arp.c revision f8126f1d5136be1ca1a3536d43ad7a710b5620f8
1/* linux/net/ipv4/arp.c
2 *
3 * Copyright (C) 1994 by Florian  La Roche
4 *
5 * This module implements the Address Resolution Protocol ARP (RFC 826),
6 * which is used to convert IP addresses (or in the future maybe other
7 * high-level addresses) into a low-level hardware address (like an Ethernet
8 * address).
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * Fixes:
16 *		Alan Cox	:	Removed the Ethernet assumptions in
17 *					Florian's code
18 *		Alan Cox	:	Fixed some small errors in the ARP
19 *					logic
20 *		Alan Cox	:	Allow >4K in /proc
21 *		Alan Cox	:	Make ARP add its own protocol entry
22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
24 *		Alan Cox	:	Drop data when a device is downed.
25 *		Alan Cox	:	Use init_timer().
26 *		Alan Cox	:	Double lock fixes.
27 *		Martin Seine	:	Move the arphdr structure
28 *					to if_arp.h for compatibility.
29 *					with BSD based programs.
30 *		Andrew Tridgell :       Added ARP netmask code and
31 *					re-arranged proxy handling.
32 *		Alan Cox	:	Changed to use notifiers.
33 *		Niibe Yutaka	:	Reply for this device or proxies only.
34 *		Alan Cox	:	Don't proxy across hardware types!
35 *		Jonathan Naylor :	Added support for NET/ROM.
36 *		Mike Shaver     :       RFC1122 checks.
37 *		Jonathan Naylor :	Only lookup the hardware address for
38 *					the correct hardware type.
39 *		Germano Caronni	:	Assorted subtle races.
40 *		Craig Schlenter :	Don't modify permanent entry
41 *					during arp_rcv.
42 *		Russ Nelson	:	Tidied up a few bits.
43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
44 *					eg intelligent arp probing and
45 *					generation
46 *					of host down events.
47 *		Alan Cox	:	Missing unlock in device events.
48 *		Eckes		:	ARP ioctl control errors.
49 *		Alexey Kuznetsov:	Arp free fix.
50 *		Manuel Rodriguez:	Gratuitous ARP.
51 *              Jonathan Layes  :       Added arpd support through kerneld
52 *                                      message queue (960314)
53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
54 *		Mike McLagan    :	Routing by source
55 *		Stuart Cheshire	:	Metricom and grat arp fixes
56 *					*** FOR 2.1 clean this up ***
57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
59 *					folded into the mainstream FDDI code.
60 *					Ack spit, Linus how did you allow that
61 *					one in...
62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
63 *					clean up the APFDDI & gen. FDDI bits.
64 *		Alexey Kuznetsov:	new arp state machine;
65 *					now it is in net/core/neighbour.c.
66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
68 *		Shmulik Hen:		Split arp_send to arp_create and
69 *					arp_xmit so intermediate drivers like
70 *					bonding can change the skb before
71 *					sending (e.g. insert 8021q tag).
72 *		Harald Welte	:	convert to make use of jenkins hash
73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
74 */
75
76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
77
78#include <linux/module.h>
79#include <linux/types.h>
80#include <linux/string.h>
81#include <linux/kernel.h>
82#include <linux/capability.h>
83#include <linux/socket.h>
84#include <linux/sockios.h>
85#include <linux/errno.h>
86#include <linux/in.h>
87#include <linux/mm.h>
88#include <linux/inet.h>
89#include <linux/inetdevice.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/fddidevice.h>
93#include <linux/if_arp.h>
94#include <linux/skbuff.h>
95#include <linux/proc_fs.h>
96#include <linux/seq_file.h>
97#include <linux/stat.h>
98#include <linux/init.h>
99#include <linux/net.h>
100#include <linux/rcupdate.h>
101#include <linux/slab.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/net_namespace.h>
107#include <net/ip.h>
108#include <net/icmp.h>
109#include <net/route.h>
110#include <net/protocol.h>
111#include <net/tcp.h>
112#include <net/sock.h>
113#include <net/arp.h>
114#include <net/ax25.h>
115#include <net/netrom.h>
116
117#include <linux/uaccess.h>
118
119#include <linux/netfilter_arp.h>
120
121/*
122 *	Interface to generic neighbour cache.
