arp.c revision f30c2269544bffc7bf1b0d7c0abe5be1be83b8cb
1/* linux/net/ipv4/arp.c
2 *
3 * Version:	$Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4 *
5 * Copyright (C) 1994 by Florian  La Roche
6 *
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Fixes:
18 *		Alan Cox	:	Removed the Ethernet assumptions in
19 *					Florian's code
20 *		Alan Cox	:	Fixed some small errors in the ARP
21 *					logic
22 *		Alan Cox	:	Allow >4K in /proc
23 *		Alan Cox	:	Make ARP add its own protocol entry
24 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
25 *		Stephen Henson	:	Add AX25 support to arp_get_info()
26 *		Alan Cox	:	Drop data when a device is downed.
27 *		Alan Cox	:	Use init_timer().
28 *		Alan Cox	:	Double lock fixes.
29 *		Martin Seine	:	Move the arphdr structure
30 *					to if_arp.h for compatibility.
31 *					with BSD based programs.
32 *		Andrew Tridgell :       Added ARP netmask code and
33 *					re-arranged proxy handling.
34 *		Alan Cox	:	Changed to use notifiers.
35 *		Niibe Yutaka	:	Reply for this device or proxies only.
36 *		Alan Cox	:	Don't proxy across hardware types!
37 *		Jonathan Naylor :	Added support for NET/ROM.
38 *		Mike Shaver     :       RFC1122 checks.
39 *		Jonathan Naylor :	Only lookup the hardware address for
40 *					the correct hardware type.
41 *		Germano Caronni	:	Assorted subtle races.
42 *		Craig Schlenter :	Don't modify permanent entry
43 *					during arp_rcv.
44 *		Russ Nelson	:	Tidied up a few bits.
45 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
46 *					eg intelligent arp probing and
47 *					generation
48 *					of host down events.
49 *		Alan Cox	:	Missing unlock in device events.
50 *		Eckes		:	ARP ioctl control errors.
51 *		Alexey Kuznetsov:	Arp free fix.
52 *		Manuel Rodriguez:	Gratuitous ARP.
53 *              Jonathan Layes  :       Added arpd support through kerneld
54 *                                      message queue (960314)
55 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
56 *		Mike McLagan    :	Routing by source
57 *		Stuart Cheshire	:	Metricom and grat arp fixes
58 *					*** FOR 2.1 clean this up ***
59 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 *		Alan Cox 	:	Took the AP1000 nasty FDDI hack and
61 *					folded into the mainstream FDDI code.
62 *					Ack spit, Linus how did you allow that
63 *					one in...
64 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
65 *					clean up the APFDDI & gen. FDDI bits.
66 *		Alexey Kuznetsov:	new arp state machine;
67 *					now it is in net/core/neighbour.c.
68 *		Krzysztof Halasa:	Added Frame Relay ARP support.
69 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
70 *		Shmulik Hen:		Split arp_send to arp_create and
71 *					arp_xmit so intermediate drivers like
72 *					bonding can change the skb before
73 *					sending (e.g. insert 8021q tag).
74 *		Harald Welte	:	convert to make use of jenkins hash
75 */
76
77#include <linux/module.h>
78#include <linux/types.h>
79#include <linux/string.h>
80#include <linux/kernel.h>
81#include <linux/sched.h>
82#include <linux/capability.h>
83#include <linux/socket.h>
84#include <linux/sockios.h>
85#include <linux/errno.h>
86#include <linux/in.h>
87#include <linux/mm.h>
88#include <linux/inet.h>
89#include <linux/inetdevice.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/fddidevice.h>
93#include <linux/if_arp.h>
94#include <linux/trdevice.h>
95#include <linux/skbuff.h>
96#include <linux/proc_fs.h>
97#include <linux/seq_file.h>
98#include <linux/stat.h>
99#include <linux/init.h>
100#include <linux/net.h>
101#include <linux/rcupdate.h>
102#include <linux/jhash.h>
103#ifdef CONFIG_SYSCTL
104#include <linux/sysctl.h>
105#endif
106
107#include <net/ip.h>
108#include <net/icmp.h>
109#include <net/route.h>
110#include <net/protocol.h>
111#include <net/tcp.h>
112#include <net/sock.h>
113#include <net/arp.h>
114#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
115#include <net/ax25.h>
116#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
117#include <net/netrom.h>
118#endif
119#endif
120#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
121#include <net/atmclip.h>
122struct neigh_table *clip_tbl_hook;
123#endif
124
125#include <asm/system.h>
126#include <asm/uaccess.h>
127
128#include <linux/netfilter_arp.h>
129
130/*
131 *	Interface to generic neighbour cache.
