arp.c revision cf7732e4cc14b56d593ff53352673e1fd5e3ba52
1/* linux/net/ipv4/arp.c
2 *
3 * Version:	$Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4 *
5 * Copyright (C) 1994 by Florian  La Roche
6 *
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Fixes:
18 *		Alan Cox	:	Removed the Ethernet assumptions in
19 *					Florian's code
20 *		Alan Cox	:	Fixed some small errors in the ARP
21 *					logic
22 *		Alan Cox	:	Allow >4K in /proc
23 *		Alan Cox	:	Make ARP add its own protocol entry
24 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
25 *		Stephen Henson	:	Add AX25 support to arp_get_info()
26 *		Alan Cox	:	Drop data when a device is downed.
27 *		Alan Cox	:	Use init_timer().
28 *		Alan Cox	:	Double lock fixes.
29 *		Martin Seine	:	Move the arphdr structure
30 *					to if_arp.h for compatibility.
31 *					with BSD based programs.
32 *		Andrew Tridgell :       Added ARP netmask code and
33 *					re-arranged proxy handling.
34 *		Alan Cox	:	Changed to use notifiers.
35 *		Niibe Yutaka	:	Reply for this device or proxies only.
36 *		Alan Cox	:	Don't proxy across hardware types!
37 *		Jonathan Naylor :	Added support for NET/ROM.
38 *		Mike Shaver     :       RFC1122 checks.
39 *		Jonathan Naylor :	Only lookup the hardware address for
40 *					the correct hardware type.
41 *		Germano Caronni	:	Assorted subtle races.
42 *		Craig Schlenter :	Don't modify permanent entry
43 *					during arp_rcv.
44 *		Russ Nelson	:	Tidied up a few bits.
45 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
46 *					eg intelligent arp probing and
47 *					generation
48 *					of host down events.
49 *		Alan Cox	:	Missing unlock in device events.
50 *		Eckes		:	ARP ioctl control errors.
51 *		Alexey Kuznetsov:	Arp free fix.
52 *		Manuel Rodriguez:	Gratuitous ARP.
53 *              Jonathan Layes  :       Added arpd support through kerneld
54 *                                      message queue (960314)
55 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
56 *		Mike McLagan    :	Routing by source
57 *		Stuart Cheshire	:	Metricom and grat arp fixes
58 *					*** FOR 2.1 clean this up ***
59 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
61 *					folded into the mainstream FDDI code.
62 *					Ack spit, Linus how did you allow that
63 *					one in...
64 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
65 *					clean up the APFDDI & gen. FDDI bits.
66 *		Alexey Kuznetsov:	new arp state machine;
67 *					now it is in net/core/neighbour.c.
68 *		Krzysztof Halasa:	Added Frame Relay ARP support.
69 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
70 *		Shmulik Hen:		Split arp_send to arp_create and
71 *					arp_xmit so intermediate drivers like
72 *					bonding can change the skb before
73 *					sending (e.g. insert 8021q tag).
74 *		Harald Welte	:	convert to make use of jenkins hash
75 */
76
77#include <linux/module.h>
78#include <linux/types.h>
79#include <linux/string.h>
80#include <linux/kernel.h>
81#include <linux/capability.h>
82#include <linux/socket.h>
83#include <linux/sockios.h>
84#include <linux/errno.h>
85#include <linux/in.h>
86#include <linux/mm.h>
87#include <linux/inet.h>
88#include <linux/inetdevice.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/fddidevice.h>
92#include <linux/if_arp.h>
93#include <linux/trdevice.h>
94#include <linux/skbuff.h>
95#include <linux/proc_fs.h>
96#include <linux/seq_file.h>
97#include <linux/stat.h>
98#include <linux/init.h>
99#include <linux/net.h>
100#include <linux/rcupdate.h>
101#include <linux/jhash.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/net_namespace.h>
107#include <net/ip.h>
108#include <net/icmp.h>
109#include <net/route.h>
110#include <net/protocol.h>
111#include <net/tcp.h>
112#include <net/sock.h>
113#include <net/arp.h>
114#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
115#include <net/ax25.h>
116#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
117#include <net/netrom.h>
118#endif
119#endif
120#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
121#include <net/atmclip.h>
122struct neigh_table *clip_tbl_hook;
123#endif
124
125#include <asm/system.h>
126#include <asm/uaccess.h>
127
128#include <linux/netfilter_arp.h>
129
130/*
131 *	Interface to generic neighbour cache.
