tcp_ipv4.c revision 81c3d5470ecc70564eb9209946730fe2be93ad06
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9 *
10 *		IPv4 specific functions
11 *
12 *
13 *		code split from:
14 *		linux/ipv4/tcp.c
15 *		linux/ipv4/tcp_input.c
16 *		linux/ipv4/tcp_output.c
17 *
18 *		See tcp.c for author information
19 *
20 *	This program is free software; you can redistribute it and/or
21 *      modify it under the terms of the GNU General Public License
22 *      as published by the Free Software Foundation; either version
23 *      2 of the License, or (at your option) any later version.
24 */
25
26/*
27 * Changes:
28 *		David S. Miller	:	New socket lookup architecture.
29 *					This code is dedicated to John Dyson.
30 *		David S. Miller :	Change semantics of established hash,
31 *					half is devoted to TIME_WAIT sockets
32 *					and the rest go in the other half.
33 *		Andi Kleen :		Add support for syncookies and fixed
34 *					some bugs: ip options weren't passed to
35 *					the TCP layer, missed a check for an
36 *					ACK bit.
37 *		Andi Kleen :		Implemented fast path mtu discovery.
38 *	     				Fixed many serious bugs in the
39 *					request_sock handling and moved
40 *					most of it into the af independent code.
41 *					Added tail drop and some other bugfixes.
42 *					Added new listen sematics.
43 *		Mike McLagan	:	Routing by source
44 *	Juan Jose Ciarlante:		ip_dynaddr bits
45 *		Andi Kleen:		various fixes.
46 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
47 *					coma.
48 *	Andi Kleen		:	Fix new listen.
49 *	Andi Kleen		:	Fix accept error reporting.
50 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
51 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
52 *					a single port at the same time.
53 */
54
55#include <linux/config.h>
56
57#include <linux/types.h>
58#include <linux/fcntl.h>
59#include <linux/module.h>
60#include <linux/random.h>
61#include <linux/cache.h>
62#include <linux/jhash.h>
63#include <linux/init.h>
64#include <linux/times.h>
65
66#include <net/icmp.h>
67#include <net/inet_hashtables.h>
68#include <net/tcp.h>
69#include <net/transp_v6.h>
70#include <net/ipv6.h>
71#include <net/inet_common.h>
72#include <net/xfrm.h>
73
74#include <linux/inet.h>
75#include <linux/ipv6.h>
76#include <linux/stddef.h>
77#include <linux/proc_fs.h>
78#include <linux/seq_file.h>
79
80int sysctl_tcp_tw_reuse;
81int sysctl_tcp_low_latency;
82
83/* Check TCP sequence numbers in ICMP packets. */
84#define ICMP_MIN_LENGTH 8
85
86/* Socket used for sending RSTs */
87static struct socket *tcp_socket;
88
89void tcp_v4_send_check(struct sock *sk, struct tcphdr *th, int len,
90		       struct sk_buff *skb);
91
92struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
93	.lhash_lock	= RW_LOCK_UNLOCKED,
94	.lhash_users	= ATOMIC_INIT(0),
95	.lhash_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
96	.portalloc_lock	= SPIN_LOCK_UNLOCKED,
97	.port_rover	= 1024 - 1,
98};
99
100static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
101{
102	return inet_csk_get_port(&tcp_hashinfo, sk, snum);
103}
104
105static void tcp_v4_hash(struct sock *sk)
106{
107	inet_hash(&tcp_hashinfo, sk);
108}
109
110void tcp_unhash(struct sock *sk)
111{
112	inet_unhash(&tcp_hashinfo, sk);
113}
114
115static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
116{
117	return secure_tcp_sequence_number(skb->nh.iph->daddr,
118					  skb->nh.iph->saddr,
119					  skb->h.th->dest,
120					  skb->h.th->source);
121}
122
123/* called with local bh disabled */
124static int __tcp_v4_check_established(struct sock *sk, __u16 lport,
125				      struct inet_timewait_sock **twp)
126{
127	struct inet_sock *inet = inet_sk(sk);
128	u32 daddr = inet->rcv_saddr;
129	u32 saddr = inet->daddr;
130	int dif = sk->sk_bound_dev_if;
131	INET_ADDR_COOKIE(acookie, saddr, daddr)
132	const __u32 ports = INET_COMBINED_PORTS(inet->dport, lport);
133	unsigned int hash = inet_ehashfn(daddr, lport, saddr, inet->dport);
134	struct inet_ehash_bucket *head = inet_ehash_bucket(&tcp_hashinfo, hash);
135	struct sock *sk2;
136	const struct hlist_node *node;
137	struct inet_timewait_sock *tw;
138
139	prefetch(head->chain.first);
140	write_lock(&head->lock);
141
142	/* Check TIME-WAIT sockets first. */
143	sk_for_each(sk2, node, &(head + tcp_hashinfo.ehash_size)->chain) {
144		tw = inet_twsk(sk2);
145
146		if (INET_TW_MATCH(sk2, hash, acookie, saddr, daddr, ports, dif)) {
147			const struct tcp_timewait_sock *tcptw = tcp_twsk(sk2);
148			struct tcp_sock *tp = tcp_sk(sk);
149
150			/* With PAWS, it is safe from the viewpoint
151			   of data integrity. Even without PAWS it
152			   is safe provided sequence spaces do not
153			   overlap i.e. at data rates <= 80Mbit/sec.
154
155			   Actually, the idea is close to VJ's one,
156			   only timestamp cache is held not per host,
157			   but per port pair and TW bucket is used
158			   as state holder.
159
160			   If TW bucket has been already destroyed we
161			   fall back to VJ's scheme and use initial
162			   timestamp retrieved from peer table.
163			 */
164			if (tcptw->tw_ts_recent_stamp &&
165			    (!twp || (sysctl_tcp_tw_reuse &&
166				      xtime.tv_sec -
167				      tcptw->tw_ts_recent_stamp > 1))) {
168				tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
169				if (tp->write_seq == 0)
170					tp->write_seq = 1;
171				tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
172				tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
173				sock_hold(sk2);
174				goto unique;
175			} else
176				goto not_unique;
177		}
178	}
179	tw = NULL;
180
181	/* And established part... */
182	sk_for_each(sk2, node, &head->chain) {
183		if (INET_MATCH(sk2, hash, acookie, saddr, daddr, ports, dif))
184			goto not_unique;
185	}
186
187unique:
188	/* Must record num and sport now. Otherwise we will see
189	 * in hash table socket with a funny identity. */
190	inet->num = lport;
191	inet->sport = htons(lport);
192	sk->sk_hash = hash;
193	BUG_TRAP(sk_unhashed(sk));
194	__sk_add_node(sk, &head->chain);
195	sock_prot_inc_use(sk->sk_prot);
196	write_unlock(&head->lock);
197
198	if (twp) {
199		*twp = tw;
200		NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED);
201	} else if (tw) {
202		/* Silly. Should hash-dance instead... */
203		inet_twsk_deschedule(tw, &tcp_death_row);
204		NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED);
205
206		inet_twsk_put(tw);
207	}
208
209	return 0;
210
211not_unique:
212	write_unlock(&head->lock);
213	return -EADDRNOTAVAIL;
214}
215
216static inline u32 connect_port_offset(const struct sock *sk)
217{
218	const struct inet_sock *inet = inet_sk(sk);
219
220	return secure_tcp_port_ephemeral(inet->rcv_saddr, inet->daddr,
221					 inet->dport);
222}
223
224/*
225 * Bind a port for a connect operation and hash it.
226 */
227static inline int tcp_v4_hash_connect(struct sock *sk)
228{
229	const unsigned short snum = inet_sk(sk)->num;
230 	struct inet_bind_hashbucket *head;
231 	struct inet_bind_bucket *tb;
232	int ret;
233
234 	if (!snum) {
235 		int low = sysctl_local_port_range[0];
236 		int high = sysctl_local_port_range[1];
237		int range = high - low;
238 		int i;
239		int port;
240		static u32 hint;
241		u32 offset = hint + connect_port_offset(sk);
242		struct hlist_node *node;
243 		struct inet_timewait_sock *tw = NULL;
244
245 		local_bh_disable();
246		for (i = 1; i <= range; i++) {
247			port = low + (i + offset) % range;
248 			head = &tcp_hashinfo.bhash[inet_bhashfn(port, tcp_hashinfo.bhash_size)];
249 			spin_lock(&head->lock);
250
251 			/* Does not bother with rcv_saddr checks,
252 			 * because the established check is already
253 			 * unique enough.