132 */
133static u32 arp_hash(const void *pkey, const struct net_device *dev);
134static int arp_constructor(struct neighbour *neigh);
135static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
136static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
137static void parp_redo(struct sk_buff *skb);
138
139static struct neigh_ops arp_generic_ops = {
140	.family =		AF_INET,
141	.solicit =		arp_solicit,
142	.error_report =		arp_error_report,
143	.output =		neigh_resolve_output,
144	.connected_output =	neigh_connected_output,
145	.hh_output =		dev_queue_xmit,
146	.queue_xmit =		dev_queue_xmit,
147};
148
149static struct neigh_ops arp_hh_ops = {
150	.family =		AF_INET,
151	.solicit =		arp_solicit,
152	.error_report =		arp_error_report,
153	.output =		neigh_resolve_output,
154	.connected_output =	neigh_resolve_output,
155	.hh_output =		dev_queue_xmit,
156	.queue_xmit =		dev_queue_xmit,
157};
158
159static struct neigh_ops arp_direct_ops = {
160	.family =		AF_INET,
161	.output =		dev_queue_xmit,
162	.connected_output =	dev_queue_xmit,
163	.hh_output =		dev_queue_xmit,
164	.queue_xmit =		dev_queue_xmit,
165};
166
167struct neigh_ops arp_broken_ops = {
168	.family =		AF_INET,
169	.solicit =		arp_solicit,
170	.error_report =		arp_error_report,
171	.output =		neigh_compat_output,
172	.connected_output =	neigh_compat_output,
173	.hh_output =		dev_queue_xmit,
174	.queue_xmit =		dev_queue_xmit,
175};
176
177struct neigh_table arp_tbl = {
178	.family =	AF_INET,
179	.entry_size =	sizeof(struct neighbour) + 4,
180	.key_len =	4,
181	.hash =		arp_hash,
182	.constructor =	arp_constructor,
183	.proxy_redo =	parp_redo,
184	.id =		"arp_cache",
185	.parms = {
186		.tbl =			&arp_tbl,
187		.base_reachable_time =	30 * HZ,
188		.retrans_time =	1 * HZ,
189		.gc_staletime =	60 * HZ,
190		.reachable_time =		30 * HZ,
191		.delay_probe_time =	5 * HZ,
192		.queue_len =		3,
193		.ucast_probes =	3,
194		.mcast_probes =	3,
195		.anycast_delay =	1 * HZ,
196		.proxy_delay =		(8 * HZ) / 10,
197		.proxy_qlen =		64,
198		.locktime =		1 * HZ,
199	},
200	.gc_interval =	30 * HZ,
201	.gc_thresh1 =	128,
202	.gc_thresh2 =	512,
203	.gc_thresh3 =	1024,
204};
205
206int arp_mc_map(u32 addr, u8 *haddr, struct net_device *dev, int dir)
207{
208	switch (dev->type) {
209	case ARPHRD_ETHER:
210	case ARPHRD_FDDI:
211	case ARPHRD_IEEE802:
212		ip_eth_mc_map(addr, haddr);
213		return 0;
214	case ARPHRD_IEEE802_TR:
215		ip_tr_mc_map(addr, haddr);
216		return 0;
217	case ARPHRD_INFINIBAND:
218		ip_ib_mc_map(addr, haddr);
219		return 0;
220	default:
221		if (dir) {
222			memcpy(haddr, dev->broadcast, dev->addr_len);
223			return 0;
224		}
225	}
226	return -EINVAL;
227}
228
229
230static u32 arp_hash(const void *pkey, const struct net_device *dev)
231{
232	return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
233}
234
235static int arp_constructor(struct neighbour *neigh)
236{
237	__be32 addr = *(__be32*)neigh->primary_key;
238	struct net_device *dev = neigh->dev;
239	struct in_device *in_dev;
240	struct neigh_parms *parms;
241
242	neigh->type = inet_addr_type(addr);
243
244	rcu_read_lock();
245	in_dev = __in_dev_get_rcu(dev);
246	if (in_dev == NULL) {
247		rcu_read_unlock();
248		return -EINVAL;
249	}
250
251	parms = in_dev->arp_parms;
252	__neigh_parms_put(neigh->parms);
253	neigh->parms = neigh_parms_clone(parms);
254	rcu_read_unlock();
255
256	if (dev->hard_header == NULL) {
257		neigh->nud_state = NUD_NOARP;
258		neigh->ops = &arp_direct_ops;
259		neigh->output = neigh->ops->queue_xmit;
260	} else {
261		/* Good devices (checked by reading texts, but only Ethernet is
262		   tested)
263
264		   ARPHRD_ETHER: (ethernet, apfddi)
265		   ARPHRD_FDDI: (fddi)
266		   ARPHRD_IEEE802: (tr)
267		   ARPHRD_METRICOM: (strip)
268		   ARPHRD_ARCNET:
269		   etc. etc. etc.
270
271		   ARPHRD_IPDDP will also work, if author repairs it.
272		   I did not it, because this driver does not work even
273		   in old paradigm.
274		 */
275
276#if 1
277		/* So... these "amateur" devices are hopeless.
278		   The only thing, that I can say now:
279		   It is very sad that we need to keep ugly obsolete
280		   code to make them happy.
