arp.c revision abfdf1c48907f78ad7d943b77ea180bf5504564f
1/* linux/net/ipv4/arp.c
2 *
3 * Version:	$Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4 *
5 * Copyright (C) 1994 by Florian  La Roche
6 *
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Fixes:
18 *		Alan Cox	:	Removed the Ethernet assumptions in
19 *					Florian's code
20 *		Alan Cox	:	Fixed some small errors in the ARP
21 *					logic
22 *		Alan Cox	:	Allow >4K in /proc
23 *		Alan Cox	:	Make ARP add its own protocol entry
24 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
25 *		Stephen Henson	:	Add AX25 support to arp_get_info()
26 *		Alan Cox	:	Drop data when a device is downed.
27 *		Alan Cox	:	Use init_timer().
28 *		Alan Cox	:	Double lock fixes.
29 *		Martin Seine	:	Move the arphdr structure
30 *					to if_arp.h for compatibility.
31 *					with BSD based programs.
32 *		Andrew Tridgell :       Added ARP netmask code and
33 *					re-arranged proxy handling.
34 *		Alan Cox	:	Changed to use notifiers.
35 *		Niibe Yutaka	:	Reply for this device or proxies only.
36 *		Alan Cox	:	Don't proxy across hardware types!
37 *		Jonathan Naylor :	Added support for NET/ROM.
38 *		Mike Shaver     :       RFC1122 checks.
39 *		Jonathan Naylor :	Only lookup the hardware address for
40 *					the correct hardware type.
41 *		Germano Caronni	:	Assorted subtle races.
42 *		Craig Schlenter :	Don't modify permanent entry
43 *					during arp_rcv.
44 *		Russ Nelson	:	Tidied up a few bits.
45 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
46 *					eg intelligent arp probing and
47 *					generation
48 *					of host down events.
49 *		Alan Cox	:	Missing unlock in device events.
50 *		Eckes		:	ARP ioctl control errors.
51 *		Alexey Kuznetsov:	Arp free fix.
52 *		Manuel Rodriguez:	Gratuitous ARP.
53 *              Jonathan Layes  :       Added arpd support through kerneld
54 *                                      message queue (960314)
55 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
56 *		Mike McLagan    :	Routing by source
57 *		Stuart Cheshire	:	Metricom and grat arp fixes
58 *					*** FOR 2.1 clean this up ***
59 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
61 *					folded into the mainstream FDDI code.
62 *					Ack spit, Linus how did you allow that
63 *					one in...
64 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
65 *					clean up the APFDDI & gen. FDDI bits.
66 *		Alexey Kuznetsov:	new arp state machine;
67 *					now it is in net/core/neighbour.c.
68 *		Krzysztof Halasa:	Added Frame Relay ARP support.
69 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
70 *		Shmulik Hen:		Split arp_send to arp_create and
71 *					arp_xmit so intermediate drivers like
72 *					bonding can change the skb before
73 *					sending (e.g. insert 8021q tag).
74 *		Harald Welte	:	convert to make use of jenkins hash
75 */
76
77#include <linux/module.h>
78#include <linux/types.h>
79#include <linux/string.h>
80#include <linux/kernel.h>
81#include <linux/capability.h>
82#include <linux/socket.h>
83#include <linux/sockios.h>
84#include <linux/errno.h>
85#include <linux/in.h>
86#include <linux/mm.h>
87#include <linux/inet.h>
88#include <linux/inetdevice.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/fddidevice.h>
92#include <linux/if_arp.h>
93#include <linux/trdevice.h>
94#include <linux/skbuff.h>
95#include <linux/proc_fs.h>
96#include <linux/seq_file.h>
97#include <linux/stat.h>
98#include <linux/init.h>
99#include <linux/net.h>
100#include <linux/rcupdate.h>
101#include <linux/jhash.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/net_namespace.h>
107#include <net/ip.h>
108#include <net/icmp.h>
109#include <net/route.h>
110#include <net/protocol.h>
111#include <net/tcp.h>
112#include <net/sock.h>
113#include <net/arp.h>
114#include <net/ax25.h>
115#include <net/netrom.h>
116#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117#include <net/atmclip.h>
118struct neigh_table *clip_tbl_hook;
119#endif
120
121#include <asm/system.h>
122#include <asm/uaccess.h>
123
124#include <linux/netfilter_arp.h>
125
126/*
127 *	Interface to generic neighbour cache.