254 			 */
255			inet_bind_bucket_for_each(tb, node, &head->chain) {
256 				if (tb->port == port) {
257 					BUG_TRAP(!hlist_empty(&tb->owners));
258 					if (tb->fastreuse >= 0)
259 						goto next_port;
260 					if (!__tcp_v4_check_established(sk,
261									port,
262									&tw))
263 						goto ok;
264 					goto next_port;
265 				}
266 			}
267
268 			tb = inet_bind_bucket_create(tcp_hashinfo.bind_bucket_cachep, head, port);
269 			if (!tb) {
270 				spin_unlock(&head->lock);
271 				break;
272 			}
273 			tb->fastreuse = -1;
274 			goto ok;
275
276 		next_port:
277 			spin_unlock(&head->lock);
278 		}
279 		local_bh_enable();
280
281 		return -EADDRNOTAVAIL;
282
283ok:
284		hint += i;
285
286 		/* Head lock still held and bh's disabled */
287 		inet_bind_hash(sk, tb, port);
288		if (sk_unhashed(sk)) {
289 			inet_sk(sk)->sport = htons(port);
290 			__inet_hash(&tcp_hashinfo, sk, 0);
291 		}
292 		spin_unlock(&head->lock);
293
294 		if (tw) {
295 			inet_twsk_deschedule(tw, &tcp_death_row);;
296 			inet_twsk_put(tw);
297 		}
298
299		ret = 0;
300		goto out;
301 	}
302
303 	head = &tcp_hashinfo.bhash[inet_bhashfn(snum, tcp_hashinfo.bhash_size)];
304 	tb  = inet_csk(sk)->icsk_bind_hash;
305	spin_lock_bh(&head->lock);
306	if (sk_head(&tb->owners) == sk && !sk->sk_bind_node.next) {
307		__inet_hash(&tcp_hashinfo, sk, 0);
308		spin_unlock_bh(&head->lock);
309		return 0;
310	} else {
311		spin_unlock(&head->lock);
312		/* No definite answer... Walk to established hash table */
313		ret = __tcp_v4_check_established(sk, snum, NULL);
314out:
315		local_bh_enable();
316		return ret;
317	}
318}
319
320/* This will initiate an outgoing connection. */
321int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
322{
323	struct inet_sock *inet = inet_sk(sk);
324	struct tcp_sock *tp = tcp_sk(sk);
325	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
326	struct rtable *rt;
327	u32 daddr, nexthop;
328	int tmp;
329	int err;
330
331	if (addr_len < sizeof(struct sockaddr_in))
332		return -EINVAL;
333
334	if (usin->sin_family != AF_INET)
335		return -EAFNOSUPPORT;
336
337	nexthop = daddr = usin->sin_addr.s_addr;
338	if (inet->opt && inet->opt->srr) {
339		if (!daddr)
340			return -EINVAL;
341		nexthop = inet->opt->faddr;
342	}
343
344	tmp = ip_route_connect(&rt, nexthop, inet->saddr,
345			       RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
346			       IPPROTO_TCP,
347			       inet->sport, usin->sin_port, sk);
348	if (tmp < 0)
349		return tmp;
350
351	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
352		ip_rt_put(rt);
353		return -ENETUNREACH;
354	}
355
356	if (!inet->opt || !inet->opt->srr)
357		daddr = rt->rt_dst;
358
359	if (!inet->saddr)
360		inet->saddr = rt->rt_src;
361	inet->rcv_saddr = inet->saddr;
362
363	if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
364		/* Reset inherited state */
365		tp->rx_opt.ts_recent	   = 0;
366		tp->rx_opt.ts_recent_stamp = 0;
367		tp->write_seq		   = 0;
368	}
369
370	if (tcp_death_row.sysctl_tw_recycle &&
371	    !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
372		struct inet_peer *peer = rt_get_peer(rt);
373
374		/* VJ's idea. We save last timestamp seen from
375		 * the destination in peer table, when entering state TIME-WAIT
376		 * and initialize rx_opt.ts_recent from it, when trying new connection.
377		 */
378
379		if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
380			tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
381			tp->rx_opt.ts_recent = peer->tcp_ts;
382		}
383	}
384
385	inet->dport = usin->sin_port;
386	inet->daddr = daddr;
387
388	tp->ext_header_len = 0;
389	if (inet->opt)
390		tp->ext_header_len = inet->opt->optlen;
391
392	tp->rx_opt.mss_clamp = 536;
393
394	/* Socket identity is still unknown (sport may be zero).
395	 * However we set state to SYN-SENT and not releasing socket
396	 * lock select source port, enter ourselves into the hash tables and
397	 * complete initialization after this.
398	 */
399	tcp_set_state(sk, TCP_SYN_SENT);
400	err = tcp_v4_hash_connect(sk);
401	if (err)
402		goto failure;
403
404	err = ip_route_newports(&rt, inet->sport, inet->dport, sk);
405	if (err)
406		goto failure;
407
408	/* OK, now commit destination to socket.  */
409	sk_setup_caps(sk, &rt->u.dst);
410
411	if (!tp->write_seq)
412		tp->write_seq = secure_tcp_sequence_number(inet->saddr,
413							   inet->daddr,
414							   inet->sport,
415							   usin->sin_port);
416
417	inet->id = tp->write_seq ^ jiffies;
418
419	err = tcp_connect(sk);
420	rt = NULL;
421	if (err)
422		goto failure;
423
424	return 0;
425
426failure:
427	/* This unhashes the socket and releases the local port, if necessary. */
428	tcp_set_state(sk, TCP_CLOSE);
429	ip_rt_put(rt);
430	sk->sk_route_caps = 0;
431	inet->dport = 0;
432	return err;
433}
434
435/*
436 * This routine does path mtu discovery as defined in RFC1191.
437 */
438static inline void do_pmtu_discovery(struct sock *sk, struct iphdr *iph,
439				     u32 mtu)
440{
441	struct dst_entry *dst;
442	struct inet_sock *inet = inet_sk(sk);
443	struct tcp_sock *tp = tcp_sk(sk);
444
445	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
446	 * send out by Linux are always <576bytes so they should go through
447	 * unfragmented).
448	 */
449	if (sk->sk_state == TCP_LISTEN)
450		return;
451
452	/* We don't check in the destentry if pmtu discovery is forbidden
453	 * on this route. We just assume that no packet_to_big packets
454	 * are send back when pmtu discovery is not active.
455     	 * There is a small race when the user changes this flag in the
456	 * route, but I think that's acceptable.
457	 */
458	if ((dst = __sk_dst_check(sk, 0)) == NULL)
459		return;
460
461	dst->ops->update_pmtu(dst, mtu);
462
463	/* Something is about to be wrong... Remember soft error
464	 * for the case, if this connection will not able to recover.
465	 */
466	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
467		sk->sk_err_soft = EMSGSIZE;
468
469	mtu = dst_mtu(dst);
470
471	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
472	    tp->pmtu_cookie > mtu) {
473		tcp_sync_mss(sk, mtu);
474
475		/* Resend the TCP packet because it's
476		 * clear that the old packet has been
477		 * dropped. This is the new "fast" path mtu
478		 * discovery.
479		 */
480		tcp_simple_retransmit(sk);
481	} /* else let the usual retransmit timer handle it */
482}
483
484/*
485 * This routine is called by the ICMP module when it gets some
486 * sort of error condition.  If err < 0 then the socket should
487 * be closed and the error returned to the user.  If err > 0
488 * it's just the icmp type << 8 | icmp code.  After adjustment
489 * header points to the first 8 bytes of the tcp header.  We need
490 * to find the appropriate port.
491 *
492 * The locking strategy used here is very "optimistic". When
493 * someone else accesses the socket the ICMP is just dropped
494 * and for some paths there is no check at all.
495 * A more general error queue to queue errors for later handling
496 * is probably better.
