arp.c revision 444fc8fc3a1f926fa224655b8950bd853368c1a3
1/* linux/net/inet/arp.c
2 *
3 * Version:	$Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4 *
5 * Copyright (C) 1994 by Florian  La Roche
6 *
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Fixes:
18 *		Alan Cox	:	Removed the Ethernet assumptions in
19 *					Florian's code
20 *		Alan Cox	:	Fixed some small errors in the ARP
21 *					logic
22 *		Alan Cox	:	Allow >4K in /proc
23 *		Alan Cox	:	Make ARP add its own protocol entry
24 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
25 *		Stephen Henson	:	Add AX25 support to arp_get_info()
26 *		Alan Cox	:	Drop data when a device is downed.
27 *		Alan Cox	:	Use init_timer().
28 *		Alan Cox	:	Double lock fixes.
29 *		Martin Seine	:	Move the arphdr structure
30 *					to if_arp.h for compatibility.
31 *					with BSD based programs.
32 *		Andrew Tridgell :       Added ARP netmask code and
33 *					re-arranged proxy handling.
34 *		Alan Cox	:	Changed to use notifiers.
35 *		Niibe Yutaka	:	Reply for this device or proxies only.
36 *		Alan Cox	:	Don't proxy across hardware types!
37 *		Jonathan Naylor :	Added support for NET/ROM.
38 *		Mike Shaver     :       RFC1122 checks.
39 *		Jonathan Naylor :	Only lookup the hardware address for
40 *					the correct hardware type.
41 *		Germano Caronni	:	Assorted subtle races.
42 *		Craig Schlenter :	Don't modify permanent entry
43 *					during arp_rcv.
44 *		Russ Nelson	:	Tidied up a few bits.
45 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
46 *					eg intelligent arp probing and
47 *					generation
48 *					of host down events.
49 *		Alan Cox	:	Missing unlock in device events.
50 *		Eckes		:	ARP ioctl control errors.
51 *		Alexey Kuznetsov:	Arp free fix.
52 *		Manuel Rodriguez:	Gratuitous ARP.
53 *              Jonathan Layes  :       Added arpd support through kerneld
54 *                                      message queue (960314)
55 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
56 *		Mike McLagan    :	Routing by source
57 *		Stuart Cheshire	:	Metricom and grat arp fixes
58 *					*** FOR 2.1 clean this up ***
59 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
61 *					folded into the mainstream FDDI code.
62 *					Ack spit, Linus how did you allow that
63 *					one in...
64 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
65 *					clean up the APFDDI & gen. FDDI bits.
66 *		Alexey Kuznetsov:	new arp state machine;
67 *					now it is in net/core/neighbour.c.
68 *		Krzysztof Halasa:	Added Frame Relay ARP support.
69 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
70 *		Shmulik Hen:		Split arp_send to arp_create and
71 *					arp_xmit so intermediate drivers like
72 *					bonding can change the skb before
73 *					sending (e.g. insert 8021q tag).
74 *		Harald Welte	:	convert to make use of jenkins hash
75 */
76
77#include <linux/module.h>
78#include <linux/types.h>
79#include <linux/string.h>
80#include <linux/kernel.h>
81#include <linux/sched.h>
82#include <linux/config.h>
83#include <linux/socket.h>
84#include <linux/sockios.h>
85#include <linux/errno.h>
86#include <linux/in.h>
87#include <linux/mm.h>
88#include <linux/inet.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/fddidevice.h>
92#include <linux/if_arp.h>
93#include <linux/trdevice.h>
94#include <linux/skbuff.h>
95#include <linux/proc_fs.h>
96#include <linux/seq_file.h>
97#include <linux/stat.h>
98#include <linux/init.h>
99#include <linux/net.h>
100#include <linux/rcupdate.h>
101#include <linux/jhash.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/ip.h>
107#include <net/icmp.h>
108#include <net/route.h>
109#include <net/protocol.h>
110#include <net/tcp.h>
111#include <net/sock.h>
112#include <net/arp.h>
113#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
114#include <net/ax25.h>
115#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
116#include <net/netrom.h>
117#endif
118#endif
119#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
120#include <net/atmclip.h>
121struct neigh_table *clip_tbl_hook;
122#endif
123
124#include <asm/system.h>
125#include <asm/uaccess.h>
126
127#include <linux/netfilter_arp.h>
128
129/*
130 *	Interface to generic neighbour cache.
