cachep, n->alien);
2339
2340	for_each_kmem_cache_node(cachep, node, n)
2341		drain_array(cachep, n, n->shared, 1, node);
2342}
2343
2344/*
2345 * Remove slabs from the list of free slabs.
2346 * Specify the number of slabs to drain in tofree.
2347 *
2348 * Returns the actual number of slabs released.
2349 */
2350static int drain_freelist(struct kmem_cache *cache,
2351			struct kmem_cache_node *n, int tofree)
2352{
2353	struct list_head *p;
2354	int nr_freed;
2355	struct page *page;
2356
2357	nr_freed = 0;
2358	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2359
2360		spin_lock_irq(&n->list_lock);
2361		p = n->slabs_free.prev;
2362		if (p == &n->slabs_free) {
2363			spin_unlock_irq(&n->list_lock);
2364			goto out;
2365		}
2366
2367		page = list_entry(p, struct page, lru);
2368#if DEBUG
2369		BUG_ON(page->active);
2370#endif
2371		list_del(&page->lru);
2372		/*
2373		 * Safe to drop the lock. The slab is no longer linked
2374		 * to the cache.
2375		 */
2376		n->free_objects -= cache->num;
2377		spin_unlock_irq(&n->list_lock);
2378		slab_destroy(cache, page);
2379		nr_freed++;
2380	}
2381out:
2382	return nr_freed;
2383}
2384
2385int __kmem_cache_shrink(struct kmem_cache *cachep)
2386{
2387	int ret = 0;
2388	int node;
2389	struct kmem_cache_node *n;
2390
2391	drain_cpu_caches(cachep);
2392
2393	check_irq_on();
2394	for_each_kmem_cache_node(cachep, node, n) {
2395		drain_freelist(cachep, n, slabs_tofree(cachep, n));
2396
2397		ret += !list_empty(&n->slabs_full) ||
2398			!list_empty(&n->slabs_partial);
2399	}
2400	return (ret ? 1 : 0);
2401}
2402
2403int __kmem_cache_shutdown(struct kmem_cache *cachep)
2404{
2405	int i;
2406	struct kmem_cache_node *n;
2407	int rc = __kmem_cache_shrink(cachep);
2408
2409	if (rc)
2410		return rc;
2411
2412	free_percpu(cachep->cpu_cache);
2413
2414	/* NUMA: free the node structures */
2415	for_each_kmem_cache_node(cachep, i, n) {
2416		kfree(n->shared);
2417		free_alien_cache(n->alien);
2418		kfree(n);
2419		cachep->node[i] = NULL;
2420	}
2421	return 0;
2422}
2423
2424/*
2425 * Get the memory for a slab management obj.
2426 *
2427 * For a slab cache when the slab descriptor is off-slab, the
2428 * slab descriptor can't come from the same cache which is being created,
2429 * Because if it is the case, that means we defer the creation of
2430 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2431 * And we eventually call down to __kmem_cache_create(), which
2432 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2433 * This is a "chicken-and-egg" problem.
2434 *
2435 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2436 * which are all initialized during kmem_cache_init().
2437 */
2438static void *alloc_slabmgmt(struct kmem_cache *cachep,
2439				   struct page *page, int colour_off,
2440				   gfp_t local_flags, int nodeid)
2441{
2442	void *freelist;
2443	void *addr = page_address(page);
2444
2445	if (OFF_SLAB(cachep)) {
2446		/* Slab management obj is off-slab. */
2447		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2448					      local_flags, nodeid);
2449		if (!freelist)
2450			return NULL;
2451	} else {
2452		freelist = addr + colour_off;
2453		colour_off += cachep->freelist_size;
2454	}
2455	page->active = 0;
2456	page->s_mem = addr + colour_off;
2457	return freelist;
2458}
2459
2460static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2461{
2462	return ((freelist_idx_t *)page->freelist)[idx];
2463}
2464
2465static inline void set_free_obj(struct page *page,
2466					unsigned int idx, freelist_idx_t val)
2467{
2468	((freelist_idx_t *)(page->freelist))[idx] = val;
2469}
2470
2471static void cache_init_objs(struct kmem_cache *cachep,
2472			    struct page *page)
2473{
2474	int i;
2475
2476	for (i = 0; i < cachep->num; i++) {
2477		void *objp = index_to_obj(cachep, page, i);
2478#if DEBUG
2479		/* need to poison the objs? */
2480		if (cachep->flags & SLAB_POISON)
2481			poison_obj(cachep, objp, POISON_FREE);
2482		if (cachep->flags & SLAB_STORE_USER)
2483			*dbg_userword(cachep, objp) = NULL;
2484
2485		if (cachep->flags & SLAB_RED_ZONE) {
2486			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2487			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2488		}
2489		/*
2490		 * Constructors are not allowed to allocate memory from the same
2491		 * cache which they are a constructor for.  Otherwise, deadlock.
2492		 * They must also be threaded.
2493		 */
2494		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2495			cachep->ctor(objp + obj_offset(cachep));
2496
2497		if (cachep->flags & SLAB_RED_ZONE) {
2498			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2499				slab_error(cachep, "constructor overwrote the"
2500					   " end of an object");
2501			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2502				slab_error(cachep, "constructor overwrote the"
2503					   " start of an object");
2504		}
2505		if ((cachep->size % PAGE_SIZE) == 0 &&
2506			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2507			kernel_map_pages(virt_to_page(objp),
2508					 cachep->size / PAGE_SIZE, 0);
2509#else
2510		if (cachep->ctor)
2511			cachep->ctor(objp);
2512#endif
2513		set_obj_status(page, i, OBJECT_FREE);
2514		set_free_obj(page, i, i);
2515	}
2516}
2517
2518static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2519{
2520	if (CONFIG_ZONE_DMA_FLAG) {
2521		if (flags & GFP_DMA)
2522			BUG_ON(!(cachep->allocflags & GFP_DMA));
2523		else
2524			BUG_ON(cachep->allocflags & GFP_DMA);
2525	}
2526}
2527
2528static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2529				int nodeid)
2530{
2531	void *objp;
2532
2533	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2534	page->active++;
2535#if DEBUG
2536	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2537#endif
2538
2539	return objp;
2540}
2541
2542static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2543				void *objp, int nodeid)
2544{
2545	unsigned int objnr = obj_to_index(cachep, page, objp);
2546#if DEBUG
2547	unsigned int i;
2548
2549	/* Verify that the slab belongs to the intended node */
2550	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2551
2552	/* Verify double free bug */
2553	for (i = page->active; i < cachep->num; i++) {
2554		if (get_free_obj(page, i) == objnr) {
2555			printk(KERN_ERR "slab: double free detected in cache "
2556					"'%s', objp %p\n", cachep->name, objp);
2557			BUG();
2558		}
2559	}
2560#endif
2561	page->active--;
2562	set_free_obj(page, page->active, objnr);
2563}
2564
2565/*
2566 * Map pages beginning at addr to the given cache and slab. This is required
2567 * for the slab allocator to be able to lookup the cache and slab of a
2568 * virtual address for kfree, ksize, and slab debugging.