497 *
498 */
499
500void tcp_v4_err(struct sk_buff *skb, u32 info)
501{
502	struct iphdr *iph = (struct iphdr *)skb->data;
503	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
504	struct tcp_sock *tp;
505	struct inet_sock *inet;
506	int type = skb->h.icmph->type;
507	int code = skb->h.icmph->code;
508	struct sock *sk;
509	__u32 seq;
510	int err;
511
512	if (skb->len < (iph->ihl << 2) + 8) {
513		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
514		return;
515	}
516
517	sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
518			 th->source, inet_iif(skb));
519	if (!sk) {
520		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
521		return;
522	}
523	if (sk->sk_state == TCP_TIME_WAIT) {
524		inet_twsk_put((struct inet_timewait_sock *)sk);
525		return;
526	}
527
528	bh_lock_sock(sk);
529	/* If too many ICMPs get dropped on busy
530	 * servers this needs to be solved differently.
531	 */
532	if (sock_owned_by_user(sk))
533		NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
534
535	if (sk->sk_state == TCP_CLOSE)
536		goto out;
537
538	tp = tcp_sk(sk);
539	seq = ntohl(th->seq);
540	if (sk->sk_state != TCP_LISTEN &&
541	    !between(seq, tp->snd_una, tp->snd_nxt)) {
542		NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
543		goto out;
544	}
545
546	switch (type) {
547	case ICMP_SOURCE_QUENCH:
548		/* Just silently ignore these. */
549		goto out;
550	case ICMP_PARAMETERPROB:
551		err = EPROTO;
552		break;
553	case ICMP_DEST_UNREACH:
554		if (code > NR_ICMP_UNREACH)
555			goto out;
556
557		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
558			if (!sock_owned_by_user(sk))
559				do_pmtu_discovery(sk, iph, info);
560			goto out;
561		}
562
563		err = icmp_err_convert[code].errno;
564		break;
565	case ICMP_TIME_EXCEEDED:
566		err = EHOSTUNREACH;
567		break;
568	default:
569		goto out;
570	}
571
572	switch (sk->sk_state) {
573		struct request_sock *req, **prev;
574	case TCP_LISTEN:
575		if (sock_owned_by_user(sk))
576			goto out;
577
578		req = inet_csk_search_req(sk, &prev, th->dest,
579					  iph->daddr, iph->saddr);
580		if (!req)
581			goto out;
582
583		/* ICMPs are not backlogged, hence we cannot get
584		   an established socket here.
585		 */
586		BUG_TRAP(!req->sk);
587
588		if (seq != tcp_rsk(req)->snt_isn) {
589			NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
590			goto out;
591		}
592
593		/*
594		 * Still in SYN_RECV, just remove it silently.
595		 * There is no good way to pass the error to the newly
596		 * created socket, and POSIX does not want network
597		 * errors returned from accept().
598		 */
599		inet_csk_reqsk_queue_drop(sk, req, prev);
600		goto out;
601
602	case TCP_SYN_SENT:
603	case TCP_SYN_RECV:  /* Cannot happen.
604			       It can f.e. if SYNs crossed.
605			     */
606		if (!sock_owned_by_user(sk)) {
607			TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
608			sk->sk_err = err;
609
610			sk->sk_error_report(sk);
611
612			tcp_done(sk);
613		} else {
614			sk->sk_err_soft = err;
615		}
616		goto out;
617	}
618
619	/* If we've already connected we will keep trying
620	 * until we time out, or the user gives up.
621	 *
622	 * rfc1122 4.2.3.9 allows to consider as hard errors
623	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
624	 * but it is obsoleted by pmtu discovery).
625	 *
626	 * Note, that in modern internet, where routing is unreliable
627	 * and in each dark corner broken firewalls sit, sending random
628	 * errors ordered by their masters even this two messages finally lose
629	 * their original sense (even Linux sends invalid PORT_UNREACHs)
630	 *
631	 * Now we are in compliance with RFCs.
632	 *							--ANK (980905)
633	 */
634
635	inet = inet_sk(sk);
636	if (!sock_owned_by_user(sk) && inet->recverr) {
637		sk->sk_err = err;
638		sk->sk_error_report(sk);
639	} else	{ /* Only an error on timeout */
640		sk->sk_err_soft = err;
641	}
642
643out:
644	bh_unlock_sock(sk);
645	sock_put(sk);
646}
647
648/* This routine computes an IPv4 TCP checksum. */
649void tcp_v4_send_check(struct sock *sk, struct tcphdr *th, int len,
650		       struct sk_buff *skb)
651{
652	struct inet_sock *inet = inet_sk(sk);
653
654	if (skb->ip_summed == CHECKSUM_HW) {
655		th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
656		skb->csum = offsetof(struct tcphdr, check);
657	} else {
658		th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
659					 csum_partial((char *)th,
660						      th->doff << 2,
661						      skb->csum));
662	}
663}
664
665/*
666 *	This routine will send an RST to the other tcp.
667 *
668 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
669 *		      for reset.
670 *	Answer: if a packet caused RST, it is not for a socket
671 *		existing in our system, if it is matched to a socket,
672 *		it is just duplicate segment or bug in other side's TCP.
673 *		So that we build reply only basing on parameters
674 *		arrived with segment.
675 *	Exception: precedence violation. We do not implement it in any case.
676 */
677
678static void tcp_v4_send_reset(struct sk_buff *skb)
679{
680	struct tcphdr *th = skb->h.th;
681	struct tcphdr rth;
682	struct ip_reply_arg arg;
683
684	/* Never send a reset in response to a reset. */
685	if (th->rst)
686		return;
687
688	if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
689		return;
690
691	/* Swap the send and the receive. */
692	memset(&rth, 0, sizeof(struct tcphdr));
693	rth.dest   = th->source;
694	rth.source = th->dest;
695	rth.doff   = sizeof(struct tcphdr) / 4;
696	rth.rst    = 1;
697
698	if (th->ack) {
699		rth.seq = th->ack_seq;
700	} else {
701		rth.ack = 1;
702		rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
703				    skb->len - (th->doff << 2));
704	}
705
706	memset(&arg, 0, sizeof arg);
707	arg.iov[0].iov_base = (unsigned char *)&rth;
708	arg.iov[0].iov_len  = sizeof rth;
709	arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
710				      skb->nh.iph->saddr, /*XXX*/
711				      sizeof(struct tcphdr), IPPROTO_TCP, 0);
712	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
713
714	ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
715
716	TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
717	TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
718}
719
720/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
721   outside socket context is ugly, certainly. What can I do?
722 */
723
724static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
725			    u32 win, u32 ts)
726{
727	struct tcphdr *th = skb->h.th;
728	struct {
729		struct tcphdr th;
730		u32 tsopt[3];
731	} rep;
732	struct ip_reply_arg arg;
733
734	memset(&rep.th, 0, sizeof(struct tcphdr));
735	memset(&arg, 0, sizeof arg);
736
737	arg.iov[0].iov_base = (unsigned char *)&rep;
738	arg.iov[0].iov_len  = sizeof(rep.th);
739	if (ts) {
740		rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
741				     (TCPOPT_TIMESTAMP << 8) |
742				     TCPOLEN_TIMESTAMP);
743		rep.tsopt[1] = htonl(tcp_time_stamp);
744		rep.tsopt[2] = htonl(ts);
745		arg.iov[0].iov_len = sizeof(rep);
746	}
747
748	/* Swap the send and the receive. */
749	rep.th.dest    = th->source;
750	rep.th.source  = th->dest;
751	rep.th.doff    = arg.iov[0].iov_len / 4;
752	rep.th.seq     = htonl(seq);
753	rep.th.ack_seq = htonl(ack);
754	rep.th.ack     = 1;
755	rep.th.window  = htons(win);
756
757	arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
758				      skb->nh.iph->saddr, /*XXX*/
759				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
760	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
761
762	ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
763
764	TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
765}
766
767static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
768{
769	struct inet_timewait_sock *tw = inet_twsk(sk);
770	const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
771
772	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
773			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, tcptw->tw_ts_recent);
774
775	inet_twsk_put(tw);
776}
777
778static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
779{
780	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
781			req->ts_recent);
782}
783
784/*
785 *	Send a SYN-ACK after having received an ACK.
786 *	This still operates on a request_sock only, not on a big
787 *	socket.