131 */
132static u32 arp_hash(const void *pkey, const struct net_device *dev);
133static int arp_constructor(struct neighbour *neigh);
134static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
135static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
136static void parp_redo(struct sk_buff *skb);
137
138static struct neigh_ops arp_generic_ops = {
139	.family =		AF_INET,
140	.solicit =		arp_solicit,
141	.error_report =		arp_error_report,
142	.output =		neigh_resolve_output,
143	.connected_output =	neigh_connected_output,
144	.hh_output =		dev_queue_xmit,
145	.queue_xmit =		dev_queue_xmit,
146};
147
148static struct neigh_ops arp_hh_ops = {
149	.family =		AF_INET,
150	.solicit =		arp_solicit,
151	.error_report =		arp_error_report,
152	.output =		neigh_resolve_output,
153	.connected_output =	neigh_resolve_output,
154	.hh_output =		dev_queue_xmit,
155	.queue_xmit =		dev_queue_xmit,
156};
157
158static struct neigh_ops arp_direct_ops = {
159	.family =		AF_INET,
160	.output =		dev_queue_xmit,
161	.connected_output =	dev_queue_xmit,
162	.hh_output =		dev_queue_xmit,
163	.queue_xmit =		dev_queue_xmit,
164};
165
166struct neigh_ops arp_broken_ops = {
167	.family =		AF_INET,
168	.solicit =		arp_solicit,
169	.error_report =		arp_error_report,
170	.output =		neigh_compat_output,
171	.connected_output =	neigh_compat_output,
172	.hh_output =		dev_queue_xmit,
173	.queue_xmit =		dev_queue_xmit,
174};
175
176struct neigh_table arp_tbl = {
177	.family =	AF_INET,
178	.entry_size =	sizeof(struct neighbour) + 4,
179	.key_len =	4,
180	.hash =		arp_hash,
181	.constructor =	arp_constructor,
182	.proxy_redo =	parp_redo,
183	.id =		"arp_cache",
184	.parms = {
185		.tbl =			&arp_tbl,
186		.base_reachable_time =	30 * HZ,
187		.retrans_time =	1 * HZ,
188		.gc_staletime =	60 * HZ,
189		.reachable_time =		30 * HZ,
190		.delay_probe_time =	5 * HZ,
191		.queue_len =		3,
192		.ucast_probes =	3,
193		.mcast_probes =	3,
194		.anycast_delay =	1 * HZ,
195		.proxy_delay =		(8 * HZ) / 10,
196		.proxy_qlen =		64,
197		.locktime =		1 * HZ,
198	},
199	.gc_interval =	30 * HZ,
200	.gc_thresh1 =	128,
201	.gc_thresh2 =	512,
202	.gc_thresh3 =	1024,
203};
204
205int arp_mc_map(u32 addr, u8 *haddr, struct net_device *dev, int dir)
206{
207	switch (dev->type) {
208	case ARPHRD_ETHER:
209	case ARPHRD_FDDI:
210	case ARPHRD_IEEE802:
211		ip_eth_mc_map(addr, haddr);
212		return 0;
213	case ARPHRD_IEEE802_TR:
214		ip_tr_mc_map(addr, haddr);
215		return 0;
216	case ARPHRD_INFINIBAND:
217		ip_ib_mc_map(addr, haddr);
218		return 0;
219	default:
220		if (dir) {
221			memcpy(haddr, dev->broadcast, dev->addr_len);
222			return 0;
223		}
224	}
225	return -EINVAL;
226}
227
228
229static u32 arp_hash(const void *pkey, const struct net_device *dev)
230{
231	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
232}
233
234static int arp_constructor(struct neighbour *neigh)
235{
236	u32 addr = *(u32*)neigh->primary_key;
237	struct net_device *dev = neigh->dev;
238	struct in_device *in_dev;
239	struct neigh_parms *parms;
240
241	neigh->type = inet_addr_type(addr);
242
243	rcu_read_lock();
244	in_dev = rcu_dereference(__in_dev_get(dev));
245	if (in_dev == NULL) {
246		rcu_read_unlock();
247		return -EINVAL;
248	}
249
250	parms = in_dev->arp_parms;
251	__neigh_parms_put(neigh->parms);
252	neigh->parms = neigh_parms_clone(parms);
253	rcu_read_unlock();
254
255	if (dev->hard_header == NULL) {
256		neigh->nud_state = NUD_NOARP;
257		neigh->ops = &arp_direct_ops;
258		neigh->output = neigh->ops->queue_xmit;
259	} else {
260		/* Good devices (checked by reading texts, but only Ethernet is
261		   tested)
262
263		   ARPHRD_ETHER: (ethernet, apfddi)
264		   ARPHRD_FDDI: (fddi)
265		   ARPHRD_IEEE802: (tr)
266		   ARPHRD_METRICOM: (strip)
267		   ARPHRD_ARCNET:
268		   etc. etc. etc.
269
270		   ARPHRD_IPDDP will also work, if author repairs it.
271		   I did not it, because this driver does not work even
272		   in old paradigm.
273		 */
274
275#if 1
276		/* So... these "amateur" devices are hopeless.
277		   The only thing, that I can say now:
278		   It is very sad that we need to keep ugly obsolete
279		   code to make them happy.