2569 */
2570static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2571			   void *freelist)
2572{
2573	page->slab_cache = cache;
2574	page->freelist = freelist;
2575}
2576
2577/*
2578 * Grow (by 1) the number of slabs within a cache.  This is called by
2579 * kmem_cache_alloc() when there are no active objs left in a cache.
2580 */
2581static int cache_grow(struct kmem_cache *cachep,
2582		gfp_t flags, int nodeid, struct page *page)
2583{
2584	void *freelist;
2585	size_t offset;
2586	gfp_t local_flags;
2587	struct kmem_cache_node *n;
2588
2589	/*
2590	 * Be lazy and only check for valid flags here,  keeping it out of the
2591	 * critical path in kmem_cache_alloc().
2592	 */
2593	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2594	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2595
2596	/* Take the node list lock to change the colour_next on this node */
2597	check_irq_off();
2598	n = get_node(cachep, nodeid);
2599	spin_lock(&n->list_lock);
2600
2601	/* Get colour for the slab, and cal the next value. */
2602	offset = n->colour_next;
2603	n->colour_next++;
2604	if (n->colour_next >= cachep->colour)
2605		n->colour_next = 0;
2606	spin_unlock(&n->list_lock);
2607
2608	offset *= cachep->colour_off;
2609
2610	if (local_flags & __GFP_WAIT)
2611		local_irq_enable();
2612
2613	/*
2614	 * The test for missing atomic flag is performed here, rather than
2615	 * the more obvious place, simply to reduce the critical path length
2616	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2617	 * will eventually be caught here (where it matters).
2618	 */
2619	kmem_flagcheck(cachep, flags);
2620
2621	/*
2622	 * Get mem for the objs.  Attempt to allocate a physical page from
2623	 * 'nodeid'.
2624	 */
2625	if (!page)
2626		page = kmem_getpages(cachep, local_flags, nodeid);
2627	if (!page)
2628		goto failed;
2629
2630	/* Get slab management. */
2631	freelist = alloc_slabmgmt(cachep, page, offset,
2632			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2633	if (!freelist)
2634		goto opps1;
2635
2636	slab_map_pages(cachep, page, freelist);
2637
2638	cache_init_objs(cachep, page);
2639
2640	if (local_flags & __GFP_WAIT)
2641		local_irq_disable();
2642	check_irq_off();
2643	spin_lock(&n->list_lock);
2644
2645	/* Make slab active. */
2646	list_add_tail(&page->lru, &(n->slabs_free));
2647	STATS_INC_GROWN(cachep);
2648	n->free_objects += cachep->num;
2649	spin_unlock(&n->list_lock);
2650	return 1;
2651opps1:
2652	kmem_freepages(cachep, page);
2653failed:
2654	if (local_flags & __GFP_WAIT)
2655		local_irq_disable();
2656	return 0;
2657}
2658
2659#if DEBUG
2660
2661/*
2662 * Perform extra freeing checks:
2663 * - detect bad pointers.
2664 * - POISON/RED_ZONE checking
2665 */
2666static void kfree_debugcheck(const void *objp)
2667{
2668	if (!virt_addr_valid(objp)) {
2669		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2670		       (unsigned long)objp);
2671		BUG();
2672	}
2673}
2674
2675static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2676{
2677	unsigned long long redzone1, redzone2;
2678
2679	redzone1 = *dbg_redzone1(cache, obj);
2680	redzone2 = *dbg_redzone2(cache, obj);
2681
2682	/*
2683	 * Redzone is ok.
2684	 */
2685	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2686		return;
2687
2688	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2689		slab_error(cache, "double free detected");
2690	else
2691		slab_error(cache, "memory outside object was overwritten");
2692
2693	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2694			obj, redzone1, redzone2);
2695}
2696
2697static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2698				   unsigned long caller)
2699{
2700	unsigned int objnr;
2701	struct page *page;
2702
2703	BUG_ON(virt_to_cache(objp) != cachep);
2704
2705	objp -= obj_offset(cachep);
2706	kfree_debugcheck(objp);
2707	page = virt_to_head_page(objp);
2708
2709	if (cachep->flags & SLAB_RED_ZONE) {
2710		verify_redzone_free(cachep, objp);
2711		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2712		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2713	}
2714	if (cachep->flags & SLAB_STORE_USER)
2715		*dbg_userword(cachep, objp) = (void *)caller;
2716
2717	objnr = obj_to_index(cachep, page, objp);
2718
2719	BUG_ON(objnr >= cachep->num);
2720	BUG_ON(objp != index_to_obj(cachep, page, objnr));
2721
2722	set_obj_status(page, objnr, OBJECT_FREE);
2723	if (cachep->flags & SLAB_POISON) {
2724#ifdef CONFIG_DEBUG_PAGEALLOC
2725		if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2726			store_stackinfo(cachep, objp, caller);
2727			kernel_map_pages(virt_to_page(objp),
2728					 cachep->size / PAGE_SIZE, 0);
2729		} else {
2730			poison_obj(cachep, objp, POISON_FREE);
2731		}
2732#else
2733		poison_obj(cachep, objp, POISON_FREE);
2734#endif
2735	}
2736	return objp;
2737}
2738
2739#else
2740#define kfree_debugcheck(x) do { } while(0)
2741#define cache_free_debugcheck(x,objp,z) (objp)
2742#endif
2743
2744static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2745							bool force_refill)
2746{
2747	int batchcount;
2748	struct kmem_cache_node *n;
2749	struct array_cache *ac;
2750	int node;
2751
2752	check_irq_off();
2753	node = numa_mem_id();
2754	if (unlikely(force_refill))
2755		goto force_grow;
2756retry:
2757	ac = cpu_cache_get(cachep);
2758	batchcount = ac->batchcount;
2759	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2760		/*
2761		 * If there was little recent activity on this cache, then
2762		 * perform only a partial refill.  Otherwise we could generate
2763		 * refill bouncing.
2764		 */
2765		batchcount = BATCHREFILL_LIMIT;
2766	}
2767	n = get_node(cachep, node);
2768
2769	BUG_ON(ac->avail > 0 || !n);
2770	spin_lock(&n->list_lock);
2771
2772	/* See if we can refill from the shared array */
2773	if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2774		n->shared->touched = 1;
2775		goto alloc_done;
2776	}
2777
2778	while (batchcount > 0) {
2779		struct list_head *entry;
2780		struct page *page;
2781		/* Get slab alloc is to come from. */
2782		entry = n->slabs_partial.next;
2783		if (entry == &n->slabs_partial) {
2784			n->free_touched = 1;
2785			entry = n->slabs_free.next;
2786			if (entry == &n->slabs_free)
2787				goto must_grow;
2788		}
2789
2790		page = list_entry(entry, struct page, lru);
2791		check_spinlock_acquired(cachep);
2792
2793		/*
2794		 * The slab was either on partial or free list so
2795		 * there must be at least one object available for
2796		 * allocation.