128 */
129static u32 arp_hash(const void *pkey, const struct net_device *dev);
130static int arp_constructor(struct neighbour *neigh);
131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133static void parp_redo(struct sk_buff *skb);
134
135static struct neigh_ops arp_generic_ops = {
136	.family =		AF_INET,
137	.solicit =		arp_solicit,
138	.error_report =		arp_error_report,
139	.output =		neigh_resolve_output,
140	.connected_output =	neigh_connected_output,
141	.hh_output =		dev_queue_xmit,
142	.queue_xmit =		dev_queue_xmit,
143};
144
145static struct neigh_ops arp_hh_ops = {
146	.family =		AF_INET,
147	.solicit =		arp_solicit,
148	.error_report =		arp_error_report,
149	.output =		neigh_resolve_output,
150	.connected_output =	neigh_resolve_output,
151	.hh_output =		dev_queue_xmit,
152	.queue_xmit =		dev_queue_xmit,
153};
154
155static struct neigh_ops arp_direct_ops = {
156	.family =		AF_INET,
157	.output =		dev_queue_xmit,
158	.connected_output =	dev_queue_xmit,
159	.hh_output =		dev_queue_xmit,
160	.queue_xmit =		dev_queue_xmit,
161};
162
163struct neigh_ops arp_broken_ops = {
164	.family =		AF_INET,
165	.solicit =		arp_solicit,
166	.error_report =		arp_error_report,
167	.output =		neigh_compat_output,
168	.connected_output =	neigh_compat_output,
169	.hh_output =		dev_queue_xmit,
170	.queue_xmit =		dev_queue_xmit,
171};
172
173struct neigh_table arp_tbl = {
174	.family =	AF_INET,
175	.entry_size =	sizeof(struct neighbour) + 4,
176	.key_len =	4,
177	.hash =		arp_hash,
178	.constructor =	arp_constructor,
179	.proxy_redo =	parp_redo,
180	.id =		"arp_cache",
181	.parms = {
182		.tbl =			&arp_tbl,
183		.base_reachable_time =	30 * HZ,
184		.retrans_time =	1 * HZ,
185		.gc_staletime =	60 * HZ,
186		.reachable_time =		30 * HZ,
187		.delay_probe_time =	5 * HZ,
188		.queue_len =		3,
189		.ucast_probes =	3,
190		.mcast_probes =	3,
191		.anycast_delay =	1 * HZ,
192		.proxy_delay =		(8 * HZ) / 10,
193		.proxy_qlen =		64,
194		.locktime =		1 * HZ,
195	},
196	.gc_interval =	30 * HZ,
197	.gc_thresh1 =	128,
198	.gc_thresh2 =	512,
199	.gc_thresh3 =	1024,
200};
201
202int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
203{
204	switch (dev->type) {
205	case ARPHRD_ETHER:
206	case ARPHRD_FDDI:
207	case ARPHRD_IEEE802:
208		ip_eth_mc_map(addr, haddr);
209		return 0;
210	case ARPHRD_IEEE802_TR:
211		ip_tr_mc_map(addr, haddr);
212		return 0;
213	case ARPHRD_INFINIBAND:
214		ip_ib_mc_map(addr, dev->broadcast, haddr);
215		return 0;
216	default:
217		if (dir) {
218			memcpy(haddr, dev->broadcast, dev->addr_len);
219			return 0;
220		}
221	}
222	return -EINVAL;
223}
224
225
226static u32 arp_hash(const void *pkey, const struct net_device *dev)
227{
228	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
229}
230
231static int arp_constructor(struct neighbour *neigh)
232{
233	__be32 addr = *(__be32*)neigh->primary_key;
234	struct net_device *dev = neigh->dev;
235	struct in_device *in_dev;
236	struct neigh_parms *parms;
237
238	rcu_read_lock();
239	in_dev = __in_dev_get_rcu(dev);
240	if (in_dev == NULL) {
241		rcu_read_unlock();
242		return -EINVAL;
243	}
244
245	neigh->type = inet_addr_type(&init_net, addr);
246
247	parms = in_dev->arp_parms;
248	__neigh_parms_put(neigh->parms);
249	neigh->parms = neigh_parms_clone(parms);
250	rcu_read_unlock();
251
252	if (!dev->header_ops) {
253		neigh->nud_state = NUD_NOARP;
254		neigh->ops = &arp_direct_ops;
255		neigh->output = neigh->ops->queue_xmit;
256	} else {
257		/* Good devices (checked by reading texts, but only Ethernet is
258		   tested)
259
260		   ARPHRD_ETHER: (ethernet, apfddi)
261		   ARPHRD_FDDI: (fddi)
262		   ARPHRD_IEEE802: (tr)
263		   ARPHRD_METRICOM: (strip)
264		   ARPHRD_ARCNET:
265		   etc. etc. etc.
266
267		   ARPHRD_IPDDP will also work, if author repairs it.
268		   I did not it, because this driver does not work even
269		   in old paradigm.
270		 */
271
272#if 1
273		/* So... these "amateur" devices are hopeless.
274		   The only thing, that I can say now:
275		   It is very sad that we need to keep ugly obsolete
276		   code to make them happy.
