1/*
2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
3 * Home page:
4 *      http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5 * This is from the implementation of CUBIC TCP in
6 * Sangtae Ha, Injong Rhee and Lisong Xu,
7 *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
8 *  in ACM SIGOPS Operating System Review, July 2008.
9 * Available from:
10 *  http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
11 *
12 * CUBIC integrates a new slow start algorithm, called HyStart.
13 * The details of HyStart are presented in
14 *  Sangtae Ha and Injong Rhee,
15 *  "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
16 * Available from:
17 *  http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
18 *
19 * All testing results are available from:
20 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
21 *
22 * Unless CUBIC is enabled and congestion window is large
23 * this behaves the same as the original Reno.
24 */
25
26#include <linux/mm.h>
27#include <linux/module.h>
28#include <linux/math64.h>
29#include <net/tcp.h>
30
31#define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation
32					 * max_cwnd = snd_cwnd * beta
33					 */
34#define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */
35
36/* Two methods of hybrid slow start */
37#define HYSTART_ACK_TRAIN	0x1
38#define HYSTART_DELAY		0x2
39
40/* Number of delay samples for detecting the increase of delay */
41#define HYSTART_MIN_SAMPLES	8
42#define HYSTART_DELAY_MIN	(4U<<3)
43#define HYSTART_DELAY_MAX	(16U<<3)
44#define HYSTART_DELAY_THRESH(x)	clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
45
46static int fast_convergence __read_mostly = 1;
47static int beta __read_mostly = 717;	/* = 717/1024 (BICTCP_BETA_SCALE) */
48static int initial_ssthresh __read_mostly;
49static int bic_scale __read_mostly = 41;
50static int tcp_friendliness __read_mostly = 1;
51
52static int hystart __read_mostly = 1;
53static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
54static int hystart_low_window __read_mostly = 16;
55static int hystart_ack_delta __read_mostly = 2;
56
57static u32 cube_rtt_scale __read_mostly;
58static u32 beta_scale __read_mostly;
59static u64 cube_factor __read_mostly;
60
61/* Note parameters that are used for precomputing scale factors are read-only */
62module_param(fast_convergence, int, 0644);
63MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
64module_param(beta, int, 0644);
65MODULE_PARM_DESC(beta, "beta for multiplicative increase");
66module_param(initial_ssthresh, int, 0644);
67MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
68module_param(bic_scale, int, 0444);
69MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
70module_param(tcp_friendliness, int, 0644);
71MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
72module_param(hystart, int, 0644);
73MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
74module_param(hystart_detect, int, 0644);
75MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
76		 " 1: packet-train 2: delay 3: both packet-train and delay");
77module_param(hystart_low_window, int, 0644);
78MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
79module_param(hystart_ack_delta, int, 0644);
80MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
81
82/* BIC TCP Parameters */
83struct bictcp {
84	u32	cnt;		/* increase cwnd by 1 after ACKs */
85	u32	last_max_cwnd;	/* last maximum snd_cwnd */
86	u32	loss_cwnd;	/* congestion window at last loss */
87	u32	last_cwnd;	/* the last snd_cwnd */
88	u32	last_time;	/* time when updated last_cwnd */
89	u32	bic_origin_point;/* origin point of bic function */
90	u32	bic_K;		/* time to origin point
91				   from the beginning of the current epoch */
92	u32	delay_min;	/* min delay (msec << 3) */
93	u32	epoch_start;	/* beginning of an epoch */
94	u32	ack_cnt;	/* number of acks */
95	u32	tcp_cwnd;	/* estimated tcp cwnd */
96#define ACK_RATIO_SHIFT	4
97#define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
98	u16	delayed_ack;	/* estimate the ratio of Packets/ACKs << 4 */
99	u8	sample_cnt;	/* number of samples to decide curr_rtt */
100	u8	found;		/* the exit point is found? */
101	u32	round_start;	/* beginning of each round */
102	u32	end_seq;	/* end_seq of the round */
