arp.c revision f2ccd8fa06c8e302116e71df372f5c1f83432e03
1/* linux/net/inet/arp.c
2 *
3 * Version:	$Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4 *
5 * Copyright (C) 1994 by Florian  La Roche
6 *
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Fixes:
18 *		Alan Cox	:	Removed the Ethernet assumptions in
19 *					Florian's code
20 *		Alan Cox	:	Fixed some small errors in the ARP
21 *					logic
22 *		Alan Cox	:	Allow >4K in /proc
23 *		Alan Cox	:	Make ARP add its own protocol entry
24 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
25 *		Stephen Henson	:	Add AX25 support to arp_get_info()
26 *		Alan Cox	:	Drop data when a device is downed.
27 *		Alan Cox	:	Use init_timer().
28 *		Alan Cox	:	Double lock fixes.
29 *		Martin Seine	:	Move the arphdr structure
30 *					to if_arp.h for compatibility.
31 *					with BSD based programs.
32 *		Andrew Tridgell :       Added ARP netmask code and
33 *					re-arranged proxy handling.
34 *		Alan Cox	:	Changed to use notifiers.
35 *		Niibe Yutaka	:	Reply for this device or proxies only.
36 *		Alan Cox	:	Don't proxy across hardware types!
37 *		Jonathan Naylor :	Added support for NET/ROM.
38 *		Mike Shaver     :       RFC1122 checks.
39 *		Jonathan Naylor :	Only lookup the hardware address for
40 *					the correct hardware type.
41 *		Germano Caronni	:	Assorted subtle races.
42 *		Craig Schlenter :	Don't modify permanent entry
43 *					during arp_rcv.
44 *		Russ Nelson	:	Tidied up a few bits.
45 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
46 *					eg intelligent arp probing and
47 *					generation
48 *					of host down events.
49 *		Alan Cox	:	Missing unlock in device events.
50 *		Eckes		:	ARP ioctl control errors.
51 *		Alexey Kuznetsov:	Arp free fix.
52 *		Manuel Rodriguez:	Gratuitous ARP.
53 *              Jonathan Layes  :       Added arpd support through kerneld
54 *                                      message queue (960314)
55 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
56 *		Mike McLagan    :	Routing by source
57 *		Stuart Cheshire	:	Metricom and grat arp fixes
58 *					*** FOR 2.1 clean this up ***
59 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
61 *					folded into the mainstream FDDI code.
62 *					Ack spit, Linus how did you allow that
63 *					one in...
64 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
65 *					clean up the APFDDI & gen. FDDI bits.
66 *		Alexey Kuznetsov:	new arp state machine;
67 *					now it is in net/core/neighbour.c.
68 *		Krzysztof Halasa:	Added Frame Relay ARP support.
69 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
70 *		Shmulik Hen:		Split arp_send to arp_create and
71 *					arp_xmit so intermediate drivers like
72 *					bonding can change the skb before
73 *					sending (e.g. insert 8021q tag).
74 *		Harald Welte	:	convert to make use of jenkins hash
75 */
76
77#include <linux/module.h>
78#include <linux/types.h>
79#include <linux/string.h>
80#include <linux/kernel.h>
81#include <linux/sched.h>
82#include <linux/config.h>
83#include <linux/socket.h>
84#include <linux/sockios.h>
85#include <linux/errno.h>
86#include <linux/in.h>
87#include <linux/mm.h>
88#include <linux/inet.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/fddidevice.h>
92#include <linux/if_arp.h>
93#include <linux/trdevice.h>
94#include <linux/skbuff.h>
95#include <linux/proc_fs.h>
96#include <linux/seq_file.h>
97#include <linux/stat.h>
98#include <linux/init.h>
99#include <linux/net.h>
100#include <linux/rcupdate.h>
101#include <linux/jhash.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/ip.h>
107#include <net/icmp.h>
108#include <net/route.h>
109#include <net/protocol.h>
110#include <net/tcp.h>
111#include <net/sock.h>
112#include <net/arp.h>
113#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
114#include <net/ax25.h>
115#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
116#include <net/netrom.h>
117#endif
118#endif
119#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
120#include <net/atmclip.h>
121struct neigh_table *clip_tbl_hook;
122#endif
123
124#include <asm/system.h>
125#include <asm/uaccess.h>
126
127#include <linux/netfilter_arp.h>
128
129/*
130 *	Interface to generic neighbour cache.