788 */
789static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
790			      struct dst_entry *dst)
791{
792	const struct inet_request_sock *ireq = inet_rsk(req);
793	int err = -1;
794	struct sk_buff * skb;
795
796	/* First, grab a route. */
797	if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
798		goto out;
799
800	skb = tcp_make_synack(sk, dst, req);
801
802	if (skb) {
803		struct tcphdr *th = skb->h.th;
804
805		th->check = tcp_v4_check(th, skb->len,
806					 ireq->loc_addr,
807					 ireq->rmt_addr,
808					 csum_partial((char *)th, skb->len,
809						      skb->csum));
810
811		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
812					    ireq->rmt_addr,
813					    ireq->opt);
814		if (err == NET_XMIT_CN)
815			err = 0;
816	}
817
818out:
819	dst_release(dst);
820	return err;
821}
822
823/*
824 *	IPv4 request_sock destructor.
825 */
826static void tcp_v4_reqsk_destructor(struct request_sock *req)
827{
828	if (inet_rsk(req)->opt)
829		kfree(inet_rsk(req)->opt);
830}
831
832static inline void syn_flood_warning(struct sk_buff *skb)
833{
834	static unsigned long warntime;
835
836	if (time_after(jiffies, (warntime + HZ * 60))) {
837		warntime = jiffies;
838		printk(KERN_INFO
839		       "possible SYN flooding on port %d. Sending cookies.\n",
840		       ntohs(skb->h.th->dest));
841	}
842}
843
844/*
845 * Save and compile IPv4 options into the request_sock if needed.
846 */
847static inline struct ip_options *tcp_v4_save_options(struct sock *sk,
848						     struct sk_buff *skb)
849{
850	struct ip_options *opt = &(IPCB(skb)->opt);
851	struct ip_options *dopt = NULL;
852
853	if (opt && opt->optlen) {
854		int opt_size = optlength(opt);
855		dopt = kmalloc(opt_size, GFP_ATOMIC);
856		if (dopt) {
857			if (ip_options_echo(dopt, skb)) {
858				kfree(dopt);
859				dopt = NULL;
860			}
861		}
862	}
863	return dopt;
864}
865
866struct request_sock_ops tcp_request_sock_ops = {
867	.family		=	PF_INET,
868	.obj_size	=	sizeof(struct tcp_request_sock),
869	.rtx_syn_ack	=	tcp_v4_send_synack,
870	.send_ack	=	tcp_v4_reqsk_send_ack,
871	.destructor	=	tcp_v4_reqsk_destructor,
872	.send_reset	=	tcp_v4_send_reset,
873};
874
875int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
876{
877	struct inet_request_sock *ireq;
878	struct tcp_options_received tmp_opt;
879	struct request_sock *req;
880	__u32 saddr = skb->nh.iph->saddr;
881	__u32 daddr = skb->nh.iph->daddr;
882	__u32 isn = TCP_SKB_CB(skb)->when;
883	struct dst_entry *dst = NULL;
884#ifdef CONFIG_SYN_COOKIES
885	int want_cookie = 0;
886#else
887#define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
888#endif
889
890	/* Never answer to SYNs send to broadcast or multicast */
891	if (((struct rtable *)skb->dst)->rt_flags &
892	    (RTCF_BROADCAST | RTCF_MULTICAST))
893		goto drop;
894
895	/* TW buckets are converted to open requests without
896	 * limitations, they conserve resources and peer is
897	 * evidently real one.
898	 */
899	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
900#ifdef CONFIG_SYN_COOKIES
901		if (sysctl_tcp_syncookies) {
902			want_cookie = 1;
903		} else
904#endif
905		goto drop;
906	}
907
908	/* Accept backlog is full. If we have already queued enough
909	 * of warm entries in syn queue, drop request. It is better than
910	 * clogging syn queue with openreqs with exponentially increasing
911	 * timeout.
912	 */
913	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
914		goto drop;
915
916	req = reqsk_alloc(&tcp_request_sock_ops);
917	if (!req)
918		goto drop;
919
920	tcp_clear_options(&tmp_opt);
921	tmp_opt.mss_clamp = 536;
922	tmp_opt.user_mss  = tcp_sk(sk)->rx_opt.user_mss;
923
924	tcp_parse_options(skb, &tmp_opt, 0);
925
926	if (want_cookie) {
927		tcp_clear_options(&tmp_opt);
928		tmp_opt.saw_tstamp = 0;
929	}
930
931	if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
932		/* Some OSes (unknown ones, but I see them on web server, which
933		 * contains information interesting only for windows'
934		 * users) do not send their stamp in SYN. It is easy case.
935		 * We simply do not advertise TS support.
936		 */
937		tmp_opt.saw_tstamp = 0;
938		tmp_opt.tstamp_ok  = 0;
939	}
940	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
941
942	tcp_openreq_init(req, &tmp_opt, skb);
943
944	ireq = inet_rsk(req);
945	ireq->loc_addr = daddr;
946	ireq->rmt_addr = saddr;
947	ireq->opt = tcp_v4_save_options(sk, skb);
948	if (!want_cookie)
949		TCP_ECN_create_request(req, skb->h.th);
950
951	if (want_cookie) {
952#ifdef CONFIG_SYN_COOKIES
953		syn_flood_warning(skb);
954#endif
955		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
956	} else if (!isn) {
957		struct inet_peer *peer = NULL;
958
959		/* VJ's idea. We save last timestamp seen
960		 * from the destination in peer table, when entering
961		 * state TIME-WAIT, and check against it before
962		 * accepting new connection request.
963		 *
964		 * If "isn" is not zero, this request hit alive
965		 * timewait bucket, so that all the necessary checks
966		 * are made in the function processing timewait state.
967		 */
968		if (tmp_opt.saw_tstamp &&
969		    tcp_death_row.sysctl_tw_recycle &&
970		    (dst = inet_csk_route_req(sk, req)) != NULL &&
971		    (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
972		    peer->v4daddr == saddr) {
973			if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
974			    (s32)(peer->tcp_ts - req->ts_recent) >
975							TCP_PAWS_WINDOW) {
976				NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
977				dst_release(dst);
978				goto drop_and_free;
979			}
980		}
981		/* Kill the following clause, if you dislike this way. */
982		else if (!sysctl_tcp_syncookies &&
983			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
984			  (sysctl_max_syn_backlog >> 2)) &&
985			 (!peer || !peer->tcp_ts_stamp) &&
986			 (!dst || !dst_metric(dst, RTAX_RTT))) {
987			/* Without syncookies last quarter of
988			 * backlog is filled with destinations,
989			 * proven to be alive.
990			 * It means that we continue to communicate
991			 * to destinations, already remembered
992			 * to the moment of synflood.
993			 */
994			LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
995				       "request from %u.%u.%u.%u/%u\n",
996				       NIPQUAD(saddr),
997				       ntohs(skb->h.th->source));
998			dst_release(dst);
999			goto drop_and_free;
1000		}
1001
1002		isn = tcp_v4_init_sequence(sk, skb);
1003	}
1004	tcp_rsk(req)->snt_isn = isn;
1005
1006	if (tcp_v4_send_synack(sk, req, dst))
1007		goto drop_and_free;
1008
1009	if (want_cookie) {
1010	   	reqsk_free(req);
1011	} else {
1012		inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1013	}
1014	return 0;
1015
1016drop_and_free:
1017	reqsk_free(req);
1018drop:
1019	TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
1020	return 0;
1021}
1022
1023
1024/*
1025 * The three way handshake has completed - we got a valid synack -
1026 * now create the new socket.