281
282		   They should be moved to more reasonable state, now
283		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
284		   Besides that, they are sort of out of date
285		   (a lot of redundant clones/copies, useless in 2.1),
286		   I wonder why people believe that they work.
287		 */
288		switch (dev->type) {
289		default:
290			break;
291		case ARPHRD_ROSE:
292#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
293		case ARPHRD_AX25:
294#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
295		case ARPHRD_NETROM:
296#endif
297			neigh->ops = &arp_broken_ops;
298			neigh->output = neigh->ops->output;
299			return 0;
300#endif
301		;}
302#endif
303		if (neigh->type == RTN_MULTICAST) {
304			neigh->nud_state = NUD_NOARP;
305			arp_mc_map(addr, neigh->ha, dev, 1);
306		} else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
307			neigh->nud_state = NUD_NOARP;
308			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
309		} else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
310			neigh->nud_state = NUD_NOARP;
311			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
312		}
313		if (dev->hard_header_cache)
314			neigh->ops = &arp_hh_ops;
315		else
316			neigh->ops = &arp_generic_ops;
317		if (neigh->nud_state&NUD_VALID)
318			neigh->output = neigh->ops->connected_output;
319		else
320			neigh->output = neigh->ops->output;
321	}
322	return 0;
323}
324
325static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
326{
327	dst_link_failure(skb);
328	kfree_skb(skb);
329}
330
331static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
332{
333	__be32 saddr = 0;
334	u8  *dst_ha = NULL;
335	struct net_device *dev = neigh->dev;
336	__be32 target = *(__be32*)neigh->primary_key;
337	int probes = atomic_read(&neigh->probes);
338	struct in_device *in_dev = in_dev_get(dev);
339
340	if (!in_dev)
341		return;
342
343	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
344	default:
345	case 0:		/* By default announce any local IP */
346		if (skb && inet_addr_type(skb->nh.iph->saddr) == RTN_LOCAL)
347			saddr = skb->nh.iph->saddr;
348		break;
349	case 1:		/* Restrict announcements of saddr in same subnet */
350		if (!skb)
351			break;
352		saddr = skb->nh.iph->saddr;
353		if (inet_addr_type(saddr) == RTN_LOCAL) {
354			/* saddr should be known to target */
355			if (inet_addr_onlink(in_dev, target, saddr))
356				break;
357		}
358		saddr = 0;
359		break;
360	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
361		break;
362	}
363
364	if (in_dev)
365		in_dev_put(in_dev);
366	if (!saddr)
367		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
368
369	if ((probes -= neigh->parms->ucast_probes) < 0) {
370		if (!(neigh->nud_state&NUD_VALID))
371			printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
372		dst_ha = neigh->ha;
373		read_lock_bh(&neigh->lock);
374	} else if ((probes -= neigh->parms->app_probes) < 0) {
375#ifdef CONFIG_ARPD
376		neigh_app_ns(neigh);
377#endif
378		return;
379	}
380
381	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
382		 dst_ha, dev->dev_addr, NULL);
383	if (dst_ha)
384		read_unlock_bh(&neigh->lock);
385}
386
387static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
388		      __be32 sip, __be32 tip)
389{
390	int scope;
391
392	switch (IN_DEV_ARP_IGNORE(in_dev)) {
393	case 0:	/* Reply, the tip is already validated */
394		return 0;
395	case 1:	/* Reply only if tip is configured on the incoming interface */
396		sip = 0;
397		scope = RT_SCOPE_HOST;
398		break;
399	case 2:	/*
400		 * Reply only if tip is configured on the incoming interface
401		 * and is in same subnet as sip
402		 */
403		scope = RT_SCOPE_HOST;
404		break;
405	case 3:	/* Do not reply for scope host addresses */
406		sip = 0;
407		scope = RT_SCOPE_LINK;
408		dev = NULL;
409		break;
410	case 4:	/* Reserved */
411	case 5:
412	case 6:
413	case 7:
414		return 0;
415	case 8:	/* Do not reply */
416		return 1;
417	default:
418		return 0;
419	}
420	return !inet_confirm_addr(dev, sip, tip, scope);
421}
422
423static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
424{
425	struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
426						 .saddr = tip } } };
427	struct rtable *rt;
428	int flag = 0;
429	/*unsigned long now; */
430
431	if (ip_route_output_key(&rt, &fl) < 0)
432		return 1;
433	if (rt->u.dst.dev != dev) {
434		NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
435		flag = 1;
436	}
437	ip_rt_put(rt);
438	return flag;
439}
440
441/* OBSOLETE FUNCTIONS */
442
443/*
444 *	Find an arp mapping in the cache. If not found, post a request.
445 *
446 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
447 *	even if it exists. It is supposed that skb->dev was mangled
448 *	by a virtual device (eql, shaper). Nobody but broken devices
449 *	is allowed to use this function, it is scheduled to be removed. --ANK
450 */
451
452static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
453{
454	switch (addr_hint) {
455	case RTN_LOCAL:
456		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
457		memcpy(haddr, dev->dev_addr, dev->addr_len);
458		return 1;
459	case RTN_MULTICAST:
460		arp_mc_map(paddr, haddr, dev, 1);
461		return 1;
462	case RTN_BROADCAST:
463		memcpy(haddr, dev->broadcast, dev->addr_len);
464		return 1;
465	}
466	return 0;
467}
468
469
470int arp_find(unsigned char *haddr, struct sk_buff *skb)
471{
472	struct net_device *dev = skb->dev;
473	__be32 paddr;
474	struct neighbour *n;
475
476	if (!skb->dst) {
477		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
478		kfree_skb(skb);
479		return 1;
480	}
481
482	paddr = ((struct rtable*)skb->dst)->rt_gateway;
483
484	if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
485		return 0;
486
487	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
488
489	if (n) {
490		n->used = jiffies;
491		if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
492			read_lock_bh(&n->lock);
493 			memcpy(haddr, n->ha, dev->addr_len);
494			read_unlock_bh(&n->lock);
495			neigh_release(n);
496			return 0;
497		}
498		neigh_release(n);
499	} else
500		kfree_skb(skb);
501	return 1;
502}
503
504/* END OF OBSOLETE FUNCTIONS */
505
506int arp_bind_neighbour(struct dst_entry *dst)
507{
508	struct net_device *dev = dst->dev;
509	struct neighbour *n = dst->neighbour;
510
511	if (dev == NULL)
512		return -EINVAL;
513	if (n == NULL) {
514		__be32 nexthop = ((struct rtable*)dst)->rt_gateway;
515		if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
516			nexthop = 0;
517		n = __neigh_lookup_errno(
518#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
519		    dev->type == ARPHRD_ATM ? clip_tbl_hook :
520#endif
521		    &arp_tbl, &nexthop, dev);
522		if (IS_ERR(n))
523			return PTR_ERR(n);
524		dst->neighbour = n;
525	}
526	return 0;
527}
528
529/*
530 * Check if we can use proxy ARP for this path
531 */
532
533static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
534{
535	struct in_device *out_dev;
536	int imi, omi = -1;
537
538	if (!IN_DEV_PROXY_ARP(in_dev))
539		return 0;
540
541	if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
542		return 1;
543	if (imi == -1)
544		return 0;
545
546	/* place to check for proxy_arp for routes */
547
548	if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
549		omi = IN_DEV_MEDIUM_ID(out_dev);
550		in_dev_put(out_dev);
551	}
552	return (omi != imi && omi != -1);
553}
554
555/*
556 *	Interface to link layer: send routine and receive handler.