131 */
132static u32 arp_hash(const void *pkey, const struct net_device *dev);
133static int arp_constructor(struct neighbour *neigh);
134static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
135static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
136static void parp_redo(struct sk_buff *skb);
137
138static struct neigh_ops arp_generic_ops = {
139	.family =		AF_INET,
140	.solicit =		arp_solicit,
141	.error_report =		arp_error_report,
142	.output =		neigh_resolve_output,
143	.connected_output =	neigh_connected_output,
144	.hh_output =		dev_queue_xmit,
145	.queue_xmit =		dev_queue_xmit,
146};
147
148static struct neigh_ops arp_hh_ops = {
149	.family =		AF_INET,
150	.solicit =		arp_solicit,
151	.error_report =		arp_error_report,
152	.output =		neigh_resolve_output,
153	.connected_output =	neigh_resolve_output,
154	.hh_output =		dev_queue_xmit,
155	.queue_xmit =		dev_queue_xmit,
156};
157
158static struct neigh_ops arp_direct_ops = {
159	.family =		AF_INET,
160	.output =		dev_queue_xmit,
161	.connected_output =	dev_queue_xmit,
162	.hh_output =		dev_queue_xmit,
163	.queue_xmit =		dev_queue_xmit,
164};
165
166struct neigh_ops arp_broken_ops = {
167	.family =		AF_INET,
168	.solicit =		arp_solicit,
169	.error_report =		arp_error_report,
170	.output =		neigh_compat_output,
171	.connected_output =	neigh_compat_output,
172	.hh_output =		dev_queue_xmit,
173	.queue_xmit =		dev_queue_xmit,
174};
175
176struct neigh_table arp_tbl = {
177	.family =	AF_INET,
178	.entry_size =	sizeof(struct neighbour) + 4,
179	.key_len =	4,
180	.hash =		arp_hash,
181	.constructor =	arp_constructor,
182	.proxy_redo =	parp_redo,
183	.id =		"arp_cache",
184	.parms = {
185		.tbl =			&arp_tbl,
186		.base_reachable_time =	30 * HZ,
187		.retrans_time =	1 * HZ,
188		.gc_staletime =	60 * HZ,
189		.reachable_time =		30 * HZ,
190		.delay_probe_time =	5 * HZ,
191		.queue_len =		3,
192		.ucast_probes =	3,
193		.mcast_probes =	3,
194		.anycast_delay =	1 * HZ,
195		.proxy_delay =		(8 * HZ) / 10,
196		.proxy_qlen =		64,
197		.locktime =		1 * HZ,
198	},
199	.gc_interval =	30 * HZ,
200	.gc_thresh1 =	128,
201	.gc_thresh2 =	512,
202	.gc_thresh3 =	1024,
203};
204
205int arp_mc_map(u32 addr, u8 *haddr, struct net_device *dev, int dir)
206{
207	switch (dev->type) {
208	case ARPHRD_ETHER:
209	case ARPHRD_FDDI:
210	case ARPHRD_IEEE802:
211		ip_eth_mc_map(addr, haddr);
212		return 0;
213	case ARPHRD_IEEE802_TR:
214		ip_tr_mc_map(addr, haddr);
215		return 0;
216	case ARPHRD_INFINIBAND:
217		ip_ib_mc_map(addr, haddr);
218		return 0;
219	default:
220		if (dir) {
221			memcpy(haddr, dev->broadcast, dev->addr_len);
222			return 0;
223		}
224	}
225	return -EINVAL;
226}
227
228
229static u32 arp_hash(const void *pkey, const struct net_device *dev)
230{
231	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
232}
233
234static int arp_constructor(struct neighbour *neigh)
235{
236	u32 addr = *(u32*)neigh->primary_key;
237	struct net_device *dev = neigh->dev;
238	struct in_device *in_dev;
239	struct neigh_parms *parms;
240
241	neigh->type = inet_addr_type(addr);
242
243	rcu_read_lock();
244	in_dev = rcu_dereference(__in_dev_get(dev));
245	if (in_dev == NULL) {
246		rcu_read_unlock();
247		return -EINVAL;
248	}
249
250	parms = in_dev->arp_parms;
251	__neigh_parms_put(neigh->parms);
252	neigh->parms = neigh_parms_clone(parms);
253	rcu_read_unlock();
254
255	if (dev->hard_header == NULL) {
256		neigh->nud_state = NUD_NOARP;
257		neigh->ops = &arp_direct_ops;
258		neigh->output = neigh->ops->queue_xmit;
259	} else {
260		/* Good devices (checked by reading texts, but only Ethernet is
261		   tested)
262
263		   ARPHRD_ETHER: (ethernet, apfddi)
264		   ARPHRD_FDDI: (fddi)
265		   ARPHRD_IEEE802: (tr)
266		   ARPHRD_METRICOM: (strip)
267		   ARPHRD_ARCNET:
268		   etc. etc. etc.
269
270		   ARPHRD_IPDDP will also work, if author repairs it.
271		   I did not it, because this driver does not work even
272		   in old paradigm.
273		 */
274
275#if 1
276		/* So... these "amateur" devices are hopeless.
277		   The only thing, that I can say now:
278		   It is very sad that we need to keep ugly obsolete
279		   code to make them happy.