1027 */
1028struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1029				  struct request_sock *req,
1030				  struct dst_entry *dst)
1031{
1032	struct inet_request_sock *ireq;
1033	struct inet_sock *newinet;
1034	struct tcp_sock *newtp;
1035	struct sock *newsk;
1036
1037	if (sk_acceptq_is_full(sk))
1038		goto exit_overflow;
1039
1040	if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1041		goto exit;
1042
1043	newsk = tcp_create_openreq_child(sk, req, skb);
1044	if (!newsk)
1045		goto exit;
1046
1047	sk_setup_caps(newsk, dst);
1048
1049	newtp		      = tcp_sk(newsk);
1050	newinet		      = inet_sk(newsk);
1051	ireq		      = inet_rsk(req);
1052	newinet->daddr	      = ireq->rmt_addr;
1053	newinet->rcv_saddr    = ireq->loc_addr;
1054	newinet->saddr	      = ireq->loc_addr;
1055	newinet->opt	      = ireq->opt;
1056	ireq->opt	      = NULL;
1057	newinet->mc_index     = inet_iif(skb);
1058	newinet->mc_ttl	      = skb->nh.iph->ttl;
1059	newtp->ext_header_len = 0;
1060	if (newinet->opt)
1061		newtp->ext_header_len = newinet->opt->optlen;
1062	newinet->id = newtp->write_seq ^ jiffies;
1063
1064	tcp_sync_mss(newsk, dst_mtu(dst));
1065	newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1066	tcp_initialize_rcv_mss(newsk);
1067
1068	__inet_hash(&tcp_hashinfo, newsk, 0);
1069	__inet_inherit_port(&tcp_hashinfo, sk, newsk);
1070
1071	return newsk;
1072
1073exit_overflow:
1074	NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1075exit:
1076	NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1077	dst_release(dst);
1078	return NULL;
1079}
1080
1081static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1082{
1083	struct tcphdr *th = skb->h.th;
1084	struct iphdr *iph = skb->nh.iph;
1085	struct sock *nsk;
1086	struct request_sock **prev;
1087	/* Find possible connection requests. */
1088	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1089						       iph->saddr, iph->daddr);
1090	if (req)
1091		return tcp_check_req(sk, skb, req, prev);
1092
1093	nsk = __inet_lookup_established(&tcp_hashinfo, skb->nh.iph->saddr,
1094					th->source, skb->nh.iph->daddr,
1095					ntohs(th->dest), inet_iif(skb));
1096
1097	if (nsk) {
1098		if (nsk->sk_state != TCP_TIME_WAIT) {
1099			bh_lock_sock(nsk);
1100			return nsk;
1101		}
1102		inet_twsk_put((struct inet_timewait_sock *)nsk);
1103		return NULL;
1104	}
1105
1106#ifdef CONFIG_SYN_COOKIES
1107	if (!th->rst && !th->syn && th->ack)
1108		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1109#endif
1110	return sk;
1111}
1112
1113static int tcp_v4_checksum_init(struct sk_buff *skb)
1114{
1115	if (skb->ip_summed == CHECKSUM_HW) {
1116		skb->ip_summed = CHECKSUM_UNNECESSARY;
1117		if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
1118				  skb->nh.iph->daddr, skb->csum))
1119			return 0;
1120
1121		LIMIT_NETDEBUG(KERN_DEBUG "hw tcp v4 csum failed\n");
1122		skb->ip_summed = CHECKSUM_NONE;
1123	}
1124	if (skb->len <= 76) {
1125		if (tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
1126				 skb->nh.iph->daddr,
1127				 skb_checksum(skb, 0, skb->len, 0)))
1128			return -1;
1129		skb->ip_summed = CHECKSUM_UNNECESSARY;
1130	} else {
1131		skb->csum = ~tcp_v4_check(skb->h.th, skb->len,
1132					  skb->nh.iph->saddr,
1133					  skb->nh.iph->daddr, 0);
1134	}
1135	return 0;
1136}
1137
1138
1139/* The socket must have it's spinlock held when we get
1140 * here.
1141 *
1142 * We have a potential double-lock case here, so even when
1143 * doing backlog processing we use the BH locking scheme.
1144 * This is because we cannot sleep with the original spinlock
1145 * held.
1146 */
1147int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1148{
1149	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1150		TCP_CHECK_TIMER(sk);
1151		if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
1152			goto reset;
1153		TCP_CHECK_TIMER(sk);
1154		return 0;
1155	}
1156
1157	if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
1158		goto csum_err;
1159
1160	if (sk->sk_state == TCP_LISTEN) {
1161		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1162		if (!nsk)
1163			goto discard;
1164
1165		if (nsk != sk) {
1166			if (tcp_child_process(sk, nsk, skb))
1167				goto reset;
1168			return 0;
1169		}
1170	}
1171
1172	TCP_CHECK_TIMER(sk);
1173	if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1174		goto reset;
1175	TCP_CHECK_TIMER(sk);
1176	return 0;
1177
1178reset:
1179	tcp_v4_send_reset(skb);
1180discard:
1181	kfree_skb(skb);
1182	/* Be careful here. If this function gets more complicated and
1183	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1184	 * might be destroyed here. This current version compiles correctly,
1185	 * but you have been warned.
1186	 */
1187	return 0;
1188
1189csum_err:
1190	TCP_INC_STATS_BH(TCP_MIB_INERRS);
1191	goto discard;
1192}
1193
1194/*
1195 *	From tcp_input.c
1196 */
1197
1198int tcp_v4_rcv(struct sk_buff *skb)
1199{
1200	struct tcphdr *th;
1201	struct sock *sk;
1202	int ret;
1203
1204	if (skb->pkt_type != PACKET_HOST)
1205		goto discard_it;
1206
1207	/* Count it even if it's bad */
1208	TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1209
1210	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1211		goto discard_it;
1212
1213	th = skb->h.th;
1214
1215	if (th->doff < sizeof(struct tcphdr) / 4)
1216		goto bad_packet;
1217	if (!pskb_may_pull(skb, th->doff * 4))
1218		goto discard_it;
1219
1220	/* An explanation is required here, I think.
1221	 * Packet length and doff are validated by header prediction,
1222	 * provided case of th->doff==0 is elimineted.
1223	 * So, we defer the checks. */
1224	if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1225	     tcp_v4_checksum_init(skb) < 0))
1226		goto bad_packet;
1227
1228	th = skb->h.th;
1229	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1230	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1231				    skb->len - th->doff * 4);
1232	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1233	TCP_SKB_CB(skb)->when	 = 0;
1234	TCP_SKB_CB(skb)->flags	 = skb->nh.iph->tos;
1235	TCP_SKB_CB(skb)->sacked	 = 0;
1236
1237	sk = __inet_lookup(&tcp_hashinfo, skb->nh.iph->saddr, th->source,
1238			   skb->nh.iph->daddr, ntohs(th->dest),
1239			   inet_iif(skb));
1240
1241	if (!sk)
1242		goto no_tcp_socket;
1243
1244process:
1245	if (sk->sk_state == TCP_TIME_WAIT)
1246		goto do_time_wait;
1247
1248	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1249		goto discard_and_relse;
1250
1251	if (sk_filter(sk, skb, 0))
1252		goto discard_and_relse;
1253
1254	skb->dev = NULL;
1255
1256	bh_lock_sock(sk);
1257	ret = 0;
1258	if (!sock_owned_by_user(sk)) {
1259		if (!tcp_prequeue(sk, skb))
1260			ret = tcp_v4_do_rcv(sk, skb);
1261	} else
1262		sk_add_backlog(sk, skb);
1263	bh_unlock_sock(sk);
1264
1265	sock_put(sk);
1266
1267	return ret;
1268
1269no_tcp_socket:
1270	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1271		goto discard_it;
1272
1273	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1274bad_packet:
1275		TCP_INC_STATS_BH(TCP_MIB_INERRS);
1276	} else {
1277		tcp_v4_send_reset(skb);
1278	}
1279
1280discard_it:
1281	/* Discard frame. */
1282	kfree_skb(skb);
1283  	return 0;
1284
1285discard_and_relse:
1286	sock_put(sk);
1287	goto discard_it;
1288
1289do_time_wait:
1290	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1291		inet_twsk_put((struct inet_timewait_sock *) sk);
1292		goto discard_it;
1293	}
1294
1295	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1296		TCP_INC_STATS_BH(TCP_MIB_INERRS);
1297		inet_twsk_put((struct inet_timewait_sock *) sk);
1298		goto discard_it;
1299	}
1300	switch (tcp_timewait_state_process((struct inet_timewait_sock *)sk,
1301					   skb, th)) {
1302	case TCP_TW_SYN: {
1303		struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1304							skb->nh.iph->daddr,
1305							ntohs(th->dest),
1306							inet_iif(skb));
1307		if (sk2) {
1308			inet_twsk_deschedule((struct inet_timewait_sock *)sk,
1309					     &tcp_death_row);
1310			inet_twsk_put((struct inet_timewait_sock *)sk);
1311			sk = sk2;
1312			goto process;
1313		}
1314		/* Fall through to ACK */
1315	}
1316	case TCP_TW_ACK:
1317		tcp_v4_timewait_ack(sk, skb);
1318		break;
1319	case TCP_TW_RST:
1320		goto no_tcp_socket;
1321	case TCP_TW_SUCCESS:;
1322	}
1323	goto discard_it;
1324}
1325
1326static void v4_addr2sockaddr(struct sock *sk, struct sockaddr * uaddr)
1327{
1328	struct sockaddr_in *sin = (struct sockaddr_in *) uaddr;
1329	struct inet_sock *inet = inet_sk(sk);
1330
1331	sin->sin_family		= AF_INET;
1332	sin->sin_addr.s_addr	= inet->daddr;
1333	sin->sin_port		= inet->dport;
1334}
1335
1336/* VJ's idea. Save last timestamp seen from this destination
1337 * and hold it at least for normal timewait interval to use for duplicate
1338 * segment detection in subsequent connections, before they enter synchronized
1339 * state.