557 */
558
559/*
560 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
561 *	message.
562 */
563struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
564			   struct net_device *dev, __be32 src_ip,
565			   unsigned char *dest_hw, unsigned char *src_hw,
566			   unsigned char *target_hw)
567{
568	struct sk_buff *skb;
569	struct arphdr *arp;
570	unsigned char *arp_ptr;
571
572	/*
573	 *	Allocate a buffer
574	 */
575
576	skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
577				+ LL_RESERVED_SPACE(dev), GFP_ATOMIC);
578	if (skb == NULL)
579		return NULL;
580
581	skb_reserve(skb, LL_RESERVED_SPACE(dev));
582	skb->nh.raw = skb->data;
583	arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
584	skb->dev = dev;
585	skb->protocol = htons(ETH_P_ARP);
586	if (src_hw == NULL)
587		src_hw = dev->dev_addr;
588	if (dest_hw == NULL)
589		dest_hw = dev->broadcast;
590
591	/*
592	 *	Fill the device header for the ARP frame
593	 */
594	if (dev->hard_header &&
595	    dev->hard_header(skb,dev,ptype,dest_hw,src_hw,skb->len) < 0)
596		goto out;
597
598	/*
599	 * Fill out the arp protocol part.
600	 *
601	 * The arp hardware type should match the device type, except for FDDI,
602	 * which (according to RFC 1390) should always equal 1 (Ethernet).
603	 */
604	/*
605	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
606	 *	DIX code for the protocol. Make these device structure fields.
607	 */
608	switch (dev->type) {
609	default:
610		arp->ar_hrd = htons(dev->type);
611		arp->ar_pro = htons(ETH_P_IP);
612		break;
613
614#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
615	case ARPHRD_AX25:
616		arp->ar_hrd = htons(ARPHRD_AX25);
617		arp->ar_pro = htons(AX25_P_IP);
618		break;
619
620#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
621	case ARPHRD_NETROM:
622		arp->ar_hrd = htons(ARPHRD_NETROM);
623		arp->ar_pro = htons(AX25_P_IP);
624		break;
625#endif
626#endif
627
628#ifdef CONFIG_FDDI
629	case ARPHRD_FDDI:
630		arp->ar_hrd = htons(ARPHRD_ETHER);
631		arp->ar_pro = htons(ETH_P_IP);
632		break;
633#endif
634#ifdef CONFIG_TR
635	case ARPHRD_IEEE802_TR:
636		arp->ar_hrd = htons(ARPHRD_IEEE802);
637		arp->ar_pro = htons(ETH_P_IP);
638		break;
639#endif
640	}
641
642	arp->ar_hln = dev->addr_len;
643	arp->ar_pln = 4;
644	arp->ar_op = htons(type);
645
646	arp_ptr=(unsigned char *)(arp+1);
647
648	memcpy(arp_ptr, src_hw, dev->addr_len);
649	arp_ptr+=dev->addr_len;
650	memcpy(arp_ptr, &src_ip,4);
651	arp_ptr+=4;
652	if (target_hw != NULL)
653		memcpy(arp_ptr, target_hw, dev->addr_len);
654	else
655		memset(arp_ptr, 0, dev->addr_len);
656	arp_ptr+=dev->addr_len;
657	memcpy(arp_ptr, &dest_ip, 4);
658
659	return skb;
660
661out:
662	kfree_skb(skb);
663	return NULL;
664}
665
666/*
667 *	Send an arp packet.
668 */
669void arp_xmit(struct sk_buff *skb)
670{
671	/* Send it off, maybe filter it using firewalling first.  */
672	NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
673}
674
675/*
676 *	Create and send an arp packet.
677 */
678void arp_send(int type, int ptype, __be32 dest_ip,
679	      struct net_device *dev, __be32 src_ip,
680	      unsigned char *dest_hw, unsigned char *src_hw,
681	      unsigned char *target_hw)
682{
683	struct sk_buff *skb;
684
685	/*
686	 *	No arp on this interface.
687	 */
688
689	if (dev->flags&IFF_NOARP)
690		return;
691
692	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
693			 dest_hw, src_hw, target_hw);
694	if (skb == NULL) {
695		return;
696	}
697
698	arp_xmit(skb);
699}
700
701/*
702 *	Process an arp request.