280
281		   They should be moved to more reasonable state, now
282		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
283		   Besides that, they are sort of out of date
284		   (a lot of redundant clones/copies, useless in 2.1),
285		   I wonder why people believe that they work.
286		 */
287		switch (dev->type) {
288		default:
289			break;
290		case ARPHRD_ROSE:
291#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
292		case ARPHRD_AX25:
293#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
294		case ARPHRD_NETROM:
295#endif
296			neigh->ops = &arp_broken_ops;
297			neigh->output = neigh->ops->output;
298			return 0;
299#endif
300		;}
301#endif
302		if (neigh->type == RTN_MULTICAST) {
303			neigh->nud_state = NUD_NOARP;
304			arp_mc_map(addr, neigh->ha, dev, 1);
305		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
306			neigh->nud_state = NUD_NOARP;
307			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
308		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
309			neigh->nud_state = NUD_NOARP;
310			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
311		}
312		if (dev->hard_header_cache)
313			neigh->ops = &arp_hh_ops;
314		else
315			neigh->ops = &arp_generic_ops;
316		if (neigh->nud_state&NUD_VALID)
317			neigh->output = neigh->ops->connected_output;
318		else
319			neigh->output = neigh->ops->output;
320	}
321	return 0;
322}
323
324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
325{
326	dst_link_failure(skb);
327	kfree_skb(skb);
328}
329
330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331{
332	u32 saddr = 0;
333	u8  *dst_ha = NULL;
334	struct net_device *dev = neigh->dev;
335	u32 target = *(u32*)neigh->primary_key;
336	int probes = atomic_read(&neigh->probes);
337	struct in_device *in_dev = in_dev_get(dev);
338
339	if (!in_dev)
340		return;
341
342	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
343	default:
344	case 0:		/* By default announce any local IP */
345		if (skb && inet_addr_type(skb->nh.iph->saddr) == RTN_LOCAL)
346			saddr = skb->nh.iph->saddr;
347		break;
348	case 1:		/* Restrict announcements of saddr in same subnet */
349		if (!skb)
350			break;
351		saddr = skb->nh.iph->saddr;
352		if (inet_addr_type(saddr) == RTN_LOCAL) {
353			/* saddr should be known to target */
354			if (inet_addr_onlink(in_dev, target, saddr))
355				break;
356		}
357		saddr = 0;
358		break;
359	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
360		break;
361	}
362
363	if (in_dev)
364		in_dev_put(in_dev);
365	if (!saddr)
366		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
367
368	if ((probes -= neigh->parms->ucast_probes) < 0) {
369		if (!(neigh->nud_state&NUD_VALID))
370			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
371		dst_ha = neigh->ha;
372		read_lock_bh(&neigh->lock);
373	} else if ((probes -= neigh->parms->app_probes) < 0) {
374#ifdef CONFIG_ARPD
375		neigh_app_ns(neigh);
376#endif
377		return;
378	}
379
380	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
381		 dst_ha, dev->dev_addr, NULL);
382	if (dst_ha)
383		read_unlock_bh(&neigh->lock);
384}
385
386static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
387		      u32 sip, u32 tip)
388{
389	int scope;
390
391	switch (IN_DEV_ARP_IGNORE(in_dev)) {
392	case 0:	/* Reply, the tip is already validated */
393		return 0;
394	case 1:	/* Reply only if tip is configured on the incoming interface */
395		sip = 0;
396		scope = RT_SCOPE_HOST;
397		break;
398	case 2:	/*
399		 * Reply only if tip is configured on the incoming interface
400		 * and is in same subnet as sip
401		 */
402		scope = RT_SCOPE_HOST;
403		break;
404	case 3:	/* Do not reply for scope host addresses */
405		sip = 0;
406		scope = RT_SCOPE_LINK;
407		dev = NULL;
408		break;
409	case 4:	/* Reserved */
410	case 5:
411	case 6:
412	case 7:
413		return 0;
414	case 8:	/* Do not reply */
415		return 1;
416	default:
417		return 0;
418	}
419	return !inet_confirm_addr(dev, sip, tip, scope);
420}
421
422static int arp_filter(__u32 sip, __u32 tip, struct net_device *dev)
423{
424	struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
425						 .saddr = tip } } };
426	struct rtable *rt;
427	int flag = 0;
428	/*unsigned long now; */
429
430	if (ip_route_output_key(&rt, &fl) < 0)
431		return 1;
432	if (rt->u.dst.dev != dev) {
433		NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
434		flag = 1;
435	}
436	ip_rt_put(rt);
437	return flag;
438}
439
440/* OBSOLETE FUNCTIONS */
441
442/*
443 *	Find an arp mapping in the cache. If not found, post a request.
444 *
445 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
446 *	even if it exists. It is supposed that skb->dev was mangled
447 *	by a virtual device (eql, shaper). Nobody but broken devices
448 *	is allowed to use this function, it is scheduled to be removed. --ANK
449 */
450
451static int arp_set_predefined(int addr_hint, unsigned char * haddr, u32 paddr, struct net_device * dev)
452{
453	switch (addr_hint) {
454	case RTN_LOCAL:
455		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
456		memcpy(haddr, dev->dev_addr, dev->addr_len);
457		return 1;
458	case RTN_MULTICAST:
459		arp_mc_map(paddr, haddr, dev, 1);
460		return 1;
461	case RTN_BROADCAST:
462		memcpy(haddr, dev->broadcast, dev->addr_len);
463		return 1;
464	}
465	return 0;
466}
467
468
469int arp_find(unsigned char *haddr, struct sk_buff *skb)
470{
471	struct net_device *dev = skb->dev;
472	u32 paddr;
473	struct neighbour *n;
474
475	if (!skb->dst) {
476		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
477		kfree_skb(skb);
478		return 1;
479	}
480
481	paddr = ((struct rtable*)skb->dst)->rt_gateway;
482
483	if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
484		return 0;
485
486	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
487
488	if (n) {
489		n->used = jiffies;
490		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
491			read_lock_bh(&n->lock);
492 			memcpy(haddr, n->ha, dev->addr_len);
493			read_unlock_bh(&n->lock);
494			neigh_release(n);
495			return 0;
496		}
497		neigh_release(n);
498	} else
499		kfree_skb(skb);
500	return 1;
501}
502
503/* END OF OBSOLETE FUNCTIONS */
504
505int arp_bind_neighbour(struct dst_entry *dst)
506{
507	struct net_device *dev = dst->dev;
508	struct neighbour *n = dst->neighbour;
509
510	if (dev == NULL)
511		return -EINVAL;
512	if (n == NULL) {
513		u32 nexthop = ((struct rtable*)dst)->rt_gateway;
514		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
515			nexthop = 0;
516		n = __neigh_lookup_errno(
517#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
518		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
519#endif
520		    &arp_tbl, &nexthop, dev);
521		if (IS_ERR(n))
522			return PTR_ERR(n);
523		dst->neighbour = n;
524	}
525	return 0;
526}
527
528/*
529 * Check if we can use proxy ARP for this path
530 */
531
532static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
533{
534	struct in_device *out_dev;
535	int imi, omi = -1;
536
537	if (!IN_DEV_PROXY_ARP(in_dev))
538		return 0;
539
540	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
541		return 1;
542	if (imi == -1)
543		return 0;
544
545	/* place to check for proxy_arp for routes */
546
547	if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
548		omi = IN_DEV_MEDIUM_ID(out_dev);
549		in_dev_put(out_dev);
550	}
551	return (omi != imi && omi != -1);
552}
553
554/*
555 *	Interface to link layer: send routine and receive handler.
