arp.c revision e0260feddf8a68301c75cdfff9ec251d5851b006
1/* linux/net/ipv4/arp.c
2 *
3 * Version:	$Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4 *
5 * Copyright (C) 1994 by Florian  La Roche
6 *
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Fixes:
18 *		Alan Cox	:	Removed the Ethernet assumptions in
19 *					Florian's code
20 *		Alan Cox	:	Fixed some small errors in the ARP
21 *					logic
22 *		Alan Cox	:	Allow >4K in /proc
23 *		Alan Cox	:	Make ARP add its own protocol entry
24 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
25 *		Stephen Henson	:	Add AX25 support to arp_get_info()
26 *		Alan Cox	:	Drop data when a device is downed.
27 *		Alan Cox	:	Use init_timer().
28 *		Alan Cox	:	Double lock fixes.
29 *		Martin Seine	:	Move the arphdr structure
30 *					to if_arp.h for compatibility.
31 *					with BSD based programs.
32 *		Andrew Tridgell :       Added ARP netmask code and
33 *					re-arranged proxy handling.
34 *		Alan Cox	:	Changed to use notifiers.
35 *		Niibe Yutaka	:	Reply for this device or proxies only.
36 *		Alan Cox	:	Don't proxy across hardware types!
37 *		Jonathan Naylor :	Added support for NET/ROM.
38 *		Mike Shaver     :       RFC1122 checks.
39 *		Jonathan Naylor :	Only lookup the hardware address for
40 *					the correct hardware type.
41 *		Germano Caronni	:	Assorted subtle races.
42 *		Craig Schlenter :	Don't modify permanent entry
43 *					during arp_rcv.
44 *		Russ Nelson	:	Tidied up a few bits.
45 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
46 *					eg intelligent arp probing and
47 *					generation
48 *					of host down events.
49 *		Alan Cox	:	Missing unlock in device events.
50 *		Eckes		:	ARP ioctl control errors.
51 *		Alexey Kuznetsov:	Arp free fix.
52 *		Manuel Rodriguez:	Gratuitous ARP.
53 *              Jonathan Layes  :       Added arpd support through kerneld
54 *                                      message queue (960314)
55 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
56 *		Mike McLagan    :	Routing by source
57 *		Stuart Cheshire	:	Metricom and grat arp fixes
58 *					*** FOR 2.1 clean this up ***
59 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
61 *					folded into the mainstream FDDI code.
62 *					Ack spit, Linus how did you allow that
63 *					one in...
64 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
65 *					clean up the APFDDI & gen. FDDI bits.
66 *		Alexey Kuznetsov:	new arp state machine;
67 *					now it is in net/core/neighbour.c.
68 *		Krzysztof Halasa:	Added Frame Relay ARP support.
69 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
70 *		Shmulik Hen:		Split arp_send to arp_create and
71 *					arp_xmit so intermediate drivers like
72 *					bonding can change the skb before
73 *					sending (e.g. insert 8021q tag).
74 *		Harald Welte	:	convert to make use of jenkins hash
75 */
76
77#include <linux/module.h>
78#include <linux/types.h>
79#include <linux/string.h>
80#include <linux/kernel.h>
81#include <linux/capability.h>
82#include <linux/socket.h>
83#include <linux/sockios.h>
84#include <linux/errno.h>
85#include <linux/in.h>
86#include <linux/mm.h>
87#include <linux/inet.h>
88#include <linux/inetdevice.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/fddidevice.h>
92#include <linux/if_arp.h>
93#include <linux/trdevice.h>
94#include <linux/skbuff.h>
95#include <linux/proc_fs.h>
96#include <linux/seq_file.h>
97#include <linux/stat.h>
98#include <linux/init.h>
99#include <linux/net.h>
100#include <linux/rcupdate.h>
101#include <linux/jhash.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/net_namespace.h>
107#include <net/ip.h>
108#include <net/icmp.h>
109#include <net/route.h>
110#include <net/protocol.h>
111#include <net/tcp.h>
112#include <net/sock.h>
113#include <net/arp.h>
114#include <net/ax25.h>
115#include <net/netrom.h>
116#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
117#include <net/atmclip.h>
118struct neigh_table *clip_tbl_hook;
119#endif
120
121#include <asm/system.h>
122#include <asm/uaccess.h>
123
124#include <linux/netfilter_arp.h>
125
126/*
127 *	Interface to generic neighbour cache.