703 */
704
705static int arp_process(struct sk_buff *skb)
706{
707	struct net_device *dev = skb->dev;
708	struct in_device *in_dev = in_dev_get(dev);
709	struct arphdr *arp;
710	unsigned char *arp_ptr;
711	struct rtable *rt;
712	unsigned char *sha, *tha;
713	__be32 sip, tip;
714	u16 dev_type = dev->type;
715	int addr_type;
716	struct neighbour *n;
717
718	/* arp_rcv below verifies the ARP header and verifies the device
719	 * is ARP'able.
720	 */
721
722	if (in_dev == NULL)
723		goto out;
724
725	arp = skb->nh.arph;
726
727	switch (dev_type) {
728	default:
729		if (arp->ar_pro != htons(ETH_P_IP) ||
730		    htons(dev_type) != arp->ar_hrd)
731			goto out;
732		break;
733#ifdef CONFIG_NET_ETHERNET
734	case ARPHRD_ETHER:
735#endif
736#ifdef CONFIG_TR
737	case ARPHRD_IEEE802_TR:
738#endif
739#ifdef CONFIG_FDDI
740	case ARPHRD_FDDI:
741#endif
742#ifdef CONFIG_NET_FC
743	case ARPHRD_IEEE802:
744#endif
745#if defined(CONFIG_NET_ETHERNET) || defined(CONFIG_TR) || \
746    defined(CONFIG_FDDI)	 || defined(CONFIG_NET_FC)
747		/*
748		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
749		 * devices, according to RFC 2625) devices will accept ARP
750		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
751		 * This is the case also of FDDI, where the RFC 1390 says that
752		 * FDDI devices should accept ARP hardware of (1) Ethernet,
753		 * however, to be more robust, we'll accept both 1 (Ethernet)
754		 * or 6 (IEEE 802.2)
755		 */
756		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
757		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
758		    arp->ar_pro != htons(ETH_P_IP))
759			goto out;
760		break;
761#endif
762#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
763	case ARPHRD_AX25:
764		if (arp->ar_pro != htons(AX25_P_IP) ||
765		    arp->ar_hrd != htons(ARPHRD_AX25))
766			goto out;
767		break;
768#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
769	case ARPHRD_NETROM:
770		if (arp->ar_pro != htons(AX25_P_IP) ||
771		    arp->ar_hrd != htons(ARPHRD_NETROM))
772			goto out;
773		break;
774#endif
775#endif
776	}
777
778	/* Understand only these message types */
779
780	if (arp->ar_op != htons(ARPOP_REPLY) &&
781	    arp->ar_op != htons(ARPOP_REQUEST))
782		goto out;
783
784/*
785 *	Extract fields
786 */
787	arp_ptr= (unsigned char *)(arp+1);
788	sha	= arp_ptr;
789	arp_ptr += dev->addr_len;
790	memcpy(&sip, arp_ptr, 4);
791	arp_ptr += 4;
792	tha	= arp_ptr;
793	arp_ptr += dev->addr_len;
794	memcpy(&tip, arp_ptr, 4);
795/*
796 *	Check for bad requests for 127.x.x.x and requests for multicast
797 *	addresses.  If this is one such, delete it.
798 */
799	if (LOOPBACK(tip) || MULTICAST(tip))
800		goto out;
801
802/*
803 *     Special case: We must set Frame Relay source Q.922 address
804 */
805	if (dev_type == ARPHRD_DLCI)
806		sha = dev->broadcast;
807
808/*
809 *  Process entry.  The idea here is we want to send a reply if it is a
810 *  request for us or if it is a request for someone else that we hold
811 *  a proxy for.  We want to add an entry to our cache if it is a reply
812 *  to us or if it is a request for our address.
813 *  (The assumption for this last is that if someone is requesting our
814 *  address, they are probably intending to talk to us, so it saves time
815 *  if we cache their address.  Their address is also probably not in
816 *  our cache, since ours is not in their cache.)
817 *
818 *  Putting this another way, we only care about replies if they are to
819 *  us, in which case we add them to the cache.  For requests, we care
820 *  about those for us and those for our proxies.  We reply to both,
821 *  and in the case of requests for us we add the requester to the arp
822 *  cache.
823 */
824
825	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
826	if (sip == 0) {
827		if (arp->ar_op == htons(ARPOP_REQUEST) &&
828		    inet_addr_type(tip) == RTN_LOCAL &&
829		    !arp_ignore(in_dev,dev,sip,tip))
830			arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,dev->dev_addr,dev->dev_addr);
831		goto out;
832	}
833
834	if (arp->ar_op == htons(ARPOP_REQUEST) &&
835	    ip_route_input(skb, tip, sip, 0, dev) == 0) {
836
837		rt = (struct rtable*)skb->dst;
838		addr_type = rt->rt_type;
839
840		if (addr_type == RTN_LOCAL) {
841			n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
842			if (n) {
843				int dont_send = 0;
844
845				if (!dont_send)
846					dont_send |= arp_ignore(in_dev,dev,sip,tip);
847				if (!dont_send && IN_DEV_ARPFILTER(in_dev))
848					dont_send |= arp_filter(sip,tip,dev);
849				if (!dont_send)
850					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
851
852				neigh_release(n);
853			}
854			goto out;
855		} else if (IN_DEV_FORWARD(in_dev)) {
856			if ((rt->rt_flags&RTCF_DNAT) ||
857			    (addr_type == RTN_UNICAST  && rt->u.dst.dev != dev &&
858			     (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {
859				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
860				if (n)
861					neigh_release(n);
862
863				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
864				    skb->pkt_type == PACKET_HOST ||
865				    in_dev->arp_parms->proxy_delay == 0) {
866					arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
867				} else {
868					pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
869					in_dev_put(in_dev);
870					return 0;
871				}
872				goto out;
873			}
874		}
875	}
876
877	/* Update our ARP tables */
878
879	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
880
881	if (ipv4_devconf.arp_accept) {
882		/* Unsolicited ARP is not accepted by default.