556 */
557
558/*
559 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
560 *	message.
561 */
562struct sk_buff *arp_create(int type, int ptype, u32 dest_ip,
563			   struct net_device *dev, u32 src_ip,
564			   unsigned char *dest_hw, unsigned char *src_hw,
565			   unsigned char *target_hw)
566{
567	struct sk_buff *skb;
568	struct arphdr *arp;
569	unsigned char *arp_ptr;
570
571	/*
572	 *	Allocate a buffer
573	 */
574
575	skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
576				+ LL_RESERVED_SPACE(dev), GFP_ATOMIC);
577	if (skb == NULL)
578		return NULL;
579
580	skb_reserve(skb, LL_RESERVED_SPACE(dev));
581	skb->nh.raw = skb->data;
582	arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
583	skb->dev = dev;
584	skb->protocol = htons(ETH_P_ARP);
585	if (src_hw == NULL)
586		src_hw = dev->dev_addr;
587	if (dest_hw == NULL)
588		dest_hw = dev->broadcast;
589
590	/*
591	 *	Fill the device header for the ARP frame
592	 */
593	if (dev->hard_header &&
594	    dev->hard_header(skb,dev,ptype,dest_hw,src_hw,skb->len) < 0)
595		goto out;
596
597	/*
598	 * Fill out the arp protocol part.
599	 *
600	 * The arp hardware type should match the device type, except for FDDI,
601	 * which (according to RFC 1390) should always equal 1 (Ethernet).
602	 */
603	/*
604	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
605	 *	DIX code for the protocol. Make these device structure fields.
606	 */
607	switch (dev->type) {
608	default:
609		arp->ar_hrd = htons(dev->type);
610		arp->ar_pro = htons(ETH_P_IP);
611		break;
612
613#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
614	case ARPHRD_AX25:
615		arp->ar_hrd = htons(ARPHRD_AX25);
616		arp->ar_pro = htons(AX25_P_IP);
617		break;
618
619#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
620	case ARPHRD_NETROM:
621		arp->ar_hrd = htons(ARPHRD_NETROM);
622		arp->ar_pro = htons(AX25_P_IP);
623		break;
624#endif
625#endif
626
627#ifdef CONFIG_FDDI
628	case ARPHRD_FDDI:
629		arp->ar_hrd = htons(ARPHRD_ETHER);
630		arp->ar_pro = htons(ETH_P_IP);
631		break;
632#endif
633#ifdef CONFIG_TR
634	case ARPHRD_IEEE802_TR:
635		arp->ar_hrd = htons(ARPHRD_IEEE802);
636		arp->ar_pro = htons(ETH_P_IP);
637		break;
638#endif
639	}
640
641	arp->ar_hln = dev->addr_len;
642	arp->ar_pln = 4;
643	arp->ar_op = htons(type);
644
645	arp_ptr=(unsigned char *)(arp+1);
646
647	memcpy(arp_ptr, src_hw, dev->addr_len);
648	arp_ptr+=dev->addr_len;
649	memcpy(arp_ptr, &src_ip,4);
650	arp_ptr+=4;
651	if (target_hw != NULL)
652		memcpy(arp_ptr, target_hw, dev->addr_len);
653	else
654		memset(arp_ptr, 0, dev->addr_len);
655	arp_ptr+=dev->addr_len;
656	memcpy(arp_ptr, &dest_ip, 4);
657
658	return skb;
659
660out:
661	kfree_skb(skb);
662	return NULL;
663}
664
665/*
666 *	Send an arp packet.
667 */
668void arp_xmit(struct sk_buff *skb)
669{
670	/* Send it off, maybe filter it using firewalling first.  */
671	NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
672}
673
674/*
675 *	Create and send an arp packet.
676 */
677void arp_send(int type, int ptype, u32 dest_ip,
678	      struct net_device *dev, u32 src_ip,
679	      unsigned char *dest_hw, unsigned char *src_hw,
680	      unsigned char *target_hw)
681{
682	struct sk_buff *skb;
683
684	/*
685	 *	No arp on this interface.
686	 */
687
688	if (dev->flags&IFF_NOARP)
689		return;
690
691	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
692			 dest_hw, src_hw, target_hw);
693	if (skb == NULL) {
694		return;
695	}
696
697	arp_xmit(skb);
698}
699
700static void parp_redo(struct sk_buff *skb)
701{
702	nf_reset(skb);
703	arp_rcv(skb, skb->dev, NULL, skb->dev);
704}
705
706/*
707 *	Process an arp request.