2797		 */
2798		BUG_ON(page->active >= cachep->num);
2799
2800		while (page->active < cachep->num && batchcount--) {
2801			STATS_INC_ALLOCED(cachep);
2802			STATS_INC_ACTIVE(cachep);
2803			STATS_SET_HIGH(cachep);
2804
2805			ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2806									node));
2807		}
2808
2809		/* move slabp to correct slabp list: */
2810		list_del(&page->lru);
2811		if (page->active == cachep->num)
2812			list_add(&page->lru, &n->slabs_full);
2813		else
2814			list_add(&page->lru, &n->slabs_partial);
2815	}
2816
2817must_grow:
2818	n->free_objects -= ac->avail;
2819alloc_done:
2820	spin_unlock(&n->list_lock);
2821
2822	if (unlikely(!ac->avail)) {
2823		int x;
2824force_grow:
2825		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2826
2827		/* cache_grow can reenable interrupts, then ac could change. */
2828		ac = cpu_cache_get(cachep);
2829		node = numa_mem_id();
2830
2831		/* no objects in sight? abort */
2832		if (!x && (ac->avail == 0 || force_refill))
2833			return NULL;
2834
2835		if (!ac->avail)		/* objects refilled by interrupt? */
2836			goto retry;
2837	}
2838	ac->touched = 1;
2839
2840	return ac_get_obj(cachep, ac, flags, force_refill);
2841}
2842
2843static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2844						gfp_t flags)
2845{
2846	might_sleep_if(flags & __GFP_WAIT);
2847#if DEBUG
2848	kmem_flagcheck(cachep, flags);
2849#endif
2850}
2851
2852#if DEBUG
2853static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2854				gfp_t flags, void *objp, unsigned long caller)
2855{
2856	struct page *page;
2857
2858	if (!objp)
2859		return objp;
2860	if (cachep->flags & SLAB_POISON) {
2861#ifdef CONFIG_DEBUG_PAGEALLOC
2862		if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2863			kernel_map_pages(virt_to_page(objp),
2864					 cachep->size / PAGE_SIZE, 1);
2865		else
2866			check_poison_obj(cachep, objp);
2867#else
2868		check_poison_obj(cachep, objp);
2869#endif
2870		poison_obj(cachep, objp, POISON_INUSE);
2871	}
2872	if (cachep->flags & SLAB_STORE_USER)
2873		*dbg_userword(cachep, objp) = (void *)caller;
2874
2875	if (cachep->flags & SLAB_RED_ZONE) {
2876		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2877				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2878			slab_error(cachep, "double free, or memory outside"
2879						" object was overwritten");
2880			printk(KERN_ERR
2881				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2882				objp, *dbg_redzone1(cachep, objp),
2883				*dbg_redzone2(cachep, objp));
2884		}
2885		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
2886		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
2887	}
2888
2889	page = virt_to_head_page(objp);
2890	set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2891	objp += obj_offset(cachep);
2892	if (cachep->ctor && cachep->flags & SLAB_POISON)
2893		cachep->ctor(objp);
2894	if (ARCH_SLAB_MINALIGN &&
2895	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2896		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2897		       objp, (int)ARCH_SLAB_MINALIGN);
2898	}
2899	return objp;
2900}
2901#else
2902#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2903#endif
2904
2905static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2906{
2907	if (unlikely(cachep == kmem_cache))
2908		return false;
2909
2910	return should_failslab(cachep->object_size, flags, cachep->flags);
2911}
2912
2913static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2914{
2915	void *objp;
2916	struct array_cache *ac;
2917	bool force_refill = false;
2918
2919	check_irq_off();
2920
2921	ac = cpu_cache_get(cachep);
2922	if (likely(ac->avail)) {
2923		ac->touched = 1;
2924		objp = ac_get_obj(cachep, ac, flags, false);
2925
2926		/*
2927		 * Allow for the possibility all avail objects are not allowed
2928		 * by the current flags
2929		 */
2930		if (objp) {
2931			STATS_INC_ALLOCHIT(cachep);
2932			goto out;
2933		}
2934		force_refill = true;
2935	}
2936
2937	STATS_INC_ALLOCMISS(cachep);
2938	objp = cache_alloc_refill(cachep, flags, force_refill);
2939	/*
2940	 * the 'ac' may be updated by cache_alloc_refill(),
2941	 * and kmemleak_erase() requires its correct value.
2942	 */
2943	ac = cpu_cache_get(cachep);
2944
2945out:
2946	/*
2947	 * To avoid a false negative, if an object that is in one of the
2948	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2949	 * treat the array pointers as a reference to the object.
2950	 */
2951	if (objp)
2952		kmemleak_erase(&ac->entry[ac->avail]);
2953	return objp;
2954}
2955
2956#ifdef CONFIG_NUMA
2957/*
2958 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2959 *
2960 * If we are in_interrupt, then process context, including cpusets and
2961 * mempolicy, may not apply and should not be used for allocation policy.
2962 */
2963static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2964{
2965	int nid_alloc, nid_here;
2966
2967	if (in_interrupt() || (flags & __GFP_THISNODE))
2968		return NULL;
2969	nid_alloc = nid_here = numa_mem_id();
2970	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2971		nid_alloc = cpuset_slab_spread_node();
2972	else if (current->mempolicy)
2973		nid_alloc = mempolicy_slab_node();
2974	if (nid_alloc != nid_here)
2975		return ____cache_alloc_node(cachep, flags, nid_alloc);
2976	return NULL;
2977}
2978
2979/*
2980 * Fallback function if there was no memory available and no objects on a
2981 * certain node and fall back is permitted. First we scan all the
2982 * available node for available objects. If that fails then we
2983 * perform an allocation without specifying a node. This allows the page
2984 * allocator to do its reclaim / fallback magic. We then insert the
2985 * slab into the proper nodelist and then allocate from it.
2986 */
2987static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2988{
2989	struct zonelist *zonelist;
2990	gfp_t local_flags;
2991	struct zoneref *z;
2992	struct zone *zone;
2993	enum zone_type high_zoneidx = gfp_zone(flags);
2994	void *obj = NULL;
2995	int nid;
2996	unsigned int cpuset_mems_cookie;
2997
2998	if (flags & __GFP_THISNODE)
2999		return NULL;
3000
3001	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3002
3003retry_cpuset:
3004	cpuset_mems_cookie = read_mems_allowed_begin();
3005	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3006
3007retry:
3008	/*
3009	 * Look through allowed nodes for objects available
3010	 * from existing per node queues.
3011	 */
3012	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3013		nid = zone_to_nid(zone);
3014
3015		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3016			get_node(cache, nid) &&
3017			get_node(cache, nid)->free_objects) {
3018				obj = ____cache_alloc_node(cache,
3019					flags | GFP_THISNODE, nid);
3020				if (obj)
3021					break;
3022		}
3023	}
3024
3025	if (!obj) {
3026		/*
3027		 * This allocation will be performed within the constraints
3028		 * of the current cpuset / memory policy requirements.
3029		 * We may trigger various forms of reclaim on the allowed
3030		 * set and go into memory reserves if necessary.