128 */
129static u32 arp_hash(const void *pkey, const struct net_device *dev);
130static int arp_constructor(struct neighbour *neigh);
131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
133static void parp_redo(struct sk_buff *skb);
134
135static struct neigh_ops arp_generic_ops = {
136	.family =		AF_INET,
137	.solicit =		arp_solicit,
138	.error_report =		arp_error_report,
139	.output =		neigh_resolve_output,
140	.connected_output =	neigh_connected_output,
141	.hh_output =		dev_queue_xmit,
142	.queue_xmit =		dev_queue_xmit,
143};
144
145static struct neigh_ops arp_hh_ops = {
146	.family =		AF_INET,
147	.solicit =		arp_solicit,
148	.error_report =		arp_error_report,
149	.output =		neigh_resolve_output,
150	.connected_output =	neigh_resolve_output,
151	.hh_output =		dev_queue_xmit,
152	.queue_xmit =		dev_queue_xmit,
153};
154
155static struct neigh_ops arp_direct_ops = {
156	.family =		AF_INET,
157	.output =		dev_queue_xmit,
158	.connected_output =	dev_queue_xmit,
159	.hh_output =		dev_queue_xmit,
160	.queue_xmit =		dev_queue_xmit,
161};
162
163struct neigh_ops arp_broken_ops = {
164	.family =		AF_INET,
165	.solicit =		arp_solicit,
166	.error_report =		arp_error_report,
167	.output =		neigh_compat_output,
168	.connected_output =	neigh_compat_output,
169	.hh_output =		dev_queue_xmit,
170	.queue_xmit =		dev_queue_xmit,
171};
172
173struct neigh_table arp_tbl = {
174	.family =	AF_INET,
175	.entry_size =	sizeof(struct neighbour) + 4,
176	.key_len =	4,
177	.hash =		arp_hash,
178	.constructor =	arp_constructor,
179	.proxy_redo =	parp_redo,
180	.id =		"arp_cache",
181	.parms = {
182		.tbl =			&arp_tbl,
183		.base_reachable_time =	30 * HZ,
184		.retrans_time =	1 * HZ,
185		.gc_staletime =	60 * HZ,
186		.reachable_time =		30 * HZ,
187		.delay_probe_time =	5 * HZ,
188		.queue_len =		3,
189		.ucast_probes =	3,
190		.mcast_probes =	3,
191		.anycast_delay =	1 * HZ,
192		.proxy_delay =		(8 * HZ) / 10,
193		.proxy_qlen =		64,
194		.locktime =		1 * HZ,
195	},
196	.gc_interval =	30 * HZ,
197	.gc_thresh1 =	128,
198	.gc_thresh2 =	512,
199	.gc_thresh3 =	1024,
200};
201
202int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
203{
204	switch (dev->type) {
205	case ARPHRD_ETHER:
206	case ARPHRD_FDDI:
207	case ARPHRD_IEEE802:
208		ip_eth_mc_map(addr, haddr);
209		return 0;
210	case ARPHRD_IEEE802_TR:
211		ip_tr_mc_map(addr, haddr);
212		return 0;
213	case ARPHRD_INFINIBAND:
214		ip_ib_mc_map(addr, haddr);
215		return 0;
216	default:
217		if (dir) {
218			memcpy(haddr, dev->broadcast, dev->addr_len);
219			return 0;
220		}
221	}
222	return -EINVAL;
223}
224
225
226static u32 arp_hash(const void *pkey, const struct net_device *dev)
227{
228	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
229}
230
231static int arp_constructor(struct neighbour *neigh)
232{
233	__be32 addr = *(__be32*)neigh->primary_key;
234	struct net_device *dev = neigh->dev;
235	struct in_device *in_dev;
236	struct neigh_parms *parms;
237
238	neigh->type = inet_addr_type(addr);
239
240	rcu_read_lock();
241	in_dev = __in_dev_get_rcu(dev);
242	if (in_dev == NULL) {
243		rcu_read_unlock();
244		return -EINVAL;
245	}
246
247	parms = in_dev->arp_parms;
248	__neigh_parms_put(neigh->parms);
249	neigh->parms = neigh_parms_clone(parms);
250	rcu_read_unlock();
251
252	if (!dev->header_ops) {
253		neigh->nud_state = NUD_NOARP;
254		neigh->ops = &arp_direct_ops;
255		neigh->output = neigh->ops->queue_xmit;
256	} else {
257		/* Good devices (checked by reading texts, but only Ethernet is
258		   tested)
259
260		   ARPHRD_ETHER: (ethernet, apfddi)
261		   ARPHRD_FDDI: (fddi)
262		   ARPHRD_IEEE802: (tr)
263		   ARPHRD_METRICOM: (strip)
264		   ARPHRD_ARCNET:
265		   etc. etc. etc.
266
267		   ARPHRD_IPDDP will also work, if author repairs it.
268		   I did not it, because this driver does not work even
269		   in old paradigm.
270		 */
271
272#if 1
273		/* So... these "amateur" devices are hopeless.
274		   The only thing, that I can say now:
275		   It is very sad that we need to keep ugly obsolete
276		   code to make them happy.