708 */
709
710static int arp_process(struct sk_buff *skb)
711{
712	struct net_device *dev = skb->dev;
713	struct in_device *in_dev = in_dev_get(dev);
714	struct arphdr *arp;
715	unsigned char *arp_ptr;
716	struct rtable *rt;
717	unsigned char *sha, *tha;
718	u32 sip, tip;
719	u16 dev_type = dev->type;
720	int addr_type;
721	struct neighbour *n;
722
723	/* arp_rcv below verifies the ARP header and verifies the device
724	 * is ARP'able.
725	 */
726
727	if (in_dev == NULL)
728		goto out;
729
730	arp = skb->nh.arph;
731
732	switch (dev_type) {
733	default:
734		if (arp->ar_pro != htons(ETH_P_IP) ||
735		    htons(dev_type) != arp->ar_hrd)
736			goto out;
737		break;
738#ifdef CONFIG_NET_ETHERNET
739	case ARPHRD_ETHER:
740#endif
741#ifdef CONFIG_TR
742	case ARPHRD_IEEE802_TR:
743#endif
744#ifdef CONFIG_FDDI
745	case ARPHRD_FDDI:
746#endif
747#ifdef CONFIG_NET_FC
748	case ARPHRD_IEEE802:
749#endif
750#if defined(CONFIG_NET_ETHERNET) || defined(CONFIG_TR) || \
751    defined(CONFIG_FDDI)	 || defined(CONFIG_NET_FC)
752		/*
753		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
754		 * devices, according to RFC 2625) devices will accept ARP
755		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
756		 * This is the case also of FDDI, where the RFC 1390 says that
757		 * FDDI devices should accept ARP hardware of (1) Ethernet,
758		 * however, to be more robust, we'll accept both 1 (Ethernet)
759		 * or 6 (IEEE 802.2)
760		 */
761		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
762		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
763		    arp->ar_pro != htons(ETH_P_IP))
764			goto out;
765		break;
766#endif
767#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
768	case ARPHRD_AX25:
769		if (arp->ar_pro != htons(AX25_P_IP) ||
770		    arp->ar_hrd != htons(ARPHRD_AX25))
771			goto out;
772		break;
773#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
774	case ARPHRD_NETROM:
775		if (arp->ar_pro != htons(AX25_P_IP) ||
776		    arp->ar_hrd != htons(ARPHRD_NETROM))
777			goto out;
778		break;
779#endif
780#endif
781	}
782
783	/* Understand only these message types */
784
785	if (arp->ar_op != htons(ARPOP_REPLY) &&
786	    arp->ar_op != htons(ARPOP_REQUEST))
787		goto out;
788
789/*
790 *	Extract fields
791 */
792	arp_ptr= (unsigned char *)(arp+1);
793	sha	= arp_ptr;
794	arp_ptr += dev->addr_len;
795	memcpy(&sip, arp_ptr, 4);
796	arp_ptr += 4;
797	tha	= arp_ptr;
798	arp_ptr += dev->addr_len;
799	memcpy(&tip, arp_ptr, 4);
800/*
801 *	Check for bad requests for 127.x.x.x and requests for multicast
802 *	addresses.  If this is one such, delete it.
803 */
804	if (LOOPBACK(tip) || MULTICAST(tip))
805		goto out;
806
807/*
808 *     Special case: We must set Frame Relay source Q.922 address
809 */
810	if (dev_type == ARPHRD_DLCI)
811		sha = dev->broadcast;
812
813/*
814 *  Process entry.  The idea here is we want to send a reply if it is a
815 *  request for us or if it is a request for someone else that we hold
816 *  a proxy for.  We want to add an entry to our cache if it is a reply
817 *  to us or if it is a request for our address.
818 *  (The assumption for this last is that if someone is requesting our
819 *  address, they are probably intending to talk to us, so it saves time
820 *  if we cache their address.  Their address is also probably not in
821 *  our cache, since ours is not in their cache.)
822 *
823 *  Putting this another way, we only care about replies if they are to
824 *  us, in which case we add them to the cache.  For requests, we care
825 *  about those for us and those for our proxies.  We reply to both,
826 *  and in the case of requests for us we add the requester to the arp
827 *  cache.
828 */
829
830	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
831	if (sip == 0) {
832		if (arp->ar_op == htons(ARPOP_REQUEST) &&
833		    inet_addr_type(tip) == RTN_LOCAL &&
834		    !arp_ignore(in_dev,dev,sip,tip))
835			arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,dev->dev_addr,dev->dev_addr);
836		goto out;
837	}
838
839	if (arp->ar_op == htons(ARPOP_REQUEST) &&
840	    ip_route_input(skb, tip, sip, 0, dev) == 0) {
841
842		rt = (struct rtable*)skb->dst;
843		addr_type = rt->rt_type;
844
845		if (addr_type == RTN_LOCAL) {
846			n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
847			if (n) {
848				int dont_send = 0;
849
850				if (!dont_send)
851					dont_send |= arp_ignore(in_dev,dev,sip,tip);
852				if (!dont_send && IN_DEV_ARPFILTER(in_dev))
853					dont_send |= arp_filter(sip,tip,dev);
854				if (!dont_send)
855					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
856
857				neigh_release(n);
858			}
859			goto out;
860		} else if (IN_DEV_FORWARD(in_dev)) {
861			if ((rt->rt_flags&RTCF_DNAT) ||
862			    (addr_type == RTN_UNICAST  && rt->u.dst.dev != dev &&
863			     (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {
864				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
865				if (n)
866					neigh_release(n);
867
868				if (skb->stamp.tv_sec == LOCALLY_ENQUEUED ||
869				    skb->pkt_type == PACKET_HOST ||
870				    in_dev->arp_parms->proxy_delay == 0) {
871					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
872				} else {
873					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
874					in_dev_put(in_dev);
875					return 0;
876				}
877				goto out;
878			}
879		}
880	}
881
882	/* Update our ARP tables */
883
884	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
885
886#ifdef CONFIG_IP_ACCEPT_UNSOLICITED_ARP
887	/* Unsolicited ARP is not accepted by default.