103	u32	last_ack;	/* last time when the ACK spacing is close */
104	u32	curr_rtt;	/* the minimum rtt of current round */
105};
106
107static inline void bictcp_reset(struct bictcp *ca)
108{
109	ca->cnt = 0;
110	ca->last_max_cwnd = 0;
111	ca->last_cwnd = 0;
112	ca->last_time = 0;
113	ca->bic_origin_point = 0;
114	ca->bic_K = 0;
115	ca->delay_min = 0;
116	ca->epoch_start = 0;
117	ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
118	ca->ack_cnt = 0;
119	ca->tcp_cwnd = 0;
120	ca->found = 0;
121}
122
123static inline u32 bictcp_clock(void)
124{
125#if HZ < 1000
126	return ktime_to_ms(ktime_get_real());
127#else
128	return jiffies_to_msecs(jiffies);
129#endif
130}
131
132static inline void bictcp_hystart_reset(struct sock *sk)
133{
134	struct tcp_sock *tp = tcp_sk(sk);
135	struct bictcp *ca = inet_csk_ca(sk);
136
137	ca->round_start = ca->last_ack = bictcp_clock();
138	ca->end_seq = tp->snd_nxt;
139	ca->curr_rtt = 0;
140	ca->sample_cnt = 0;
141}
142
143static void bictcp_init(struct sock *sk)
144{
145	struct bictcp *ca = inet_csk_ca(sk);
146
147	bictcp_reset(ca);
148	ca->loss_cwnd = 0;
149
150	if (hystart)
151		bictcp_hystart_reset(sk);
152
153	if (!hystart && initial_ssthresh)
154		tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
155}
156
157/* calculate the cubic root of x using a table lookup followed by one
158 * Newton-Raphson iteration.
159 * Avg err ~= 0.195%
160 */
161static u32 cubic_root(u64 a)
162{
163	u32 x, b, shift;
164	/*
165	 * cbrt(x) MSB values for x MSB values in [0..63].
166	 * Precomputed then refined by hand - Willy Tarreau
167	 *
168	 * For x in [0..63],
169	 *   v = cbrt(x << 18) - 1
170	 *   cbrt(x) = (v[x] + 10) >> 6
171	 */
172	static const u8 v[] = {
173		/* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,
174		/* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,
175		/* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,
176		/* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,
177		/* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,
178		/* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,
179		/* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,
180		/* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,
181	};
182
183	b = fls64(a);
184	if (b < 7) {
185		/* a in [0..63] */
186		return ((u32)v[(u32)a] + 35) >> 6;
187	}
188
189	b = ((b * 84) >> 8) - 1;
190	shift = (a >> (b * 3));
191
192	x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
193
194	/*
195	 * Newton-Raphson iteration
196	 *                         2
197	 * x    = ( 2 * x  +  a / x  ) / 3
198	 *  k+1          k         k
199	 */
200	x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
201	x = ((x * 341) >> 10);
202	return x;
203}
204
205/*
206 * Compute congestion window to use.
207 */
208static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
209{
210	u32 delta, bic_target, max_cnt;
211	u64 offs, t;
212
213	ca->ack_cnt++;	/* count the number of ACKs */
214
215	if (ca->last_cwnd == cwnd &&
216	    (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
217		return;
218
219	ca->last_cwnd = cwnd;
220	ca->last_time = tcp_time_stamp;
221
222	if (ca->epoch_start == 0) {
223		ca->epoch_start = tcp_time_stamp;	/* record beginning */
224		ca->ack_cnt = 1;			/* start counting */
225		ca->tcp_cwnd = cwnd;			/* syn with cubic */
226
227		if (ca->last_max_cwnd <= cwnd) {
228			ca->bic_K = 0;
229			ca->bic_origin_point = cwnd;
230		} else {
231			/* Compute new K based on
232			 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
233			 */
234			ca->bic_K = cubic_root(cube_factor
235					       * (ca->last_max_cwnd - cwnd));
236			ca->bic_origin_point = ca->last_max_cwnd;
237		}
238	}
239
240	/* cubic function - calc*/
241	/* calculate c * time^3 / rtt,
242	 *  while considering overflow in calculation of time^3
243	 * (so time^3 is done by using 64 bit)
244	 * and without the support of division of 64bit numbers
245	 * (so all divisions are done by using 32 bit)
246	 *  also NOTE the unit of those veriables
247	 *	  time  = (t - K) / 2^bictcp_HZ
248	 *	  c = bic_scale >> 10
249	 * rtt  = (srtt >> 3) / HZ
250	 * !!! The following code does not have overflow problems,
251	 * if the cwnd < 1 million packets !!!