277
278		   They should be moved to more reasonable state, now
279		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
280		   Besides that, they are sort of out of date
281		   (a lot of redundant clones/copies, useless in 2.1),
282		   I wonder why people believe that they work.
283		 */
284		switch (dev->type) {
285		default:
286			break;
287		case ARPHRD_ROSE:
288#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
289		case ARPHRD_AX25:
290#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
291		case ARPHRD_NETROM:
292#endif
293			neigh->ops = &arp_broken_ops;
294			neigh->output = neigh->ops->output;
295			return 0;
296#endif
297		;}
298#endif
299		if (neigh->type == RTN_MULTICAST) {
300			neigh->nud_state = NUD_NOARP;
301			arp_mc_map(addr, neigh->ha, dev, 1);
302		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
303			neigh->nud_state = NUD_NOARP;
304			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
305		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
306			neigh->nud_state = NUD_NOARP;
307			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
308		}
309
310		if (dev->header_ops->cache)
311			neigh->ops = &arp_hh_ops;
312		else
313			neigh->ops = &arp_generic_ops;
314
315		if (neigh->nud_state&NUD_VALID)
316			neigh->output = neigh->ops->connected_output;
317		else
318			neigh->output = neigh->ops->output;
319	}
320	return 0;
321}
322
323static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
324{
325	dst_link_failure(skb);
326	kfree_skb(skb);
327}
328
329static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
330{
331	__be32 saddr = 0;
332	u8  *dst_ha = NULL;
333	struct net_device *dev = neigh->dev;
334	__be32 target = *(__be32*)neigh->primary_key;
335	int probes = atomic_read(&neigh->probes);
336	struct in_device *in_dev = in_dev_get(dev);
337
338	if (!in_dev)
339		return;
340
341	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
342	default:
343	case 0:		/* By default announce any local IP */
344		if (skb && inet_addr_type(ip_hdr(skb)->saddr) == RTN_LOCAL)
345			saddr = ip_hdr(skb)->saddr;
346		break;
347	case 1:		/* Restrict announcements of saddr in same subnet */
348		if (!skb)
349			break;
350		saddr = ip_hdr(skb)->saddr;
351		if (inet_addr_type(saddr) == RTN_LOCAL) {
352			/* saddr should be known to target */
353			if (inet_addr_onlink(in_dev, target, saddr))
354				break;
355		}
356		saddr = 0;
357		break;
358	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
359		break;
360	}
361
362	if (in_dev)
363		in_dev_put(in_dev);
364	if (!saddr)
365		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
366
367	if ((probes -= neigh->parms->ucast_probes) < 0) {
368		if (!(neigh->nud_state&NUD_VALID))
369			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
370		dst_ha = neigh->ha;
371		read_lock_bh(&neigh->lock);
372	} else if ((probes -= neigh->parms->app_probes) < 0) {
373#ifdef CONFIG_ARPD
374		neigh_app_ns(neigh);
375#endif
376		return;
377	}
378
379	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
380		 dst_ha, dev->dev_addr, NULL);
381	if (dst_ha)
382		read_unlock_bh(&neigh->lock);
383}
384
385static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
386		      __be32 sip, __be32 tip)
387{
388	int scope;
389
390	switch (IN_DEV_ARP_IGNORE(in_dev)) {
391	case 0:	/* Reply, the tip is already validated */
392		return 0;
393	case 1:	/* Reply only if tip is configured on the incoming interface */
394		sip = 0;
395		scope = RT_SCOPE_HOST;
396		break;
397	case 2:	/*
398		 * Reply only if tip is configured on the incoming interface
399		 * and is in same subnet as sip
400		 */
401		scope = RT_SCOPE_HOST;
402		break;
403	case 3:	/* Do not reply for scope host addresses */
404		sip = 0;
405		scope = RT_SCOPE_LINK;
406		dev = NULL;
407		break;
408	case 4:	/* Reserved */
409	case 5:
410	case 6:
411	case 7:
412		return 0;
413	case 8:	/* Do not reply */
414		return 1;
415	default:
416		return 0;
417	}
418	return !inet_confirm_addr(dev, sip, tip, scope);
419}
420
421static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
422{
423	struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
424						 .saddr = tip } } };
425	struct rtable *rt;
426	int flag = 0;
427	/*unsigned long now; */
428
429	if (ip_route_output_key(&rt, &fl) < 0)
430		return 1;
431	if (rt->u.dst.dev != dev) {
432		NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
433		flag = 1;
434	}
435	ip_rt_put(rt);
436	return flag;
437}
438
439/* OBSOLETE FUNCTIONS */
440
441/*
442 *	Find an arp mapping in the cache. If not found, post a request.
443 *
444 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
445 *	even if it exists. It is supposed that skb->dev was mangled
446 *	by a virtual device (eql, shaper). Nobody but broken devices
447 *	is allowed to use this function, it is scheduled to be removed. --ANK
448 */
449
450static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
451{
452	switch (addr_hint) {
453	case RTN_LOCAL:
454		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
455		memcpy(haddr, dev->dev_addr, dev->addr_len);
456		return 1;
457	case RTN_MULTICAST:
458		arp_mc_map(paddr, haddr, dev, 1);
459		return 1;
460	case RTN_BROADCAST:
461		memcpy(haddr, dev->broadcast, dev->addr_len);
462		return 1;
463	}
464	return 0;
465}
466
467
468int arp_find(unsigned char *haddr, struct sk_buff *skb)
469{
470	struct net_device *dev = skb->dev;
471	__be32 paddr;
472	struct neighbour *n;
473
474	if (!skb->dst) {
475		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
476		kfree_skb(skb);
477		return 1;
478	}
479
480	paddr = ((struct rtable*)skb->dst)->rt_gateway;
481
482	if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
483		return 0;
484
485	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
486
487	if (n) {
488		n->used = jiffies;
489		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
490			read_lock_bh(&n->lock);
491			memcpy(haddr, n->ha, dev->addr_len);
492			read_unlock_bh(&n->lock);
493			neigh_release(n);
494			return 0;
495		}
496		neigh_release(n);
497	} else
498		kfree_skb(skb);
499	return 1;
500}
501
502/* END OF OBSOLETE FUNCTIONS */
503
504int arp_bind_neighbour(struct dst_entry *dst)
505{
506	struct net_device *dev = dst->dev;
507	struct neighbour *n = dst->neighbour;
508
509	if (dev == NULL)
510		return -EINVAL;
511	if (n == NULL) {
512		__be32 nexthop = ((struct rtable*)dst)->rt_gateway;
513		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
514			nexthop = 0;
515		n = __neigh_lookup_errno(
516#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
517		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
518#endif
519		    &arp_tbl, &nexthop, dev);
520		if (IS_ERR(n))
521			return PTR_ERR(n);
522		dst->neighbour = n;
523	}
524	return 0;
525}
526
527/*
528 * Check if we can use proxy ARP for this path
529 */
530
531static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
532{
533	struct in_device *out_dev;
534	int imi, omi = -1;
535
536	if (!IN_DEV_PROXY_ARP(in_dev))
537		return 0;
538
539	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
540		return 1;
541	if (imi == -1)
542		return 0;
543
544	/* place to check for proxy_arp for routes */
545
546	if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
547		omi = IN_DEV_MEDIUM_ID(out_dev);
548		in_dev_put(out_dev);
549	}
550	return (omi != imi && omi != -1);
551}
552
553/*
554 *	Interface to link layer: send routine and receive handler.