3031		 */
3032		struct page *page;
3033
3034		if (local_flags & __GFP_WAIT)
3035			local_irq_enable();
3036		kmem_flagcheck(cache, flags);
3037		page = kmem_getpages(cache, local_flags, numa_mem_id());
3038		if (local_flags & __GFP_WAIT)
3039			local_irq_disable();
3040		if (page) {
3041			/*
3042			 * Insert into the appropriate per node queues
3043			 */
3044			nid = page_to_nid(page);
3045			if (cache_grow(cache, flags, nid, page)) {
3046				obj = ____cache_alloc_node(cache,
3047					flags | GFP_THISNODE, nid);
3048				if (!obj)
3049					/*
3050					 * Another processor may allocate the
3051					 * objects in the slab since we are
3052					 * not holding any locks.
3053					 */
3054					goto retry;
3055			} else {
3056				/* cache_grow already freed obj */
3057				obj = NULL;
3058			}
3059		}
3060	}
3061
3062	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3063		goto retry_cpuset;
3064	return obj;
3065}
3066
3067/*
3068 * A interface to enable slab creation on nodeid
3069 */
3070static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3071				int nodeid)
3072{
3073	struct list_head *entry;
3074	struct page *page;
3075	struct kmem_cache_node *n;
3076	void *obj;
3077	int x;
3078
3079	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3080	n = get_node(cachep, nodeid);
3081	BUG_ON(!n);
3082
3083retry:
3084	check_irq_off();
3085	spin_lock(&n->list_lock);
3086	entry = n->slabs_partial.next;
3087	if (entry == &n->slabs_partial) {
3088		n->free_touched = 1;
3089		entry = n->slabs_free.next;
3090		if (entry == &n->slabs_free)
3091			goto must_grow;
3092	}
3093
3094	page = list_entry(entry, struct page, lru);
3095	check_spinlock_acquired_node(cachep, nodeid);
3096
3097	STATS_INC_NODEALLOCS(cachep);
3098	STATS_INC_ACTIVE(cachep);
3099	STATS_SET_HIGH(cachep);
3100
3101	BUG_ON(page->active == cachep->num);
3102
3103	obj = slab_get_obj(cachep, page, nodeid);
3104	n->free_objects--;
3105	/* move slabp to correct slabp list: */
3106	list_del(&page->lru);
3107
3108	if (page->active == cachep->num)
3109		list_add(&page->lru, &n->slabs_full);
3110	else
3111		list_add(&page->lru, &n->slabs_partial);
3112
3113	spin_unlock(&n->list_lock);
3114	goto done;
3115
3116must_grow:
3117	spin_unlock(&n->list_lock);
3118	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3119	if (x)
3120		goto retry;
3121
3122	return fallback_alloc(cachep, flags);
3123
3124done:
3125	return obj;
3126}
3127
3128static __always_inline void *
3129slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3130		   unsigned long caller)
3131{
3132	unsigned long save_flags;
3133	void *ptr;
3134	int slab_node = numa_mem_id();
3135
3136	flags &= gfp_allowed_mask;
3137
3138	lockdep_trace_alloc(flags);
3139
3140	if (slab_should_failslab(cachep, flags))
3141		return NULL;
3142
3143	cachep = memcg_kmem_get_cache(cachep, flags);
3144
3145	cache_alloc_debugcheck_before(cachep, flags);
3146	local_irq_save(save_flags);
3147
3148	if (nodeid == NUMA_NO_NODE)
3149		nodeid = slab_node;
3150
3151	if (unlikely(!get_node(cachep, nodeid))) {
3152		/* Node not bootstrapped yet */
3153		ptr = fallback_alloc(cachep, flags);
3154		goto out;
3155	}
3156
3157	if (nodeid == slab_node) {
3158		/*
3159		 * Use the locally cached objects if possible.
3160		 * However ____cache_alloc does not allow fallback
3161		 * to other nodes. It may fail while we still have
3162		 * objects on other nodes available.
3163		 */
3164		ptr = ____cache_alloc(cachep, flags);
3165		if (ptr)
3166			goto out;
3167	}
3168	/* ___cache_alloc_node can fall back to other nodes */
3169	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3170  out:
3171	local_irq_restore(save_flags);
3172	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3173	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3174				 flags);
3175
3176	if (likely(ptr)) {
3177		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3178		if (unlikely(flags & __GFP_ZERO))
3179			memset(ptr, 0, cachep->object_size);
3180	}
3181
3182	return ptr;
3183}
3184
3185static __always_inline void *
3186__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3187{
3188	void *objp;
3189
3190	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3191		objp = alternate_node_alloc(cache, flags);
3192		if (objp)
3193			goto out;
3194	}
3195	objp = ____cache_alloc(cache, flags);
3196
3197	/*
3198	 * We may just have run out of memory on the local node.
3199	 * ____cache_alloc_node() knows how to locate memory on other nodes
3200	 */
3201	if (!objp)
3202		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3203
3204  out:
3205	return objp;
3206}
3207#else
3208
3209static __always_inline void *
3210__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3211{
3212	return ____cache_alloc(cachep, flags);
3213}
3214
3215#endif /* CONFIG_NUMA */
3216
3217static __always_inline void *
3218slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3219{
3220	unsigned long save_flags;
3221	void *objp;
3222
3223	flags &= gfp_allowed_mask;
3224
3225	lockdep_trace_alloc(flags);
3226
3227	if (slab_should_failslab(cachep, flags))
3228		return NULL;
3229
3230	cachep = memcg_kmem_get_cache(cachep, flags);
3231
3232	cache_alloc_debugcheck_before(cachep, flags);
3233	local_irq_save(save_flags);
3234	objp = __do_cache_alloc(cachep, flags);
3235	local_irq_restore(save_flags);
3236	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3237	kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3238				 flags);
3239	prefetchw(objp);
3240
3241	if (likely(objp)) {
3242		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3243		if (unlikely(flags & __GFP_ZERO))
3244			memset(objp, 0, cachep->object_size);
3245	}
3246
3247	return objp;
3248}
3249
3250/*
3251 * Caller needs to acquire correct kmem_cache_node's list_lock
3252 * @list: List of detached free slabs should be freed by caller
3253 */
3254static void free_block(struct kmem_cache *cachep, void **objpp,
3255			int nr_objects, int node, struct list_head *list)
3256{
3257	int i;
3258	struct kmem_cache_node *n = get_node(cachep, node);
3259
3260	for (i = 0; i < nr_objects; i++) {
3261		void *objp;
3262		struct page *page;
3263
3264		clear_obj_pfmemalloc(&objpp[i]);
3265		objp = objpp[i];
3266
3267		page = virt_to_head_page(objp);
3268		list_del(&page->lru);
3269		check_spinlock_acquired_node(cachep, node);
3270		slab_put_obj(cachep, page, objp, node);
3271		STATS_DEC_ACTIVE(cachep);
3272		n->free_objects++;
3273
3274		/* fixup slab chains */
3275		if (page->active == 0) {
3276			if (n->free_objects > n->free_limit) {
3277				n->free_objects -= cachep->num;
3278				list_add_tail(&page->lru, list);
3279			} else {
3280				list_add(&page->lru, &n->slabs_free);
3281			}
3282		} else {
3283			/* Unconditionally move a slab to the end of the
3284			 * partial list on free - maximum time for the
3285			 * other objects to be freed, too.