888	   It is possible, that this option should be enabled for some
889	   devices (strip is candidate)
890	 */
891	if (n == NULL &&
892	    arp->ar_op == htons(ARPOP_REPLY) &&
893	    inet_addr_type(sip) == RTN_UNICAST)
894		n = __neigh_lookup(&arp_tbl, &sip, dev, -1);
895#endif
896
897	if (n) {
898		int state = NUD_REACHABLE;
899		int override;
900
901		/* If several different ARP replies follows back-to-back,
902		   use the FIRST one. It is possible, if several proxy
903		   agents are active. Taking the first reply prevents
904		   arp trashing and chooses the fastest router.
905		 */
906		override = time_after(jiffies, n->updated + n->parms->locktime);
907
908		/* Broadcast replies and request packets
909		   do not assert neighbour reachability.
910		 */
911		if (arp->ar_op != htons(ARPOP_REPLY) ||
912		    skb->pkt_type != PACKET_HOST)
913			state = NUD_STALE;
914		neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
915		neigh_release(n);
916	}
917
918out:
919	if (in_dev)
920		in_dev_put(in_dev);
921	kfree_skb(skb);
922	return 0;
923}
924
925
926/*
927 *	Receive an arp request from the device layer.
928 */
929
930int arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
931{
932	struct arphdr *arp;
933
934	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
935	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
936				 (2 * dev->addr_len) +
937				 (2 * sizeof(u32)))))
938		goto freeskb;
939
940	arp = skb->nh.arph;
941	if (arp->ar_hln != dev->addr_len ||
942	    dev->flags & IFF_NOARP ||
943	    skb->pkt_type == PACKET_OTHERHOST ||
944	    skb->pkt_type == PACKET_LOOPBACK ||
945	    arp->ar_pln != 4)
946		goto freeskb;
947
948	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
949		goto out_of_mem;
950
951	return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
952
953freeskb:
954	kfree_skb(skb);
955out_of_mem:
956	return 0;
957}
958
959/*
960 *	User level interface (ioctl)
961 */
962
963/*
964 *	Set (create) an ARP cache entry.
965 */
966
967static int arp_req_set(struct arpreq *r, struct net_device * dev)
968{
969	u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
970	struct neighbour *neigh;
971	int err;
972
973	if (r->arp_flags&ATF_PUBL) {
974		u32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
975		if (mask && mask != 0xFFFFFFFF)
976			return -EINVAL;
977		if (!dev && (r->arp_flags & ATF_COM)) {
978			dev = dev_getbyhwaddr(r->arp_ha.sa_family, r->arp_ha.sa_data);
979			if (!dev)
980				return -ENODEV;
981		}
982		if (mask) {
983			if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL)
984				return -ENOBUFS;
985			return 0;
986		}
987		if (dev == NULL) {
988			ipv4_devconf.proxy_arp = 1;
989			return 0;
990		}
991		if (__in_dev_get(dev)) {
992			__in_dev_get(dev)->cnf.proxy_arp = 1;
993			return 0;
994		}
995		return -ENXIO;
996	}
997
998	if (r->arp_flags & ATF_PERM)
999		r->arp_flags |= ATF_COM;
1000	if (dev == NULL) {
1001		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1002							 .tos = RTO_ONLINK } } };
1003		struct rtable * rt;
1004		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1005			return err;
1006		dev = rt->u.dst.dev;
1007		ip_rt_put(rt);
1008		if (!dev)
1009			return -EINVAL;
1010	}
1011	switch (dev->type) {
1012#ifdef CONFIG_FDDI
1013	case ARPHRD_FDDI:
1014		/*
1015		 * According to RFC 1390, FDDI devices should accept ARP
1016		 * hardware types of 1 (Ethernet).  However, to be more
1017		 * robust, we'll accept hardware types of either 1 (Ethernet)
1018		 * or 6 (IEEE 802.2).
1019		 */
1020		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1021		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1022		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1023			return -EINVAL;
1024		break;
1025#endif
1026	default:
1027		if (r->arp_ha.sa_family != dev->type)
1028			return -EINVAL;
1029		break;
1030	}
1031
1032	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1033	err = PTR_ERR(neigh);
1034	if (!IS_ERR(neigh)) {
1035		unsigned state = NUD_STALE;
1036		if (r->arp_flags & ATF_PERM)
1037			state = NUD_PERMANENT;
1038		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1039				   r->arp_ha.sa_data : NULL, state,
1040				   NEIGH_UPDATE_F_OVERRIDE|
1041				   NEIGH_UPDATE_F_ADMIN);
1042		neigh_release(neigh);
1043	}
1044	return err;
1045}
1046
1047static unsigned arp_state_to_flags(struct neighbour *neigh)
1048{
1049	unsigned flags = 0;
1050	if (neigh->nud_state&NUD_PERMANENT)
1051		flags = ATF_PERM|ATF_COM;
1052	else if (neigh->nud_state&NUD_VALID)
1053		flags = ATF_COM;
1054	return flags;
1055}
1056
1057/*
1058 *	Get an ARP cache entry.