1340 */
1341
1342int tcp_v4_remember_stamp(struct sock *sk)
1343{
1344	struct inet_sock *inet = inet_sk(sk);
1345	struct tcp_sock *tp = tcp_sk(sk);
1346	struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1347	struct inet_peer *peer = NULL;
1348	int release_it = 0;
1349
1350	if (!rt || rt->rt_dst != inet->daddr) {
1351		peer = inet_getpeer(inet->daddr, 1);
1352		release_it = 1;
1353	} else {
1354		if (!rt->peer)
1355			rt_bind_peer(rt, 1);
1356		peer = rt->peer;
1357	}
1358
1359	if (peer) {
1360		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1361		    (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1362		     peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1363			peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1364			peer->tcp_ts = tp->rx_opt.ts_recent;
1365		}
1366		if (release_it)
1367			inet_putpeer(peer);
1368		return 1;
1369	}
1370
1371	return 0;
1372}
1373
1374int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1375{
1376	struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1377
1378	if (peer) {
1379		const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1380
1381		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1382		    (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1383		     peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1384			peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1385			peer->tcp_ts	   = tcptw->tw_ts_recent;
1386		}
1387		inet_putpeer(peer);
1388		return 1;
1389	}
1390
1391	return 0;
1392}
1393
1394struct tcp_func ipv4_specific = {
1395	.queue_xmit	=	ip_queue_xmit,
1396	.send_check	=	tcp_v4_send_check,
1397	.rebuild_header	=	inet_sk_rebuild_header,
1398	.conn_request	=	tcp_v4_conn_request,
1399	.syn_recv_sock	=	tcp_v4_syn_recv_sock,
1400	.remember_stamp	=	tcp_v4_remember_stamp,
1401	.net_header_len	=	sizeof(struct iphdr),
1402	.setsockopt	=	ip_setsockopt,
1403	.getsockopt	=	ip_getsockopt,
1404	.addr2sockaddr	=	v4_addr2sockaddr,
1405	.sockaddr_len	=	sizeof(struct sockaddr_in),
1406};
1407
1408/* NOTE: A lot of things set to zero explicitly by call to
1409 *       sk_alloc() so need not be done here.
1410 */
1411static int tcp_v4_init_sock(struct sock *sk)
1412{
1413	struct inet_connection_sock *icsk = inet_csk(sk);
1414	struct tcp_sock *tp = tcp_sk(sk);
1415
1416	skb_queue_head_init(&tp->out_of_order_queue);
1417	tcp_init_xmit_timers(sk);
1418	tcp_prequeue_init(tp);
1419
1420	icsk->icsk_rto = TCP_TIMEOUT_INIT;
1421	tp->mdev = TCP_TIMEOUT_INIT;
1422
1423	/* So many TCP implementations out there (incorrectly) count the
1424	 * initial SYN frame in their delayed-ACK and congestion control
1425	 * algorithms that we must have the following bandaid to talk
1426	 * efficiently to them.  -DaveM
1427	 */
1428	tp->snd_cwnd = 2;
1429
1430	/* See draft-stevens-tcpca-spec-01 for discussion of the
1431	 * initialization of these values.
1432	 */
1433	tp->snd_ssthresh = 0x7fffffff;	/* Infinity */
1434	tp->snd_cwnd_clamp = ~0;
1435	tp->mss_cache = 536;
1436
1437	tp->reordering = sysctl_tcp_reordering;
1438	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1439
1440	sk->sk_state = TCP_CLOSE;
1441
1442	sk->sk_write_space = sk_stream_write_space;
1443	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1444
1445	tp->af_specific = &ipv4_specific;
1446
1447	sk->sk_sndbuf = sysctl_tcp_wmem[1];
1448	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1449
1450	atomic_inc(&tcp_sockets_allocated);
1451
1452	return 0;
1453}
1454
1455int tcp_v4_destroy_sock(struct sock *sk)
1456{
1457	struct tcp_sock *tp = tcp_sk(sk);
1458
1459	tcp_clear_xmit_timers(sk);
1460
1461	tcp_cleanup_congestion_control(sk);
1462
1463	/* Cleanup up the write buffer. */
1464  	sk_stream_writequeue_purge(sk);
1465
1466	/* Cleans up our, hopefully empty, out_of_order_queue. */
1467  	__skb_queue_purge(&tp->out_of_order_queue);
1468
1469	/* Clean prequeue, it must be empty really */
1470	__skb_queue_purge(&tp->ucopy.prequeue);
1471
1472	/* Clean up a referenced TCP bind bucket. */
1473	if (inet_csk(sk)->icsk_bind_hash)
1474		inet_put_port(&tcp_hashinfo, sk);
1475
1476	/*
1477	 * If sendmsg cached page exists, toss it.
1478	 */
1479	if (sk->sk_sndmsg_page) {
1480		__free_page(sk->sk_sndmsg_page);
1481		sk->sk_sndmsg_page = NULL;
1482	}
1483
1484	atomic_dec(&tcp_sockets_allocated);
1485
1486	return 0;
1487}
1488
1489EXPORT_SYMBOL(tcp_v4_destroy_sock);
1490
1491#ifdef CONFIG_PROC_FS
1492/* Proc filesystem TCP sock list dumping. */
1493
1494static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1495{
1496	return hlist_empty(head) ? NULL :
1497		list_entry(head->first, struct inet_timewait_sock, tw_node);
1498}
1499
1500static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1501{
1502	return tw->tw_node.next ?