132 */
133static u32 arp_hash(const void *pkey, const struct net_device *dev);
134static int arp_constructor(struct neighbour *neigh);
135static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
136static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
137static void parp_redo(struct sk_buff *skb);
138
139static struct neigh_ops arp_generic_ops = {
140	.family =		AF_INET,
141	.solicit =		arp_solicit,
142	.error_report =		arp_error_report,
143	.output =		neigh_resolve_output,
144	.connected_output =	neigh_connected_output,
145	.hh_output =		dev_queue_xmit,
146	.queue_xmit =		dev_queue_xmit,
147};
148
149static struct neigh_ops arp_hh_ops = {
150	.family =		AF_INET,
151	.solicit =		arp_solicit,
152	.error_report =		arp_error_report,
153	.output =		neigh_resolve_output,
154	.connected_output =	neigh_resolve_output,
155	.hh_output =		dev_queue_xmit,
156	.queue_xmit =		dev_queue_xmit,
157};
158
159static struct neigh_ops arp_direct_ops = {
160	.family =		AF_INET,
161	.output =		dev_queue_xmit,
162	.connected_output =	dev_queue_xmit,
163	.hh_output =		dev_queue_xmit,
164	.queue_xmit =		dev_queue_xmit,
165};
166
167struct neigh_ops arp_broken_ops = {
168	.family =		AF_INET,
169	.solicit =		arp_solicit,
170	.error_report =		arp_error_report,
171	.output =		neigh_compat_output,
172	.connected_output =	neigh_compat_output,
173	.hh_output =		dev_queue_xmit,
174	.queue_xmit =		dev_queue_xmit,
175};
176
177struct neigh_table arp_tbl = {
178	.family =	AF_INET,
179	.entry_size =	sizeof(struct neighbour) + 4,
180	.key_len =	4,
181	.hash =		arp_hash,
182	.constructor =	arp_constructor,
183	.proxy_redo =	parp_redo,
184	.id =		"arp_cache",
185	.parms = {
186		.tbl =			&arp_tbl,
187		.base_reachable_time =	30 * HZ,
188		.retrans_time =	1 * HZ,
189		.gc_staletime =	60 * HZ,
190		.reachable_time =		30 * HZ,
191		.delay_probe_time =	5 * HZ,
192		.queue_len =		3,
193		.ucast_probes =	3,
194		.mcast_probes =	3,
195		.anycast_delay =	1 * HZ,
196		.proxy_delay =		(8 * HZ) / 10,
197		.proxy_qlen =		64,
198		.locktime =		1 * HZ,
199	},
200	.gc_interval =	30 * HZ,
201	.gc_thresh1 =	128,
202	.gc_thresh2 =	512,
203	.gc_thresh3 =	1024,
204};
205
206int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
207{
208	switch (dev->type) {
209	case ARPHRD_ETHER:
210	case ARPHRD_FDDI:
211	case ARPHRD_IEEE802:
212		ip_eth_mc_map(addr, haddr);
213		return 0;
214	case ARPHRD_IEEE802_TR:
215		ip_tr_mc_map(addr, haddr);
216		return 0;
217	case ARPHRD_INFINIBAND:
218		ip_ib_mc_map(addr, haddr);
219		return 0;
220	default:
221		if (dir) {
222			memcpy(haddr, dev->broadcast, dev->addr_len);
223			return 0;
224		}
225	}
226	return -EINVAL;
227}
228
229
230static u32 arp_hash(const void *pkey, const struct net_device *dev)
231{
232	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
233}
234
235static int arp_constructor(struct neighbour *neigh)
236{
237	__be32 addr = *(__be32*)neigh->primary_key;
238	struct net_device *dev = neigh->dev;
239	struct in_device *in_dev;
240	struct neigh_parms *parms;
241
242	neigh->type = inet_addr_type(addr);
243
244	rcu_read_lock();
245	in_dev = __in_dev_get_rcu(dev);
246	if (in_dev == NULL) {
247		rcu_read_unlock();
248		return -EINVAL;
249	}
250
251	parms = in_dev->arp_parms;
252	__neigh_parms_put(neigh->parms);
253	neigh->parms = neigh_parms_clone(parms);
254	rcu_read_unlock();
255
256	if (!dev->header_ops) {
257		neigh->nud_state = NUD_NOARP;
258		neigh->ops = &arp_direct_ops;
259		neigh->output = neigh->ops->queue_xmit;
260	} else {
261		/* Good devices (checked by reading texts, but only Ethernet is
262		   tested)
263
264		   ARPHRD_ETHER: (ethernet, apfddi)
265		   ARPHRD_FDDI: (fddi)
266		   ARPHRD_IEEE802: (tr)
267		   ARPHRD_METRICOM: (strip)
268		   ARPHRD_ARCNET:
269		   etc. etc. etc.
270
271		   ARPHRD_IPDDP will also work, if author repairs it.
272		   I did not it, because this driver does not work even
273		   in old paradigm.
274		 */
275
276#if 1
277		/* So... these "amateur" devices are hopeless.
278		   The only thing, that I can say now:
279		   It is very sad that we need to keep ugly obsolete
280		   code to make them happy.