277
278		   They should be moved to more reasonable state, now
279		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
280		   Besides that, they are sort of out of date
281		   (a lot of redundant clones/copies, useless in 2.1),
282		   I wonder why people believe that they work.
283		 */
284		switch (dev->type) {
285		default:
286			break;
287		case ARPHRD_ROSE:
288#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
289		case ARPHRD_AX25:
290#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
291		case ARPHRD_NETROM:
292#endif
293			neigh->ops = &arp_broken_ops;
294			neigh->output = neigh->ops->output;
295			return 0;
296#endif
297		;}
298#endif
299		if (neigh->type == RTN_MULTICAST) {
300			neigh->nud_state = NUD_NOARP;
301			arp_mc_map(addr, neigh->ha, dev, 1);
302		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303			neigh->nud_state = NUD_NOARP;
304			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306			neigh->nud_state = NUD_NOARP;
307			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
308		}
309
310		if (dev->header_ops->cache)
311			neigh->ops = &arp_hh_ops;
312		else
313			neigh->ops = &arp_generic_ops;
314
315		if (neigh->nud_state&NUD_VALID)
316			neigh->output = neigh->ops->connected_output;
317		else
318			neigh->output = neigh->ops->output;
319	}
320	return 0;
321}
322
323static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
324{
325	dst_link_failure(skb);
326	kfree_skb(skb);
327}
328
329static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
330{
331	__be32 saddr = 0;
332	u8  *dst_ha = NULL;
333	struct net_device *dev = neigh->dev;
334	__be32 target = *(__be32*)neigh->primary_key;
335	int probes = atomic_read(&neigh->probes);
336	struct in_device *in_dev = in_dev_get(dev);
337
338	if (!in_dev)
339		return;
340
341	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
342	default:
343	case 0:		/* By default announce any local IP */
344		if (skb && inet_addr_type(&init_net, ip_hdr(skb)->saddr) == RTN_LOCAL)
345			saddr = ip_hdr(skb)->saddr;
346		break;
347	case 1:		/* Restrict announcements of saddr in same subnet */
348		if (!skb)
349			break;
350		saddr = ip_hdr(skb)->saddr;
351		if (inet_addr_type(&init_net, saddr) == RTN_LOCAL) {
352			/* saddr should be known to target */
353			if (inet_addr_onlink(in_dev, target, saddr))
354				break;
355		}
356		saddr = 0;
357		break;
358	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
359		break;
360	}
361
362	if (in_dev)
363		in_dev_put(in_dev);
364	if (!saddr)
365		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
366
367	if ((probes -= neigh->parms->ucast_probes) < 0) {
368		if (!(neigh->nud_state&NUD_VALID))
369			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
370		dst_ha = neigh->ha;
371		read_lock_bh(&neigh->lock);
372	} else if ((probes -= neigh->parms->app_probes) < 0) {
373#ifdef CONFIG_ARPD
374		neigh_app_ns(neigh);
375#endif
376		return;
377	}
378
379	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
380		 dst_ha, dev->dev_addr, NULL);
381	if (dst_ha)
382		read_unlock_bh(&neigh->lock);
383}
384
385static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
386{
387	int scope;
388
389	switch (IN_DEV_ARP_IGNORE(in_dev)) {
390	case 0:	/* Reply, the tip is already validated */
391		return 0;
392	case 1:	/* Reply only if tip is configured on the incoming interface */
393		sip = 0;
394		scope = RT_SCOPE_HOST;
395		break;
396	case 2:	/*
397		 * Reply only if tip is configured on the incoming interface
398		 * and is in same subnet as sip
399		 */
400		scope = RT_SCOPE_HOST;
401		break;
402	case 3:	/* Do not reply for scope host addresses */
403		sip = 0;
404		scope = RT_SCOPE_LINK;
405		break;
406	case 4:	/* Reserved */
407	case 5:
408	case 6:
409	case 7:
410		return 0;
411	case 8:	/* Do not reply */
412		return 1;
413	default:
414		return 0;
415	}
416	return !inet_confirm_addr(in_dev, sip, tip, scope);
417}
418
419static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
420{
421	struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
422						 .saddr = tip } } };
423	struct rtable *rt;
424	int flag = 0;
425	/*unsigned long now; */
426
427	if (ip_route_output_key(&init_net, &rt, &fl) < 0)
428		return 1;
429	if (rt->u.dst.dev != dev) {
430		NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
431		flag = 1;
432	}
433	ip_rt_put(rt);
434	return flag;
435}
436
437/* OBSOLETE FUNCTIONS */
438
439/*
440 *	Find an arp mapping in the cache. If not found, post a request.
441 *
442 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
443 *	even if it exists. It is supposed that skb->dev was mangled
444 *	by a virtual device (eql, shaper). Nobody but broken devices
445 *	is allowed to use this function, it is scheduled to be removed. --ANK
446 */
447
448static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
449{
450	switch (addr_hint) {
451	case RTN_LOCAL:
452		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
453		memcpy(haddr, dev->dev_addr, dev->addr_len);
454		return 1;
455	case RTN_MULTICAST:
456		arp_mc_map(paddr, haddr, dev, 1);
457		return 1;
458	case RTN_BROADCAST:
459		memcpy(haddr, dev->broadcast, dev->addr_len);
460		return 1;
461	}
462	return 0;
463}
464
465
466int arp_find(unsigned char *haddr, struct sk_buff *skb)
467{
468	struct net_device *dev = skb->dev;
469	__be32 paddr;
470	struct neighbour *n;
471
472	if (!skb->dst) {
473		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
474		kfree_skb(skb);
475		return 1;
476	}
477
478	paddr = ((struct rtable*)skb->dst)->rt_gateway;
479
480	if (arp_set_predefined(inet_addr_type(&init_net, paddr), haddr, paddr, dev))
481		return 0;
482
483	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
484
485	if (n) {
486		n->used = jiffies;
487		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
488			read_lock_bh(&n->lock);
489			memcpy(haddr, n->ha, dev->addr_len);
490			read_unlock_bh(&n->lock);
491			neigh_release(n);
492			return 0;
493		}
494		neigh_release(n);
495	} else
496		kfree_skb(skb);
497	return 1;
498}
499
500/* END OF OBSOLETE FUNCTIONS */
501
502int arp_bind_neighbour(struct dst_entry *dst)
503{
504	struct net_device *dev = dst->dev;
505	struct neighbour *n = dst->neighbour;
506
507	if (dev == NULL)
508		return -EINVAL;
509	if (n == NULL) {
510		__be32 nexthop = ((struct rtable*)dst)->rt_gateway;
511		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
512			nexthop = 0;
513		n = __neigh_lookup_errno(
514#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
515		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
516#endif
517		    &arp_tbl, &nexthop, dev);
518		if (IS_ERR(n))
519			return PTR_ERR(n);
520		dst->neighbour = n;
521	}
522	return 0;
523}
524
525/*
526 * Check if we can use proxy ARP for this path
527 */
528
529static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
530{
531	struct in_device *out_dev;
532	int imi, omi = -1;
533
534	if (!IN_DEV_PROXY_ARP(in_dev))
535		return 0;
536
537	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
538		return 1;
539	if (imi == -1)
540		return 0;
541
542	/* place to check for proxy_arp for routes */
543
544	if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
545		omi = IN_DEV_MEDIUM_ID(out_dev);
546		in_dev_put(out_dev);
547	}
548	return (omi != imi && omi != -1);
549}
550
551/*
552 *	Interface to link layer: send routine and receive handler.