1503		hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1504}
1505
1506static void *listening_get_next(struct seq_file *seq, void *cur)
1507{
1508	struct inet_connection_sock *icsk;
1509	struct hlist_node *node;
1510	struct sock *sk = cur;
1511	struct tcp_iter_state* st = seq->private;
1512
1513	if (!sk) {
1514		st->bucket = 0;
1515		sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1516		goto get_sk;
1517	}
1518
1519	++st->num;
1520
1521	if (st->state == TCP_SEQ_STATE_OPENREQ) {
1522		struct request_sock *req = cur;
1523
1524	       	icsk = inet_csk(st->syn_wait_sk);
1525		req = req->dl_next;
1526		while (1) {
1527			while (req) {
1528				if (req->rsk_ops->family == st->family) {
1529					cur = req;
1530					goto out;
1531				}
1532				req = req->dl_next;
1533			}
1534			if (++st->sbucket >= TCP_SYNQ_HSIZE)
1535				break;
1536get_req:
1537			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1538		}
1539		sk	  = sk_next(st->syn_wait_sk);
1540		st->state = TCP_SEQ_STATE_LISTENING;
1541		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1542	} else {
1543	       	icsk = inet_csk(sk);
1544		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1545		if (reqsk_queue_len(&icsk->icsk_accept_queue))
1546			goto start_req;
1547		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1548		sk = sk_next(sk);
1549	}
1550get_sk:
1551	sk_for_each_from(sk, node) {
1552		if (sk->sk_family == st->family) {
1553			cur = sk;
1554			goto out;
1555		}
1556	       	icsk = inet_csk(sk);
1557		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1558		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1559start_req:
1560			st->uid		= sock_i_uid(sk);
1561			st->syn_wait_sk = sk;
1562			st->state	= TCP_SEQ_STATE_OPENREQ;
1563			st->sbucket	= 0;
1564			goto get_req;
1565		}
1566		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1567	}
1568	if (++st->bucket < INET_LHTABLE_SIZE) {
1569		sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1570		goto get_sk;
1571	}
1572	cur = NULL;
1573out:
1574	return cur;
1575}
1576
1577static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1578{
1579	void *rc = listening_get_next(seq, NULL);
1580
1581	while (rc && *pos) {
1582		rc = listening_get_next(seq, rc);
1583		--*pos;
1584	}
1585	return rc;
1586}
1587
1588static void *established_get_first(struct seq_file *seq)
1589{
1590	struct tcp_iter_state* st = seq->private;
1591	void *rc = NULL;
1592
1593	for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1594		struct sock *sk;
1595		struct hlist_node *node;
1596		struct inet_timewait_sock *tw;
1597
1598		/* We can reschedule _before_ having picked the target: */
1599		cond_resched_softirq();
1600
1601		read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1602		sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1603			if (sk->sk_family != st->family) {
1604				continue;
1605			}
1606			rc = sk;
1607			goto out;
1608		}
1609		st->state = TCP_SEQ_STATE_TIME_WAIT;
1610		inet_twsk_for_each(tw, node,
1611				   &tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain) {
1612			if (tw->tw_family != st->family) {
1613				continue;
1614			}
1615			rc = tw;
1616			goto out;
1617		}
1618		read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1619		st->state = TCP_SEQ_STATE_ESTABLISHED;
1620	}
1621out:
1622	return rc;
1623}
1624
1625static void *established_get_next(struct seq_file *seq, void *cur)
1626{
1627	struct sock *sk = cur;
1628	struct inet_timewait_sock *tw;
1629	struct hlist_node *node;
1630	struct tcp_iter_state* st = seq->private;
1631
1632	++st->num;
1633
1634	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1635		tw = cur;
1636		tw = tw_next(tw);
1637get_tw:
1638		while (tw && tw->tw_family != st->family) {
1639			tw = tw_next(tw);
1640		}
1641		if (tw) {
1642			cur = tw;
1643			goto out;
1644		}
1645		read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1646		st->state = TCP_SEQ_STATE_ESTABLISHED;
1647
1648		/* We can reschedule between buckets: */
1649		cond_resched_softirq();
1650
1651		if (++st->bucket < tcp_hashinfo.ehash_size) {
1652			read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
1653			sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1654		} else {
1655			cur = NULL;
1656			goto out;
1657		}
1658	} else
1659		sk = sk_next(sk);
1660
1661	sk_for_each_from(sk, node) {
1662		if (sk->sk_family == st->family)
1663			goto found;
1664	}
1665
1666	st->state = TCP_SEQ_STATE_TIME_WAIT;
1667	tw = tw_head(&tcp_hashinfo.ehash[st->bucket + tcp_hashinfo.ehash_size].chain);
1668	goto get_tw;
1669found:
1670	cur = sk;
1671out:
1672	return cur;
1673}
1674
1675static void *established_get_idx(struct seq_file *seq, loff_t pos)
1676{
1677	void *rc = established_get_first(seq);
1678
1679	while (rc && pos) {
1680		rc = established_get_next(seq, rc);
1681		--pos;
1682	}
1683	return rc;
1684}
1685
1686static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
1687{
1688	void *rc;
1689	struct tcp_iter_state* st = seq->private;
1690
1691	inet_listen_lock(&tcp_hashinfo);
1692	st->state = TCP_SEQ_STATE_LISTENING;
1693	rc	  = listening_get_idx(seq, &pos);
1694
1695	if (!rc) {
1696		inet_listen_unlock(&tcp_hashinfo);
1697		local_bh_disable();
1698		st->state = TCP_SEQ_STATE_ESTABLISHED;
1699		rc	  = established_get_idx(seq, pos);
1700	}
1701
1702	return rc;
1703}
1704
1705static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
1706{
1707	struct tcp_iter_state* st = seq->private;
1708	st->state = TCP_SEQ_STATE_LISTENING;
1709	st->num = 0;
1710	return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
1711}
1712
1713static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1714{
1715	void *rc = NULL;
1716	struct tcp_iter_state* st;
1717
1718	if (v == SEQ_START_TOKEN) {
1719		rc = tcp_get_idx(seq, 0);
1720		goto out;
1721	}
1722	st = seq->private;
1723
1724	switch (st->state) {
1725	case TCP_SEQ_STATE_OPENREQ:
1726	case TCP_SEQ_STATE_LISTENING:
1727		rc = listening_get_next(seq, v);
1728		if (!rc) {
1729			inet_listen_unlock(&tcp_hashinfo);
1730			local_bh_disable();
1731			st->state = TCP_SEQ_STATE_ESTABLISHED;
1732			rc	  = established_get_first(seq);
1733		}
1734		break;
1735	case TCP_SEQ_STATE_ESTABLISHED:
1736	case TCP_SEQ_STATE_TIME_WAIT:
1737		rc = established_get_next(seq, v);
1738		break;
1739	}
1740out:
1741	++*pos;
1742	return rc;
1743}
1744
1745static void tcp_seq_stop(struct seq_file *seq, void *v)
1746{
1747	struct tcp_iter_state* st = seq->private;
1748
1749	switch (st->state) {
1750	case TCP_SEQ_STATE_OPENREQ:
1751		if (v) {
1752			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
1753			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1754		}
1755	case TCP_SEQ_STATE_LISTENING:
1756		if (v != SEQ_START_TOKEN)
1757			inet_listen_unlock(&tcp_hashinfo);
1758		break;
1759	case TCP_SEQ_STATE_TIME_WAIT:
1760	case TCP_SEQ_STATE_ESTABLISHED:
1761		if (v)
1762			read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
1763		local_bh_enable();
1764		break;
1765	}
1766}
1767
1768static int tcp_seq_open(struct inode *inode, struct file *file)
1769{
1770	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
1771	struct seq_file *seq;
1772	struct tcp_iter_state *s;
1773	int rc;
1774
1775	if (unlikely(afinfo == NULL))
1776		return -EINVAL;
1777
1778	s = kmalloc(sizeof(*s), GFP_KERNEL);
1779	if (!s)
1780		return -ENOMEM;
1781	memset(s, 0, sizeof(*s));
1782	s->family		= afinfo->family;
1783	s->seq_ops.start	= tcp_seq_start;
1784	s->seq_ops.next		= tcp_seq_next;
1785	s->seq_ops.show		= afinfo->seq_show;
1786	s->seq_ops.stop		= tcp_seq_stop;
1787
1788	rc = seq_open(file, &s->seq_ops);