281
282		   They should be moved to more reasonable state, now
283		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
284		   Besides that, they are sort of out of date
285		   (a lot of redundant clones/copies, useless in 2.1),
286		   I wonder why people believe that they work.
287		 */
288		switch (dev->type) {
289		default:
290			break;
291		case ARPHRD_ROSE:
292#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
293		case ARPHRD_AX25:
294#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
295		case ARPHRD_NETROM:
296#endif
297			neigh->ops = &arp_broken_ops;
298			neigh->output = neigh->ops->output;
299			return 0;
300#endif
301		;}
302#endif
303		if (neigh->type == RTN_MULTICAST) {
304			neigh->nud_state = NUD_NOARP;
305			arp_mc_map(addr, neigh->ha, dev, 1);
306		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
307			neigh->nud_state = NUD_NOARP;
308			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
309		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
310			neigh->nud_state = NUD_NOARP;
311			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
312		}
313
314		if (dev->header_ops->cache)
315			neigh->ops = &arp_hh_ops;
316		else
317			neigh->ops = &arp_generic_ops;
318
319		if (neigh->nud_state&NUD_VALID)
320			neigh->output = neigh->ops->connected_output;
321		else
322			neigh->output = neigh->ops->output;
323	}
324	return 0;
325}
326
327static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
328{
329	dst_link_failure(skb);
330	kfree_skb(skb);
331}
332
333static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
334{
335	__be32 saddr = 0;
336	u8  *dst_ha = NULL;
337	struct net_device *dev = neigh->dev;
338	__be32 target = *(__be32*)neigh->primary_key;
339	int probes = atomic_read(&neigh->probes);
340	struct in_device *in_dev = in_dev_get(dev);
341
342	if (!in_dev)
343		return;
344
345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
346	default:
347	case 0:		/* By default announce any local IP */
348		if (skb && inet_addr_type(ip_hdr(skb)->saddr) == RTN_LOCAL)
349			saddr = ip_hdr(skb)->saddr;
350		break;
351	case 1:		/* Restrict announcements of saddr in same subnet */
352		if (!skb)
353			break;
354		saddr = ip_hdr(skb)->saddr;
355		if (inet_addr_type(saddr) == RTN_LOCAL) {
356			/* saddr should be known to target */
357			if (inet_addr_onlink(in_dev, target, saddr))
358				break;
359		}
360		saddr = 0;
361		break;
362	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
363		break;
364	}
365
366	if (in_dev)
367		in_dev_put(in_dev);
368	if (!saddr)
369		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
370
371	if ((probes -= neigh->parms->ucast_probes) < 0) {
372		if (!(neigh->nud_state&NUD_VALID))
373			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
374		dst_ha = neigh->ha;
375		read_lock_bh(&neigh->lock);
376	} else if ((probes -= neigh->parms->app_probes) < 0) {
377#ifdef CONFIG_ARPD
378		neigh_app_ns(neigh);
379#endif
380		return;
381	}
382
383	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
384		 dst_ha, dev->dev_addr, NULL);
385	if (dst_ha)
386		read_unlock_bh(&neigh->lock);
387}
388
389static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
390		      __be32 sip, __be32 tip)
391{
392	int scope;
393
394	switch (IN_DEV_ARP_IGNORE(in_dev)) {
395	case 0:	/* Reply, the tip is already validated */
396		return 0;
397	case 1:	/* Reply only if tip is configured on the incoming interface */
398		sip = 0;
399		scope = RT_SCOPE_HOST;
400		break;
401	case 2:	/*
402		 * Reply only if tip is configured on the incoming interface
403		 * and is in same subnet as sip
404		 */
405		scope = RT_SCOPE_HOST;
406		break;
407	case 3:	/* Do not reply for scope host addresses */
408		sip = 0;
409		scope = RT_SCOPE_LINK;
410		dev = NULL;
411		break;
412	case 4:	/* Reserved */
413	case 5:
414	case 6:
415	case 7:
416		return 0;
417	case 8:	/* Do not reply */
418		return 1;
419	default:
420		return 0;
421	}
422	return !inet_confirm_addr(dev, sip, tip, scope);
423}
424
425static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
426{
427	struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
428						 .saddr = tip } } };
429	struct rtable *rt;
430	int flag = 0;
431	/*unsigned long now; */
432
433	if (ip_route_output_key(&rt, &fl) < 0)
434		return 1;
435	if (rt->u.dst.dev != dev) {
436		NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
437		flag = 1;
438	}
439	ip_rt_put(rt);
440	return flag;
441}
442
443/* OBSOLETE FUNCTIONS */
444
445/*
446 *	Find an arp mapping in the cache. If not found, post a request.
447 *
448 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
449 *	even if it exists. It is supposed that skb->dev was mangled
450 *	by a virtual device (eql, shaper). Nobody but broken devices
451 *	is allowed to use this function, it is scheduled to be removed. --ANK
452 */
453
454static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
455{
456	switch (addr_hint) {
457	case RTN_LOCAL:
458		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
459		memcpy(haddr, dev->dev_addr, dev->addr_len);
460		return 1;
461	case RTN_MULTICAST:
462		arp_mc_map(paddr, haddr, dev, 1);
463		return 1;
464	case RTN_BROADCAST:
465		memcpy(haddr, dev->broadcast, dev->addr_len);
466		return 1;
467	}
468	return 0;
469}
470
471
472int arp_find(unsigned char *haddr, struct sk_buff *skb)
473{
474	struct net_device *dev = skb->dev;
475	__be32 paddr;
476	struct neighbour *n;
477
478	if (!skb->dst) {
479		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
480		kfree_skb(skb);
481		return 1;
482	}
483
484	paddr = ((struct rtable*)skb->dst)->rt_gateway;
485
486	if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
487		return 0;
488
489	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
490
491	if (n) {
492		n->used = jiffies;
493		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
494			read_lock_bh(&n->lock);
495			memcpy(haddr, n->ha, dev->addr_len);
496			read_unlock_bh(&n->lock);
497			neigh_release(n);
498			return 0;
499		}
500		neigh_release(n);
501	} else
502		kfree_skb(skb);
503	return 1;
504}
505
506/* END OF OBSOLETE FUNCTIONS */
507
508int arp_bind_neighbour(struct dst_entry *dst)
509{
510	struct net_device *dev = dst->dev;
511	struct neighbour *n = dst->neighbour;
512
513	if (dev == NULL)
514		return -EINVAL;
515	if (n == NULL) {
516		__be32 nexthop = ((struct rtable*)dst)->rt_gateway;
517		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
518			nexthop = 0;
519		n = __neigh_lookup_errno(
520#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
521		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
522#endif
523		    &arp_tbl, &nexthop, dev);
524		if (IS_ERR(n))
525			return PTR_ERR(n);
526		dst->neighbour = n;
527	}
528	return 0;
529}
530
531/*
532 * Check if we can use proxy ARP for this path
533 */
534
535static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
536{
537	struct in_device *out_dev;
538	int imi, omi = -1;
539
540	if (!IN_DEV_PROXY_ARP(in_dev))
541		return 0;
542
543	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
544		return 1;
545	if (imi == -1)
546		return 0;
547
548	/* place to check for proxy_arp for routes */
549
550	if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
551		omi = IN_DEV_MEDIUM_ID(out_dev);
552		in_dev_put(out_dev);
553	}
554	return (omi != imi && omi != -1);
555}
556
557/*
558 *	Interface to link layer: send routine and receive handler.