555 */
556
557/*
558 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
559 *	message.
560 */
561struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
562			   struct net_device *dev, __be32 src_ip,
563			   unsigned char *dest_hw, unsigned char *src_hw,
564			   unsigned char *target_hw)
565{
566	struct sk_buff *skb;
567	struct arphdr *arp;
568	unsigned char *arp_ptr;
569
570	/*
571	 *	Allocate a buffer
572	 */
573
574	skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
575				+ LL_RESERVED_SPACE(dev), GFP_ATOMIC);
576	if (skb == NULL)
577		return NULL;
578
579	skb_reserve(skb, LL_RESERVED_SPACE(dev));
580	skb_reset_network_header(skb);
581	arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
582	skb->dev = dev;
583	skb->protocol = htons(ETH_P_ARP);
584	if (src_hw == NULL)
585		src_hw = dev->dev_addr;
586	if (dest_hw == NULL)
587		dest_hw = dev->broadcast;
588
589	/*
590	 *	Fill the device header for the ARP frame
591	 */
592	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
593		goto out;
594
595	/*
596	 * Fill out the arp protocol part.
597	 *
598	 * The arp hardware type should match the device type, except for FDDI,
599	 * which (according to RFC 1390) should always equal 1 (Ethernet).
600	 */
601	/*
602	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
603	 *	DIX code for the protocol. Make these device structure fields.
604	 */
605	switch (dev->type) {
606	default:
607		arp->ar_hrd = htons(dev->type);
608		arp->ar_pro = htons(ETH_P_IP);
609		break;
610
611#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
612	case ARPHRD_AX25:
613		arp->ar_hrd = htons(ARPHRD_AX25);
614		arp->ar_pro = htons(AX25_P_IP);
615		break;
616
617#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
618	case ARPHRD_NETROM:
619		arp->ar_hrd = htons(ARPHRD_NETROM);
620		arp->ar_pro = htons(AX25_P_IP);
621		break;
622#endif
623#endif
624
625#ifdef CONFIG_FDDI
626	case ARPHRD_FDDI:
627		arp->ar_hrd = htons(ARPHRD_ETHER);
628		arp->ar_pro = htons(ETH_P_IP);
629		break;
630#endif
631#ifdef CONFIG_TR
632	case ARPHRD_IEEE802_TR:
633		arp->ar_hrd = htons(ARPHRD_IEEE802);
634		arp->ar_pro = htons(ETH_P_IP);
635		break;
636#endif
637	}
638
639	arp->ar_hln = dev->addr_len;
640	arp->ar_pln = 4;
641	arp->ar_op = htons(type);
642
643	arp_ptr=(unsigned char *)(arp+1);
644
645	memcpy(arp_ptr, src_hw, dev->addr_len);
646	arp_ptr+=dev->addr_len;
647	memcpy(arp_ptr, &src_ip,4);
648	arp_ptr+=4;
649	if (target_hw != NULL)
650		memcpy(arp_ptr, target_hw, dev->addr_len);
651	else
652		memset(arp_ptr, 0, dev->addr_len);
653	arp_ptr+=dev->addr_len;
654	memcpy(arp_ptr, &dest_ip, 4);
655
656	return skb;
657
658out:
659	kfree_skb(skb);
660	return NULL;
661}
662
663/*
664 *	Send an arp packet.
665 */
666void arp_xmit(struct sk_buff *skb)
667{
668	/* Send it off, maybe filter it using firewalling first.  */
669	NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
670}
671
672/*
673 *	Create and send an arp packet.
674 */
675void arp_send(int type, int ptype, __be32 dest_ip,
676	      struct net_device *dev, __be32 src_ip,
677	      unsigned char *dest_hw, unsigned char *src_hw,
678	      unsigned char *target_hw)
679{
680	struct sk_buff *skb;
681
682	/*
683	 *	No arp on this interface.
684	 */
685
686	if (dev->flags&IFF_NOARP)
687		return;
688
689	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
690			 dest_hw, src_hw, target_hw);
691	if (skb == NULL) {
692		return;
693	}
694
695	arp_xmit(skb);
696}
697
698/*
699 *	Process an arp request.