280
281		   They should be moved to more reasonable state, now
282		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
283		   Besides that, they are sort of out of date
284		   (a lot of redundant clones/copies, useless in 2.1),
285		   I wonder why people believe that they work.
286		 */
287		switch (dev->type) {
288		default:
289			break;
290		case ARPHRD_ROSE:
291#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
292		case ARPHRD_AX25:
293#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
294		case ARPHRD_NETROM:
295#endif
296			neigh->ops = &arp_broken_ops;
297			neigh->output = neigh->ops->output;
298			return 0;
299#endif
300		;}
301#endif
302		if (neigh->type == RTN_MULTICAST) {
303			neigh->nud_state = NUD_NOARP;
304			arp_mc_map(addr, neigh->ha, dev, 1);
305		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
306			neigh->nud_state = NUD_NOARP;
307			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
308		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
309			neigh->nud_state = NUD_NOARP;
310			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
311		}
312		if (dev->hard_header_cache)
313			neigh->ops = &arp_hh_ops;
314		else
315			neigh->ops = &arp_generic_ops;
316		if (neigh->nud_state&NUD_VALID)
317			neigh->output = neigh->ops->connected_output;
318		else
319			neigh->output = neigh->ops->output;
320	}
321	return 0;
322}
323
324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
325{
326	dst_link_failure(skb);
327	kfree_skb(skb);
328}
329
330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331{
332	u32 saddr = 0;
333	u8  *dst_ha = NULL;
334	struct net_device *dev = neigh->dev;
335	u32 target = *(u32*)neigh->primary_key;
336	int probes = atomic_read(&neigh->probes);
337	struct in_device *in_dev = in_dev_get(dev);
338
339	if (!in_dev)
340		return;
341
342	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
343	default:
344	case 0:		/* By default announce any local IP */
345		if (skb && inet_addr_type(skb->nh.iph->saddr) == RTN_LOCAL)
346			saddr = skb->nh.iph->saddr;
347		break;
348	case 1:		/* Restrict announcements of saddr in same subnet */
349		if (!skb)
350			break;
351		saddr = skb->nh.iph->saddr;
352		if (inet_addr_type(saddr) == RTN_LOCAL) {
353			/* saddr should be known to target */
354			if (inet_addr_onlink(in_dev, target, saddr))
355				break;
356		}
357		saddr = 0;
358		break;
359	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
360		break;
361	}
362
363	if (in_dev)
364		in_dev_put(in_dev);
365	if (!saddr)
366		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
367
368	if ((probes -= neigh->parms->ucast_probes) < 0) {
369		if (!(neigh->nud_state&NUD_VALID))
370			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
371		dst_ha = neigh->ha;
372		read_lock_bh(&neigh->lock);
373	} else if ((probes -= neigh->parms->app_probes) < 0) {
374#ifdef CONFIG_ARPD
375		neigh_app_ns(neigh);
376#endif
377		return;
378	}
379
380	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
381		 dst_ha, dev->dev_addr, NULL);
382	if (dst_ha)
383		read_unlock_bh(&neigh->lock);
384}
385
386static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
387		      u32 sip, u32 tip)
388{
389	int scope;
390
391	switch (IN_DEV_ARP_IGNORE(in_dev)) {
392	case 0:	/* Reply, the tip is already validated */
393		return 0;
394	case 1:	/* Reply only if tip is configured on the incoming interface */
395		sip = 0;
396		scope = RT_SCOPE_HOST;
397		break;
398	case 2:	/*
399		 * Reply only if tip is configured on the incoming interface
400		 * and is in same subnet as sip
401		 */
402		scope = RT_SCOPE_HOST;
403		break;
404	case 3:	/* Do not reply for scope host addresses */
405		sip = 0;
406		scope = RT_SCOPE_LINK;
407		dev = NULL;
408		break;
409	case 4:	/* Reserved */
410	case 5:
411	case 6:
412	case 7:
413		return 0;
414	case 8:	/* Do not reply */
415		return 1;
416	default:
417		return 0;
418	}
419	return !inet_confirm_addr(dev, sip, tip, scope);
420}
421
422static int arp_filter(__u32 sip, __u32 tip, struct net_device *dev)
423{
424	struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
425						 .saddr = tip } } };
426	struct rtable *rt;
427	int flag = 0;
428	/*unsigned long now; */
429
430	if (ip_route_output_key(&rt, &fl) < 0)
431		return 1;
432	if (rt->u.dst.dev != dev) {
433		NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
434		flag = 1;
435	}
436	ip_rt_put(rt);
437	return flag;
438}
439
440/* OBSOLETE FUNCTIONS */
441
442/*
443 *	Find an arp mapping in the cache. If not found, post a request.
444 *
445 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
446 *	even if it exists. It is supposed that skb->dev was mangled
447 *	by a virtual device (eql, shaper). Nobody but broken devices
448 *	is allowed to use this function, it is scheduled to be removed. --ANK
449 */
450
451static int arp_set_predefined(int addr_hint, unsigned char * haddr, u32 paddr, struct net_device * dev)
452{
453	switch (addr_hint) {
454	case RTN_LOCAL:
455		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
456		memcpy(haddr, dev->dev_addr, dev->addr_len);
457		return 1;
458	case RTN_MULTICAST:
459		arp_mc_map(paddr, haddr, dev, 1);
460		return 1;
461	case RTN_BROADCAST:
462		memcpy(haddr, dev->broadcast, dev->addr_len);
463		return 1;
464	}
465	return 0;
466}
467
468
469int arp_find(unsigned char *haddr, struct sk_buff *skb)
470{
471	struct net_device *dev = skb->dev;
472	u32 paddr;
473	struct neighbour *n;
474
475	if (!skb->dst) {
476		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
477		kfree_skb(skb);
478		return 1;
479	}
480
481	paddr = ((struct rtable*)skb->dst)->rt_gateway;
482
483	if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
484		return 0;
485
486	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
487
488	if (n) {
489		n->used = jiffies;
490		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
491			read_lock_bh(&n->lock);
492 			memcpy(haddr, n->ha, dev->addr_len);
493			read_unlock_bh(&n->lock);
494			neigh_release(n);
495			return 0;
496		}
497		neigh_release(n);
498	} else
499		kfree_skb(skb);
500	return 1;
501}
502
503/* END OF OBSOLETE FUNCTIONS */
504
505int arp_bind_neighbour(struct dst_entry *dst)
506{
507	struct net_device *dev = dst->dev;
508	struct neighbour *n = dst->neighbour;
509
510	if (dev == NULL)
511		return -EINVAL;
512	if (n == NULL) {
513		u32 nexthop = ((struct rtable*)dst)->rt_gateway;
514		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
515			nexthop = 0;
516		n = __neigh_lookup_errno(
517#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
518		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
519#endif
520		    &arp_tbl, &nexthop, dev);
521		if (IS_ERR(n))
522			return PTR_ERR(n);
523		dst->neighbour = n;
524	}
525	return 0;
526}
527
528/*
529 * Check if we can use proxy ARP for this path
530 */
531
532static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
533{
534	struct in_device *out_dev;
535	int imi, omi = -1;
536
537	if (!IN_DEV_PROXY_ARP(in_dev))
538		return 0;
539
540	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
541		return 1;
542	if (imi == -1)
543		return 0;
544
545	/* place to check for proxy_arp for routes */
546
547	if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
548		omi = IN_DEV_MEDIUM_ID(out_dev);
549		in_dev_put(out_dev);
550	}
551	return (omi != imi && omi != -1);
552}
553
554/*
555 *	Interface to link layer: send routine and receive handler.