883		   It is possible, that this option should be enabled for some
884		   devices (strip is candidate)
885		 */
886		if (n == NULL &&
887		    arp->ar_op == htons(ARPOP_REPLY) &&
888		    inet_addr_type(sip) == RTN_UNICAST)
889			n = __neigh_lookup(&arp_tbl, &sip, dev, -1);
890	}
891
892	if (n) {
893		int state = NUD_REACHABLE;
894		int override;
895
896		/* If several different ARP replies follows back-to-back,
897		   use the FIRST one. It is possible, if several proxy
898		   agents are active. Taking the first reply prevents
899		   arp trashing and chooses the fastest router.
900		 */
901		override = time_after(jiffies, n->updated + n->parms->locktime);
902
903		/* Broadcast replies and request packets
904		   do not assert neighbour reachability.
905		 */
906		if (arp->ar_op != htons(ARPOP_REPLY) ||
907		    skb->pkt_type != PACKET_HOST)
908			state = NUD_STALE;
909		neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
910		neigh_release(n);
911	}
912
913out:
914	if (in_dev)
915		in_dev_put(in_dev);
916	kfree_skb(skb);
917	return 0;
918}
919
920static void parp_redo(struct sk_buff *skb)
921{
922	arp_process(skb);
923}
924
925
926/*
927 *	Receive an arp request from the device layer.
928 */
929
930static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
931		   struct packet_type *pt, struct net_device *orig_dev)
932{
933	struct arphdr *arp;
934
935	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
936	if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
937				 (2 * dev->addr_len) +
938				 (2 * sizeof(u32)))))
939		goto freeskb;
940
941	arp = skb->nh.arph;
942	if (arp->ar_hln != dev->addr_len ||
943	    dev->flags & IFF_NOARP ||
944	    skb->pkt_type == PACKET_OTHERHOST ||
945	    skb->pkt_type == PACKET_LOOPBACK ||
946	    arp->ar_pln != 4)
947		goto freeskb;
948
949	if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
950		goto out_of_mem;
951
952	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
953
954	return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
955
956freeskb:
957	kfree_skb(skb);
958out_of_mem:
959	return 0;
960}
961
962/*
963 *	User level interface (ioctl)
964 */
965
966/*
967 *	Set (create) an ARP cache entry.
968 */
969
970static int arp_req_set(struct arpreq *r, struct net_device * dev)
971{
972	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
973	struct neighbour *neigh;
974	int err;
975
976	if (r->arp_flags&ATF_PUBL) {
977		__be32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
978		if (mask && mask != htonl(0xFFFFFFFF))
979			return -EINVAL;
980		if (!dev && (r->arp_flags & ATF_COM)) {
981			dev = dev_getbyhwaddr(r->arp_ha.sa_family, r->arp_ha.sa_data);
982			if (!dev)
983				return -ENODEV;
984		}
985		if (mask) {
986			if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL)
987				return -ENOBUFS;
988			return 0;
989		}
990		if (dev == NULL) {
991			ipv4_devconf.proxy_arp = 1;
992			return 0;
993		}
994		if (__in_dev_get_rtnl(dev)) {
995			__in_dev_get_rtnl(dev)->cnf.proxy_arp = 1;
996			return 0;
997		}
998		return -ENXIO;
999	}
1000
1001	if (r->arp_flags & ATF_PERM)
1002		r->arp_flags |= ATF_COM;
1003	if (dev == NULL) {
1004		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1005							 .tos = RTO_ONLINK } } };
1006		struct rtable * rt;
1007		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1008			return err;
1009		dev = rt->u.dst.dev;
1010		ip_rt_put(rt);
1011		if (!dev)
1012			return -EINVAL;
1013	}
1014	switch (dev->type) {
1015#ifdef CONFIG_FDDI
1016	case ARPHRD_FDDI:
1017		/*
1018		 * According to RFC 1390, FDDI devices should accept ARP
1019		 * hardware types of 1 (Ethernet).  However, to be more
1020		 * robust, we'll accept hardware types of either 1 (Ethernet)
1021		 * or 6 (IEEE 802.2).
1022		 */
1023		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1024		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1025		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1026			return -EINVAL;
1027		break;
1028#endif
1029	default:
1030		if (r->arp_ha.sa_family != dev->type)
1031			return -EINVAL;
1032		break;
1033	}
1034
1035	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1036	err = PTR_ERR(neigh);
1037	if (!IS_ERR(neigh)) {
1038		unsigned state = NUD_STALE;
1039		if (r->arp_flags & ATF_PERM)
1040			state = NUD_PERMANENT;
1041		err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1042				   r->arp_ha.sa_data : NULL, state,
1043				   NEIGH_UPDATE_F_OVERRIDE|
1044				   NEIGH_UPDATE_F_ADMIN);
1045		neigh_release(neigh);
1046	}
1047	return err;
1048}
1049
1050static unsigned arp_state_to_flags(struct neighbour *neigh)
1051{
1052	unsigned flags = 0;
1053	if (neigh->nud_state&NUD_PERMANENT)
1054		flags = ATF_PERM|ATF_COM;
1055	else if (neigh->nud_state&NUD_VALID)
1056		flags = ATF_COM;
1057	return flags;
1058}
1059
1060/*
1061 *	Get an ARP cache entry.