700 */
701
702static int arp_process(struct sk_buff *skb)
703{
704	struct net_device *dev = skb->dev;
705	struct in_device *in_dev = in_dev_get(dev);
706	struct arphdr *arp;
707	unsigned char *arp_ptr;
708	struct rtable *rt;
709	unsigned char *sha;
710	__be32 sip, tip;
711	u16 dev_type = dev->type;
712	int addr_type;
713	struct neighbour *n;
714
715	/* arp_rcv below verifies the ARP header and verifies the device
716	 * is ARP'able.
717	 */
718
719	if (in_dev == NULL)
720		goto out;
721
722	arp = arp_hdr(skb);
723
724	switch (dev_type) {
725	default:
726		if (arp->ar_pro != htons(ETH_P_IP) ||
727		    htons(dev_type) != arp->ar_hrd)
728			goto out;
729		break;
730	case ARPHRD_ETHER:
731	case ARPHRD_IEEE802_TR:
732	case ARPHRD_FDDI:
733	case ARPHRD_IEEE802:
734		/*
735		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
736		 * devices, according to RFC 2625) devices will accept ARP
737		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
738		 * This is the case also of FDDI, where the RFC 1390 says that
739		 * FDDI devices should accept ARP hardware of (1) Ethernet,
740		 * however, to be more robust, we'll accept both 1 (Ethernet)
741		 * or 6 (IEEE 802.2)
742		 */
743		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
744		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
745		    arp->ar_pro != htons(ETH_P_IP))
746			goto out;
747		break;
748	case ARPHRD_AX25:
749		if (arp->ar_pro != htons(AX25_P_IP) ||
750		    arp->ar_hrd != htons(ARPHRD_AX25))
751			goto out;
752		break;
753	case ARPHRD_NETROM:
754		if (arp->ar_pro != htons(AX25_P_IP) ||
755		    arp->ar_hrd != htons(ARPHRD_NETROM))
756			goto out;
757		break;
758	}
759
760	/* Understand only these message types */
761
762	if (arp->ar_op != htons(ARPOP_REPLY) &&
763	    arp->ar_op != htons(ARPOP_REQUEST))
764		goto out;
765
766/*
767 *	Extract fields
768 */
769	arp_ptr= (unsigned char *)(arp+1);
770	sha	= arp_ptr;
771	arp_ptr += dev->addr_len;
772	memcpy(&sip, arp_ptr, 4);
773	arp_ptr += 4;
774	arp_ptr += dev->addr_len;
775	memcpy(&tip, arp_ptr, 4);
776/*
777 *	Check for bad requests for 127.x.x.x and requests for multicast
778 *	addresses.  If this is one such, delete it.
779 */
780	if (LOOPBACK(tip) || MULTICAST(tip))
781		goto out;
782
783/*
784 *     Special case: We must set Frame Relay source Q.922 address
785 */
786	if (dev_type == ARPHRD_DLCI)
787		sha = dev->broadcast;
788
789/*
790 *  Process entry.  The idea here is we want to send a reply if it is a
791 *  request for us or if it is a request for someone else that we hold
792 *  a proxy for.  We want to add an entry to our cache if it is a reply
793 *  to us or if it is a request for our address.
794 *  (The assumption for this last is that if someone is requesting our
795 *  address, they are probably intending to talk to us, so it saves time
796 *  if we cache their address.  Their address is also probably not in
797 *  our cache, since ours is not in their cache.)
798 *
799 *  Putting this another way, we only care about replies if they are to
800 *  us, in which case we add them to the cache.  For requests, we care
801 *  about those for us and those for our proxies.  We reply to both,
802 *  and in the case of requests for us we add the requester to the arp
803 *  cache.
804 */
805
806	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
807	if (sip == 0) {
808		if (arp->ar_op == htons(ARPOP_REQUEST) &&
809		    inet_addr_type(tip) == RTN_LOCAL &&
810		    !arp_ignore(in_dev,dev,sip,tip))
811			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
812				 dev->dev_addr, sha);
813		goto out;
814	}
815
816	if (arp->ar_op == htons(ARPOP_REQUEST) &&
817	    ip_route_input(skb, tip, sip, 0, dev) == 0) {
818
819		rt = (struct rtable*)skb->dst;
820		addr_type = rt->rt_type;
821
822		if (addr_type == RTN_LOCAL) {
823			n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
824			if (n) {
825				int dont_send = 0;
826
827				if (!dont_send)
828					dont_send |= arp_ignore(in_dev,dev,sip,tip);
829				if (!dont_send && IN_DEV_ARPFILTER(in_dev))
830					dont_send |= arp_filter(sip,tip,dev);
831				if (!dont_send)
832					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
833
834				neigh_release(n);
835			}
836			goto out;
837		} else if (IN_DEV_FORWARD(in_dev)) {
838			if ((rt->rt_flags&RTCF_DNAT) ||
839			    (addr_type == RTN_UNICAST  && rt->u.dst.dev != dev &&
840			     (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {
841				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
842				if (n)
843					neigh_release(n);
844
845				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
846				    skb->pkt_type == PACKET_HOST ||
847				    in_dev->arp_parms->proxy_delay == 0) {
848					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
849				} else {
850					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
851					in_dev_put(in_dev);
852					return 0;
853				}
854				goto out;
855			}
856		}
857	}
858
859	/* Update our ARP tables */
860
861	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
862
863	if (IPV4_DEVCONF_ALL(ARP_ACCEPT)) {
864		/* Unsolicited ARP is not accepted by default.