3286			 */
3287			list_add_tail(&page->lru, &n->slabs_partial);
3288		}
3289	}
3290}
3291
3292static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3293{
3294	int batchcount;
3295	struct kmem_cache_node *n;
3296	int node = numa_mem_id();
3297	LIST_HEAD(list);
3298
3299	batchcount = ac->batchcount;
3300#if DEBUG
3301	BUG_ON(!batchcount || batchcount > ac->avail);
3302#endif
3303	check_irq_off();
3304	n = get_node(cachep, node);
3305	spin_lock(&n->list_lock);
3306	if (n->shared) {
3307		struct array_cache *shared_array = n->shared;
3308		int max = shared_array->limit - shared_array->avail;
3309		if (max) {
3310			if (batchcount > max)
3311				batchcount = max;
3312			memcpy(&(shared_array->entry[shared_array->avail]),
3313			       ac->entry, sizeof(void *) * batchcount);
3314			shared_array->avail += batchcount;
3315			goto free_done;
3316		}
3317	}
3318
3319	free_block(cachep, ac->entry, batchcount, node, &list);
3320free_done:
3321#if STATS
3322	{
3323		int i = 0;
3324		struct list_head *p;
3325
3326		p = n->slabs_free.next;
3327		while (p != &(n->slabs_free)) {
3328			struct page *page;
3329
3330			page = list_entry(p, struct page, lru);
3331			BUG_ON(page->active);
3332
3333			i++;
3334			p = p->next;
3335		}
3336		STATS_SET_FREEABLE(cachep, i);
3337	}
3338#endif
3339	spin_unlock(&n->list_lock);
3340	slabs_destroy(cachep, &list);
3341	ac->avail -= batchcount;
3342	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3343}
3344
3345/*
3346 * Release an obj back to its cache. If the obj has a constructed state, it must
3347 * be in this state _before_ it is released.  Called with disabled ints.
3348 */
3349static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3350				unsigned long caller)
3351{
3352	struct array_cache *ac = cpu_cache_get(cachep);
3353
3354	check_irq_off();
3355	kmemleak_free_recursive(objp, cachep->flags);
3356	objp = cache_free_debugcheck(cachep, objp, caller);
3357
3358	kmemcheck_slab_free(cachep, objp, cachep->object_size);
3359
3360	/*
3361	 * Skip calling cache_free_alien() when the platform is not numa.
3362	 * This will avoid cache misses that happen while accessing slabp (which
3363	 * is per page memory  reference) to get nodeid. Instead use a global
3364	 * variable to skip the call, which is mostly likely to be present in
3365	 * the cache.
3366	 */
3367	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3368		return;
3369
3370	if (ac->avail < ac->limit) {
3371		STATS_INC_FREEHIT(cachep);
3372	} else {
3373		STATS_INC_FREEMISS(cachep);
3374		cache_flusharray(cachep, ac);
3375	}
3376
3377	ac_put_obj(cachep, ac, objp);
3378}
3379
3380/**
3381 * kmem_cache_alloc - Allocate an object
3382 * @cachep: The cache to allocate from.
3383 * @flags: See kmalloc().
3384 *
3385 * Allocate an object from this cache.  The flags are only relevant
3386 * if the cache has no available objects.
3387 */
3388void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3389{
3390	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3391
3392	trace_kmem_cache_alloc(_RET_IP_, ret,
3393			       cachep->object_size, cachep->size, flags);
3394
3395	return ret;
3396}
3397EXPORT_SYMBOL(kmem_cache_alloc);
3398
3399#ifdef CONFIG_TRACING
3400void *
3401kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3402{
3403	void *ret;
3404
3405	ret = slab_alloc(cachep, flags, _RET_IP_);
3406
3407	trace_kmalloc(_RET_IP_, ret,
3408		      size, cachep->size, flags);
3409	return ret;
3410}
3411EXPORT_SYMBOL(kmem_cache_alloc_trace);
3412#endif
3413
3414#ifdef CONFIG_NUMA
3415/**
3416 * kmem_cache_alloc_node - Allocate an object on the specified node
3417 * @cachep: The cache to allocate from.
3418 * @flags: See kmalloc().
3419 * @nodeid: node number of the target node.
3420 *
3421 * Identical to kmem_cache_alloc but it will allocate memory on the given
3422 * node, which can improve the performance for cpu bound structures.
3423 *
3424 * Fallback to other node is possible if __GFP_THISNODE is not set.
3425 */
3426void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3427{
3428	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3429
3430	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3431				    cachep->object_size, cachep->size,
3432				    flags, nodeid);
3433
3434	return ret;
3435}
3436EXPORT_SYMBOL(kmem_cache_alloc_node);
3437
3438#ifdef CONFIG_TRACING
3439void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3440				  gfp_t flags,
3441				  int nodeid,
3442				  size_t size)
3443{
3444	void *ret;
3445
3446	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3447
3448	trace_kmalloc_node(_RET_IP_, ret,
3449			   size, cachep->size,
3450			   flags, nodeid);
3451	return ret;
3452}
3453EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3454#endif
3455
3456static __always_inline void *
3457__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3458{
3459	struct kmem_cache *cachep;
3460
3461	cachep = kmalloc_slab(size, flags);
3462	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3463		return cachep;
3464	return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3465}
3466
3467void *__kmalloc_node(size_t size, gfp_t flags, int node)
3468{
3469	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3470}
3471EXPORT_SYMBOL(__kmalloc_node);
3472
3473void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3474		int node, unsigned long caller)
3475{
3476	return __do_kmalloc_node(size, flags, node, caller);
3477}
3478EXPORT_SYMBOL(__kmalloc_node_track_caller);
3479#endif /* CONFIG_NUMA */
3480
3481/**
3482 * __do_kmalloc - allocate memory
3483 * @size: how many bytes of memory are required.
3484 * @flags: the type of memory to allocate (see kmalloc).
3485 * @caller: function caller for debug tracking of the caller
3486 */
3487static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3488					  unsigned long caller)
3489{
3490	struct kmem_cache *cachep;
3491	void *ret;
3492
3493	cachep = kmalloc_slab(size, flags);
3494	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3495		return cachep;
3496	ret = slab_alloc(cachep, flags, caller);
3497
3498	trace_kmalloc(caller, ret,
3499		      size, cachep->size, flags);
3500
3501	return ret;
3502}
3503
3504void *__kmalloc(size_t size, gfp_t flags)
3505{
3506	return __do_kmalloc(size, flags, _RET_IP_);
3507}
3508EXPORT_SYMBOL(__kmalloc);
3509
3510void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3511{
3512	return __do_kmalloc(size, flags, caller);
3513}
3514EXPORT_SYMBOL(__kmalloc_track_caller);
3515
3516/**
3517 * kmem_cache_free - Deallocate an object
3518 * @cachep: The cache the allocation was from.
3519 * @objp: The previously allocated object.
3520 *
3521 * Free an object which was previously allocated from this
3522 * cache.