252	 */
253
254	t = (s32)(tcp_time_stamp - ca->epoch_start);
255	t += msecs_to_jiffies(ca->delay_min >> 3);
256	/* change the unit from HZ to bictcp_HZ */
257	t <<= BICTCP_HZ;
258	do_div(t, HZ);
259
260	if (t < ca->bic_K)		/* t - K */
261		offs = ca->bic_K - t;
262	else
263		offs = t - ca->bic_K;
264
265	/* c/rtt * (t-K)^3 */
266	delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
267	if (t < ca->bic_K)                            /* below origin*/
268		bic_target = ca->bic_origin_point - delta;
269	else                                          /* above origin*/
270		bic_target = ca->bic_origin_point + delta;
271
272	/* cubic function - calc bictcp_cnt*/
273	if (bic_target > cwnd) {
274		ca->cnt = cwnd / (bic_target - cwnd);
275	} else {
276		ca->cnt = 100 * cwnd;              /* very small increment*/
277	}
278
279	/*
280	 * The initial growth of cubic function may be too conservative
281	 * when the available bandwidth is still unknown.
282	 */
283	if (ca->last_max_cwnd == 0 && ca->cnt > 20)
284		ca->cnt = 20;	/* increase cwnd 5% per RTT */
285
286	/* TCP Friendly */
287	if (tcp_friendliness) {
288		u32 scale = beta_scale;
289
290		delta = (cwnd * scale) >> 3;
291		while (ca->ack_cnt > delta) {		/* update tcp cwnd */
292			ca->ack_cnt -= delta;
293			ca->tcp_cwnd++;
294		}
295
296		if (ca->tcp_cwnd > cwnd) {	/* if bic is slower than tcp */
297			delta = ca->tcp_cwnd - cwnd;
298			max_cnt = cwnd / delta;
299			if (ca->cnt > max_cnt)
300				ca->cnt = max_cnt;
301		}
302	}
303
304	ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
305	if (ca->cnt == 0)			/* cannot be zero */
306		ca->cnt = 1;
307}
308
309static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
310{
311	struct tcp_sock *tp = tcp_sk(sk);
312	struct bictcp *ca = inet_csk_ca(sk);
313
314	if (!tcp_is_cwnd_limited(sk))
315		return;
316
317	if (tp->snd_cwnd <= tp->snd_ssthresh) {
318		if (hystart && after(ack, ca->end_seq))
319			bictcp_hystart_reset(sk);
320		tcp_slow_start(tp, acked);
321	} else {
322		bictcp_update(ca, tp->snd_cwnd);
323		tcp_cong_avoid_ai(tp, ca->cnt);
324	}
325}
326
327static u32 bictcp_recalc_ssthresh(struct sock *sk)
328{
329	const struct tcp_sock *tp = tcp_sk(sk);
330	struct bictcp *ca = inet_csk_ca(sk);
331
332	ca->epoch_start = 0;	/* end of epoch */
333
334	/* Wmax and fast convergence */
335	if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
336		ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
337			/ (2 * BICTCP_BETA_SCALE);
338	else
339		ca->last_max_cwnd = tp->snd_cwnd;
340
341	ca->loss_cwnd = tp->snd_cwnd;
342
343	return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
344}
345
346static u32 bictcp_undo_cwnd(struct sock *sk)
347{
348	struct bictcp *ca = inet_csk_ca(sk);
349
350	return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
351}
352
353static void bictcp_state(struct sock *sk, u8 new_state)
354{
355	if (new_state == TCP_CA_Loss) {
356		bictcp_reset(inet_csk_ca(sk));
357		bictcp_hystart_reset(sk);
358	}
359}
360
361static void hystart_update(struct sock *sk, u32 delay)
362{
363	struct tcp_sock *tp = tcp_sk(sk);
364	struct bictcp *ca = inet_csk_ca(sk);
365
366	if (!(ca->found & hystart_detect)) {
367		u32 now = bictcp_clock();
368
369		/* first detection parameter - ack-train detection */
370		if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
371			ca->last_ack = now;
372			if ((s32)(now - ca->round_start) > ca->delay_min >> 4)
373				ca->found |= HYSTART_ACK_TRAIN;
374		}
375
376		/* obtain the minimum delay of more than sampling packets */
377		if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
378			if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
379				ca->curr_rtt = delay;
380
381			ca->sample_cnt++;
382		} else {
383			if (ca->curr_rtt > ca->delay_min +
384			    HYSTART_DELAY_THRESH(ca->delay_min>>4))
385				ca->found |= HYSTART_DELAY;
386		}
387		/*
388		 * Either one of two conditions are met,
389		 * we exit from slow start immediately.