559 */
560
561/*
562 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
563 *	message.
564 */
565struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
566			   struct net_device *dev, __be32 src_ip,
567			   unsigned char *dest_hw, unsigned char *src_hw,
568			   unsigned char *target_hw)
569{
570	struct sk_buff *skb;
571	struct arphdr *arp;
572	unsigned char *arp_ptr;
573
574	/*
575	 *	Allocate a buffer
576	 */
577
578	skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
579				+ LL_RESERVED_SPACE(dev), GFP_ATOMIC);
580	if (skb == NULL)
581		return NULL;
582
583	skb_reserve(skb, LL_RESERVED_SPACE(dev));
584	skb_reset_network_header(skb);
585	arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
586	skb->dev = dev;
587	skb->protocol = htons(ETH_P_ARP);
588	if (src_hw == NULL)
589		src_hw = dev->dev_addr;
590	if (dest_hw == NULL)
591		dest_hw = dev->broadcast;
592
593	/*
594	 *	Fill the device header for the ARP frame
595	 */
596	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
597		goto out;
598
599	/*
600	 * Fill out the arp protocol part.
601	 *
602	 * The arp hardware type should match the device type, except for FDDI,
603	 * which (according to RFC 1390) should always equal 1 (Ethernet).
604	 */
605	/*
606	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
607	 *	DIX code for the protocol. Make these device structure fields.
608	 */
609	switch (dev->type) {
610	default:
611		arp->ar_hrd = htons(dev->type);
612		arp->ar_pro = htons(ETH_P_IP);
613		break;
614
615#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
616	case ARPHRD_AX25:
617		arp->ar_hrd = htons(ARPHRD_AX25);
618		arp->ar_pro = htons(AX25_P_IP);
619		break;
620
621#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
622	case ARPHRD_NETROM:
623		arp->ar_hrd = htons(ARPHRD_NETROM);
624		arp->ar_pro = htons(AX25_P_IP);
625		break;
626#endif
627#endif
628
629#ifdef CONFIG_FDDI
630	case ARPHRD_FDDI:
631		arp->ar_hrd = htons(ARPHRD_ETHER);
632		arp->ar_pro = htons(ETH_P_IP);
633		break;
634#endif
635#ifdef CONFIG_TR
636	case ARPHRD_IEEE802_TR:
637		arp->ar_hrd = htons(ARPHRD_IEEE802);
638		arp->ar_pro = htons(ETH_P_IP);
639		break;
640#endif
641	}
642
643	arp->ar_hln = dev->addr_len;
644	arp->ar_pln = 4;
645	arp->ar_op = htons(type);
646
647	arp_ptr=(unsigned char *)(arp+1);
648
649	memcpy(arp_ptr, src_hw, dev->addr_len);
650	arp_ptr+=dev->addr_len;
651	memcpy(arp_ptr, &src_ip,4);
652	arp_ptr+=4;
653	if (target_hw != NULL)
654		memcpy(arp_ptr, target_hw, dev->addr_len);
655	else
656		memset(arp_ptr, 0, dev->addr_len);
657	arp_ptr+=dev->addr_len;
658	memcpy(arp_ptr, &dest_ip, 4);
659
660	return skb;
661
662out:
663	kfree_skb(skb);
664	return NULL;
665}
666
667/*
668 *	Send an arp packet.
669 */
670void arp_xmit(struct sk_buff *skb)
671{
672	/* Send it off, maybe filter it using firewalling first.  */
673	NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
674}
675
676/*
677 *	Create and send an arp packet.
678 */
679void arp_send(int type, int ptype, __be32 dest_ip,
680	      struct net_device *dev, __be32 src_ip,
681	      unsigned char *dest_hw, unsigned char *src_hw,
682	      unsigned char *target_hw)
683{
684	struct sk_buff *skb;
685
686	/*
687	 *	No arp on this interface.
688	 */
689
690	if (dev->flags&IFF_NOARP)
691		return;
692
693	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
694			 dest_hw, src_hw, target_hw);
695	if (skb == NULL) {
696		return;
697	}
698
699	arp_xmit(skb);
700}
701
702/*
703 *	Process an arp request.