556 */
557
558/*
559 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
560 *	message.
561 */
562struct sk_buff *arp_create(int type, int ptype, u32 dest_ip,
563			   struct net_device *dev, u32 src_ip,
564			   unsigned char *dest_hw, unsigned char *src_hw,
565			   unsigned char *target_hw)
566{
567	struct sk_buff *skb;
568	struct arphdr *arp;
569	unsigned char *arp_ptr;
570
571	/*
572	 *	Allocate a buffer
573	 */
574
575	skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
576				+ LL_RESERVED_SPACE(dev), GFP_ATOMIC);
577	if (skb == NULL)
578		return NULL;
579
580	skb_reserve(skb, LL_RESERVED_SPACE(dev));
581	skb->nh.raw = skb->data;
582	arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
583	skb->dev = dev;
584	skb->protocol = htons(ETH_P_ARP);
585	if (src_hw == NULL)
586		src_hw = dev->dev_addr;
587	if (dest_hw == NULL)
588		dest_hw = dev->broadcast;
589
590	/*
591	 *	Fill the device header for the ARP frame
592	 */
593	if (dev->hard_header &&
594	    dev->hard_header(skb,dev,ptype,dest_hw,src_hw,skb->len) < 0)
595		goto out;
596
597	/*
598	 * Fill out the arp protocol part.
599	 *
600	 * The arp hardware type should match the device type, except for FDDI,
601	 * which (according to RFC 1390) should always equal 1 (Ethernet).
602	 */
603	/*
604	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
605	 *	DIX code for the protocol. Make these device structure fields.
606	 */
607	switch (dev->type) {
608	default:
609		arp->ar_hrd = htons(dev->type);
610		arp->ar_pro = htons(ETH_P_IP);
611		break;
612
613#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
614	case ARPHRD_AX25:
615		arp->ar_hrd = htons(ARPHRD_AX25);
616		arp->ar_pro = htons(AX25_P_IP);
617		break;
618
619#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
620	case ARPHRD_NETROM:
621		arp->ar_hrd = htons(ARPHRD_NETROM);
622		arp->ar_pro = htons(AX25_P_IP);
623		break;
624#endif
625#endif
626
627#ifdef CONFIG_FDDI
628	case ARPHRD_FDDI:
629		arp->ar_hrd = htons(ARPHRD_ETHER);
630		arp->ar_pro = htons(ETH_P_IP);
631		break;
632#endif
633#ifdef CONFIG_TR
634	case ARPHRD_IEEE802_TR:
635		arp->ar_hrd = htons(ARPHRD_IEEE802);
636		arp->ar_pro = htons(ETH_P_IP);
637		break;
638#endif
639	}
640
641	arp->ar_hln = dev->addr_len;
642	arp->ar_pln = 4;
643	arp->ar_op = htons(type);
644
645	arp_ptr=(unsigned char *)(arp+1);
646
647	memcpy(arp_ptr, src_hw, dev->addr_len);
648	arp_ptr+=dev->addr_len;
649	memcpy(arp_ptr, &src_ip,4);
650	arp_ptr+=4;
651	if (target_hw != NULL)
652		memcpy(arp_ptr, target_hw, dev->addr_len);
653	else
654		memset(arp_ptr, 0, dev->addr_len);
655	arp_ptr+=dev->addr_len;
656	memcpy(arp_ptr, &dest_ip, 4);
657
658	return skb;
659
660out:
661	kfree_skb(skb);
662	return NULL;
663}
664
665/*
666 *	Send an arp packet.
667 */
668void arp_xmit(struct sk_buff *skb)
669{
670	/* Send it off, maybe filter it using firewalling first.  */
671	NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
672}
673
674/*
675 *	Create and send an arp packet.
676 */
677void arp_send(int type, int ptype, u32 dest_ip,
678	      struct net_device *dev, u32 src_ip,
679	      unsigned char *dest_hw, unsigned char *src_hw,
680	      unsigned char *target_hw)
681{
682	struct sk_buff *skb;
683
684	/*
685	 *	No arp on this interface.
686	 */
687
688	if (dev->flags&IFF_NOARP)
689		return;
690
691	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
692			 dest_hw, src_hw, target_hw);
693	if (skb == NULL) {
694		return;
695	}
696
697	arp_xmit(skb);
698}
699
700/*
701 *	Process an arp request.