123 */
124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
125static int arp_constructor(struct neighbour *neigh);
126static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
127static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
128static void parp_redo(struct sk_buff *skb);
129
130static const struct neigh_ops arp_generic_ops = {
131	.family =		AF_INET,
132	.solicit =		arp_solicit,
133	.error_report =		arp_error_report,
134	.output =		neigh_resolve_output,
135	.connected_output =	neigh_connected_output,
136};
137
138static const struct neigh_ops arp_hh_ops = {
139	.family =		AF_INET,
140	.solicit =		arp_solicit,
141	.error_report =		arp_error_report,
142	.output =		neigh_resolve_output,
143	.connected_output =	neigh_resolve_output,
144};
145
146static const struct neigh_ops arp_direct_ops = {
147	.family =		AF_INET,
148	.output =		neigh_direct_output,
149	.connected_output =	neigh_direct_output,
150};
151
152static const struct neigh_ops arp_broken_ops = {
153	.family =		AF_INET,
154	.solicit =		arp_solicit,
155	.error_report =		arp_error_report,
156	.output =		neigh_compat_output,
157	.connected_output =	neigh_compat_output,
158};
159
160struct neigh_table arp_tbl = {
161	.family		= AF_INET,
162	.key_len	= 4,
163	.hash		= arp_hash,
164	.constructor	= arp_constructor,
165	.proxy_redo	= parp_redo,
166	.id		= "arp_cache",
167	.parms		= {
168		.tbl			= &arp_tbl,
169		.base_reachable_time	= 30 * HZ,
170		.retrans_time		= 1 * HZ,
171		.gc_staletime		= 60 * HZ,
172		.reachable_time		= 30 * HZ,
173		.delay_probe_time	= 5 * HZ,
174		.queue_len_bytes	= 64*1024,
175		.ucast_probes		= 3,
176		.mcast_probes		= 3,
177		.anycast_delay		= 1 * HZ,
178		.proxy_delay		= (8 * HZ) / 10,
179		.proxy_qlen		= 64,
180		.locktime		= 1 * HZ,
181	},
182	.gc_interval	= 30 * HZ,
183	.gc_thresh1	= 128,
184	.gc_thresh2	= 512,
185	.gc_thresh3	= 1024,
186};
187EXPORT_SYMBOL(arp_tbl);
188
189int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
190{
191	switch (dev->type) {
192	case ARPHRD_ETHER:
193	case ARPHRD_FDDI:
194	case ARPHRD_IEEE802:
195		ip_eth_mc_map(addr, haddr);
196		return 0;
197	case ARPHRD_INFINIBAND:
198		ip_ib_mc_map(addr, dev->broadcast, haddr);
199		return 0;
200	case ARPHRD_IPGRE:
201		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
202		return 0;
203	default:
204		if (dir) {
205			memcpy(haddr, dev->broadcast, dev->addr_len);
206			return 0;
207		}
208	}
209	return -EINVAL;
210}
211
212
213static u32 arp_hash(const void *pkey,
214		    const struct net_device *dev,
215		    __u32 *hash_rnd)
216{
217	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
218}
219
220static int arp_constructor(struct neighbour *neigh)
221{
222	__be32 addr = *(__be32 *)neigh->primary_key;
223	struct net_device *dev = neigh->dev;
224	struct in_device *in_dev;
225	struct neigh_parms *parms;
226
227	rcu_read_lock();
228	in_dev = __in_dev_get_rcu(dev);
229	if (in_dev == NULL) {
230		rcu_read_unlock();
231		return -EINVAL;
232	}
233
234	neigh->type = inet_addr_type(dev_net(dev), addr);
235
236	parms = in_dev->arp_parms;
237	__neigh_parms_put(neigh->parms);
238	neigh->parms = neigh_parms_clone(parms);
239	rcu_read_unlock();
240
241	if (!dev->header_ops) {
242		neigh->nud_state = NUD_NOARP;
243		neigh->ops = &arp_direct_ops;
244		neigh->output = neigh_direct_output;
245	} else {
246		/* Good devices (checked by reading texts, but only Ethernet is
247		   tested)
248
249		   ARPHRD_ETHER: (ethernet, apfddi)
250		   ARPHRD_FDDI: (fddi)
251		   ARPHRD_IEEE802: (tr)
252		   ARPHRD_METRICOM: (strip)
253		   ARPHRD_ARCNET:
254		   etc. etc. etc.
255
256		   ARPHRD_IPDDP will also work, if author repairs it.
257		   I did not it, because this driver does not work even
258		   in old paradigm.
259		 */
260
261#if 1
262		/* So... these "amateur" devices are hopeless.
263		   The only thing, that I can say now:
264		   It is very sad that we need to keep ugly obsolete
265		   code to make them happy.