704 */
705
706static int arp_process(struct sk_buff *skb)
707{
708	struct net_device *dev = skb->dev;
709	struct in_device *in_dev = in_dev_get(dev);
710	struct arphdr *arp;
711	unsigned char *arp_ptr;
712	struct rtable *rt;
713	unsigned char *sha, *tha;
714	__be32 sip, tip;
715	u16 dev_type = dev->type;
716	int addr_type;
717	struct neighbour *n;
718
719	/* arp_rcv below verifies the ARP header and verifies the device
720	 * is ARP'able.
721	 */
722
723	if (in_dev == NULL)
724		goto out;
725
726	arp = arp_hdr(skb);
727
728	switch (dev_type) {
729	default:
730		if (arp->ar_pro != htons(ETH_P_IP) ||
731		    htons(dev_type) != arp->ar_hrd)
732			goto out;
733		break;
734#ifdef CONFIG_NET_ETHERNET
735	case ARPHRD_ETHER:
736#endif
737#ifdef CONFIG_TR
738	case ARPHRD_IEEE802_TR:
739#endif
740#ifdef CONFIG_FDDI
741	case ARPHRD_FDDI:
742#endif
743#ifdef CONFIG_NET_FC
744	case ARPHRD_IEEE802:
745#endif
746#if defined(CONFIG_NET_ETHERNET) || defined(CONFIG_TR) || \
747    defined(CONFIG_FDDI)	 || defined(CONFIG_NET_FC)
748		/*
749		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
750		 * devices, according to RFC 2625) devices will accept ARP
751		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
752		 * This is the case also of FDDI, where the RFC 1390 says that
753		 * FDDI devices should accept ARP hardware of (1) Ethernet,
754		 * however, to be more robust, we'll accept both 1 (Ethernet)
755		 * or 6 (IEEE 802.2)
756		 */
757		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
758		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
759		    arp->ar_pro != htons(ETH_P_IP))
760			goto out;
761		break;
762#endif
763#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
764	case ARPHRD_AX25:
765		if (arp->ar_pro != htons(AX25_P_IP) ||
766		    arp->ar_hrd != htons(ARPHRD_AX25))
767			goto out;
768		break;
769#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
770	case ARPHRD_NETROM:
771		if (arp->ar_pro != htons(AX25_P_IP) ||
772		    arp->ar_hrd != htons(ARPHRD_NETROM))
773			goto out;
774		break;
775#endif
776#endif
777	}
778
779	/* Understand only these message types */
780
781	if (arp->ar_op != htons(ARPOP_REPLY) &&
782	    arp->ar_op != htons(ARPOP_REQUEST))
783		goto out;
784
785/*
786 *	Extract fields
787 */
788	arp_ptr= (unsigned char *)(arp+1);
789	sha	= arp_ptr;
790	arp_ptr += dev->addr_len;
791	memcpy(&sip, arp_ptr, 4);
792	arp_ptr += 4;
793	tha	= arp_ptr;
794	arp_ptr += dev->addr_len;
795	memcpy(&tip, arp_ptr, 4);
796/*
797 *	Check for bad requests for 127.x.x.x and requests for multicast
798 *	addresses.  If this is one such, delete it.
799 */
800	if (LOOPBACK(tip) || MULTICAST(tip))
801		goto out;
802
803/*
804 *     Special case: We must set Frame Relay source Q.922 address
805 */
806	if (dev_type == ARPHRD_DLCI)
807		sha = dev->broadcast;
808
809/*
810 *  Process entry.  The idea here is we want to send a reply if it is a
811 *  request for us or if it is a request for someone else that we hold
812 *  a proxy for.  We want to add an entry to our cache if it is a reply
813 *  to us or if it is a request for our address.
814 *  (The assumption for this last is that if someone is requesting our
815 *  address, they are probably intending to talk to us, so it saves time
816 *  if we cache their address.  Their address is also probably not in
817 *  our cache, since ours is not in their cache.)
818 *
819 *  Putting this another way, we only care about replies if they are to
820 *  us, in which case we add them to the cache.  For requests, we care
821 *  about those for us and those for our proxies.  We reply to both,
822 *  and in the case of requests for us we add the requester to the arp
823 *  cache.
824 */
825
826	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
827	if (sip == 0) {
828		if (arp->ar_op == htons(ARPOP_REQUEST) &&
829		    inet_addr_type(tip) == RTN_LOCAL &&
830		    !arp_ignore(in_dev,dev,sip,tip))
831			arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,dev->dev_addr,dev->dev_addr);
832		goto out;
833	}
834
835	if (arp->ar_op == htons(ARPOP_REQUEST) &&
836	    ip_route_input(skb, tip, sip, 0, dev) == 0) {
837
838		rt = (struct rtable*)skb->dst;
839		addr_type = rt->rt_type;
840
841		if (addr_type == RTN_LOCAL) {
842			n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
843			if (n) {
844				int dont_send = 0;
845
846				if (!dont_send)
847					dont_send |= arp_ignore(in_dev,dev,sip,tip);
848				if (!dont_send && IN_DEV_ARPFILTER(in_dev))
849					dont_send |= arp_filter(sip,tip,dev);
850				if (!dont_send)
851					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
852
853				neigh_release(n);
854			}
855			goto out;
856		} else if (IN_DEV_FORWARD(in_dev)) {
857			if ((rt->rt_flags&RTCF_DNAT) ||
858			    (addr_type == RTN_UNICAST  && rt->u.dst.dev != dev &&
859			     (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {
860				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
861				if (n)
862					neigh_release(n);
863
864				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
865				    skb->pkt_type == PACKET_HOST ||
866				    in_dev->arp_parms->proxy_delay == 0) {
867					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
868				} else {
869					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
870					in_dev_put(in_dev);
871					return 0;
872				}
873				goto out;
874			}
875		}
876	}
877
878	/* Update our ARP tables */
879
880	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
881
882	if (IPV4_DEVCONF_ALL(ARP_ACCEPT)) {
883		/* Unsolicited ARP is not accepted by default.