553 */
554
555/*
556 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
557 *	message.
558 */
559struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
560			   struct net_device *dev, __be32 src_ip,
561			   const unsigned char *dest_hw,
562			   const unsigned char *src_hw,
563			   const unsigned char *target_hw)
564{
565	struct sk_buff *skb;
566	struct arphdr *arp;
567	unsigned char *arp_ptr;
568
569	/*
570	 *	Allocate a buffer
571	 */
572
573	skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
574				+ LL_RESERVED_SPACE(dev), GFP_ATOMIC);
575	if (skb == NULL)
576		return NULL;
577
578	skb_reserve(skb, LL_RESERVED_SPACE(dev));
579	skb_reset_network_header(skb);
580	arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
581	skb->dev = dev;
582	skb->protocol = htons(ETH_P_ARP);
583	if (src_hw == NULL)
584		src_hw = dev->dev_addr;
585	if (dest_hw == NULL)
586		dest_hw = dev->broadcast;
587
588	/*
589	 *	Fill the device header for the ARP frame
590	 */
591	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
592		goto out;
593
594	/*
595	 * Fill out the arp protocol part.
596	 *
597	 * The arp hardware type should match the device type, except for FDDI,
598	 * which (according to RFC 1390) should always equal 1 (Ethernet).
599	 */
600	/*
601	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
602	 *	DIX code for the protocol. Make these device structure fields.
603	 */
604	switch (dev->type) {
605	default:
606		arp->ar_hrd = htons(dev->type);
607		arp->ar_pro = htons(ETH_P_IP);
608		break;
609
610#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
611	case ARPHRD_AX25:
612		arp->ar_hrd = htons(ARPHRD_AX25);
613		arp->ar_pro = htons(AX25_P_IP);
614		break;
615
616#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
617	case ARPHRD_NETROM:
618		arp->ar_hrd = htons(ARPHRD_NETROM);
619		arp->ar_pro = htons(AX25_P_IP);
620		break;
621#endif
622#endif
623
624#ifdef CONFIG_FDDI
625	case ARPHRD_FDDI:
626		arp->ar_hrd = htons(ARPHRD_ETHER);
627		arp->ar_pro = htons(ETH_P_IP);
628		break;
629#endif
630#ifdef CONFIG_TR
631	case ARPHRD_IEEE802_TR:
632		arp->ar_hrd = htons(ARPHRD_IEEE802);
633		arp->ar_pro = htons(ETH_P_IP);
634		break;
635#endif
636	}
637
638	arp->ar_hln = dev->addr_len;
639	arp->ar_pln = 4;
640	arp->ar_op = htons(type);
641
642	arp_ptr=(unsigned char *)(arp+1);
643
644	memcpy(arp_ptr, src_hw, dev->addr_len);
645	arp_ptr+=dev->addr_len;
646	memcpy(arp_ptr, &src_ip,4);
647	arp_ptr+=4;
648	if (target_hw != NULL)
649		memcpy(arp_ptr, target_hw, dev->addr_len);
650	else
651		memset(arp_ptr, 0, dev->addr_len);
652	arp_ptr+=dev->addr_len;
653	memcpy(arp_ptr, &dest_ip, 4);
654
655	return skb;
656
657out:
658	kfree_skb(skb);
659	return NULL;
660}
661
662/*
663 *	Send an arp packet.
664 */
665void arp_xmit(struct sk_buff *skb)
666{
667	/* Send it off, maybe filter it using firewalling first.  */
668	NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
669}
670
671/*
672 *	Create and send an arp packet.
673 */
674void arp_send(int type, int ptype, __be32 dest_ip,
675	      struct net_device *dev, __be32 src_ip,
676	      const unsigned char *dest_hw, const unsigned char *src_hw,
677	      const unsigned char *target_hw)
678{
679	struct sk_buff *skb;
680
681	/*
682	 *	No arp on this interface.
683	 */
684
685	if (dev->flags&IFF_NOARP)
686		return;
687
688	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
689			 dest_hw, src_hw, target_hw);
690	if (skb == NULL) {
691		return;
692	}
693
694	arp_xmit(skb);
695}
696
697/*
698 *	Process an arp request.
