tcp_ipv4.c revision e87cc4728f0e2fb663e592a1141742b1d6c63256
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 *		IPv4 specific functions
9 *
10 *
11 *		code split from:
12 *		linux/ipv4/tcp.c
13 *		linux/ipv4/tcp_input.c
14 *		linux/ipv4/tcp_output.c
15 *
16 *		See tcp.c for author information
17 *
18 *	This program is free software; you can redistribute it and/or
19 *      modify it under the terms of the GNU General Public License
20 *      as published by the Free Software Foundation; either version
21 *      2 of the License, or (at your option) any later version.
22 */
23
24/*
25 * Changes:
26 *		David S. Miller	:	New socket lookup architecture.
27 *					This code is dedicated to John Dyson.
28 *		David S. Miller :	Change semantics of established hash,
29 *					half is devoted to TIME_WAIT sockets
30 *					and the rest go in the other half.
31 *		Andi Kleen :		Add support for syncookies and fixed
32 *					some bugs: ip options weren't passed to
33 *					the TCP layer, missed a check for an
34 *					ACK bit.
35 *		Andi Kleen :		Implemented fast path mtu discovery.
36 *	     				Fixed many serious bugs in the
37 *					request_sock handling and moved
38 *					most of it into the af independent code.
39 *					Added tail drop and some other bugfixes.
40 *					Added new listen semantics.
41 *		Mike McLagan	:	Routing by source
42 *	Juan Jose Ciarlante:		ip_dynaddr bits
43 *		Andi Kleen:		various fixes.
44 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
45 *					coma.
46 *	Andi Kleen		:	Fix new listen.
47 *	Andi Kleen		:	Fix accept error reporting.
48 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
49 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
50 *					a single port at the same time.
51 */
52
53#define pr_fmt(fmt) "TCP: " fmt
54
55#include <linux/bottom_half.h>
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64#include <linux/slab.h>
65
66#include <net/net_namespace.h>
67#include <net/icmp.h>
68#include <net/inet_hashtables.h>
69#include <net/tcp.h>
70#include <net/transp_v6.h>
71#include <net/ipv6.h>
72#include <net/inet_common.h>
73#include <net/timewait_sock.h>
74#include <net/xfrm.h>
75#include <net/netdma.h>
76#include <net/secure_seq.h>
77#include <net/tcp_memcontrol.h>
78
79#include <linux/inet.h>
80#include <linux/ipv6.h>
81#include <linux/stddef.h>
82#include <linux/proc_fs.h>
83#include <linux/seq_file.h>
84
85#include <linux/crypto.h>
86#include <linux/scatterlist.h>
87
88int sysctl_tcp_tw_reuse __read_mostly;
89int sysctl_tcp_low_latency __read_mostly;
90EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93#ifdef CONFIG_TCP_MD5SIG
94static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95			       __be32 daddr, __be32 saddr, const struct tcphdr *th);
96#endif
97
98struct inet_hashinfo tcp_hashinfo;
99EXPORT_SYMBOL(tcp_hashinfo);
100
101static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102{
103	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104					  ip_hdr(skb)->saddr,
105					  tcp_hdr(skb)->dest,
106					  tcp_hdr(skb)->source);
107}
108
109int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110{
111	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112	struct tcp_sock *tp = tcp_sk(sk);
113
114	/* With PAWS, it is safe from the viewpoint
115	   of data integrity. Even without PAWS it is safe provided sequence
116	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118	   Actually, the idea is close to VJ's one, only timestamp cache is
119	   held not per host, but per port pair and TW bucket is used as state
120	   holder.
121
122	   If TW bucket has been already destroyed we fall back to VJ's scheme
123	   and use initial timestamp retrieved from peer table.