702 */
703
704static int arp_process(struct sk_buff *skb)
705{
706	struct net_device *dev = skb->dev;
707	struct in_device *in_dev = in_dev_get(dev);
708	struct arphdr *arp;
709	unsigned char *arp_ptr;
710	struct rtable *rt;
711	unsigned char *sha, *tha;
712	u32 sip, tip;
713	u16 dev_type = dev->type;
714	int addr_type;
715	struct neighbour *n;
716
717	/* arp_rcv below verifies the ARP header and verifies the device
718	 * is ARP'able.
719	 */
720
721	if (in_dev == NULL)
722		goto out;
723
724	arp = skb->nh.arph;
725
726	switch (dev_type) {
727	default:
728		if (arp->ar_pro != htons(ETH_P_IP) ||
729		    htons(dev_type) != arp->ar_hrd)
730			goto out;
731		break;
732#ifdef CONFIG_NET_ETHERNET
733	case ARPHRD_ETHER:
734#endif
735#ifdef CONFIG_TR
736	case ARPHRD_IEEE802_TR:
737#endif
738#ifdef CONFIG_FDDI
739	case ARPHRD_FDDI:
740#endif
741#ifdef CONFIG_NET_FC
742	case ARPHRD_IEEE802:
743#endif
744#if defined(CONFIG_NET_ETHERNET) || defined(CONFIG_TR) || \
745    defined(CONFIG_FDDI)	 || defined(CONFIG_NET_FC)
746		/*
747		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
748		 * devices, according to RFC 2625) devices will accept ARP
749		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
750		 * This is the case also of FDDI, where the RFC 1390 says that
751		 * FDDI devices should accept ARP hardware of (1) Ethernet,
752		 * however, to be more robust, we'll accept both 1 (Ethernet)
753		 * or 6 (IEEE 802.2)
754		 */
755		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
756		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
757		    arp->ar_pro != htons(ETH_P_IP))
758			goto out;
759		break;
760#endif
761#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
762	case ARPHRD_AX25:
763		if (arp->ar_pro != htons(AX25_P_IP) ||
764		    arp->ar_hrd != htons(ARPHRD_AX25))
765			goto out;
766		break;
767#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
768	case ARPHRD_NETROM:
769		if (arp->ar_pro != htons(AX25_P_IP) ||
770		    arp->ar_hrd != htons(ARPHRD_NETROM))
771			goto out;
772		break;
773#endif
774#endif
775	}
776
777	/* Understand only these message types */
778
779	if (arp->ar_op != htons(ARPOP_REPLY) &&
780	    arp->ar_op != htons(ARPOP_REQUEST))
781		goto out;
782
783/*
784 *	Extract fields
785 */
786	arp_ptr= (unsigned char *)(arp+1);
787	sha	= arp_ptr;
788	arp_ptr += dev->addr_len;
789	memcpy(&sip, arp_ptr, 4);
790	arp_ptr += 4;
791	tha	= arp_ptr;
792	arp_ptr += dev->addr_len;
793	memcpy(&tip, arp_ptr, 4);
794/*
795 *	Check for bad requests for 127.x.x.x and requests for multicast
796 *	addresses.  If this is one such, delete it.
797 */
798	if (LOOPBACK(tip) || MULTICAST(tip))
799		goto out;
800
801/*
802 *     Special case: We must set Frame Relay source Q.922 address
803 */
804	if (dev_type == ARPHRD_DLCI)
805		sha = dev->broadcast;
806
807/*
808 *  Process entry.  The idea here is we want to send a reply if it is a
809 *  request for us or if it is a request for someone else that we hold
810 *  a proxy for.  We want to add an entry to our cache if it is a reply
811 *  to us or if it is a request for our address.
812 *  (The assumption for this last is that if someone is requesting our
813 *  address, they are probably intending to talk to us, so it saves time
814 *  if we cache their address.  Their address is also probably not in
815 *  our cache, since ours is not in their cache.)
816 *
817 *  Putting this another way, we only care about replies if they are to
818 *  us, in which case we add them to the cache.  For requests, we care
819 *  about those for us and those for our proxies.  We reply to both,
820 *  and in the case of requests for us we add the requester to the arp
821 *  cache.
822 */
823
824	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
825	if (sip == 0) {
826		if (arp->ar_op == htons(ARPOP_REQUEST) &&
827		    inet_addr_type(tip) == RTN_LOCAL &&
828		    !arp_ignore(in_dev,dev,sip,tip))
829			arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,dev->dev_addr,dev->dev_addr);
830		goto out;
831	}
832
833	if (arp->ar_op == htons(ARPOP_REQUEST) &&
834	    ip_route_input(skb, tip, sip, 0, dev) == 0) {
835
836		rt = (struct rtable*)skb->dst;
837		addr_type = rt->rt_type;
838
839		if (addr_type == RTN_LOCAL) {
840			n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
841			if (n) {
842				int dont_send = 0;
843
844				if (!dont_send)
845					dont_send |= arp_ignore(in_dev,dev,sip,tip);
846				if (!dont_send && IN_DEV_ARPFILTER(in_dev))
847					dont_send |= arp_filter(sip,tip,dev);
848				if (!dont_send)
849					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
850
851				neigh_release(n);
852			}
853			goto out;
854		} else if (IN_DEV_FORWARD(in_dev)) {
855			if ((rt->rt_flags&RTCF_DNAT) ||
856			    (addr_type == RTN_UNICAST  && rt->u.dst.dev != dev &&
857			     (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {
858				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
859				if (n)
860					neigh_release(n);
861
862				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
863				    skb->pkt_type == PACKET_HOST ||
864				    in_dev->arp_parms->proxy_delay == 0) {
865					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
866				} else {
867					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
868					in_dev_put(in_dev);
869					return 0;
870				}
871				goto out;
872			}
873		}
874	}
875
876	/* Update our ARP tables */
877
878	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
879
880#ifdef CONFIG_IP_ACCEPT_UNSOLICITED_ARP
881	/* Unsolicited ARP is not accepted by default.