884		   It is possible, that this option should be enabled for some
885		   devices (strip is candidate)
886		 */
887		if (n == NULL &&
888		    arp->ar_op == htons(ARPOP_REPLY) &&
889		    inet_addr_type(sip) == RTN_UNICAST)
890			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
891	}
892
893	if (n) {
894		int state = NUD_REACHABLE;
895		int override;
896
897		/* If several different ARP replies follows back-to-back,
898		   use the FIRST one. It is possible, if several proxy
899		   agents are active. Taking the first reply prevents
900		   arp trashing and chooses the fastest router.
901		 */
902		override = time_after(jiffies, n->updated + n->parms->locktime);
903
904		/* Broadcast replies and request packets
905		   do not assert neighbour reachability.
906		 */
907		if (arp->ar_op != htons(ARPOP_REPLY) ||
908		    skb->pkt_type != PACKET_HOST)
909			state = NUD_STALE;
910		neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
911		neigh_release(n);
912	}
913
914out:
915	if (in_dev)
916		in_dev_put(in_dev);
917	kfree_skb(skb);
918	return 0;
919}
920
921static void parp_redo(struct sk_buff *skb)
922{
923	arp_process(skb);
924}
925
926
927/*
928 *	Receive an arp request from the device layer.
929 */
930
931static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
932		   struct packet_type *pt, struct net_device *orig_dev)
933{
934	struct arphdr *arp;
935
936	if (dev->nd_net != &init_net)
937		goto freeskb;
938
939	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
940	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
941				 (2 * dev->addr_len) +
942				 (2 * sizeof(u32)))))
943		goto freeskb;
944
945	arp = arp_hdr(skb);
946	if (arp->ar_hln != dev->addr_len ||
947	    dev->flags & IFF_NOARP ||
948	    skb->pkt_type == PACKET_OTHERHOST ||
949	    skb->pkt_type == PACKET_LOOPBACK ||
950	    arp->ar_pln != 4)
951		goto freeskb;
952
953	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
954		goto out_of_mem;
955
956	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
957
958	return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
959
960freeskb:
961	kfree_skb(skb);
962out_of_mem:
963	return 0;
964}
965
966/*
967 *	User level interface (ioctl)
968 */
969
970/*
971 *	Set (create) an ARP cache entry.
972 */
973
974static int arp_req_set(struct arpreq *r, struct net_device * dev)
975{
976	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
977	struct neighbour *neigh;
978	int err;
979
980	if (r->arp_flags&ATF_PUBL) {
981		__be32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
982		if (mask && mask != htonl(0xFFFFFFFF))
983			return -EINVAL;
984		if (!dev && (r->arp_flags & ATF_COM)) {
985			dev = dev_getbyhwaddr(&init_net, r->arp_ha.sa_family, r->arp_ha.sa_data);
986			if (!dev)
987				return -ENODEV;
988		}
989		if (mask) {
990			if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL)
991				return -ENOBUFS;
992			return 0;
993		}
994		if (dev == NULL) {
995			IPV4_DEVCONF_ALL(PROXY_ARP) = 1;
996			return 0;
997		}
998		if (__in_dev_get_rtnl(dev)) {
999			IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, 1);
1000			return 0;
1001		}
1002		return -ENXIO;
1003	}
1004
1005	if (r->arp_flags & ATF_PERM)
1006		r->arp_flags |= ATF_COM;
1007	if (dev == NULL) {
1008		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1009							 .tos = RTO_ONLINK } } };
1010		struct rtable * rt;
1011		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1012			return err;
1013		dev = rt->u.dst.dev;
1014		ip_rt_put(rt);
1015		if (!dev)
1016			return -EINVAL;
1017	}
1018	switch (dev->type) {
1019#ifdef CONFIG_FDDI
1020	case ARPHRD_FDDI:
1021		/*
1022		 * According to RFC 1390, FDDI devices should accept ARP
1023		 * hardware types of 1 (Ethernet).  However, to be more
1024		 * robust, we'll accept hardware types of either 1 (Ethernet)
1025		 * or 6 (IEEE 802.2).
1026		 */
1027		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1028		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1029		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1030			return -EINVAL;
1031		break;
1032#endif
1033	default:
1034		if (r->arp_ha.sa_family != dev->type)
1035			return -EINVAL;
1036		break;
1037	}
1038
1039	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1040	err = PTR_ERR(neigh);
1041	if (!IS_ERR(neigh)) {
1042		unsigned state = NUD_STALE;
1043		if (r->arp_flags & ATF_PERM)
1044			state = NUD_PERMANENT;
1045		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1046				   r->arp_ha.sa_data : NULL, state,
1047				   NEIGH_UPDATE_F_OVERRIDE|
1048				   NEIGH_UPDATE_F_ADMIN);
1049		neigh_release(neigh);
1050	}
1051	return err;
1052}
1053
1054static unsigned arp_state_to_flags(struct neighbour *neigh)
1055{
1056	unsigned flags = 0;
1057	if (neigh->nud_state&NUD_PERMANENT)
1058		flags = ATF_PERM|ATF_COM;
1059	else if (neigh->nud_state&NUD_VALID)
1060		flags = ATF_COM;
1061	return flags;
1062}
1063
1064/*
1065 *	Get an ARP cache entry.