3523 */
3524void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3525{
3526	unsigned long flags;
3527	cachep = cache_from_obj(cachep, objp);
3528	if (!cachep)
3529		return;
3530
3531	local_irq_save(flags);
3532	debug_check_no_locks_freed(objp, cachep->object_size);
3533	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3534		debug_check_no_obj_freed(objp, cachep->object_size);
3535	__cache_free(cachep, objp, _RET_IP_);
3536	local_irq_restore(flags);
3537
3538	trace_kmem_cache_free(_RET_IP_, objp);
3539}
3540EXPORT_SYMBOL(kmem_cache_free);
3541
3542/**
3543 * kfree - free previously allocated memory
3544 * @objp: pointer returned by kmalloc.
3545 *
3546 * If @objp is NULL, no operation is performed.
3547 *
3548 * Don't free memory not originally allocated by kmalloc()
3549 * or you will run into trouble.
3550 */
3551void kfree(const void *objp)
3552{
3553	struct kmem_cache *c;
3554	unsigned long flags;
3555
3556	trace_kfree(_RET_IP_, objp);
3557
3558	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3559		return;
3560	local_irq_save(flags);
3561	kfree_debugcheck(objp);
3562	c = virt_to_cache(objp);
3563	debug_check_no_locks_freed(objp, c->object_size);
3564
3565	debug_check_no_obj_freed(objp, c->object_size);
3566	__cache_free(c, (void *)objp, _RET_IP_);
3567	local_irq_restore(flags);
3568}
3569EXPORT_SYMBOL(kfree);
3570
3571/*
3572 * This initializes kmem_cache_node or resizes various caches for all nodes.
3573 */
3574static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3575{
3576	int node;
3577	struct kmem_cache_node *n;
3578	struct array_cache *new_shared;
3579	struct alien_cache **new_alien = NULL;
3580
3581	for_each_online_node(node) {
3582
3583                if (use_alien_caches) {
3584                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3585                        if (!new_alien)
3586                                goto fail;
3587                }
3588
3589		new_shared = NULL;
3590		if (cachep->shared) {
3591			new_shared = alloc_arraycache(node,
3592				cachep->shared*cachep->batchcount,
3593					0xbaadf00d, gfp);
3594			if (!new_shared) {
3595				free_alien_cache(new_alien);
3596				goto fail;
3597			}
3598		}
3599
3600		n = get_node(cachep, node);
3601		if (n) {
3602			struct array_cache *shared = n->shared;
3603			LIST_HEAD(list);
3604
3605			spin_lock_irq(&n->list_lock);
3606
3607			if (shared)
3608				free_block(cachep, shared->entry,
3609						shared->avail, node, &list);
3610
3611			n->shared = new_shared;
3612			if (!n->alien) {
3613				n->alien = new_alien;
3614				new_alien = NULL;
3615			}
3616			n->free_limit = (1 + nr_cpus_node(node)) *
3617					cachep->batchcount + cachep->num;
3618			spin_unlock_irq(&n->list_lock);
3619			slabs_destroy(cachep, &list);
3620			kfree(shared);
3621			free_alien_cache(new_alien);
3622			continue;
3623		}
3624		n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3625		if (!n) {
3626			free_alien_cache(new_alien);
3627			kfree(new_shared);
3628			goto fail;
3629		}
3630
3631		kmem_cache_node_init(n);
3632		n->next_reap = jiffies + REAPTIMEOUT_NODE +
3633				((unsigned long)cachep) % REAPTIMEOUT_NODE;
3634		n->shared = new_shared;
3635		n->alien = new_alien;
3636		n->free_limit = (1 + nr_cpus_node(node)) *
3637					cachep->batchcount + cachep->num;
3638		cachep->node[node] = n;
3639	}
3640	return 0;
3641
3642fail:
3643	if (!cachep->list.next) {
3644		/* Cache is not active yet. Roll back what we did */
3645		node--;
3646		while (node >= 0) {
3647			n = get_node(cachep, node);
3648			if (n) {
3649				kfree(n->shared);
3650				free_alien_cache(n->alien);
3651				kfree(n);
3652				cachep->node[node] = NULL;
3653			}
3654			node--;
3655		}
3656	}
3657	return -ENOMEM;
3658}
3659
3660/* Always called with the slab_mutex held */
3661static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3662				int batchcount, int shared, gfp_t gfp)
3663{
3664	struct array_cache __percpu *cpu_cache, *prev;
3665	int cpu;
3666
3667	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3668	if (!cpu_cache)
3669		return -ENOMEM;
3670
3671	prev = cachep->cpu_cache;
3672	cachep->cpu_cache = cpu_cache;
3673	kick_all_cpus_sync();
3674
3675	check_irq_on();
3676	cachep->batchcount = batchcount;
3677	cachep->limit = limit;
3678	cachep->shared = shared;
3679
3680	if (!prev)
3681		goto alloc_node;
3682
3683	for_each_online_cpu(cpu) {
3684		LIST_HEAD(list);
3685		int node;
3686		struct kmem_cache_node *n;
3687		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3688
3689		node = cpu_to_mem(cpu);
3690		n = get_node(cachep, node);
3691		spin_lock_irq(&n->list_lock);
3692		free_block(cachep, ac->entry, ac->avail, node, &list);
3693		spin_unlock_irq(&n->list_lock);
3694		slabs_destroy(cachep, &list);
3695	}
3696	free_percpu(prev);
3697
3698alloc_node:
3699	return alloc_kmem_cache_node(cachep, gfp);
3700}
3701
3702static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3703				int batchcount, int shared, gfp_t gfp)
3704{
3705	int ret;
3706	struct kmem_cache *c = NULL;
3707	int i = 0;
3708
3709	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3710
3711	if (slab_state < FULL)
3712		return ret;
3713
3714	if ((ret < 0) || !is_root_cache(cachep))
3715		return ret;
3716
3717	VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3718	for_each_memcg_cache_index(i) {
3719		c = cache_from_memcg_idx(cachep, i);
3720		if (c)
3721			/* return value determined by the parent cache only */
3722			__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3723	}
3724
3725	return ret;
3726}
3727
3728/* Called with slab_mutex held always */
3729static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3730{
3731	int err;
3732	int limit = 0;
3733	int shared = 0;
3734	int batchcount = 0;
3735
3736	if (!is_root_cache(cachep)) {
3737		struct kmem_cache *root = memcg_root_cache(cachep);
3738		limit = root->limit;
3739		shared = root->shared;
3740		batchcount = root->batchcount;
3741	}
3742
3743	if (limit && shared && batchcount)
3744		goto skip_setup;
3745	/*
3746	 * The head array serves three purposes:
3747	 * - create a LIFO ordering, i.e. return objects that are cache-warm
3748	 * - reduce the number of spinlock operations.
3749	 * - reduce the number of linked list operations on the slab and
3750	 *   bufctl chains: array operations are cheaper.
3751	 * The numbers are guessed, we should auto-tune as described by
3752	 * Bonwick.
3753	 */
3754	if (cachep->size > 131072)
3755		limit = 1;
3756	else if (cachep->size > PAGE_SIZE)
3757		limit = 8;
3758	else if (cachep->size > 1024)
3759		limit = 24;
3760	else if (cachep->size > 256)
3761		limit = 54;
3762	else
3763		limit = 120;
3764
3765	/*
3766	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3767	 * allocation behaviour: Most allocs on one cpu, most free operations
3768	 * on another cpu. For these cases, an efficient object passing between
3769	 * cpus is necessary. This is provided by a shared array. The array
3770	 * replaces Bonwick's magazine layer.