266
267		   They should be moved to more reasonable state, now
268		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
269		   Besides that, they are sort of out of date
270		   (a lot of redundant clones/copies, useless in 2.1),
271		   I wonder why people believe that they work.
272		 */
273		switch (dev->type) {
274		default:
275			break;
276		case ARPHRD_ROSE:
277#if IS_ENABLED(CONFIG_AX25)
278		case ARPHRD_AX25:
279#if IS_ENABLED(CONFIG_NETROM)
280		case ARPHRD_NETROM:
281#endif
282			neigh->ops = &arp_broken_ops;
283			neigh->output = neigh->ops->output;
284			return 0;
285#else
286			break;
287#endif
288		}
289#endif
290		if (neigh->type == RTN_MULTICAST) {
291			neigh->nud_state = NUD_NOARP;
292			arp_mc_map(addr, neigh->ha, dev, 1);
293		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
294			neigh->nud_state = NUD_NOARP;
295			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
296		} else if (neigh->type == RTN_BROADCAST ||
297			   (dev->flags & IFF_POINTOPOINT)) {
298			neigh->nud_state = NUD_NOARP;
299			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
300		}
301
302		if (dev->header_ops->cache)
303			neigh->ops = &arp_hh_ops;
304		else
305			neigh->ops = &arp_generic_ops;
306
307		if (neigh->nud_state & NUD_VALID)
308			neigh->output = neigh->ops->connected_output;
309		else
310			neigh->output = neigh->ops->output;
311	}
312	return 0;
313}
314
315static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
316{
317	dst_link_failure(skb);
318	kfree_skb(skb);
319}
320
321static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
322{
323	__be32 saddr = 0;
324	u8  *dst_ha = NULL;
325	struct net_device *dev = neigh->dev;
326	__be32 target = *(__be32 *)neigh->primary_key;
327	int probes = atomic_read(&neigh->probes);
328	struct in_device *in_dev;
329
330	rcu_read_lock();
331	in_dev = __in_dev_get_rcu(dev);
332	if (!in_dev) {
333		rcu_read_unlock();
334		return;
335	}
336	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
337	default:
338	case 0:		/* By default announce any local IP */
339		if (skb && inet_addr_type(dev_net(dev),
340					  ip_hdr(skb)->saddr) == RTN_LOCAL)
341			saddr = ip_hdr(skb)->saddr;
342		break;
343	case 1:		/* Restrict announcements of saddr in same subnet */
344		if (!skb)
345			break;
346		saddr = ip_hdr(skb)->saddr;
347		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
348			/* saddr should be known to target */
349			if (inet_addr_onlink(in_dev, target, saddr))
350				break;
351		}
352		saddr = 0;
353		break;
354	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
355		break;
356	}
357	rcu_read_unlock();
358
359	if (!saddr)
360		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
361
362	probes -= neigh->parms->ucast_probes;
363	if (probes < 0) {
364		if (!(neigh->nud_state & NUD_VALID))
365			pr_debug("trying to ucast probe in NUD_INVALID\n");
366		dst_ha = neigh->ha;
367		read_lock_bh(&neigh->lock);
368	} else {
369		probes -= neigh->parms->app_probes;
370		if (probes < 0) {
371#ifdef CONFIG_ARPD
372			neigh_app_ns(neigh);
373#endif
374			return;
375		}
376	}
377
378	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
379		 dst_ha, dev->dev_addr, NULL);
380	if (dst_ha)
381		read_unlock_bh(&neigh->lock);
382}
383
384static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
385{
386	int scope;
387
388	switch (IN_DEV_ARP_IGNORE(in_dev)) {
389	case 0:	/* Reply, the tip is already validated */
390		return 0;
391	case 1:	/* Reply only if tip is configured on the incoming interface */
392		sip = 0;
393		scope = RT_SCOPE_HOST;
394		break;
395	case 2:	/*
396		 * Reply only if tip is configured on the incoming interface
397		 * and is in same subnet as sip
398		 */
399		scope = RT_SCOPE_HOST;
400		break;
401	case 3:	/* Do not reply for scope host addresses */
402		sip = 0;
403		scope = RT_SCOPE_LINK;
404		break;
405	case 4:	/* Reserved */
406	case 5:
407	case 6:
408	case 7:
409		return 0;
410	case 8:	/* Do not reply */
411		return 1;
412	default:
413		return 0;
414	}
415	return !inet_confirm_addr(in_dev, sip, tip, scope);
416}
417
418static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
419{
420	struct rtable *rt;
421	int flag = 0;
422	/*unsigned long now; */
423	struct net *net = dev_net(dev);
424
425	rt = ip_route_output(net, sip, tip, 0, 0);
426	if (IS_ERR(rt))
427		return 1;
428	if (rt->dst.dev != dev) {
429		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
430		flag = 1;
431	}
432	ip_rt_put(rt);
433	return flag;
434}
435
436/* OBSOLETE FUNCTIONS */
437
438/*
439 *	Find an arp mapping in the cache. If not found, post a request.
440 *
441 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
442 *	even if it exists. It is supposed that skb->dev was mangled
443 *	by a virtual device (eql, shaper). Nobody but broken devices
444 *	is allowed to use this function, it is scheduled to be removed. --ANK
445 */
446
447static int arp_set_predefined(int addr_hint, unsigned char *haddr,
448			      __be32 paddr, struct net_device *dev)
449{
450	switch (addr_hint) {
451	case RTN_LOCAL:
452		pr_debug("arp called for own IP address\n");
453		memcpy(haddr, dev->dev_addr, dev->addr_len);
454		return 1;
455	case RTN_MULTICAST:
456		arp_mc_map(paddr, haddr, dev, 1);
457		return 1;
458	case RTN_BROADCAST:
459		memcpy(haddr, dev->broadcast, dev->addr_len);
460		return 1;
461	}
462	return 0;
463}
464
465
466int arp_find(unsigned char *haddr, struct sk_buff *skb)
467{
468	struct net_device *dev = skb->dev;
469	__be32 paddr;
470	struct neighbour *n;
471
472	if (!skb_dst(skb)) {
473		pr_debug("arp_find is called with dst==NULL\n");
474		kfree_skb(skb);
475		return 1;
476	}
477
478	paddr = rt_nexthop(skb_rtable(skb), ip_hdr(skb)->daddr);
479	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
480			       paddr, dev))
481		return 0;
482
483	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
484
485	if (n) {
486		n->used = jiffies;
487		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
488			neigh_ha_snapshot(haddr, n, dev);
489			neigh_release(n);
490			return 0;
491		}
492		neigh_release(n);
493	} else
494		kfree_skb(skb);
495	return 1;
496}
497EXPORT_SYMBOL(arp_find);
498
499/* END OF OBSOLETE FUNCTIONS */
500
501/*
502 * Check if we can use proxy ARP for this path
503 */
504static inline int arp_fwd_proxy(struct in_device *in_dev,
505				struct net_device *dev,	struct rtable *rt)
506{
507	struct in_device *out_dev;
508	int imi, omi = -1;
509
510	if (rt->dst.dev == dev)
511		return 0;
512
513	if (!IN_DEV_PROXY_ARP(in_dev))
514		return 0;
515	imi = IN_DEV_MEDIUM_ID(in_dev);
516	if (imi == 0)
517		return 1;
518	if (imi == -1)
519		return 0;
520
521	/* place to check for proxy_arp for routes */
522
523	out_dev = __in_dev_get_rcu(rt->dst.dev);
524	if (out_dev)
525		omi = IN_DEV_MEDIUM_ID(out_dev);
526
527	return omi != imi && omi != -1;
528}
529
530/*
531 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
532 *
533 * RFC3069 supports proxy arp replies back to the same interface.  This
534 * is done to support (ethernet) switch features, like RFC 3069, where
535 * the individual ports are not allowed to communicate with each
536 * other, BUT they are allowed to talk to the upstream router.  As
537 * described in RFC 3069, it is possible to allow these hosts to
538 * communicate through the upstream router, by proxy_arp'ing.