1066 */
1067
1068static int arp_req_get(struct arpreq *r, struct net_device *dev)
1069{
1070	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1071	struct neighbour *neigh;
1072	int err = -ENXIO;
1073
1074	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1075	if (neigh) {
1076		read_lock_bh(&neigh->lock);
1077		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1078		r->arp_flags = arp_state_to_flags(neigh);
1079		read_unlock_bh(&neigh->lock);
1080		r->arp_ha.sa_family = dev->type;
1081		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1082		neigh_release(neigh);
1083		err = 0;
1084	}
1085	return err;
1086}
1087
1088static int arp_req_delete(struct arpreq *r, struct net_device * dev)
1089{
1090	int err;
1091	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1092	struct neighbour *neigh;
1093
1094	if (r->arp_flags & ATF_PUBL) {
1095		__be32 mask =
1096		       ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1097		if (mask == htonl(0xFFFFFFFF))
1098			return pneigh_delete(&arp_tbl, &ip, dev);
1099		if (mask == 0) {
1100			if (dev == NULL) {
1101				IPV4_DEVCONF_ALL(PROXY_ARP) = 0;
1102				return 0;
1103			}
1104			if (__in_dev_get_rtnl(dev)) {
1105				IN_DEV_CONF_SET(__in_dev_get_rtnl(dev),
1106						PROXY_ARP, 0);
1107				return 0;
1108			}
1109			return -ENXIO;
1110		}
1111		return -EINVAL;
1112	}
1113
1114	if (dev == NULL) {
1115		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1116							 .tos = RTO_ONLINK } } };
1117		struct rtable * rt;
1118		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1119			return err;
1120		dev = rt->u.dst.dev;
1121		ip_rt_put(rt);
1122		if (!dev)
1123			return -EINVAL;
1124	}
1125	err = -ENXIO;
1126	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1127	if (neigh) {
1128		if (neigh->nud_state&~NUD_NOARP)
1129			err = neigh_update(neigh, NULL, NUD_FAILED,
1130					   NEIGH_UPDATE_F_OVERRIDE|
1131					   NEIGH_UPDATE_F_ADMIN);
1132		neigh_release(neigh);
1133	}
1134	return err;
1135}
1136
1137/*
1138 *	Handle an ARP layer I/O control request.
1139 */
1140
1141int arp_ioctl(unsigned int cmd, void __user *arg)
1142{
1143	int err;
1144	struct arpreq r;
1145	struct net_device *dev = NULL;
1146
1147	switch (cmd) {
1148		case SIOCDARP:
1149		case SIOCSARP:
1150			if (!capable(CAP_NET_ADMIN))
1151				return -EPERM;
1152		case SIOCGARP:
1153			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1154			if (err)
1155				return -EFAULT;
1156			break;
1157		default:
1158			return -EINVAL;
1159	}
1160
1161	if (r.arp_pa.sa_family != AF_INET)
1162		return -EPFNOSUPPORT;
1163
1164	if (!(r.arp_flags & ATF_PUBL) &&
1165	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1166		return -EINVAL;
1167	if (!(r.arp_flags & ATF_NETMASK))
1168		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1169							   htonl(0xFFFFFFFFUL);
1170	rtnl_lock();
1171	if (r.arp_dev[0]) {
1172		err = -ENODEV;
1173		if ((dev = __dev_get_by_name(&init_net, r.arp_dev)) == NULL)
1174			goto out;
1175
1176		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1177		if (!r.arp_ha.sa_family)
1178			r.arp_ha.sa_family = dev->type;
1179		err = -EINVAL;
1180		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1181			goto out;
1182	} else if (cmd == SIOCGARP) {
1183		err = -ENODEV;
1184		goto out;
1185	}
1186
1187	switch (cmd) {
1188	case SIOCDARP:
1189		err = arp_req_delete(&r, dev);
1190		break;
1191	case SIOCSARP:
1192		err = arp_req_set(&r, dev);
1193		break;
1194	case SIOCGARP:
1195		err = arp_req_get(&r, dev);
1196		if (!err && copy_to_user(arg, &r, sizeof(r)))
1197			err = -EFAULT;
1198		break;
1199	}
1200out:
1201	rtnl_unlock();
1202	return err;
1203}
1204
1205static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1206{
1207	struct net_device *dev = ptr;
1208
1209	if (dev->nd_net != &init_net)
1210		return NOTIFY_DONE;
1211
1212	switch (event) {
1213	case NETDEV_CHANGEADDR:
1214		neigh_changeaddr(&arp_tbl, dev);
1215		rt_cache_flush(0);
1216		break;
1217	default:
1218		break;
1219	}
1220
1221	return NOTIFY_DONE;
1222}
1223
1224static struct notifier_block arp_netdev_notifier = {
1225	.notifier_call = arp_netdev_event,
1226};
1227
1228/* Note, that it is not on notifier chain.
1229   It is necessary, that this routine was called after route cache will be
1230   flushed.