390		 */
391		if (ca->found & hystart_detect)
392			tp->snd_ssthresh = tp->snd_cwnd;
393	}
394}
395
396/* Track delayed acknowledgment ratio using sliding window
397 * ratio = (15*ratio + sample) / 16
398 */
399static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
400{
401	const struct inet_connection_sock *icsk = inet_csk(sk);
402	const struct tcp_sock *tp = tcp_sk(sk);
403	struct bictcp *ca = inet_csk_ca(sk);
404	u32 delay;
405
406	if (icsk->icsk_ca_state == TCP_CA_Open) {
407		u32 ratio = ca->delayed_ack;
408
409		ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
410		ratio += cnt;
411
412		ca->delayed_ack = clamp(ratio, 1U, ACK_RATIO_LIMIT);
413	}
414
415	/* Some calls are for duplicates without timetamps */
416	if (rtt_us < 0)
417		return;
418
419	/* Discard delay samples right after fast recovery */
420	if (ca->epoch_start && (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
421		return;
422
423	delay = (rtt_us << 3) / USEC_PER_MSEC;
424	if (delay == 0)
425		delay = 1;
426
427	/* first time call or link delay decreases */
428	if (ca->delay_min == 0 || ca->delay_min > delay)
429		ca->delay_min = delay;
430
431	/* hystart triggers when cwnd is larger than some threshold */
432	if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
433	    tp->snd_cwnd >= hystart_low_window)
434		hystart_update(sk, delay);
435}
436
437static struct tcp_congestion_ops cubictcp __read_mostly = {
438	.init		= bictcp_init,
439	.ssthresh	= bictcp_recalc_ssthresh,
440	.cong_avoid	= bictcp_cong_avoid,
441	.set_state	= bictcp_state,
442	.undo_cwnd	= bictcp_undo_cwnd,
443	.pkts_acked     = bictcp_acked,
444	.owner		= THIS_MODULE,
445	.name		= "cubic",
446};
447
448static int __init cubictcp_register(void)
449{
450	BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
451
452	/* Precompute a bunch of the scaling factors that are used per-packet
453	 * based on SRTT of 100ms
454	 */
455
456	beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
457		/ (BICTCP_BETA_SCALE - beta);
458
459	cube_rtt_scale = (bic_scale * 10);	/* 1024*c/rtt */
460
461	/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
462	 *  so K = cubic_root( (wmax-cwnd)*rtt/c )
463	 * the unit of K is bictcp_HZ=2^10, not HZ
464	 *
465	 *  c = bic_scale >> 10
466	 *  rtt = 100ms
467	 *
468	 * the following code has been designed and tested for
469	 * cwnd < 1 million packets
470	 * RTT < 100 seconds
471	 * HZ < 1,000,00  (corresponding to 10 nano-second)
472	 */
473
474	/* 1/c * 2^2*bictcp_HZ * srtt */
475	cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
476
477	/* divide by bic_scale and by constant Srtt (100ms) */
478	do_div(cube_factor, bic_scale * 10);
479
480	return tcp_register_congestion_control(&cubictcp);
481}
482
483static void __exit cubictcp_unregister(void)
484{
485	tcp_unregister_congestion_control(&cubictcp);
486}
487
488module_init(cubictcp_register);
489module_exit(cubictcp_unregister);
490
491MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
492MODULE_LICENSE("GPL");
493MODULE_DESCRIPTION("CUBIC TCP");
494MODULE_VERSION("2.3");
495