539 *
540 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
541 *
542 *  This technology is known by different names:
543 *    In RFC 3069 it is called VLAN Aggregation.
544 *    Cisco and Allied Telesyn call it Private VLAN.
545 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
546 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
547 *
548 */
549static inline int arp_fwd_pvlan(struct in_device *in_dev,
550				struct net_device *dev,	struct rtable *rt,
551				__be32 sip, __be32 tip)
552{
553	/* Private VLAN is only concerned about the same ethernet segment */
554	if (rt->dst.dev != dev)
555		return 0;
556
557	/* Don't reply on self probes (often done by windowz boxes)*/
558	if (sip == tip)
559		return 0;
560
561	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
562		return 1;
563	else
564		return 0;
565}
566
567/*
568 *	Interface to link layer: send routine and receive handler.
569 */
570
571/*
572 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
573 *	message.
574 */
575struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
576			   struct net_device *dev, __be32 src_ip,
577			   const unsigned char *dest_hw,
578			   const unsigned char *src_hw,
579			   const unsigned char *target_hw)
580{
581	struct sk_buff *skb;
582	struct arphdr *arp;
583	unsigned char *arp_ptr;
584	int hlen = LL_RESERVED_SPACE(dev);
585	int tlen = dev->needed_tailroom;
586
587	/*
588	 *	Allocate a buffer
589	 */
590
591	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
592	if (skb == NULL)
593		return NULL;
594
595	skb_reserve(skb, hlen);
596	skb_reset_network_header(skb);
597	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
598	skb->dev = dev;
599	skb->protocol = htons(ETH_P_ARP);
600	if (src_hw == NULL)
601		src_hw = dev->dev_addr;
602	if (dest_hw == NULL)
603		dest_hw = dev->broadcast;
604
605	/*
606	 *	Fill the device header for the ARP frame
607	 */
608	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
609		goto out;
610
611	/*
612	 * Fill out the arp protocol part.
613	 *
614	 * The arp hardware type should match the device type, except for FDDI,
615	 * which (according to RFC 1390) should always equal 1 (Ethernet).
616	 */
617	/*
618	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
619	 *	DIX code for the protocol. Make these device structure fields.
620	 */
621	switch (dev->type) {
622	default:
623		arp->ar_hrd = htons(dev->type);
624		arp->ar_pro = htons(ETH_P_IP);
625		break;
626
627#if IS_ENABLED(CONFIG_AX25)
628	case ARPHRD_AX25:
629		arp->ar_hrd = htons(ARPHRD_AX25);
630		arp->ar_pro = htons(AX25_P_IP);
631		break;
632
633#if IS_ENABLED(CONFIG_NETROM)
634	case ARPHRD_NETROM:
635		arp->ar_hrd = htons(ARPHRD_NETROM);
636		arp->ar_pro = htons(AX25_P_IP);
637		break;
638#endif
639#endif
640
641#if IS_ENABLED(CONFIG_FDDI)
642	case ARPHRD_FDDI:
643		arp->ar_hrd = htons(ARPHRD_ETHER);
644		arp->ar_pro = htons(ETH_P_IP);
645		break;
646#endif
647	}
648
649	arp->ar_hln = dev->addr_len;
650	arp->ar_pln = 4;
651	arp->ar_op = htons(type);
652
653	arp_ptr = (unsigned char *)(arp + 1);
654
655	memcpy(arp_ptr, src_hw, dev->addr_len);
656	arp_ptr += dev->addr_len;
657	memcpy(arp_ptr, &src_ip, 4);
658	arp_ptr += 4;
659	if (target_hw != NULL)
660		memcpy(arp_ptr, target_hw, dev->addr_len);
661	else
662		memset(arp_ptr, 0, dev->addr_len);
663	arp_ptr += dev->addr_len;
664	memcpy(arp_ptr, &dest_ip, 4);
665
666	return skb;
667
668out:
669	kfree_skb(skb);
670	return NULL;
671}
672EXPORT_SYMBOL(arp_create);
673
674/*
675 *	Send an arp packet.
676 */
677void arp_xmit(struct sk_buff *skb)
678{
679	/* Send it off, maybe filter it using firewalling first.  */
680	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
681}
682EXPORT_SYMBOL(arp_xmit);
683
684/*
685 *	Create and send an arp packet.
686 */
687void arp_send(int type, int ptype, __be32 dest_ip,
688	      struct net_device *dev, __be32 src_ip,
689	      const unsigned char *dest_hw, const unsigned char *src_hw,
690	      const unsigned char *target_hw)
691{
692	struct sk_buff *skb;
693
694	/*
695	 *	No arp on this interface.