1059 */
1060
1061static int arp_req_get(struct arpreq *r, struct net_device *dev)
1062{
1063	u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1064	struct neighbour *neigh;
1065	int err = -ENXIO;
1066
1067	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1068	if (neigh) {
1069		read_lock_bh(&neigh->lock);
1070		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1071		r->arp_flags = arp_state_to_flags(neigh);
1072		read_unlock_bh(&neigh->lock);
1073		r->arp_ha.sa_family = dev->type;
1074		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1075		neigh_release(neigh);
1076		err = 0;
1077	}
1078	return err;
1079}
1080
1081static int arp_req_delete(struct arpreq *r, struct net_device * dev)
1082{
1083	int err;
1084	u32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1085	struct neighbour *neigh;
1086
1087	if (r->arp_flags & ATF_PUBL) {
1088		u32 mask =
1089		       ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1090		if (mask == 0xFFFFFFFF)
1091			return pneigh_delete(&arp_tbl, &ip, dev);
1092		if (mask == 0) {
1093			if (dev == NULL) {
1094				ipv4_devconf.proxy_arp = 0;
1095				return 0;
1096			}
1097			if (__in_dev_get(dev)) {
1098				__in_dev_get(dev)->cnf.proxy_arp = 0;
1099				return 0;
1100			}
1101			return -ENXIO;
1102		}
1103		return -EINVAL;
1104	}
1105
1106	if (dev == NULL) {
1107		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1108							 .tos = RTO_ONLINK } } };
1109		struct rtable * rt;
1110		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1111			return err;
1112		dev = rt->u.dst.dev;
1113		ip_rt_put(rt);
1114		if (!dev)
1115			return -EINVAL;
1116	}
1117	err = -ENXIO;
1118	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1119	if (neigh) {
1120		if (neigh->nud_state&~NUD_NOARP)
1121			err = neigh_update(neigh, NULL, NUD_FAILED,
1122					   NEIGH_UPDATE_F_OVERRIDE|
1123					   NEIGH_UPDATE_F_ADMIN);
1124		neigh_release(neigh);
1125	}
1126	return err;
1127}
1128
1129/*
1130 *	Handle an ARP layer I/O control request.
1131 */
1132
1133int arp_ioctl(unsigned int cmd, void __user *arg)
1134{
1135	int err;
1136	struct arpreq r;
1137	struct net_device *dev = NULL;
1138
1139	switch (cmd) {
1140		case SIOCDARP:
1141		case SIOCSARP:
1142			if (!capable(CAP_NET_ADMIN))
1143				return -EPERM;
1144		case SIOCGARP:
1145			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1146			if (err)
1147				return -EFAULT;
1148			break;
1149		default:
1150			return -EINVAL;
1151	}
1152
1153	if (r.arp_pa.sa_family != AF_INET)
1154		return -EPFNOSUPPORT;
1155
1156	if (!(r.arp_flags & ATF_PUBL) &&
1157	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1158		return -EINVAL;
1159	if (!(r.arp_flags & ATF_NETMASK))
1160		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1161							   htonl(0xFFFFFFFFUL);
1162	rtnl_lock();
1163	if (r.arp_dev[0]) {
1164		err = -ENODEV;
1165		if ((dev = __dev_get_by_name(r.arp_dev)) == NULL)
1166			goto out;
1167
1168		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1169		if (!r.arp_ha.sa_family)
1170			r.arp_ha.sa_family = dev->type;
1171		err = -EINVAL;
1172		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1173			goto out;
1174	} else if (cmd == SIOCGARP) {
1175		err = -ENODEV;
1176		goto out;
1177	}
1178
1179	switch(cmd) {
1180	case SIOCDARP:
1181	        err = arp_req_delete(&r, dev);
1182		break;
1183	case SIOCSARP:
1184		err = arp_req_set(&r, dev);
1185		break;
1186	case SIOCGARP:
1187		err = arp_req_get(&r, dev);
1188		if (!err && copy_to_user(arg, &r, sizeof(r)))
1189			err = -EFAULT;
1190		break;
1191	}
1192out:
1193	rtnl_unlock();
1194	return err;
1195}
1196
1197static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1198{
1199	struct net_device *dev = ptr;
1200
1201	switch (event) {
1202	case NETDEV_CHANGEADDR:
1203		neigh_changeaddr(&arp_tbl, dev);
1204		rt_cache_flush(0);
1205		break;
1206	default:
1207		break;
1208	}
1209
1210	return NOTIFY_DONE;
1211}
1212
1213static struct notifier_block arp_netdev_notifier = {
1214	.notifier_call = arp_netdev_event,
1215};
1216
1217/* Note, that it is not on notifier chain.
1218   It is necessary, that this routine was called after route cache will be
1219   flushed.
1220 */
1221void arp_ifdown(struct net_device *dev)
1222{
1223	neigh_ifdown(&arp_tbl, dev);
1224}
1225
1226
1227/*
1228 *	Called once on startup.