1062 */
1063
1064static int arp_req_get(struct arpreq *r, struct net_device *dev)
1065{
1066	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1067	struct neighbour *neigh;
1068	int err = -ENXIO;
1069
1070	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1071	if (neigh) {
1072		read_lock_bh(&neigh->lock);
1073		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1074		r->arp_flags = arp_state_to_flags(neigh);
1075		read_unlock_bh(&neigh->lock);
1076		r->arp_ha.sa_family = dev->type;
1077		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1078		neigh_release(neigh);
1079		err = 0;
1080	}
1081	return err;
1082}
1083
1084static int arp_req_delete(struct arpreq *r, struct net_device * dev)
1085{
1086	int err;
1087	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1088	struct neighbour *neigh;
1089
1090	if (r->arp_flags & ATF_PUBL) {
1091		__be32 mask =
1092		       ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1093		if (mask == htonl(0xFFFFFFFF))
1094			return pneigh_delete(&arp_tbl, &ip, dev);
1095		if (mask == 0) {
1096			if (dev == NULL) {
1097				ipv4_devconf.proxy_arp = 0;
1098				return 0;
1099			}
1100			if (__in_dev_get_rtnl(dev)) {
1101				__in_dev_get_rtnl(dev)->cnf.proxy_arp = 0;
1102				return 0;
1103			}
1104			return -ENXIO;
1105		}
1106		return -EINVAL;
1107	}
1108
1109	if (dev == NULL) {
1110		struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1111							 .tos = RTO_ONLINK } } };
1112		struct rtable * rt;
1113		if ((err = ip_route_output_key(&rt, &fl)) != 0)
1114			return err;
1115		dev = rt->u.dst.dev;
1116		ip_rt_put(rt);
1117		if (!dev)
1118			return -EINVAL;
1119	}
1120	err = -ENXIO;
1121	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1122	if (neigh) {
1123		if (neigh->nud_state&~NUD_NOARP)
1124			err = neigh_update(neigh, NULL, NUD_FAILED,
1125					   NEIGH_UPDATE_F_OVERRIDE|
1126					   NEIGH_UPDATE_F_ADMIN);
1127		neigh_release(neigh);
1128	}
1129	return err;
1130}
1131
1132/*
1133 *	Handle an ARP layer I/O control request.
1134 */
1135
1136int arp_ioctl(unsigned int cmd, void __user *arg)
1137{
1138	int err;
1139	struct arpreq r;
1140	struct net_device *dev = NULL;
1141
1142	switch (cmd) {
1143		case SIOCDARP:
1144		case SIOCSARP:
1145			if (!capable(CAP_NET_ADMIN))
1146				return -EPERM;
1147		case SIOCGARP:
1148			err = copy_from_user(&r, arg, sizeof(struct arpreq));
1149			if (err)
1150				return -EFAULT;
1151			break;
1152		default:
1153			return -EINVAL;
1154	}
1155
1156	if (r.arp_pa.sa_family != AF_INET)
1157		return -EPFNOSUPPORT;
1158
1159	if (!(r.arp_flags & ATF_PUBL) &&
1160	    (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1161		return -EINVAL;
1162	if (!(r.arp_flags & ATF_NETMASK))
1163		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1164							   htonl(0xFFFFFFFFUL);
1165	rtnl_lock();
1166	if (r.arp_dev[0]) {
1167		err = -ENODEV;
1168		if ((dev = __dev_get_by_name(r.arp_dev)) == NULL)
1169			goto out;
1170
1171		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1172		if (!r.arp_ha.sa_family)
1173			r.arp_ha.sa_family = dev->type;
1174		err = -EINVAL;
1175		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1176			goto out;
1177	} else if (cmd == SIOCGARP) {
1178		err = -ENODEV;
1179		goto out;
1180	}
1181
1182	switch(cmd) {
1183	case SIOCDARP:
1184	        err = arp_req_delete(&r, dev);
1185		break;
1186	case SIOCSARP:
1187		err = arp_req_set(&r, dev);
1188		break;
1189	case SIOCGARP:
1190		err = arp_req_get(&r, dev);
1191		if (!err && copy_to_user(arg, &r, sizeof(r)))
1192			err = -EFAULT;
1193		break;
1194	}
1195out:
1196	rtnl_unlock();
1197	return err;
1198}
1199
1200static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1201{
1202	struct net_device *dev = ptr;
1203
1204	switch (event) {
1205	case NETDEV_CHANGEADDR:
1206		neigh_changeaddr(&arp_tbl, dev);
1207		rt_cache_flush(0);
1208		break;
1209	default:
1210		break;
1211	}
1212
1213	return NOTIFY_DONE;
1214}
1215
1216static struct notifier_block arp_netdev_notifier = {
1217	.notifier_call = arp_netdev_event,
1218};
1219
1220/* Note, that it is not on notifier chain.
1221   It is necessary, that this routine was called after route cache will be
1222   flushed.
1223 */
1224void arp_ifdown(struct net_device *dev)
1225{
1226	neigh_ifdown(&arp_tbl, dev);
1227}
1228
1229
1230/*
1231 *	Called once on startup.