696	 */
697
698	if (dev->flags&IFF_NOARP)
699		return;
700
701	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
702			 dest_hw, src_hw, target_hw);
703	if (skb == NULL)
704		return;
705
706	arp_xmit(skb);
707}
708EXPORT_SYMBOL(arp_send);
709
710/*
711 *	Process an arp request.
712 */
713
714static int arp_process(struct sk_buff *skb)
715{
716	struct net_device *dev = skb->dev;
717	struct in_device *in_dev = __in_dev_get_rcu(dev);
718	struct arphdr *arp;
719	unsigned char *arp_ptr;
720	struct rtable *rt;
721	unsigned char *sha;
722	__be32 sip, tip;
723	u16 dev_type = dev->type;
724	int addr_type;
725	struct neighbour *n;
726	struct net *net = dev_net(dev);
727
728	/* arp_rcv below verifies the ARP header and verifies the device
729	 * is ARP'able.
730	 */
731
732	if (in_dev == NULL)
733		goto out;
734
735	arp = arp_hdr(skb);
736
737	switch (dev_type) {
738	default:
739		if (arp->ar_pro != htons(ETH_P_IP) ||
740		    htons(dev_type) != arp->ar_hrd)
741			goto out;
742		break;
743	case ARPHRD_ETHER:
744	case ARPHRD_FDDI:
745	case ARPHRD_IEEE802:
746		/*
747		 * ETHERNET, and Fibre Channel (which are IEEE 802
748		 * devices, according to RFC 2625) devices will accept ARP
749		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
750		 * This is the case also of FDDI, where the RFC 1390 says that
751		 * FDDI devices should accept ARP hardware of (1) Ethernet,
752		 * however, to be more robust, we'll accept both 1 (Ethernet)
753		 * or 6 (IEEE 802.2)
754		 */
755		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
756		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
757		    arp->ar_pro != htons(ETH_P_IP))
758			goto out;
759		break;
760	case ARPHRD_AX25:
761		if (arp->ar_pro != htons(AX25_P_IP) ||
762		    arp->ar_hrd != htons(ARPHRD_AX25))
763			goto out;
764		break;
765	case ARPHRD_NETROM:
766		if (arp->ar_pro != htons(AX25_P_IP) ||
767		    arp->ar_hrd != htons(ARPHRD_NETROM))
768			goto out;
769		break;
770	}
771
772	/* Understand only these message types */
773
774	if (arp->ar_op != htons(ARPOP_REPLY) &&
775	    arp->ar_op != htons(ARPOP_REQUEST))
776		goto out;
777
778/*
779 *	Extract fields
780 */
781	arp_ptr = (unsigned char *)(arp + 1);
782	sha	= arp_ptr;
783	arp_ptr += dev->addr_len;
784	memcpy(&sip, arp_ptr, 4);
785	arp_ptr += 4;
786	arp_ptr += dev->addr_len;
787	memcpy(&tip, arp_ptr, 4);
788/*
789 *	Check for bad requests for 127.x.x.x and requests for multicast
790 *	addresses.  If this is one such, delete it.
791 */
792	if (ipv4_is_multicast(tip) ||
793	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
794		goto out;
795
796/*
797 *     Special case: We must set Frame Relay source Q.922 address
798 */
799	if (dev_type == ARPHRD_DLCI)
800		sha = dev->broadcast;
801
802/*
803 *  Process entry.  The idea here is we want to send a reply if it is a
804 *  request for us or if it is a request for someone else that we hold
805 *  a proxy for.  We want to add an entry to our cache if it is a reply
806 *  to us or if it is a request for our address.
807 *  (The assumption for this last is that if someone is requesting our
808 *  address, they are probably intending to talk to us, so it saves time
809 *  if we cache their address.  Their address is also probably not in
810 *  our cache, since ours is not in their cache.)
811 *
812 *  Putting this another way, we only care about replies if they are to
813 *  us, in which case we add them to the cache.  For requests, we care
814 *  about those for us and those for our proxies.  We reply to both,
815 *  and in the case of requests for us we add the requester to the arp
816 *  cache.
817 */
818
819	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
820	if (sip == 0) {
821		if (arp->ar_op == htons(ARPOP_REQUEST) &&
822		    inet_addr_type(net, tip) == RTN_LOCAL &&
823		    !arp_ignore(in_dev, sip, tip))
824			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
825				 dev->dev_addr, sha);
826		goto out;
827	}
828
829	if (arp->ar_op == htons(ARPOP_REQUEST) &&
830	    ip_route_input(skb, tip, sip, 0, dev) == 0) {
831
832		rt = skb_rtable(skb);
833		addr_type = rt->rt_type;
834
835		if (addr_type == RTN_LOCAL) {
836			int dont_send;
837
838			dont_send = arp_ignore(in_dev, sip, tip);
839			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
840				dont_send = arp_filter(sip, tip, dev);
841			if (!dont_send) {
842				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
843				if (n) {
844					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
845						 dev, tip, sha, dev->dev_addr,
846						 sha);
847					neigh_release(n);
848				}
849			}
850			goto out;
851		} else if (IN_DEV_FORWARD(in_dev)) {
852			if (addr_type == RTN_UNICAST  &&
853			    (arp_fwd_proxy(in_dev, dev, rt) ||
854			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
855			     (rt->dst.dev != dev &&
856			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
858				if (n)
859					neigh_release(n);
860
861				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
862				    skb->pkt_type == PACKET_HOST ||
863				    in_dev->arp_parms->proxy_delay == 0) {
864					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
865						 dev, tip, sha, dev->dev_addr,
866						 sha);
867				} else {
868					pneigh_enqueue(&arp_tbl,
869						       in_dev->arp_parms, skb);
870					return 0;
871				}
872				goto out;
873			}
874		}
875	}
876
877	/* Update our ARP tables */
878
879	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
880
881	if (IN_DEV_ARP_ACCEPT(in_dev)) {
882		/* Unsolicited ARP is not accepted by default.