3771	 * On uniprocessor, it's functionally equivalent (but less efficient)
3772	 * to a larger limit. Thus disabled by default.
3773	 */
3774	shared = 0;
3775	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3776		shared = 8;
3777
3778#if DEBUG
3779	/*
3780	 * With debugging enabled, large batchcount lead to excessively long
3781	 * periods with disabled local interrupts. Limit the batchcount
3782	 */
3783	if (limit > 32)
3784		limit = 32;
3785#endif
3786	batchcount = (limit + 1) / 2;
3787skip_setup:
3788	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3789	if (err)
3790		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3791		       cachep->name, -err);
3792	return err;
3793}
3794
3795/*
3796 * Drain an array if it contains any elements taking the node lock only if
3797 * necessary. Note that the node listlock also protects the array_cache
3798 * if drain_array() is used on the shared array.
3799 */
3800static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3801			 struct array_cache *ac, int force, int node)
3802{
3803	LIST_HEAD(list);
3804	int tofree;
3805
3806	if (!ac || !ac->avail)
3807		return;
3808	if (ac->touched && !force) {
3809		ac->touched = 0;
3810	} else {
3811		spin_lock_irq(&n->list_lock);
3812		if (ac->avail) {
3813			tofree = force ? ac->avail : (ac->limit + 4) / 5;
3814			if (tofree > ac->avail)
3815				tofree = (ac->avail + 1) / 2;
3816			free_block(cachep, ac->entry, tofree, node, &list);
3817			ac->avail -= tofree;
3818			memmove(ac->entry, &(ac->entry[tofree]),
3819				sizeof(void *) * ac->avail);
3820		}
3821		spin_unlock_irq(&n->list_lock);
3822		slabs_destroy(cachep, &list);
3823	}
3824}
3825
3826/**
3827 * cache_reap - Reclaim memory from caches.
3828 * @w: work descriptor
3829 *
3830 * Called from workqueue/eventd every few seconds.
3831 * Purpose:
3832 * - clear the per-cpu caches for this CPU.
3833 * - return freeable pages to the main free memory pool.
3834 *
3835 * If we cannot acquire the cache chain mutex then just give up - we'll try
3836 * again on the next iteration.
3837 */
3838static void cache_reap(struct work_struct *w)
3839{
3840	struct kmem_cache *searchp;
3841	struct kmem_cache_node *n;
3842	int node = numa_mem_id();
3843	struct delayed_work *work = to_delayed_work(w);
3844
3845	if (!mutex_trylock(&slab_mutex))
3846		/* Give up. Setup the next iteration. */
3847		goto out;
3848
3849	list_for_each_entry(searchp, &slab_caches, list) {
3850		check_irq_on();
3851
3852		/*
3853		 * We only take the node lock if absolutely necessary and we
3854		 * have established with reasonable certainty that
3855		 * we can do some work if the lock was obtained.
3856		 */
3857		n = get_node(searchp, node);
3858
3859		reap_alien(searchp, n);
3860
3861		drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3862
3863		/*
3864		 * These are racy checks but it does not matter
3865		 * if we skip one check or scan twice.
3866		 */
3867		if (time_after(n->next_reap, jiffies))
3868			goto next;
3869
3870		n->next_reap = jiffies + REAPTIMEOUT_NODE;
3871
3872		drain_array(searchp, n, n->shared, 0, node);
3873
3874		if (n->free_touched)
3875			n->free_touched = 0;
3876		else {
3877			int freed;
3878
3879			freed = drain_freelist(searchp, n, (n->free_limit +
3880				5 * searchp->num - 1) / (5 * searchp->num));
3881			STATS_ADD_REAPED(searchp, freed);
3882		}
3883next:
3884		cond_resched();
3885	}
3886	check_irq_on();
3887	mutex_unlock(&slab_mutex);
3888	next_reap_node();
3889out:
3890	/* Set up the next iteration */
3891	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3892}
3893
3894#ifdef CONFIG_SLABINFO
3895void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3896{
3897	struct page *page;
3898	unsigned long active_objs;
3899	unsigned long num_objs;
3900	unsigned long active_slabs = 0;
3901	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3902	const char *name;
3903	char *error = NULL;
3904	int node;
3905	struct kmem_cache_node *n;
3906
3907	active_objs = 0;
3908	num_slabs = 0;
3909	for_each_kmem_cache_node(cachep, node, n) {
3910
3911		check_irq_on();
3912		spin_lock_irq(&n->list_lock);
3913
3914		list_for_each_entry(page, &n->slabs_full, lru) {
3915			if (page->active != cachep->num && !error)
3916				error = "slabs_full accounting error";
3917			active_objs += cachep->num;
3918			active_slabs++;
3919		}
3920		list_for_each_entry(page, &n->slabs_partial, lru) {
3921			if (page->active == cachep->num && !error)
3922				error = "slabs_partial accounting error";
3923			if (!page->active && !error)
3924				error = "slabs_partial accounting error";
3925			active_objs += page->active;
3926			active_slabs++;
3927		}
3928		list_for_each_entry(page, &n->slabs_free, lru) {
3929			if (page->active && !error)
3930				error = "slabs_free accounting error";
3931			num_slabs++;
3932		}
3933		free_objects += n->free_objects;
3934		if (n->shared)
3935			shared_avail += n->shared->avail;
3936
3937		spin_unlock_irq(&n->list_lock);
3938	}
3939	num_slabs += active_slabs;
3940	num_objs = num_slabs * cachep->num;
3941	if (num_objs - active_objs != free_objects && !error)
3942		error = "free_objects accounting error";
3943
3944	name = cachep->name;
3945	if (error)
3946		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3947
3948	sinfo->active_objs = active_objs;
3949	sinfo->num_objs = num_objs;
3950	sinfo->active_slabs = active_slabs;
3951	sinfo->num_slabs = num_slabs;
3952	sinfo->shared_avail = shared_avail;
3953	sinfo->limit = cachep->limit;
3954	sinfo->batchcount = cachep->batchcount;
3955	sinfo->shared = cachep->shared;
3956	sinfo->objects_per_slab = cachep->num;
3957	sinfo->cache_order = cachep->gfporder;
3958}
3959
3960void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3961{
3962#if STATS
3963	{			/* node stats */
3964		unsigned long high = cachep->high_mark;
3965		unsigned long allocs = cachep->num_allocations;
3966		unsigned long grown = cachep->grown;
3967		unsigned long reaped = cachep->reaped;
3968		unsigned long errors = cachep->errors;
3969		unsigned long max_freeable = cachep->max_freeable;
3970		unsigned long node_allocs = cachep->node_allocs;
3971		unsigned long node_frees = cachep->node_frees;
3972		unsigned long overflows = cachep->node_overflow;
3973
3974		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3975			   "%4lu %4lu %4lu %4lu %4lu",
3976			   allocs, high, grown,
3977			   reaped, errors, max_freeable, node_allocs,
3978			   node_frees, overflows);
3979	}
3980	/* cpu stats */
3981	{
3982		unsigned long allochit = atomic_read(&cachep->allochit);