865		   It is possible, that this option should be enabled for some
866		   devices (strip is candidate)
867		 */
868		if (n == NULL &&
869		    arp->ar_op == htons(ARPOP_REPLY) &&
870		    inet_addr_type(sip) == RTN_UNICAST)
871			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
872	}
873
874	if (n) {
875		int state = NUD_REACHABLE;
876		int override;
877
878		/* If several different ARP replies follows back-to-back,
879		   use the FIRST one. It is possible, if several proxy
880		   agents are active. Taking the first reply prevents
881		   arp trashing and chooses the fastest router.
882		 */
883		override = time_after(jiffies, n->updated + n->parms->locktime);
884
885		/* Broadcast replies and request packets
886		   do not assert neighbour reachability.
887		 */
888		if (arp->ar_op != htons(ARPOP_REPLY) ||
889		    skb->pkt_type != PACKET_HOST)
890			state = NUD_STALE;
891		neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
892		neigh_release(n);
893	}
894
895out:
896	if (in_dev)
897		in_dev_put(in_dev);
898	kfree_skb(skb);
899	return 0;
900}
901
902static void parp_redo(struct sk_buff *skb)
903{
904	arp_process(skb);
905}
906
907
908/*
909 *	Receive an arp request from the device layer.
910 */
911
912static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
913		   struct packet_type *pt, struct net_device *orig_dev)
914{
915	struct arphdr *arp;
916
917	if (dev->nd_net != &init_net)
918		goto freeskb;
919
920	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
921	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
922				 (2 * dev->addr_len) +
923				 (2 * sizeof(u32)))))
924		goto freeskb;
925
926	arp = arp_hdr(skb);
927	if (arp->ar_hln != dev->addr_len ||
928	    dev->flags & IFF_NOARP ||
929	    skb->pkt_type == PACKET_OTHERHOST ||
930	    skb->pkt_type == PACKET_LOOPBACK ||
931	    arp->ar_pln != 4)
932		goto freeskb;
933
934	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
935		goto out_of_mem;
936
937	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
938
939	return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
940
941freeskb:
942	kfree_skb(skb);
943out_of_mem:
944	return 0;
945}
946
947/*
948 *	User level interface (ioctl)
949 */
950
951/*
952 *	Set (create) an ARP cache entry.
953 */
954
955static int arp_req_set(struct arpreq *r, struct net_device * dev)
956{
957	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
958	struct neighbour *neigh;
959	int err;
960
961	if (r->arp_flags&ATF_PUBL) {
962		__be32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
963		if (mask && mask != htonl(0xFFFFFFFF))
964			return -EINVAL;
965		if (!dev && (r->arp_flags & ATF_COM)) {
966			dev = dev_getbyhwaddr(&init_net, r->arp_ha.sa_family, r->arp_ha.sa_data);
967			if (!dev)
968				return -ENODEV;
969		}
970		if (mask) {
971			if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL)
972				return -ENOBUFS;
973			return 0;
974		}
975		if (dev == NULL) {
976			IPV4_DEVCONF_ALL(PROXY_ARP) = 1;
977			return 0;
978		}
979		if (__in_dev_get_rtnl(dev)) {
980			IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, 1);
981			return 0;
982		}
983		return -ENXIO;
984	}
985
986	if (r->arp_flags & ATF_PERM)
987		r->arp_flags |= ATF_COM;
988	if (dev == NULL) {
989		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
990							 .tos = RTO_ONLINK } } };
991		struct rtable * rt;
992		if ((err = ip_route_output_key(&rt, &fl)) != 0)
993			return err;
994		dev = rt->u.dst.dev;
995		ip_rt_put(rt);
996		if (!dev)
997			return -EINVAL;
998	}
999	switch (dev->type) {
1000#ifdef CONFIG_FDDI
1001	case ARPHRD_FDDI:
1002		/*
1003		 * According to RFC 1390, FDDI devices should accept ARP
1004		 * hardware types of 1 (Ethernet).  However, to be more
1005		 * robust, we'll accept hardware types of either 1 (Ethernet)
1006		 * or 6 (IEEE 802.2).
1007		 */
1008		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1009		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1010		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1011			return -EINVAL;
1012		break;
1013#endif
1014	default:
1015		if (r->arp_ha.sa_family != dev->type)
1016			return -EINVAL;
1017		break;
1018	}
1019
1020	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1021	err = PTR_ERR(neigh);
1022	if (!IS_ERR(neigh)) {
1023		unsigned state = NUD_STALE;
1024		if (r->arp_flags & ATF_PERM)
1025			state = NUD_PERMANENT;
1026		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1027				   r->arp_ha.sa_data : NULL, state,
1028				   NEIGH_UPDATE_F_OVERRIDE|
1029				   NEIGH_UPDATE_F_ADMIN);
1030		neigh_release(neigh);
1031	}
1032	return err;
1033}
1034
1035static unsigned arp_state_to_flags(struct neighbour *neigh)
1036{
1037	unsigned flags = 0;
1038	if (neigh->nud_state&NUD_PERMANENT)
1039		flags = ATF_PERM|ATF_COM;
1040	else if (neigh->nud_state&NUD_VALID)
1041		flags = ATF_COM;
1042	return flags;
1043}
1044
1045/*
1046 *	Get an ARP cache entry.