883		   It is possible, that this option should be enabled for some
884		   devices (strip is candidate)
885		 */
886		if (n == NULL &&
887		    (arp->ar_op == htons(ARPOP_REPLY) ||
888		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
889		    inet_addr_type(net, sip) == RTN_UNICAST)
890			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
891	}
892
893	if (n) {
894		int state = NUD_REACHABLE;
895		int override;
896
897		/* If several different ARP replies follows back-to-back,
898		   use the FIRST one. It is possible, if several proxy
899		   agents are active. Taking the first reply prevents
900		   arp trashing and chooses the fastest router.
901		 */
902		override = time_after(jiffies, n->updated + n->parms->locktime);
903
904		/* Broadcast replies and request packets
905		   do not assert neighbour reachability.
906		 */
907		if (arp->ar_op != htons(ARPOP_REPLY) ||
908		    skb->pkt_type != PACKET_HOST)
909			state = NUD_STALE;
910		neigh_update(n, sha, state,
911			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
912		neigh_release(n);
913	}
914
915out:
916	consume_skb(skb);
917	return 0;
918}
919
920static void parp_redo(struct sk_buff *skb)
921{
922	arp_process(skb);
923}
924
925
926/*
927 *	Receive an arp request from the device layer.
928 */
929
930static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
931		   struct packet_type *pt, struct net_device *orig_dev)
932{
933	struct arphdr *arp;
934
935	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
936	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
937		goto freeskb;
938
939	arp = arp_hdr(skb);
940	if (arp->ar_hln != dev->addr_len ||
941	    dev->flags & IFF_NOARP ||
942	    skb->pkt_type == PACKET_OTHERHOST ||
943	    skb->pkt_type == PACKET_LOOPBACK ||
944	    arp->ar_pln != 4)
945		goto freeskb;
946
947	skb = skb_share_check(skb, GFP_ATOMIC);
948	if (skb == NULL)
949		goto out_of_mem;
950
951	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
952
953	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
954
955freeskb:
956	kfree_skb(skb);
957out_of_mem:
958	return 0;
959}
960
961/*
962 *	User level interface (ioctl)
963 */
964
965/*
966 *	Set (create) an ARP cache entry.
967 */
968
969static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
970{
971	if (dev == NULL) {
972		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
973		return 0;
974	}
975	if (__in_dev_get_rtnl(dev)) {
976		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
977		return 0;
978	}
979	return -ENXIO;
980}
981
982static int arp_req_set_public(struct net *net, struct arpreq *r,
983		struct net_device *dev)
984{
985	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
986	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
987
988	if (mask && mask != htonl(0xFFFFFFFF))
989		return -EINVAL;
990	if (!dev && (r->arp_flags & ATF_COM)) {
991		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
992				      r->arp_ha.sa_data);
993		if (!dev)
994			return -ENODEV;
995	}
996	if (mask) {
997		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
998			return -ENOBUFS;
999		return 0;
1000	}
1001
1002	return arp_req_set_proxy(net, dev, 1);
1003}
1004
1005static int arp_req_set(struct net *net, struct arpreq *r,
1006		       struct net_device *dev)
1007{
1008	__be32 ip;
1009	struct neighbour *neigh;
1010	int err;
1011
1012	if (r->arp_flags & ATF_PUBL)
1013		return arp_req_set_public(net, r, dev);
1014
1015	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1016	if (r->arp_flags & ATF_PERM)
1017		r->arp_flags |= ATF_COM;
1018	if (dev == NULL) {
1019		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1020
1021		if (IS_ERR(rt))
1022			return PTR_ERR(rt);
1023		dev = rt->dst.dev;
1024		ip_rt_put(rt);
1025		if (!dev)
1026			return -EINVAL;
1027	}
1028	switch (dev->type) {
1029#if IS_ENABLED(CONFIG_FDDI)
1030	case ARPHRD_FDDI:
1031		/*
1032		 * According to RFC 1390, FDDI devices should accept ARP
1033		 * hardware types of 1 (Ethernet).  However, to be more
1034		 * robust, we'll accept hardware types of either 1 (Ethernet)
1035		 * or 6 (IEEE 802.2).
1036		 */
1037		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1038		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1039		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1040			return -EINVAL;
1041		break;
1042#endif
1043	default:
1044		if (r->arp_ha.sa_family != dev->type)
1045			return -EINVAL;
1046		break;
1047	}
1048
1049	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1050	err = PTR_ERR(neigh);
1051	if (!IS_ERR(neigh)) {
1052		unsigned int state = NUD_STALE;
1053		if (r->arp_flags & ATF_PERM)
1054			state = NUD_PERMANENT;
1055		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1056				   r->arp_ha.sa_data : NULL, state,
1057				   NEIGH_UPDATE_F_OVERRIDE |
1058				   NEIGH_UPDATE_F_ADMIN);
1059		neigh_release(neigh);
1060	}
1061	return err;
1062}
1063
1064static unsigned int arp_state_to_flags(struct neighbour *neigh)
1065{
1066	if (neigh->nud_state&NUD_PERMANENT)
1067		return ATF_PERM | ATF_COM;
1068	else if (neigh->nud_state&NUD_VALID)
1069		return ATF_COM;
1070	else
1071		return 0;
1072}
1073
1074/*
1075 *	Get an ARP cache entry.