699 */
700
701static int arp_process(struct sk_buff *skb)
702{
703	struct net_device *dev = skb->dev;
704	struct in_device *in_dev = in_dev_get(dev);
705	struct arphdr *arp;
706	unsigned char *arp_ptr;
707	struct rtable *rt;
708	unsigned char *sha;
709	__be32 sip, tip;
710	u16 dev_type = dev->type;
711	int addr_type;
712	struct neighbour *n;
713
714	/* arp_rcv below verifies the ARP header and verifies the device
715	 * is ARP'able.
716	 */
717
718	if (in_dev == NULL)
719		goto out;
720
721	arp = arp_hdr(skb);
722
723	switch (dev_type) {
724	default:
725		if (arp->ar_pro != htons(ETH_P_IP) ||
726		    htons(dev_type) != arp->ar_hrd)
727			goto out;
728		break;
729	case ARPHRD_ETHER:
730	case ARPHRD_IEEE802_TR:
731	case ARPHRD_FDDI:
732	case ARPHRD_IEEE802:
733		/*
734		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
735		 * devices, according to RFC 2625) devices will accept ARP
736		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
737		 * This is the case also of FDDI, where the RFC 1390 says that
738		 * FDDI devices should accept ARP hardware of (1) Ethernet,
739		 * however, to be more robust, we'll accept both 1 (Ethernet)
740		 * or 6 (IEEE 802.2)
741		 */
742		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
743		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
744		    arp->ar_pro != htons(ETH_P_IP))
745			goto out;
746		break;
747	case ARPHRD_AX25:
748		if (arp->ar_pro != htons(AX25_P_IP) ||
749		    arp->ar_hrd != htons(ARPHRD_AX25))
750			goto out;
751		break;
752	case ARPHRD_NETROM:
753		if (arp->ar_pro != htons(AX25_P_IP) ||
754		    arp->ar_hrd != htons(ARPHRD_NETROM))
755			goto out;
756		break;
757	}
758
759	/* Understand only these message types */
760
761	if (arp->ar_op != htons(ARPOP_REPLY) &&
762	    arp->ar_op != htons(ARPOP_REQUEST))
763		goto out;
764
765/*
766 *	Extract fields
767 */
768	arp_ptr= (unsigned char *)(arp+1);
769	sha	= arp_ptr;
770	arp_ptr += dev->addr_len;
771	memcpy(&sip, arp_ptr, 4);
772	arp_ptr += 4;
773	arp_ptr += dev->addr_len;
774	memcpy(&tip, arp_ptr, 4);
775/*
776 *	Check for bad requests for 127.x.x.x and requests for multicast
777 *	addresses.  If this is one such, delete it.
778 */
779	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
780		goto out;
781
782/*
783 *     Special case: We must set Frame Relay source Q.922 address
784 */
785	if (dev_type == ARPHRD_DLCI)
786		sha = dev->broadcast;
787
788/*
789 *  Process entry.  The idea here is we want to send a reply if it is a
790 *  request for us or if it is a request for someone else that we hold
791 *  a proxy for.  We want to add an entry to our cache if it is a reply
792 *  to us or if it is a request for our address.
793 *  (The assumption for this last is that if someone is requesting our
794 *  address, they are probably intending to talk to us, so it saves time
795 *  if we cache their address.  Their address is also probably not in
796 *  our cache, since ours is not in their cache.)
797 *
798 *  Putting this another way, we only care about replies if they are to
799 *  us, in which case we add them to the cache.  For requests, we care
800 *  about those for us and those for our proxies.  We reply to both,
801 *  and in the case of requests for us we add the requester to the arp
802 *  cache.
803 */
804
805	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
806	if (sip == 0) {
807		if (arp->ar_op == htons(ARPOP_REQUEST) &&
808		    inet_addr_type(&init_net, tip) == RTN_LOCAL &&
809		    !arp_ignore(in_dev, sip, tip))
810			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
811				 dev->dev_addr, sha);
812		goto out;
813	}
814
815	if (arp->ar_op == htons(ARPOP_REQUEST) &&
816	    ip_route_input(skb, tip, sip, 0, dev) == 0) {
817
818		rt = (struct rtable*)skb->dst;
819		addr_type = rt->rt_type;
820
821		if (addr_type == RTN_LOCAL) {
822			n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
823			if (n) {
824				int dont_send = 0;
825
826				if (!dont_send)
827					dont_send |= arp_ignore(in_dev,sip,tip);
828				if (!dont_send && IN_DEV_ARPFILTER(in_dev))
829					dont_send |= arp_filter(sip,tip,dev);
830				if (!dont_send)
831					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
832
833				neigh_release(n);
834			}
835			goto out;
836		} else if (IN_DEV_FORWARD(in_dev)) {
837			    if (addr_type == RTN_UNICAST  && rt->u.dst.dev != dev &&
838			     (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &init_net, &tip, dev, 0))) {
839				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
840				if (n)
841					neigh_release(n);
842
843				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
844				    skb->pkt_type == PACKET_HOST ||
845				    in_dev->arp_parms->proxy_delay == 0) {
846					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
847				} else {
848					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
849					in_dev_put(in_dev);
850					return 0;
851				}
852				goto out;
853			}
854		}
855	}
856
857	/* Update our ARP tables */
858
859	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
860
861	if (IPV4_DEVCONF_ALL(dev->nd_net, ARP_ACCEPT)) {
862		/* Unsolicited ARP is not accepted by default.