1047 */
1048
1049static int arp_req_get(struct arpreq *r, struct net_device *dev)
1050{
1051	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1052	struct neighbour *neigh;
1053	int err = -ENXIO;
1054
1055	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1056	if (neigh) {
1057		read_lock_bh(&neigh->lock);
1058		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1059		r->arp_flags = arp_state_to_flags(neigh);
1060		read_unlock_bh(&neigh->lock);
1061		r->arp_ha.sa_family = dev->type;
1062		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1063		neigh_release(neigh);
1064		err = 0;
1065	}
1066	return err;
1067}
1068
1069static int arp_req_delete(struct arpreq *r, struct net_device * dev)
1070{
1071	int err;
1072	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1073	struct neighbour *neigh;
1074
1075	if (r->arp_flags & ATF_PUBL) {
1076		__be32 mask =
1077		       ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1078		if (mask == htonl(0xFFFFFFFF))
1079			return pneigh_delete(&arp_tbl, &ip, dev);
1080		if (mask == 0) {
1081			if (dev == NULL) {
1082				IPV4_DEVCONF_ALL(PROXY_ARP) = 0;
1083				return 0;
1084			}
1085			if (__in_dev_get_rtnl(dev)) {
1086				IN_DEV_CONF_SET(__in_dev_get_rtnl(dev),
1087						PROXY_ARP, 0);
1088				return 0;
1089			}
1090			return -ENXIO;
1091		}
1092		return -EINVAL;
1093	}
1094
1095	if (dev == NULL) {
1096		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1097							 .tos = RTO_ONLINK } } };
1098		struct rtable * rt;
1099		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1100			return err;
1101		dev = rt->u.dst.dev;
1102		ip_rt_put(rt);
1103		if (!dev)
1104			return -EINVAL;
1105	}
1106	err = -ENXIO;
1107	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1108	if (neigh) {
1109		if (neigh->nud_state&~NUD_NOARP)
1110			err = neigh_update(neigh, NULL, NUD_FAILED,
1111					   NEIGH_UPDATE_F_OVERRIDE|
1112					   NEIGH_UPDATE_F_ADMIN);
1113		neigh_release(neigh);
1114	}
1115	return err;
1116}
1117
1118/*
1119 *	Handle an ARP layer I/O control request.
1120 */
1121
1122int arp_ioctl(unsigned int cmd, void __user *arg)
1123{
1124	int err;
1125	struct arpreq r;
1126	struct net_device *dev = NULL;
1127
1128	switch (cmd) {
1129		case SIOCDARP:
1130		case SIOCSARP:
1131			if (!capable(CAP_NET_ADMIN))
1132				return -EPERM;
1133		case SIOCGARP:
1134			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1135			if (err)
1136				return -EFAULT;
1137			break;
1138		default:
1139			return -EINVAL;
1140	}
1141
1142	if (r.arp_pa.sa_family != AF_INET)
1143		return -EPFNOSUPPORT;
1144
1145	if (!(r.arp_flags & ATF_PUBL) &&
1146	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1147		return -EINVAL;
1148	if (!(r.arp_flags & ATF_NETMASK))
1149		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1150							   htonl(0xFFFFFFFFUL);
1151	rtnl_lock();
1152	if (r.arp_dev[0]) {
1153		err = -ENODEV;
1154		if ((dev = __dev_get_by_name(&init_net, r.arp_dev)) == NULL)
1155			goto out;
1156
1157		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1158		if (!r.arp_ha.sa_family)
1159			r.arp_ha.sa_family = dev->type;
1160		err = -EINVAL;
1161		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1162			goto out;
1163	} else if (cmd == SIOCGARP) {
1164		err = -ENODEV;
1165		goto out;
1166	}
1167
1168	switch (cmd) {
1169	case SIOCDARP:
1170		err = arp_req_delete(&r, dev);
1171		break;
1172	case SIOCSARP:
1173		err = arp_req_set(&r, dev);
1174		break;
1175	case SIOCGARP:
1176		err = arp_req_get(&r, dev);
1177		if (!err && copy_to_user(arg, &r, sizeof(r)))
1178			err = -EFAULT;
1179		break;
1180	}
1181out:
1182	rtnl_unlock();
1183	return err;
1184}
1185
1186static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1187{
1188	struct net_device *dev = ptr;
1189
1190	if (dev->nd_net != &init_net)
1191		return NOTIFY_DONE;
1192
1193	switch (event) {
1194	case NETDEV_CHANGEADDR:
1195		neigh_changeaddr(&arp_tbl, dev);
1196		rt_cache_flush(0);
1197		break;
1198	default:
1199		break;
1200	}
1201
1202	return NOTIFY_DONE;
1203}
1204
1205static struct notifier_block arp_netdev_notifier = {
1206	.notifier_call = arp_netdev_event,
1207};
1208
1209/* Note, that it is not on notifier chain.
1210   It is necessary, that this routine was called after route cache will be
1211   flushed.
1212 */
1213void arp_ifdown(struct net_device *dev)
1214{
1215	neigh_ifdown(&arp_tbl, dev);
1216}
1217
1218
1219/*
1220 *	Called once on startup.