1229 */
1230
1231static struct packet_type arp_packet_type = {
1232	.type =	__constant_htons(ETH_P_ARP),
1233	.func =	arp_rcv,
1234};
1235
1236static int arp_proc_init(void);
1237
1238void __init arp_init(void)
1239{
1240	neigh_table_init(&arp_tbl);
1241
1242	dev_add_pack(&arp_packet_type);
1243	arp_proc_init();
1244#ifdef CONFIG_SYSCTL
1245	neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1246			      NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1247#endif
1248	register_netdevice_notifier(&arp_netdev_notifier);
1249}
1250
1251#ifdef CONFIG_PROC_FS
1252#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1253
1254/* ------------------------------------------------------------------------ */
1255/*
1256 *	ax25 -> ASCII conversion
1257 */
1258static char *ax2asc2(ax25_address *a, char *buf)
1259{
1260	char c, *s;
1261	int n;
1262
1263	for (n = 0, s = buf; n < 6; n++) {
1264		c = (a->ax25_call[n] >> 1) & 0x7F;
1265
1266		if (c != ' ') *s++ = c;
1267	}
1268
1269	*s++ = '-';
1270
1271	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1272		*s++ = '1';
1273		n -= 10;
1274	}
1275
1276	*s++ = n + '0';
1277	*s++ = '\0';
1278
1279	if (*buf == '\0' || *buf == '-')
1280	   return "*";
1281
1282	return buf;
1283
1284}
1285#endif /* CONFIG_AX25 */
1286
1287#define HBUFFERLEN 30
1288
1289static void arp_format_neigh_entry(struct seq_file *seq,
1290				   struct neighbour *n)
1291{
1292	char hbuffer[HBUFFERLEN];
1293	const char hexbuf[] = "0123456789ABCDEF";
1294	int k, j;
1295	char tbuf[16];
1296	struct net_device *dev = n->dev;
1297	int hatype = dev->type;
1298
1299	read_lock(&n->lock);
1300	/* Convert hardware address to XX:XX:XX:XX ... form. */
1301#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1302	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1303		ax2asc2((ax25_address *)n->ha, hbuffer);
1304	else {
1305#endif
1306	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1307		hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1308		hbuffer[k++] = hexbuf[n->ha[j] & 15];
1309		hbuffer[k++] = ':';
1310	}
1311	hbuffer[--k] = 0;
1312#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1313	}
1314#endif
1315	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1316	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1317		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1318	read_unlock(&n->lock);
1319}
1320
1321static void arp_format_pneigh_entry(struct seq_file *seq,
1322				    struct pneigh_entry *n)
1323{
1324	struct net_device *dev = n->dev;
1325	int hatype = dev ? dev->type : 0;
1326	char tbuf[16];
1327
1328	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1329	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1330		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1331		   dev ? dev->name : "*");
1332}
1333
1334static int arp_seq_show(struct seq_file *seq, void *v)
1335{
1336	if (v == SEQ_START_TOKEN) {
1337		seq_puts(seq, "IP address       HW type     Flags       "
1338			      "HW address            Mask     Device\n");
1339	} else {
1340		struct neigh_seq_state *state = seq->private;
1341
1342		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1343			arp_format_pneigh_entry(seq, v);
1344		else
1345			arp_format_neigh_entry(seq, v);
1346	}
1347
1348	return 0;
1349}
1350
1351static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1352{
1353	/* Don't want to confuse "arp -a" w/ magic entries,
1354	 * so we tell the generic iterator to skip NUD_NOARP.
1355	 */
1356	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1357}
1358
1359/* ------------------------------------------------------------------------ */
1360
1361static struct seq_operations arp_seq_ops = {
1362	.start  = arp_seq_start,
1363	.next   = neigh_seq_next,
1364	.stop   = neigh_seq_stop,
1365	.show   = arp_seq_show,
1366};
1367
1368static int arp_seq_open(struct inode *inode, struct file *file)
1369{
1370	struct seq_file *seq;
1371	int rc = -ENOMEM;
1372	struct neigh_seq_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
1373
1374	if (!s)
1375		goto out;
1376
1377	memset(s, 0, sizeof(*s));
1378	rc = seq_open(file, &arp_seq_ops);
1379	if (rc)
1380		goto out_kfree;
1381
1382	seq	     = file->private_data;
1383	seq->private = s;
1384out:
1385	return rc;
1386out_kfree:
1387	kfree(s);
1388	goto out;
1389}
1390
1391static struct file_operations arp_seq_fops = {
1392	.owner		= THIS_MODULE,
1393	.open           = arp_seq_open,
1394	.read           = seq_read,
1395	.llseek         = seq_lseek,
1396	.release	= seq_release_private,
1397};
1398
1399static int __init arp_proc_init(void)
1400{
1401	if (!proc_net_fops_create("arp", S_IRUGO, &arp_seq_fops))
1402		return -ENOMEM;
1403	return 0;
1404}
1405
1406#else /* CONFIG_PROC_FS */
1407
1408static int __init arp_proc_init(void)
1409{
1410	return 0;
1411}
1412
1413#endif /* CONFIG_PROC_FS */
1414
1415EXPORT_SYMBOL(arp_broken_ops);
1416EXPORT_SYMBOL(arp_find);
1417EXPORT_SYMBOL(arp_rcv);
1418EXPORT_SYMBOL(arp_create);
1419EXPORT_SYMBOL(arp_xmit);
1420EXPORT_SYMBOL(arp_send);
1421EXPORT_SYMBOL(arp_tbl);
1422
1423#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1424EXPORT_SYMBOL(clip_tbl_hook);
1425#endif
1426