863		   It is possible, that this option should be enabled for some
864		   devices (strip is candidate)
865		 */
866		if (n == NULL &&
867		    arp->ar_op == htons(ARPOP_REPLY) &&
868		    inet_addr_type(&init_net, sip) == RTN_UNICAST)
869			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
870	}
871
872	if (n) {
873		int state = NUD_REACHABLE;
874		int override;
875
876		/* If several different ARP replies follows back-to-back,
877		   use the FIRST one. It is possible, if several proxy
878		   agents are active. Taking the first reply prevents
879		   arp trashing and chooses the fastest router.
880		 */
881		override = time_after(jiffies, n->updated + n->parms->locktime);
882
883		/* Broadcast replies and request packets
884		   do not assert neighbour reachability.
885		 */
886		if (arp->ar_op != htons(ARPOP_REPLY) ||
887		    skb->pkt_type != PACKET_HOST)
888			state = NUD_STALE;
889		neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
890		neigh_release(n);
891	}
892
893out:
894	if (in_dev)
895		in_dev_put(in_dev);
896	kfree_skb(skb);
897	return 0;
898}
899
900static void parp_redo(struct sk_buff *skb)
901{
902	arp_process(skb);
903}
904
905
906/*
907 *	Receive an arp request from the device layer.
908 */
909
910static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
911		   struct packet_type *pt, struct net_device *orig_dev)
912{
913	struct arphdr *arp;
914
915	if (dev->nd_net != &init_net)
916		goto freeskb;
917
918	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
919	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
920				 (2 * dev->addr_len) +
921				 (2 * sizeof(u32)))))
922		goto freeskb;
923
924	arp = arp_hdr(skb);
925	if (arp->ar_hln != dev->addr_len ||
926	    dev->flags & IFF_NOARP ||
927	    skb->pkt_type == PACKET_OTHERHOST ||
928	    skb->pkt_type == PACKET_LOOPBACK ||
929	    arp->ar_pln != 4)
930		goto freeskb;
931
932	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
933		goto out_of_mem;
934
935	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
936
937	return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
938
939freeskb:
940	kfree_skb(skb);
941out_of_mem:
942	return 0;
943}
944
945/*
946 *	User level interface (ioctl)
947 */
948
949/*
950 *	Set (create) an ARP cache entry.
951 */
952
953static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
954{
955	if (dev == NULL) {
956		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
957		return 0;
958	}
959	if (__in_dev_get_rtnl(dev)) {
960		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
961		return 0;
962	}
963	return -ENXIO;
964}
965
966static int arp_req_set_public(struct net *net, struct arpreq *r,
967		struct net_device *dev)
968{
969	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
970	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
971
972	if (mask && mask != htonl(0xFFFFFFFF))
973		return -EINVAL;
974	if (!dev && (r->arp_flags & ATF_COM)) {
975		dev = dev_getbyhwaddr(net, r->arp_ha.sa_family,
976				r->arp_ha.sa_data);
977		if (!dev)
978			return -ENODEV;
979	}
980	if (mask) {
981		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
982			return -ENOBUFS;
983		return 0;
984	}
985
986	return arp_req_set_proxy(net, dev, 1);
987}
988
989static int arp_req_set(struct net *net, struct arpreq *r,
990		struct net_device * dev)
991{
992	__be32 ip;
993	struct neighbour *neigh;
994	int err;
995
996	if (r->arp_flags & ATF_PUBL)
997		return arp_req_set_public(net, r, dev);
998
999	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000	if (r->arp_flags & ATF_PERM)
1001		r->arp_flags |= ATF_COM;
1002	if (dev == NULL) {
1003		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1004							 .tos = RTO_ONLINK } } };
1005		struct rtable * rt;
1006		if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1007			return err;
1008		dev = rt->u.dst.dev;
1009		ip_rt_put(rt);
1010		if (!dev)
1011			return -EINVAL;
1012	}
1013	switch (dev->type) {
1014#ifdef CONFIG_FDDI
1015	case ARPHRD_FDDI:
1016		/*
1017		 * According to RFC 1390, FDDI devices should accept ARP
1018		 * hardware types of 1 (Ethernet).  However, to be more
1019		 * robust, we'll accept hardware types of either 1 (Ethernet)
1020		 * or 6 (IEEE 802.2).
1021		 */
1022		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1023		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1024		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1025			return -EINVAL;
1026		break;
1027#endif
1028	default:
1029		if (r->arp_ha.sa_family != dev->type)
1030			return -EINVAL;
1031		break;
1032	}
1033
1034	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1035	err = PTR_ERR(neigh);
1036	if (!IS_ERR(neigh)) {
1037		unsigned state = NUD_STALE;
1038		if (r->arp_flags & ATF_PERM)
1039			state = NUD_PERMANENT;
1040		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1041				   r->arp_ha.sa_data : NULL, state,
1042				   NEIGH_UPDATE_F_OVERRIDE|
1043				   NEIGH_UPDATE_F_ADMIN);
1044		neigh_release(neigh);
1045	}
1046	return err;
1047}
1048
1049static unsigned arp_state_to_flags(struct neighbour *neigh)
1050{
1051	unsigned flags = 0;
1052	if (neigh->nud_state&NUD_PERMANENT)
1053		flags = ATF_PERM|ATF_COM;
1054	else if (neigh->nud_state&NUD_VALID)
1055		flags = ATF_COM;
1056	return flags;
1057}
1058
1059/*
1060 *	Get an ARP cache entry.