3983		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3984		unsigned long freehit = atomic_read(&cachep->freehit);
3985		unsigned long freemiss = atomic_read(&cachep->freemiss);
3986
3987		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3988			   allochit, allocmiss, freehit, freemiss);
3989	}
3990#endif
3991}
3992
3993#define MAX_SLABINFO_WRITE 128
3994/**
3995 * slabinfo_write - Tuning for the slab allocator
3996 * @file: unused
3997 * @buffer: user buffer
3998 * @count: data length
3999 * @ppos: unused
4000 */
4001ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4002		       size_t count, loff_t *ppos)
4003{
4004	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4005	int limit, batchcount, shared, res;
4006	struct kmem_cache *cachep;
4007
4008	if (count > MAX_SLABINFO_WRITE)
4009		return -EINVAL;
4010	if (copy_from_user(&kbuf, buffer, count))
4011		return -EFAULT;
4012	kbuf[MAX_SLABINFO_WRITE] = '\0';
4013
4014	tmp = strchr(kbuf, ' ');
4015	if (!tmp)
4016		return -EINVAL;
4017	*tmp = '\0';
4018	tmp++;
4019	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4020		return -EINVAL;
4021
4022	/* Find the cache in the chain of caches. */
4023	mutex_lock(&slab_mutex);
4024	res = -EINVAL;
4025	list_for_each_entry(cachep, &slab_caches, list) {
4026		if (!strcmp(cachep->name, kbuf)) {
4027			if (limit < 1 || batchcount < 1 ||
4028					batchcount > limit || shared < 0) {
4029				res = 0;
4030			} else {
4031				res = do_tune_cpucache(cachep, limit,
4032						       batchcount, shared,
4033						       GFP_KERNEL);
4034			}
4035			break;
4036		}
4037	}
4038	mutex_unlock(&slab_mutex);
4039	if (res >= 0)
4040		res = count;
4041	return res;
4042}
4043
4044#ifdef CONFIG_DEBUG_SLAB_LEAK
4045
4046static void *leaks_start(struct seq_file *m, loff_t *pos)
4047{
4048	mutex_lock(&slab_mutex);
4049	return seq_list_start(&slab_caches, *pos);
4050}
4051
4052static inline int add_caller(unsigned long *n, unsigned long v)
4053{
4054	unsigned long *p;
4055	int l;
4056	if (!v)
4057		return 1;
4058	l = n[1];
4059	p = n + 2;
4060	while (l) {
4061		int i = l/2;
4062		unsigned long *q = p + 2 * i;
4063		if (*q == v) {
4064			q[1]++;
4065			return 1;
4066		}
4067		if (*q > v) {
4068			l = i;
4069		} else {
4070			p = q + 2;
4071			l -= i + 1;
4072		}
4073	}
4074	if (++n[1] == n[0])
4075		return 0;
4076	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4077	p[0] = v;
4078	p[1] = 1;
4079	return 1;
4080}
4081
4082static void handle_slab(unsigned long *n, struct kmem_cache *c,
4083						struct page *page)
4084{
4085	void *p;
4086	int i;
4087
4088	if (n[0] == n[1])
4089		return;
4090	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4091		if (get_obj_status(page, i) != OBJECT_ACTIVE)
4092			continue;
4093
4094		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4095			return;
4096	}
4097}
4098
4099static void show_symbol(struct seq_file *m, unsigned long address)
4100{
4101#ifdef CONFIG_KALLSYMS
4102	unsigned long offset, size;
4103	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4104
4105	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4106		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4107		if (modname[0])
4108			seq_printf(m, " [%s]", modname);
4109		return;
4110	}
4111#endif
4112	seq_printf(m, "%p", (void *)address);
4113}
4114
4115static int leaks_show(struct seq_file *m, void *p)
4116{
4117	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4118	struct page *page;
4119	struct kmem_cache_node *n;
4120	const char *name;
4121	unsigned long *x = m->private;
4122	int node;
4123	int i;
4124
4125	if (!(cachep->flags & SLAB_STORE_USER))
4126		return 0;
4127	if (!(cachep->flags & SLAB_RED_ZONE))
4128		return 0;
4129
4130	/* OK, we can do it */
4131
4132	x[1] = 0;
4133
4134	for_each_kmem_cache_node(cachep, node, n) {
4135
4136		check_irq_on();
4137		spin_lock_irq(&n->list_lock);
4138
4139		list_for_each_entry(page, &n->slabs_full, lru)
4140			handle_slab(x, cachep, page);
4141		list_for_each_entry(page, &n->slabs_partial, lru)
4142			handle_slab(x, cachep, page);
4143		spin_unlock_irq(&n->list_lock);
4144	}
4145	name = cachep->name;
4146	if (x[0] == x[1]) {
4147		/* Increase the buffer size */
4148		mutex_unlock(&slab_mutex);
4149		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4150		if (!m->private) {
4151			/* Too bad, we are really out */
4152			m->private = x;
4153			mutex_lock(&slab_mutex);
4154			return -ENOMEM;
4155		}
4156		*(unsigned long *)m->private = x[0] * 2;
4157		kfree(x);
4158		mutex_lock(&slab_mutex);
4159		/* Now make sure this entry will be retried */
4160		m->count = m->size;
4161		return 0;
4162	}
4163	for (i = 0; i < x[1]; i++) {
4164		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4165		show_symbol(m, x[2*i+2]);
4166		seq_putc(m, '\n');
4167	}
4168
4169	return 0;
4170}
4171
4172static const struct seq_operations slabstats_op = {
4173	.start = leaks_start,
4174	.next = slab_next,
4175	.stop = slab_stop,
4176	.show = leaks_show,
4177};
4178
4179static int slabstats_open(struct inode *inode, struct file *file)
4180{
4181	unsigned long *n;
4182
4183	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4184	if (!n)
4185		return -ENOMEM;
4186
4187	*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4188
4189	return 0;
4190}
4191
4192static const struct file_operations proc_slabstats_operations = {
4193	.open		= slabstats_open,
4194	.read		= seq_read,
4195	.llseek		= seq_lseek,
4196	.release	= seq_release_private,
4197};
4198#endif
4199
4200static int __init slab_proc_init(void)
4201{
4202#ifdef CONFIG_DEBUG_SLAB_LEAK
4203	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4204#endif
4205	return 0;
4206}
4207module_init(slab_proc_init);
4208#endif
4209
4210/**
4211 * ksize - get the actual amount of memory allocated for a given object
4212 * @objp: Pointer to the object
4213 *
4214 * kmalloc may internally round up allocations and return more memory
4215 * than requested. ksize() can be used to determine the actual amount of
4216 * memory allocated. The caller may use this additional memory, even though
4217 * a smaller amount of memory was initially specified with the kmalloc call.
4218 * The caller must guarantee that objp points to a valid object previously
4219 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4220 * must not be freed during the duration of the call.
4221 */
4222size_t ksize(const void *objp)
4223{
4224	BUG_ON(!objp);
4225	if (unlikely(objp == ZERO_SIZE_PTR))
4226		return 0;
4227
4228	return virt_to_cache(objp)->object_size;
4229}
4230EXPORT_SYMBOL(ksize);
4231