1232 */
1233
1234static struct packet_type arp_packet_type = {
1235	.type =	__constant_htons(ETH_P_ARP),
1236	.func =	arp_rcv,
1237};
1238
1239static int arp_proc_init(void);
1240
1241void __init arp_init(void)
1242{
1243	neigh_table_init(&arp_tbl);
1244
1245	dev_add_pack(&arp_packet_type);
1246	arp_proc_init();
1247#ifdef CONFIG_SYSCTL
1248	neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1249			      NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1250#endif
1251	register_netdevice_notifier(&arp_netdev_notifier);
1252}
1253
1254#ifdef CONFIG_PROC_FS
1255#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1256
1257/* ------------------------------------------------------------------------ */
1258/*
1259 *	ax25 -> ASCII conversion
1260 */
1261static char *ax2asc2(ax25_address *a, char *buf)
1262{
1263	char c, *s;
1264	int n;
1265
1266	for (n = 0, s = buf; n < 6; n++) {
1267		c = (a->ax25_call[n] >> 1) & 0x7F;
1268
1269		if (c != ' ') *s++ = c;
1270	}
1271
1272	*s++ = '-';
1273
1274	if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1275		*s++ = '1';
1276		n -= 10;
1277	}
1278
1279	*s++ = n + '0';
1280	*s++ = '\0';
1281
1282	if (*buf == '\0' || *buf == '-')
1283	   return "*";
1284
1285	return buf;
1286
1287}
1288#endif /* CONFIG_AX25 */
1289
1290#define HBUFFERLEN 30
1291
1292static void arp_format_neigh_entry(struct seq_file *seq,
1293				   struct neighbour *n)
1294{
1295	char hbuffer[HBUFFERLEN];
1296	const char hexbuf[] = "0123456789ABCDEF";
1297	int k, j;
1298	char tbuf[16];
1299	struct net_device *dev = n->dev;
1300	int hatype = dev->type;
1301
1302	read_lock(&n->lock);
1303	/* Convert hardware address to XX:XX:XX:XX ... form. */
1304#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1305	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1306		ax2asc2((ax25_address *)n->ha, hbuffer);
1307	else {
1308#endif
1309	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1310		hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1311		hbuffer[k++] = hexbuf[n->ha[j] & 15];
1312		hbuffer[k++] = ':';
1313	}
1314	hbuffer[--k] = 0;
1315#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1316	}
1317#endif
1318	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1319	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1320		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1321	read_unlock(&n->lock);
1322}
1323
1324static void arp_format_pneigh_entry(struct seq_file *seq,
1325				    struct pneigh_entry *n)
1326{
1327	struct net_device *dev = n->dev;
1328	int hatype = dev ? dev->type : 0;
1329	char tbuf[16];
1330
1331	sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1332	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1333		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1334		   dev ? dev->name : "*");
1335}
1336
1337static int arp_seq_show(struct seq_file *seq, void *v)
1338{
1339	if (v == SEQ_START_TOKEN) {
1340		seq_puts(seq, "IP address       HW type     Flags       "
1341			      "HW address            Mask     Device\n");
1342	} else {
1343		struct neigh_seq_state *state = seq->private;
1344
1345		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1346			arp_format_pneigh_entry(seq, v);
1347		else
1348			arp_format_neigh_entry(seq, v);
1349	}
1350
1351	return 0;
1352}
1353
1354static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1355{
1356	/* Don't want to confuse "arp -a" w/ magic entries,
1357	 * so we tell the generic iterator to skip NUD_NOARP.
1358	 */
1359	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1360}
1361
1362/* ------------------------------------------------------------------------ */
1363
1364static struct seq_operations arp_seq_ops = {
1365	.start  = arp_seq_start,
1366	.next   = neigh_seq_next,
1367	.stop   = neigh_seq_stop,
1368	.show   = arp_seq_show,
1369};
1370
1371static int arp_seq_open(struct inode *inode, struct file *file)
1372{
1373	struct seq_file *seq;
1374	int rc = -ENOMEM;
1375	struct neigh_seq_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
1376
1377	if (!s)
1378		goto out;
1379
1380	rc = seq_open(file, &arp_seq_ops);
1381	if (rc)
1382		goto out_kfree;
1383
1384	seq	     = file->private_data;
1385	seq->private = s;
1386out:
1387	return rc;
1388out_kfree:
1389	kfree(s);
1390	goto out;
1391}
1392
1393static struct file_operations arp_seq_fops = {
1394	.owner		= THIS_MODULE,
1395	.open           = arp_seq_open,
1396	.read           = seq_read,
1397	.llseek         = seq_lseek,
1398	.release	= seq_release_private,
1399};
1400
1401static int __init arp_proc_init(void)
1402{
1403	if (!proc_net_fops_create("arp", S_IRUGO, &arp_seq_fops))
1404		return -ENOMEM;
1405	return 0;
1406}
1407
1408#else /* CONFIG_PROC_FS */
1409
1410static int __init arp_proc_init(void)
1411{
1412	return 0;
1413}
1414
1415#endif /* CONFIG_PROC_FS */
1416
1417EXPORT_SYMBOL(arp_broken_ops);
1418EXPORT_SYMBOL(arp_find);
1419EXPORT_SYMBOL(arp_create);
1420EXPORT_SYMBOL(arp_xmit);
1421EXPORT_SYMBOL(arp_send);
1422EXPORT_SYMBOL(arp_tbl);
1423
1424#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1425EXPORT_SYMBOL(clip_tbl_hook);
1426#endif
1427