882	   It is possible, that this option should be enabled for some
883	   devices (strip is candidate)
884	 */
885	if (n == NULL &&
886	    arp->ar_op == htons(ARPOP_REPLY) &&
887	    inet_addr_type(sip) == RTN_UNICAST)
888		n = __neigh_lookup(&arp_tbl, &sip, dev, -1);
889#endif
890
891	if (n) {
892		int state = NUD_REACHABLE;
893		int override;
894
895		/* If several different ARP replies follows back-to-back,
896		   use the FIRST one. It is possible, if several proxy
897		   agents are active. Taking the first reply prevents
898		   arp trashing and chooses the fastest router.
899		 */
900		override = time_after(jiffies, n->updated + n->parms->locktime);
901
902		/* Broadcast replies and request packets
903		   do not assert neighbour reachability.
904		 */
905		if (arp->ar_op != htons(ARPOP_REPLY) ||
906		    skb->pkt_type != PACKET_HOST)
907			state = NUD_STALE;
908		neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
909		neigh_release(n);
910	}
911
912out:
913	if (in_dev)
914		in_dev_put(in_dev);
915	kfree_skb(skb);
916	return 0;
917}
918
919static void parp_redo(struct sk_buff *skb)
920{
921	arp_process(skb);
922}
923
924
925/*
926 *	Receive an arp request from the device layer.
927 */
928
929int arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
930{
931	struct arphdr *arp;
932
933	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
934	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
935				 (2 * dev->addr_len) +
936				 (2 * sizeof(u32)))))
937		goto freeskb;
938
939	arp = skb->nh.arph;
940	if (arp->ar_hln != dev->addr_len ||
941	    dev->flags & IFF_NOARP ||
942	    skb->pkt_type == PACKET_OTHERHOST ||
943	    skb->pkt_type == PACKET_LOOPBACK ||
944	    arp->ar_pln != 4)
945		goto freeskb;
946
947	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
948		goto out_of_mem;
949
950	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
951
952	return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
953
954freeskb:
955	kfree_skb(skb);
956out_of_mem:
957	return 0;
958}
959
960/*
961 *	User level interface (ioctl)
962 */
963
964/*
965 *	Set (create) an ARP cache entry.
966 */
967
968static int arp_req_set(struct arpreq *r, struct net_device * dev)
969{
970	u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
971	struct neighbour *neigh;
972	int err;
973
974	if (r->arp_flags&ATF_PUBL) {
975		u32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
976		if (mask && mask != 0xFFFFFFFF)
977			return -EINVAL;
978		if (!dev && (r->arp_flags & ATF_COM)) {
979			dev = dev_getbyhwaddr(r->arp_ha.sa_family, r->arp_ha.sa_data);
980			if (!dev)
981				return -ENODEV;
982		}
983		if (mask) {
984			if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL)
985				return -ENOBUFS;
986			return 0;
987		}
988		if (dev == NULL) {
989			ipv4_devconf.proxy_arp = 1;
990			return 0;
991		}
992		if (__in_dev_get(dev)) {
993			__in_dev_get(dev)->cnf.proxy_arp = 1;
994			return 0;
995		}
996		return -ENXIO;
997	}
998
999	if (r->arp_flags & ATF_PERM)
1000		r->arp_flags |= ATF_COM;
1001	if (dev == NULL) {
1002		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1003							 .tos = RTO_ONLINK } } };
1004		struct rtable * rt;
1005		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1006			return err;
1007		dev = rt->u.dst.dev;
1008		ip_rt_put(rt);
1009		if (!dev)
1010			return -EINVAL;
1011	}
1012	switch (dev->type) {
1013#ifdef CONFIG_FDDI
1014	case ARPHRD_FDDI:
1015		/*
1016		 * According to RFC 1390, FDDI devices should accept ARP
1017		 * hardware types of 1 (Ethernet).  However, to be more
1018		 * robust, we'll accept hardware types of either 1 (Ethernet)
1019		 * or 6 (IEEE 802.2).
1020		 */
1021		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1022		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1023		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1024			return -EINVAL;
1025		break;
1026#endif
1027	default:
1028		if (r->arp_ha.sa_family != dev->type)
1029			return -EINVAL;
1030		break;
1031	}
1032
1033	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1034	err = PTR_ERR(neigh);
1035	if (!IS_ERR(neigh)) {
1036		unsigned state = NUD_STALE;
1037		if (r->arp_flags & ATF_PERM)
1038			state = NUD_PERMANENT;
1039		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1040				   r->arp_ha.sa_data : NULL, state,
1041				   NEIGH_UPDATE_F_OVERRIDE|
1042				   NEIGH_UPDATE_F_ADMIN);
1043		neigh_release(neigh);
1044	}
1045	return err;
1046}
1047
1048static unsigned arp_state_to_flags(struct neighbour *neigh)
1049{
1050	unsigned flags = 0;
1051	if (neigh->nud_state&NUD_PERMANENT)
1052		flags = ATF_PERM|ATF_COM;
1053	else if (neigh->nud_state&NUD_VALID)
1054		flags = ATF_COM;
1055	return flags;
1056}
1057
1058/*
1059 *	Get an ARP cache entry.