1061 */
1062
1063static int arp_req_get(struct arpreq *r, struct net_device *dev)
1064{
1065	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1066	struct neighbour *neigh;
1067	int err = -ENXIO;
1068
1069	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1070	if (neigh) {
1071		read_lock_bh(&neigh->lock);
1072		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1073		r->arp_flags = arp_state_to_flags(neigh);
1074		read_unlock_bh(&neigh->lock);
1075		r->arp_ha.sa_family = dev->type;
1076		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1077		neigh_release(neigh);
1078		err = 0;
1079	}
1080	return err;
1081}
1082
1083static int arp_req_delete_public(struct net *net, struct arpreq *r,
1084		struct net_device *dev)
1085{
1086	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1087	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1088
1089	if (mask == htonl(0xFFFFFFFF))
1090		return pneigh_delete(&arp_tbl, net, &ip, dev);
1091
1092	if (mask)
1093		return -EINVAL;
1094
1095	return arp_req_set_proxy(net, dev, 0);
1096}
1097
1098static int arp_req_delete(struct net *net, struct arpreq *r,
1099		struct net_device * dev)
1100{
1101	int err;
1102	__be32 ip;
1103	struct neighbour *neigh;
1104
1105	if (r->arp_flags & ATF_PUBL)
1106		return arp_req_delete_public(net, r, dev);
1107
1108	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1109	if (dev == NULL) {
1110		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1111							 .tos = RTO_ONLINK } } };
1112		struct rtable * rt;
1113		if ((err = ip_route_output_key(net, &rt, &fl)) != 0)
1114			return err;
1115		dev = rt->u.dst.dev;
1116		ip_rt_put(rt);
1117		if (!dev)
1118			return -EINVAL;
1119	}
1120	err = -ENXIO;
1121	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1122	if (neigh) {
1123		if (neigh->nud_state&~NUD_NOARP)
1124			err = neigh_update(neigh, NULL, NUD_FAILED,
1125					   NEIGH_UPDATE_F_OVERRIDE|
1126					   NEIGH_UPDATE_F_ADMIN);
1127		neigh_release(neigh);
1128	}
1129	return err;
1130}
1131
1132/*
1133 *	Handle an ARP layer I/O control request.
1134 */
1135
1136int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1137{
1138	int err;
1139	struct arpreq r;
1140	struct net_device *dev = NULL;
1141
1142	switch (cmd) {
1143		case SIOCDARP:
1144		case SIOCSARP:
1145			if (!capable(CAP_NET_ADMIN))
1146				return -EPERM;
1147		case SIOCGARP:
1148			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1149			if (err)
1150				return -EFAULT;
1151			break;
1152		default:
1153			return -EINVAL;
1154	}
1155
1156	if (r.arp_pa.sa_family != AF_INET)
1157		return -EPFNOSUPPORT;
1158
1159	if (!(r.arp_flags & ATF_PUBL) &&
1160	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1161		return -EINVAL;
1162	if (!(r.arp_flags & ATF_NETMASK))
1163		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1164							   htonl(0xFFFFFFFFUL);
1165	rtnl_lock();
1166	if (r.arp_dev[0]) {
1167		err = -ENODEV;
1168		if ((dev = __dev_get_by_name(net, r.arp_dev)) == NULL)
1169			goto out;
1170
1171		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1172		if (!r.arp_ha.sa_family)
1173			r.arp_ha.sa_family = dev->type;
1174		err = -EINVAL;
1175		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1176			goto out;
1177	} else if (cmd == SIOCGARP) {
1178		err = -ENODEV;
1179		goto out;
1180	}
1181
1182	switch (cmd) {
1183	case SIOCDARP:
1184		err = arp_req_delete(net, &r, dev);
1185		break;
1186	case SIOCSARP:
1187		err = arp_req_set(net, &r, dev);
1188		break;
1189	case SIOCGARP:
1190		err = arp_req_get(&r, dev);
1191		if (!err && copy_to_user(arg, &r, sizeof(r)))
1192			err = -EFAULT;
1193		break;
1194	}
1195out:
1196	rtnl_unlock();
1197	return err;
1198}
1199
1200static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1201{
1202	struct net_device *dev = ptr;
1203
1204	if (dev->nd_net != &init_net)
1205		return NOTIFY_DONE;
1206
1207	switch (event) {
1208	case NETDEV_CHANGEADDR:
1209		neigh_changeaddr(&arp_tbl, dev);
1210		rt_cache_flush(0);
1211		break;
1212	default:
1213		break;
1214	}
1215
1216	return NOTIFY_DONE;
1217}
1218
1219static struct notifier_block arp_netdev_notifier = {
1220	.notifier_call = arp_netdev_event,
1221};
1222
1223/* Note, that it is not on notifier chain.
1224   It is necessary, that this routine was called after route cache will be
1225   flushed.
1226 */
1227void arp_ifdown(struct net_device *dev)
1228{
1229	neigh_ifdown(&arp_tbl, dev);
1230}
1231
1232
1233/*
1234 *	Called once on startup.