1076 */
1077
1078static int arp_req_get(struct arpreq *r, struct net_device *dev)
1079{
1080	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1081	struct neighbour *neigh;
1082	int err = -ENXIO;
1083
1084	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1085	if (neigh) {
1086		read_lock_bh(&neigh->lock);
1087		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1088		r->arp_flags = arp_state_to_flags(neigh);
1089		read_unlock_bh(&neigh->lock);
1090		r->arp_ha.sa_family = dev->type;
1091		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1092		neigh_release(neigh);
1093		err = 0;
1094	}
1095	return err;
1096}
1097
1098int arp_invalidate(struct net_device *dev, __be32 ip)
1099{
1100	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1101	int err = -ENXIO;
1102
1103	if (neigh) {
1104		if (neigh->nud_state & ~NUD_NOARP)
1105			err = neigh_update(neigh, NULL, NUD_FAILED,
1106					   NEIGH_UPDATE_F_OVERRIDE|
1107					   NEIGH_UPDATE_F_ADMIN);
1108		neigh_release(neigh);
1109	}
1110
1111	return err;
1112}
1113EXPORT_SYMBOL(arp_invalidate);
1114
1115static int arp_req_delete_public(struct net *net, struct arpreq *r,
1116		struct net_device *dev)
1117{
1118	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1119	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1120
1121	if (mask == htonl(0xFFFFFFFF))
1122		return pneigh_delete(&arp_tbl, net, &ip, dev);
1123
1124	if (mask)
1125		return -EINVAL;
1126
1127	return arp_req_set_proxy(net, dev, 0);
1128}
1129
1130static int arp_req_delete(struct net *net, struct arpreq *r,
1131			  struct net_device *dev)
1132{
1133	__be32 ip;
1134
1135	if (r->arp_flags & ATF_PUBL)
1136		return arp_req_delete_public(net, r, dev);
1137
1138	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1139	if (dev == NULL) {
1140		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1141		if (IS_ERR(rt))
1142			return PTR_ERR(rt);
1143		dev = rt->dst.dev;
1144		ip_rt_put(rt);
1145		if (!dev)
1146			return -EINVAL;
1147	}
1148	return arp_invalidate(dev, ip);
1149}
1150
1151/*
1152 *	Handle an ARP layer I/O control request.
1153 */
1154
1155int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1156{
1157	int err;
1158	struct arpreq r;
1159	struct net_device *dev = NULL;
1160
1161	switch (cmd) {
1162	case SIOCDARP:
1163	case SIOCSARP:
1164		if (!capable(CAP_NET_ADMIN))
1165			return -EPERM;
1166	case SIOCGARP:
1167		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1168		if (err)
1169			return -EFAULT;
1170		break;
1171	default:
1172		return -EINVAL;
1173	}
1174
1175	if (r.arp_pa.sa_family != AF_INET)
1176		return -EPFNOSUPPORT;
1177
1178	if (!(r.arp_flags & ATF_PUBL) &&
1179	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1180		return -EINVAL;
1181	if (!(r.arp_flags & ATF_NETMASK))
1182		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1183							   htonl(0xFFFFFFFFUL);
1184	rtnl_lock();
1185	if (r.arp_dev[0]) {
1186		err = -ENODEV;
1187		dev = __dev_get_by_name(net, r.arp_dev);
1188		if (dev == NULL)
1189			goto out;
1190
1191		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1192		if (!r.arp_ha.sa_family)
1193			r.arp_ha.sa_family = dev->type;
1194		err = -EINVAL;
1195		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1196			goto out;
1197	} else if (cmd == SIOCGARP) {
1198		err = -ENODEV;
1199		goto out;
1200	}
1201
1202	switch (cmd) {
1203	case SIOCDARP:
1204		err = arp_req_delete(net, &r, dev);
1205		break;
1206	case SIOCSARP:
1207		err = arp_req_set(net, &r, dev);
1208		break;
1209	case SIOCGARP:
1210		err = arp_req_get(&r, dev);
1211		break;
1212	}
1213out:
1214	rtnl_unlock();
1215	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1216		err = -EFAULT;
1217	return err;
1218}
1219
1220static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1221			    void *ptr)
1222{
1223	struct net_device *dev = ptr;
1224
1225	switch (event) {
1226	case NETDEV_CHANGEADDR:
1227		neigh_changeaddr(&arp_tbl, dev);
1228		rt_cache_flush(dev_net(dev), 0);
1229		break;
1230	default:
1231		break;
1232	}
1233
1234	return NOTIFY_DONE;
1235}
1236
1237static struct notifier_block arp_netdev_notifier = {
1238	.notifier_call = arp_netdev_event,
1239};
1240
1241/* Note, that it is not on notifier chain.
1242   It is necessary, that this routine was called after route cache will be
1243   flushed.
1244 */
1245void arp_ifdown(struct net_device *dev)
1246{
1247	neigh_ifdown(&arp_tbl, dev);
1248}
1249
1250
1251/*
1252 *	Called once on startup.