1060 */
1061
1062static int arp_req_get(struct arpreq *r, struct net_device *dev)
1063{
1064	u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1065	struct neighbour *neigh;
1066	int err = -ENXIO;
1067
1068	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1069	if (neigh) {
1070		read_lock_bh(&neigh->lock);
1071		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1072		r->arp_flags = arp_state_to_flags(neigh);
1073		read_unlock_bh(&neigh->lock);
1074		r->arp_ha.sa_family = dev->type;
1075		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1076		neigh_release(neigh);
1077		err = 0;
1078	}
1079	return err;
1080}
1081
1082static int arp_req_delete(struct arpreq *r, struct net_device * dev)
1083{
1084	int err;
1085	u32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1086	struct neighbour *neigh;
1087
1088	if (r->arp_flags & ATF_PUBL) {
1089		u32 mask =
1090		       ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1091		if (mask == 0xFFFFFFFF)
1092			return pneigh_delete(&arp_tbl, &ip, dev);
1093		if (mask == 0) {
1094			if (dev == NULL) {
1095				ipv4_devconf.proxy_arp = 0;
1096				return 0;
1097			}
1098			if (__in_dev_get(dev)) {
1099				__in_dev_get(dev)->cnf.proxy_arp = 0;
1100				return 0;
1101			}
1102			return -ENXIO;
1103		}
1104		return -EINVAL;
1105	}
1106
1107	if (dev == NULL) {
1108		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1109							 .tos = RTO_ONLINK } } };
1110		struct rtable * rt;
1111		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1112			return err;
1113		dev = rt->u.dst.dev;
1114		ip_rt_put(rt);
1115		if (!dev)
1116			return -EINVAL;
1117	}
1118	err = -ENXIO;
1119	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1120	if (neigh) {
1121		if (neigh->nud_state&~NUD_NOARP)
1122			err = neigh_update(neigh, NULL, NUD_FAILED,
1123					   NEIGH_UPDATE_F_OVERRIDE|
1124					   NEIGH_UPDATE_F_ADMIN);
1125		neigh_release(neigh);
1126	}
1127	return err;
1128}
1129
1130/*
1131 *	Handle an ARP layer I/O control request.
1132 */
1133
1134int arp_ioctl(unsigned int cmd, void __user *arg)
1135{
1136	int err;
1137	struct arpreq r;
1138	struct net_device *dev = NULL;
1139
1140	switch (cmd) {
1141		case SIOCDARP:
1142		case SIOCSARP:
1143			if (!capable(CAP_NET_ADMIN))
1144				return -EPERM;
1145		case SIOCGARP:
1146			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1147			if (err)
1148				return -EFAULT;
1149			break;
1150		default:
1151			return -EINVAL;
1152	}
1153
1154	if (r.arp_pa.sa_family != AF_INET)
1155		return -EPFNOSUPPORT;
1156
1157	if (!(r.arp_flags & ATF_PUBL) &&
1158	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1159		return -EINVAL;
1160	if (!(r.arp_flags & ATF_NETMASK))
1161		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1162							   htonl(0xFFFFFFFFUL);
1163	rtnl_lock();
1164	if (r.arp_dev[0]) {
1165		err = -ENODEV;
1166		if ((dev = __dev_get_by_name(r.arp_dev)) == NULL)
1167			goto out;
1168
1169		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1170		if (!r.arp_ha.sa_family)
1171			r.arp_ha.sa_family = dev->type;
1172		err = -EINVAL;
1173		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1174			goto out;
1175	} else if (cmd == SIOCGARP) {
1176		err = -ENODEV;
1177		goto out;
1178	}
1179
1180	switch(cmd) {
1181	case SIOCDARP:
1182	        err = arp_req_delete(&r, dev);
1183		break;
1184	case SIOCSARP:
1185		err = arp_req_set(&r, dev);
1186		break;
1187	case SIOCGARP:
1188		err = arp_req_get(&r, dev);
1189		if (!err && copy_to_user(arg, &r, sizeof(r)))
1190			err = -EFAULT;
1191		break;
1192	}
1193out:
1194	rtnl_unlock();
1195	return err;
1196}
1197
1198static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1199{
1200	struct net_device *dev = ptr;
1201
1202	switch (event) {
1203	case NETDEV_CHANGEADDR:
1204		neigh_changeaddr(&arp_tbl, dev);
1205		rt_cache_flush(0);
1206		break;
1207	default:
1208		break;
1209	}
1210
1211	return NOTIFY_DONE;
1212}
1213
1214static struct notifier_block arp_netdev_notifier = {
1215	.notifier_call = arp_netdev_event,
1216};
1217
1218/* Note, that it is not on notifier chain.
1219   It is necessary, that this routine was called after route cache will be
1220   flushed.
1221 */
1222void arp_ifdown(struct net_device *dev)
1223{
1224	neigh_ifdown(&arp_tbl, dev);
1225}
1226
1227
1228/*
1229 *	Called once on startup.