1235 */
1236
1237static struct packet_type arp_packet_type = {
1238	.type =	__constant_htons(ETH_P_ARP),
1239	.func =	arp_rcv,
1240};
1241
1242static int arp_proc_init(void);
1243
1244void __init arp_init(void)
1245{
1246	neigh_table_init(&arp_tbl);
1247
1248	dev_add_pack(&arp_packet_type);
1249	arp_proc_init();
1250#ifdef CONFIG_SYSCTL
1251	neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1252			      NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1253#endif
1254	register_netdevice_notifier(&arp_netdev_notifier);
1255}
1256
1257#ifdef CONFIG_PROC_FS
1258#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1259
1260/* ------------------------------------------------------------------------ */
1261/*
1262 *	ax25 -> ASCII conversion
1263 */
1264static char *ax2asc2(ax25_address *a, char *buf)
1265{
1266	char c, *s;
1267	int n;
1268
1269	for (n = 0, s = buf; n < 6; n++) {
1270		c = (a->ax25_call[n] >> 1) & 0x7F;
1271
1272		if (c != ' ') *s++ = c;
1273	}
1274
1275	*s++ = '-';
1276
1277	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1278		*s++ = '1';
1279		n -= 10;
1280	}
1281
1282	*s++ = n + '0';
1283	*s++ = '\0';
1284
1285	if (*buf == '\0' || *buf == '-')
1286	   return "*";
1287
1288	return buf;
1289
1290}
1291#endif /* CONFIG_AX25 */
1292
1293#define HBUFFERLEN 30
1294
1295static void arp_format_neigh_entry(struct seq_file *seq,
1296				   struct neighbour *n)
1297{
1298	char hbuffer[HBUFFERLEN];
1299	const char hexbuf[] = "0123456789ABCDEF";
1300	int k, j;
1301	char tbuf[16];
1302	struct net_device *dev = n->dev;
1303	int hatype = dev->type;
1304
1305	read_lock(&n->lock);
1306	/* Convert hardware address to XX:XX:XX:XX ... form. */
1307#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1308	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1309		ax2asc2((ax25_address *)n->ha, hbuffer);
1310	else {
1311#endif
1312	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1313		hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1314		hbuffer[k++] = hexbuf[n->ha[j] & 15];
1315		hbuffer[k++] = ':';
1316	}
1317	hbuffer[--k] = 0;
1318#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1319	}
1320#endif
1321	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1322	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1323		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1324	read_unlock(&n->lock);
1325}
1326
1327static void arp_format_pneigh_entry(struct seq_file *seq,
1328				    struct pneigh_entry *n)
1329{
1330	struct net_device *dev = n->dev;
1331	int hatype = dev ? dev->type : 0;
1332	char tbuf[16];
1333
1334	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1335	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1336		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1337		   dev ? dev->name : "*");
1338}
1339
1340static int arp_seq_show(struct seq_file *seq, void *v)
1341{
1342	if (v == SEQ_START_TOKEN) {
1343		seq_puts(seq, "IP address       HW type     Flags       "
1344			      "HW address            Mask     Device\n");
1345	} else {
1346		struct neigh_seq_state *state = seq->private;
1347
1348		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1349			arp_format_pneigh_entry(seq, v);
1350		else
1351			arp_format_neigh_entry(seq, v);
1352	}
1353
1354	return 0;
1355}
1356
1357static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1358{
1359	/* Don't want to confuse "arp -a" w/ magic entries,
1360	 * so we tell the generic iterator to skip NUD_NOARP.
1361	 */
1362	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1363}
1364
1365/* ------------------------------------------------------------------------ */
1366
1367static const struct seq_operations arp_seq_ops = {
1368	.start  = arp_seq_start,
1369	.next   = neigh_seq_next,
1370	.stop   = neigh_seq_stop,
1371	.show   = arp_seq_show,
1372};
1373
1374static int arp_seq_open(struct inode *inode, struct file *file)
1375{
1376	return seq_open_net(inode, file, &arp_seq_ops,
1377			    sizeof(struct neigh_seq_state));
1378}
1379
1380static const struct file_operations arp_seq_fops = {
1381	.owner		= THIS_MODULE,
1382	.open           = arp_seq_open,
1383	.read           = seq_read,
1384	.llseek         = seq_lseek,
1385	.release	= seq_release_net,
1386};
1387
1388static int __init arp_proc_init(void)
1389{
1390	if (!proc_net_fops_create(&init_net, "arp", S_IRUGO, &arp_seq_fops))
1391		return -ENOMEM;
1392	return 0;
1393}
1394
1395#else /* CONFIG_PROC_FS */
1396
1397static int __init arp_proc_init(void)
1398{
1399	return 0;
1400}
1401
1402#endif /* CONFIG_PROC_FS */
1403
1404EXPORT_SYMBOL(arp_broken_ops);
1405EXPORT_SYMBOL(arp_find);
1406EXPORT_SYMBOL(arp_create);
1407EXPORT_SYMBOL(arp_xmit);
1408EXPORT_SYMBOL(arp_send);
1409EXPORT_SYMBOL(arp_tbl);
1410
1411#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1412EXPORT_SYMBOL(clip_tbl_hook);
1413#endif
1414