1231 */
1232void arp_ifdown(struct net_device *dev)
1233{
1234	neigh_ifdown(&arp_tbl, dev);
1235}
1236
1237
1238/*
1239 *	Called once on startup.
1240 */
1241
1242static struct packet_type arp_packet_type = {
1243	.type =	__constant_htons(ETH_P_ARP),
1244	.func =	arp_rcv,
1245};
1246
1247static int arp_proc_init(void);
1248
1249void __init arp_init(void)
1250{
1251	neigh_table_init(&arp_tbl);
1252
1253	dev_add_pack(&arp_packet_type);
1254	arp_proc_init();
1255#ifdef CONFIG_SYSCTL
1256	neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1257			      NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1258#endif
1259	register_netdevice_notifier(&arp_netdev_notifier);
1260}
1261
1262#ifdef CONFIG_PROC_FS
1263#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1264
1265/* ------------------------------------------------------------------------ */
1266/*
1267 *	ax25 -> ASCII conversion
1268 */
1269static char *ax2asc2(ax25_address *a, char *buf)
1270{
1271	char c, *s;
1272	int n;
1273
1274	for (n = 0, s = buf; n < 6; n++) {
1275		c = (a->ax25_call[n] >> 1) & 0x7F;
1276
1277		if (c != ' ') *s++ = c;
1278	}
1279
1280	*s++ = '-';
1281
1282	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1283		*s++ = '1';
1284		n -= 10;
1285	}
1286
1287	*s++ = n + '0';
1288	*s++ = '\0';
1289
1290	if (*buf == '\0' || *buf == '-')
1291	   return "*";
1292
1293	return buf;
1294
1295}
1296#endif /* CONFIG_AX25 */
1297
1298#define HBUFFERLEN 30
1299
1300static void arp_format_neigh_entry(struct seq_file *seq,
1301				   struct neighbour *n)
1302{
1303	char hbuffer[HBUFFERLEN];
1304	const char hexbuf[] = "0123456789ABCDEF";
1305	int k, j;
1306	char tbuf[16];
1307	struct net_device *dev = n->dev;
1308	int hatype = dev->type;
1309
1310	read_lock(&n->lock);
1311	/* Convert hardware address to XX:XX:XX:XX ... form. */
1312#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1313	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1314		ax2asc2((ax25_address *)n->ha, hbuffer);
1315	else {
1316#endif
1317	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1318		hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1319		hbuffer[k++] = hexbuf[n->ha[j] & 15];
1320		hbuffer[k++] = ':';
1321	}
1322	hbuffer[--k] = 0;
1323#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1324	}
1325#endif
1326	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1327	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1328		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1329	read_unlock(&n->lock);
1330}
1331
1332static void arp_format_pneigh_entry(struct seq_file *seq,
1333				    struct pneigh_entry *n)
1334{
1335	struct net_device *dev = n->dev;
1336	int hatype = dev ? dev->type : 0;
1337	char tbuf[16];
1338
1339	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1340	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1341		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1342		   dev ? dev->name : "*");
1343}
1344
1345static int arp_seq_show(struct seq_file *seq, void *v)
1346{
1347	if (v == SEQ_START_TOKEN) {
1348		seq_puts(seq, "IP address       HW type     Flags       "
1349			      "HW address            Mask     Device\n");
1350	} else {
1351		struct neigh_seq_state *state = seq->private;
1352
1353		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1354			arp_format_pneigh_entry(seq, v);
1355		else
1356			arp_format_neigh_entry(seq, v);
1357	}
1358
1359	return 0;
1360}
1361
1362static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1363{
1364	/* Don't want to confuse "arp -a" w/ magic entries,
1365	 * so we tell the generic iterator to skip NUD_NOARP.
1366	 */
1367	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1368}
1369
1370/* ------------------------------------------------------------------------ */
1371
1372static const struct seq_operations arp_seq_ops = {
1373	.start  = arp_seq_start,
1374	.next   = neigh_seq_next,
1375	.stop   = neigh_seq_stop,
1376	.show   = arp_seq_show,
1377};
1378
1379static int arp_seq_open(struct inode *inode, struct file *file)
1380{
1381	return seq_open_private(file, &arp_seq_ops,
1382			sizeof(struct neigh_seq_state));
1383}
1384
1385static const struct file_operations arp_seq_fops = {
1386	.owner		= THIS_MODULE,
1387	.open           = arp_seq_open,
1388	.read           = seq_read,
1389	.llseek         = seq_lseek,
1390	.release	= seq_release_private,
1391};
1392
1393static int __init arp_proc_init(void)
1394{
1395	if (!proc_net_fops_create(&init_net, "arp", S_IRUGO, &arp_seq_fops))
1396		return -ENOMEM;
1397	return 0;
1398}
1399
1400#else /* CONFIG_PROC_FS */
1401
1402static int __init arp_proc_init(void)
1403{
1404	return 0;
1405}
1406
1407#endif /* CONFIG_PROC_FS */
1408
1409EXPORT_SYMBOL(arp_broken_ops);
1410EXPORT_SYMBOL(arp_find);
1411EXPORT_SYMBOL(arp_create);
1412EXPORT_SYMBOL(arp_xmit);
1413EXPORT_SYMBOL(arp_send);
1414EXPORT_SYMBOL(arp_tbl);
1415
1416#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1417EXPORT_SYMBOL(clip_tbl_hook);
1418#endif
1419