1230 */
1231
1232static struct packet_type arp_packet_type = {
1233	.type =	__constant_htons(ETH_P_ARP),
1234	.func =	arp_rcv,
1235};
1236
1237static int arp_proc_init(void);
1238
1239void __init arp_init(void)
1240{
1241	neigh_table_init(&arp_tbl);
1242
1243	dev_add_pack(&arp_packet_type);
1244	arp_proc_init();
1245#ifdef CONFIG_SYSCTL
1246	neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1247			      NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1248#endif
1249	register_netdevice_notifier(&arp_netdev_notifier);
1250}
1251
1252#ifdef CONFIG_PROC_FS
1253#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1254
1255/* ------------------------------------------------------------------------ */
1256/*
1257 *	ax25 -> ASCII conversion
1258 */
1259static char *ax2asc2(ax25_address *a, char *buf)
1260{
1261	char c, *s;
1262	int n;
1263
1264	for (n = 0, s = buf; n < 6; n++) {
1265		c = (a->ax25_call[n] >> 1) & 0x7F;
1266
1267		if (c != ' ') *s++ = c;
1268	}
1269
1270	*s++ = '-';
1271
1272	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1273		*s++ = '1';
1274		n -= 10;
1275	}
1276
1277	*s++ = n + '0';
1278	*s++ = '\0';
1279
1280	if (*buf == '\0' || *buf == '-')
1281	   return "*";
1282
1283	return buf;
1284
1285}
1286#endif /* CONFIG_AX25 */
1287
1288#define HBUFFERLEN 30
1289
1290static void arp_format_neigh_entry(struct seq_file *seq,
1291				   struct neighbour *n)
1292{
1293	char hbuffer[HBUFFERLEN];
1294	const char hexbuf[] = "0123456789ABCDEF";
1295	int k, j;
1296	char tbuf[16];
1297	struct net_device *dev = n->dev;
1298	int hatype = dev->type;
1299
1300	read_lock(&n->lock);
1301	/* Convert hardware address to XX:XX:XX:XX ... form. */
1302#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1303	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1304		ax2asc2((ax25_address *)n->ha, hbuffer);
1305	else {
1306#endif
1307	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1308		hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1309		hbuffer[k++] = hexbuf[n->ha[j] & 15];
1310		hbuffer[k++] = ':';
1311	}
1312	hbuffer[--k] = 0;
1313#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1314	}
1315#endif
1316	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1317	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1318		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1319	read_unlock(&n->lock);
1320}
1321
1322static void arp_format_pneigh_entry(struct seq_file *seq,
1323				    struct pneigh_entry *n)
1324{
1325	struct net_device *dev = n->dev;
1326	int hatype = dev ? dev->type : 0;
1327	char tbuf[16];
1328
1329	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1330	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1331		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1332		   dev ? dev->name : "*");
1333}
1334
1335static int arp_seq_show(struct seq_file *seq, void *v)
1336{
1337	if (v == SEQ_START_TOKEN) {
1338		seq_puts(seq, "IP address       HW type     Flags       "
1339			      "HW address            Mask     Device\n");
1340	} else {
1341		struct neigh_seq_state *state = seq->private;
1342
1343		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1344			arp_format_pneigh_entry(seq, v);
1345		else
1346			arp_format_neigh_entry(seq, v);
1347	}
1348
1349	return 0;
1350}
1351
1352static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1353{
1354	/* Don't want to confuse "arp -a" w/ magic entries,
1355	 * so we tell the generic iterator to skip NUD_NOARP.
1356	 */
1357	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1358}
1359
1360/* ------------------------------------------------------------------------ */
1361
1362static struct seq_operations arp_seq_ops = {
1363	.start  = arp_seq_start,
1364	.next   = neigh_seq_next,
1365	.stop   = neigh_seq_stop,
1366	.show   = arp_seq_show,
1367};
1368
1369static int arp_seq_open(struct inode *inode, struct file *file)
1370{
1371	struct seq_file *seq;
1372	int rc = -ENOMEM;
1373	struct neigh_seq_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
1374
1375	if (!s)
1376		goto out;
1377
1378	memset(s, 0, sizeof(*s));
1379	rc = seq_open(file, &arp_seq_ops);
1380	if (rc)
1381		goto out_kfree;
1382
1383	seq	     = file->private_data;
1384	seq->private = s;
1385out:
1386	return rc;
1387out_kfree:
1388	kfree(s);
1389	goto out;
1390}
1391
1392static struct file_operations arp_seq_fops = {
1393	.owner		= THIS_MODULE,
1394	.open           = arp_seq_open,
1395	.read           = seq_read,
1396	.llseek         = seq_lseek,
1397	.release	= seq_release_private,
1398};
1399
1400static int __init arp_proc_init(void)
1401{
1402	if (!proc_net_fops_create("arp", S_IRUGO, &arp_seq_fops))
1403		return -ENOMEM;
1404	return 0;
1405}
1406
1407#else /* CONFIG_PROC_FS */
1408
1409static int __init arp_proc_init(void)
1410{
1411	return 0;
1412}
1413
1414#endif /* CONFIG_PROC_FS */
1415
1416EXPORT_SYMBOL(arp_broken_ops);
1417EXPORT_SYMBOL(arp_find);
1418EXPORT_SYMBOL(arp_rcv);
1419EXPORT_SYMBOL(arp_create);
1420EXPORT_SYMBOL(arp_xmit);
1421EXPORT_SYMBOL(arp_send);
1422EXPORT_SYMBOL(arp_tbl);
1423
1424#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1425EXPORT_SYMBOL(clip_tbl_hook);
1426#endif
1427