1789	if (rc)
1790		goto out_kfree;
1791	seq	     = file->private_data;
1792	seq->private = s;
1793out:
1794	return rc;
1795out_kfree:
1796	kfree(s);
1797	goto out;
1798}
1799
1800int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
1801{
1802	int rc = 0;
1803	struct proc_dir_entry *p;
1804
1805	if (!afinfo)
1806		return -EINVAL;
1807	afinfo->seq_fops->owner		= afinfo->owner;
1808	afinfo->seq_fops->open		= tcp_seq_open;
1809	afinfo->seq_fops->read		= seq_read;
1810	afinfo->seq_fops->llseek	= seq_lseek;
1811	afinfo->seq_fops->release	= seq_release_private;
1812
1813	p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1814	if (p)
1815		p->data = afinfo;
1816	else
1817		rc = -ENOMEM;
1818	return rc;
1819}
1820
1821void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
1822{
1823	if (!afinfo)
1824		return;
1825	proc_net_remove(afinfo->name);
1826	memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1827}
1828
1829static void get_openreq4(struct sock *sk, struct request_sock *req,
1830			 char *tmpbuf, int i, int uid)
1831{
1832	const struct inet_request_sock *ireq = inet_rsk(req);
1833	int ttd = req->expires - jiffies;
1834
1835	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1836		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1837		i,
1838		ireq->loc_addr,
1839		ntohs(inet_sk(sk)->sport),
1840		ireq->rmt_addr,
1841		ntohs(ireq->rmt_port),
1842		TCP_SYN_RECV,
1843		0, 0, /* could print option size, but that is af dependent. */
1844		1,    /* timers active (only the expire timer) */
1845		jiffies_to_clock_t(ttd),
1846		req->retrans,
1847		uid,
1848		0,  /* non standard timer */
1849		0, /* open_requests have no inode */
1850		atomic_read(&sk->sk_refcnt),
1851		req);
1852}
1853
1854static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
1855{
1856	int timer_active;
1857	unsigned long timer_expires;
1858	struct tcp_sock *tp = tcp_sk(sp);
1859	const struct inet_connection_sock *icsk = inet_csk(sp);
1860	struct inet_sock *inet = inet_sk(sp);
1861	unsigned int dest = inet->daddr;
1862	unsigned int src = inet->rcv_saddr;
1863	__u16 destp = ntohs(inet->dport);
1864	__u16 srcp = ntohs(inet->sport);
1865
1866	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
1867		timer_active	= 1;
1868		timer_expires	= icsk->icsk_timeout;
1869	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
1870		timer_active	= 4;
1871		timer_expires	= icsk->icsk_timeout;
1872	} else if (timer_pending(&sp->sk_timer)) {
1873		timer_active	= 2;
1874		timer_expires	= sp->sk_timer.expires;
1875	} else {
1876		timer_active	= 0;
1877		timer_expires = jiffies;
1878	}
1879
1880	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1881			"%08X %5d %8d %lu %d %p %u %u %u %u %d",
1882		i, src, srcp, dest, destp, sp->sk_state,
1883		tp->write_seq - tp->snd_una, tp->rcv_nxt - tp->copied_seq,
1884		timer_active,
1885		jiffies_to_clock_t(timer_expires - jiffies),
1886		icsk->icsk_retransmits,
1887		sock_i_uid(sp),
1888		icsk->icsk_probes_out,
1889		sock_i_ino(sp),
1890		atomic_read(&sp->sk_refcnt), sp,
1891		icsk->icsk_rto,
1892		icsk->icsk_ack.ato,
1893		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
1894		tp->snd_cwnd,
1895		tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
1896}
1897
1898static void get_timewait4_sock(struct inet_timewait_sock *tw, char *tmpbuf, int i)
1899{
1900	unsigned int dest, src;
1901	__u16 destp, srcp;
1902	int ttd = tw->tw_ttd - jiffies;
1903
1904	if (ttd < 0)
1905		ttd = 0;
1906
1907	dest  = tw->tw_daddr;
1908	src   = tw->tw_rcv_saddr;
1909	destp = ntohs(tw->tw_dport);
1910	srcp  = ntohs(tw->tw_sport);
1911
1912	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1913		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1914		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
1915		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
1916		atomic_read(&tw->tw_refcnt), tw);
1917}
1918
1919#define TMPSZ 150
1920
1921static int tcp4_seq_show(struct seq_file *seq, void *v)
1922{
1923	struct tcp_iter_state* st;
1924	char tmpbuf[TMPSZ + 1];
1925
1926	if (v == SEQ_START_TOKEN) {
1927		seq_printf(seq, "%-*s\n", TMPSZ - 1,
1928			   "  sl  local_address rem_address   st tx_queue "
1929			   "rx_queue tr tm->when retrnsmt   uid  timeout "
1930			   "inode");
1931		goto out;
1932	}
1933	st = seq->private;
1934
1935	switch (st->state) {
1936	case TCP_SEQ_STATE_LISTENING:
1937	case TCP_SEQ_STATE_ESTABLISHED:
1938		get_tcp4_sock(v, tmpbuf, st->num);
1939		break;
1940	case TCP_SEQ_STATE_OPENREQ:
1941		get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
1942		break;
1943	case TCP_SEQ_STATE_TIME_WAIT:
1944		get_timewait4_sock(v, tmpbuf, st->num);
1945		break;
1946	}
1947	seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
1948out:
1949	return 0;
1950}
1951
1952static struct file_operations tcp4_seq_fops;
1953static struct tcp_seq_afinfo tcp4_seq_afinfo = {
1954	.owner		= THIS_MODULE,
1955	.name		= "tcp",
1956	.family		= AF_INET,
1957	.seq_show	= tcp4_seq_show,
1958	.seq_fops	= &tcp4_seq_fops,
1959};
1960
1961int __init tcp4_proc_init(void)
1962{
1963	return tcp_proc_register(&tcp4_seq_afinfo);
1964}
1965
1966void tcp4_proc_exit(void)
1967{
1968	tcp_proc_unregister(&tcp4_seq_afinfo);
1969}
1970#endif /* CONFIG_PROC_FS */
1971
1972struct proto tcp_prot = {
1973	.name			= "TCP",
1974	.owner			= THIS_MODULE,
1975	.close			= tcp_close,
1976	.connect		= tcp_v4_connect,
1977	.disconnect		= tcp_disconnect,
1978	.accept			= inet_csk_accept,
1979	.ioctl			= tcp_ioctl,
1980	.init			= tcp_v4_init_sock,
1981	.destroy		= tcp_v4_destroy_sock,
1982	.shutdown		= tcp_shutdown,
1983	.setsockopt		= tcp_setsockopt,
1984	.getsockopt		= tcp_getsockopt,
1985	.sendmsg		= tcp_sendmsg,
1986	.recvmsg		= tcp_recvmsg,
1987	.backlog_rcv		= tcp_v4_do_rcv,
1988	.hash			= tcp_v4_hash,
1989	.unhash			= tcp_unhash,
1990	.get_port		= tcp_v4_get_port,
1991	.enter_memory_pressure	= tcp_enter_memory_pressure,
1992	.sockets_allocated	= &tcp_sockets_allocated,
1993	.orphan_count		= &tcp_orphan_count,
1994	.memory_allocated	= &tcp_memory_allocated,
1995	.memory_pressure	= &tcp_memory_pressure,
1996	.sysctl_mem		= sysctl_tcp_mem,
1997	.sysctl_wmem		= sysctl_tcp_wmem,
1998	.sysctl_rmem		= sysctl_tcp_rmem,
1999	.max_header		= MAX_TCP_HEADER,
2000	.obj_size		= sizeof(struct tcp_sock),
2001	.twsk_obj_size		= sizeof(struct tcp_timewait_sock),
2002	.rsk_prot		= &tcp_request_sock_ops,
2003};
2004
2005
2006
2007void __init tcp_v4_init(struct net_proto_family *ops)
2008{
2009	int err = sock_create_kern(PF_INET, SOCK_RAW, IPPROTO_TCP, &tcp_socket);
2010	if (err < 0)
2011		panic("Failed to create the TCP control socket.\n");
2012	tcp_socket->sk->sk_allocation   = GFP_ATOMIC;
2013	inet_sk(tcp_socket->sk)->uc_ttl = -1;
2014
2015	/* Unhash it so that IP input processing does not even
2016	 * see it, we do not wish this socket to see incoming
2017	 * packets.
2018	 */
2019	tcp_socket->sk->sk_prot->unhash(tcp_socket->sk);
2020}
2021
2022EXPORT_SYMBOL(ipv4_specific);
2023EXPORT_SYMBOL(inet_bind_bucket_create);
2024EXPORT_SYMBOL(tcp_hashinfo);
2025EXPORT_SYMBOL(tcp_prot);
2026EXPORT_SYMBOL(tcp_unhash);
2027EXPORT_SYMBOL(tcp_v4_conn_request);
2028EXPORT_SYMBOL(tcp_v4_connect);
2029EXPORT_SYMBOL(tcp_v4_do_rcv);
2030EXPORT_SYMBOL(tcp_v4_remember_stamp);
2031EXPORT_SYMBOL(tcp_v4_send_check);
2032EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2033
2034#ifdef CONFIG_PROC_FS
2035EXPORT_SYMBOL(tcp_proc_register);
2036EXPORT_SYMBOL(tcp_proc_unregister);
2037#endif
2038EXPORT_SYMBOL(sysctl_local_port_range);
2039EXPORT_SYMBOL(sysctl_tcp_low_latency);
2040EXPORT_SYMBOL(sysctl_tcp_tw_reuse);
2041
2042