1253 */
1254
1255static struct packet_type arp_packet_type __read_mostly = {
1256	.type =	cpu_to_be16(ETH_P_ARP),
1257	.func =	arp_rcv,
1258};
1259
1260static int arp_proc_init(void);
1261
1262void __init arp_init(void)
1263{
1264	neigh_table_init(&arp_tbl);
1265
1266	dev_add_pack(&arp_packet_type);
1267	arp_proc_init();
1268#ifdef CONFIG_SYSCTL
1269	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1270#endif
1271	register_netdevice_notifier(&arp_netdev_notifier);
1272}
1273
1274#ifdef CONFIG_PROC_FS
1275#if IS_ENABLED(CONFIG_AX25)
1276
1277/* ------------------------------------------------------------------------ */
1278/*
1279 *	ax25 -> ASCII conversion
1280 */
1281static char *ax2asc2(ax25_address *a, char *buf)
1282{
1283	char c, *s;
1284	int n;
1285
1286	for (n = 0, s = buf; n < 6; n++) {
1287		c = (a->ax25_call[n] >> 1) & 0x7F;
1288
1289		if (c != ' ')
1290			*s++ = c;
1291	}
1292
1293	*s++ = '-';
1294	n = (a->ax25_call[6] >> 1) & 0x0F;
1295	if (n > 9) {
1296		*s++ = '1';
1297		n -= 10;
1298	}
1299
1300	*s++ = n + '0';
1301	*s++ = '\0';
1302
1303	if (*buf == '\0' || *buf == '-')
1304		return "*";
1305
1306	return buf;
1307}
1308#endif /* CONFIG_AX25 */
1309
1310#define HBUFFERLEN 30
1311
1312static void arp_format_neigh_entry(struct seq_file *seq,
1313				   struct neighbour *n)
1314{
1315	char hbuffer[HBUFFERLEN];
1316	int k, j;
1317	char tbuf[16];
1318	struct net_device *dev = n->dev;
1319	int hatype = dev->type;
1320
1321	read_lock(&n->lock);
1322	/* Convert hardware address to XX:XX:XX:XX ... form. */
1323#if IS_ENABLED(CONFIG_AX25)
1324	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1325		ax2asc2((ax25_address *)n->ha, hbuffer);
1326	else {
1327#endif
1328	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1329		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1330		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1331		hbuffer[k++] = ':';
1332	}
1333	if (k != 0)
1334		--k;
1335	hbuffer[k] = 0;
1336#if IS_ENABLED(CONFIG_AX25)
1337	}
1338#endif
1339	sprintf(tbuf, "%pI4", n->primary_key);
1340	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1341		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1342	read_unlock(&n->lock);
1343}
1344
1345static void arp_format_pneigh_entry(struct seq_file *seq,
1346				    struct pneigh_entry *n)
1347{
1348	struct net_device *dev = n->dev;
1349	int hatype = dev ? dev->type : 0;
1350	char tbuf[16];
1351
1352	sprintf(tbuf, "%pI4", n->key);
1353	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1354		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1355		   dev ? dev->name : "*");
1356}
1357
1358static int arp_seq_show(struct seq_file *seq, void *v)
1359{
1360	if (v == SEQ_START_TOKEN) {
1361		seq_puts(seq, "IP address       HW type     Flags       "
1362			      "HW address            Mask     Device\n");
1363	} else {
1364		struct neigh_seq_state *state = seq->private;
1365
1366		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1367			arp_format_pneigh_entry(seq, v);
1368		else
1369			arp_format_neigh_entry(seq, v);
1370	}
1371
1372	return 0;
1373}
1374
1375static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1376{
1377	/* Don't want to confuse "arp -a" w/ magic entries,
1378	 * so we tell the generic iterator to skip NUD_NOARP.
1379	 */
1380	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1381}
1382
1383/* ------------------------------------------------------------------------ */
1384
1385static const struct seq_operations arp_seq_ops = {
1386	.start	= arp_seq_start,
1387	.next	= neigh_seq_next,
1388	.stop	= neigh_seq_stop,
1389	.show	= arp_seq_show,
1390};
1391
1392static int arp_seq_open(struct inode *inode, struct file *file)
1393{
1394	return seq_open_net(inode, file, &arp_seq_ops,
1395			    sizeof(struct neigh_seq_state));
1396}
1397
1398static const struct file_operations arp_seq_fops = {
1399	.owner		= THIS_MODULE,
1400	.open           = arp_seq_open,
1401	.read           = seq_read,
1402	.llseek         = seq_lseek,
1403	.release	= seq_release_net,
1404};
1405
1406
1407static int __net_init arp_net_init(struct net *net)
1408{
1409	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1410		return -ENOMEM;
1411	return 0;
1412}
1413
1414static void __net_exit arp_net_exit(struct net *net)
1415{
1416	proc_net_remove(net, "arp");
1417}
1418
1419static struct pernet_operations arp_net_ops = {
1420	.init = arp_net_init,
1421	.exit = arp_net_exit,
1422};
1423
1424static int __init arp_proc_init(void)
1425{
1426	return register_pernet_subsys(&arp_net_ops);
1427}
1428
1429#else /* CONFIG_PROC_FS */
1430
1431static int __init arp_proc_init(void)
1432{
1433	return 0;
1434}
1435
1436#endif /* CONFIG_PROC_FS */
1437