1221 */
1222
1223static struct packet_type arp_packet_type = {
1224	.type =	__constant_htons(ETH_P_ARP),
1225	.func =	arp_rcv,
1226};
1227
1228static int arp_proc_init(void);
1229
1230void __init arp_init(void)
1231{
1232	neigh_table_init(&arp_tbl);
1233
1234	dev_add_pack(&arp_packet_type);
1235	arp_proc_init();
1236#ifdef CONFIG_SYSCTL
1237	neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1238			      NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1239#endif
1240	register_netdevice_notifier(&arp_netdev_notifier);
1241}
1242
1243#ifdef CONFIG_PROC_FS
1244#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1245
1246/* ------------------------------------------------------------------------ */
1247/*
1248 *	ax25 -> ASCII conversion
1249 */
1250static char *ax2asc2(ax25_address *a, char *buf)
1251{
1252	char c, *s;
1253	int n;
1254
1255	for (n = 0, s = buf; n < 6; n++) {
1256		c = (a->ax25_call[n] >> 1) & 0x7F;
1257
1258		if (c != ' ') *s++ = c;
1259	}
1260
1261	*s++ = '-';
1262
1263	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1264		*s++ = '1';
1265		n -= 10;
1266	}
1267
1268	*s++ = n + '0';
1269	*s++ = '\0';
1270
1271	if (*buf == '\0' || *buf == '-')
1272	   return "*";
1273
1274	return buf;
1275
1276}
1277#endif /* CONFIG_AX25 */
1278
1279#define HBUFFERLEN 30
1280
1281static void arp_format_neigh_entry(struct seq_file *seq,
1282				   struct neighbour *n)
1283{
1284	char hbuffer[HBUFFERLEN];
1285	const char hexbuf[] = "0123456789ABCDEF";
1286	int k, j;
1287	char tbuf[16];
1288	struct net_device *dev = n->dev;
1289	int hatype = dev->type;
1290
1291	read_lock(&n->lock);
1292	/* Convert hardware address to XX:XX:XX:XX ... form. */
1293#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1294	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1295		ax2asc2((ax25_address *)n->ha, hbuffer);
1296	else {
1297#endif
1298	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1299		hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1300		hbuffer[k++] = hexbuf[n->ha[j] & 15];
1301		hbuffer[k++] = ':';
1302	}
1303	hbuffer[--k] = 0;
1304#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1305	}
1306#endif
1307	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1308	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1309		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1310	read_unlock(&n->lock);
1311}
1312
1313static void arp_format_pneigh_entry(struct seq_file *seq,
1314				    struct pneigh_entry *n)
1315{
1316	struct net_device *dev = n->dev;
1317	int hatype = dev ? dev->type : 0;
1318	char tbuf[16];
1319
1320	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1321	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1322		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1323		   dev ? dev->name : "*");
1324}
1325
1326static int arp_seq_show(struct seq_file *seq, void *v)
1327{
1328	if (v == SEQ_START_TOKEN) {
1329		seq_puts(seq, "IP address       HW type     Flags       "
1330			      "HW address            Mask     Device\n");
1331	} else {
1332		struct neigh_seq_state *state = seq->private;
1333
1334		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1335			arp_format_pneigh_entry(seq, v);
1336		else
1337			arp_format_neigh_entry(seq, v);
1338	}
1339
1340	return 0;
1341}
1342
1343static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1344{
1345	/* Don't want to confuse "arp -a" w/ magic entries,
1346	 * so we tell the generic iterator to skip NUD_NOARP.
1347	 */
1348	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1349}
1350
1351/* ------------------------------------------------------------------------ */
1352
1353static const struct seq_operations arp_seq_ops = {
1354	.start  = arp_seq_start,
1355	.next   = neigh_seq_next,
1356	.stop   = neigh_seq_stop,
1357	.show   = arp_seq_show,
1358};
1359
1360static int arp_seq_open(struct inode *inode, struct file *file)
1361{
1362	return seq_open_private(file, &arp_seq_ops,
1363			sizeof(struct neigh_seq_state));
1364}
1365
1366static const struct file_operations arp_seq_fops = {
1367	.owner		= THIS_MODULE,
1368	.open           = arp_seq_open,
1369	.read           = seq_read,
1370	.llseek         = seq_lseek,
1371	.release	= seq_release_private,
1372};
1373
1374static int __init arp_proc_init(void)
1375{
1376	if (!proc_net_fops_create(&init_net, "arp", S_IRUGO, &arp_seq_fops))
1377		return -ENOMEM;
1378	return 0;
1379}
1380
1381#else /* CONFIG_PROC_FS */
1382
1383static int __init arp_proc_init(void)
1384{
1385	return 0;
1386}
1387
1388#endif /* CONFIG_PROC_FS */
1389
1390EXPORT_SYMBOL(arp_broken_ops);
1391EXPORT_SYMBOL(arp_find);
1392EXPORT_SYMBOL(arp_create);
1393EXPORT_SYMBOL(arp_xmit);
1394EXPORT_SYMBOL(arp_send);
1395EXPORT_SYMBOL(arp_tbl);
1396
1397#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1398EXPORT_SYMBOL(clip_tbl_hook);
1399#endif
1400