124	 */
125	if (tcptw->tw_ts_recent_stamp &&
126	    (twp == NULL || (sysctl_tcp_tw_reuse &&
127			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129		if (tp->write_seq == 0)
130			tp->write_seq = 1;
131		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
132		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133		sock_hold(sktw);
134		return 1;
135	}
136
137	return 0;
138}
139EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141static int tcp_repair_connect(struct sock *sk)
142{
143	tcp_connect_init(sk);
144	tcp_finish_connect(sk, NULL);
145
146	return 0;
147}
148
149/* This will initiate an outgoing connection. */
150int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151{
152	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
153	struct inet_sock *inet = inet_sk(sk);
154	struct tcp_sock *tp = tcp_sk(sk);
155	__be16 orig_sport, orig_dport;
156	__be32 daddr, nexthop;
157	struct flowi4 *fl4;
158	struct rtable *rt;
159	int err;
160	struct ip_options_rcu *inet_opt;
161
162	if (addr_len < sizeof(struct sockaddr_in))
163		return -EINVAL;
164
165	if (usin->sin_family != AF_INET)
166		return -EAFNOSUPPORT;
167
168	nexthop = daddr = usin->sin_addr.s_addr;
169	inet_opt = rcu_dereference_protected(inet->inet_opt,
170					     sock_owned_by_user(sk));
171	if (inet_opt && inet_opt->opt.srr) {
172		if (!daddr)
173			return -EINVAL;
174		nexthop = inet_opt->opt.faddr;
175	}
176
177	orig_sport = inet->inet_sport;
178	orig_dport = usin->sin_port;
179	fl4 = &inet->cork.fl.u.ip4;
180	rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
181			      RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
182			      IPPROTO_TCP,
183			      orig_sport, orig_dport, sk, true);
184	if (IS_ERR(rt)) {
185		err = PTR_ERR(rt);
186		if (err == -ENETUNREACH)
187			IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
188		return err;
189	}
190
191	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
192		ip_rt_put(rt);
193		return -ENETUNREACH;
194	}
195
196	if (!inet_opt || !inet_opt->opt.srr)
197		daddr = fl4->daddr;
198
199	if (!inet->inet_saddr)
200		inet->inet_saddr = fl4->saddr;
201	inet->inet_rcv_saddr = inet->inet_saddr;
202
203	if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
204		/* Reset inherited state */
205		tp->rx_opt.ts_recent	   = 0;
206		tp->rx_opt.ts_recent_stamp = 0;
207		if (likely(!tp->repair))
208			tp->write_seq	   = 0;
209	}
210
211	if (tcp_death_row.sysctl_tw_recycle &&
212	    !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr) {
213		struct inet_peer *peer = rt_get_peer(rt, fl4->daddr);
214		/*
215		 * VJ's idea. We save last timestamp seen from
216		 * the destination in peer table, when entering state
217		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
218		 * when trying new connection.
219		 */
220		if (peer) {
221			inet_peer_refcheck(peer);
222			if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
223				tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
224				tp->rx_opt.ts_recent = peer->tcp_ts;
225			}
226		}
227	}
228
229	inet->inet_dport = usin->sin_port;
230	inet->inet_daddr = daddr;
231
232	inet_csk(sk)->icsk_ext_hdr_len = 0;
233	if (inet_opt)
234		inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
235
236	tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
237
238	/* Socket identity is still unknown (sport may be zero).
239	 * However we set state to SYN-SENT and not releasing socket
240	 * lock select source port, enter ourselves into the hash tables and
241	 * complete initialization after this.
242	 */
243	tcp_set_state(sk, TCP_SYN_SENT);
244	err = inet_hash_connect(&tcp_death_row, sk);
245	if (err)
246		goto failure;
247
248	rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
249			       inet->inet_sport, inet->inet_dport, sk);
250	if (IS_ERR(rt)) {
251		err = PTR_ERR(rt);
252		rt = NULL;
253		goto failure;
254	}
255	/* OK, now commit destination to socket.  */
256	sk->sk_gso_type = SKB_GSO_TCPV4;
257	sk_setup_caps(sk, &rt->dst);
258
259	if (!tp->write_seq && likely(!tp->repair))
260		tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
261							   inet->inet_daddr,
262							   inet->inet_sport,
263							   usin->sin_port);
264
265	inet->inet_id = tp->write_seq ^ jiffies;
266
267	if (likely(!tp->repair))
268		err = tcp_connect(sk);
269	else
270		err = tcp_repair_connect(sk);
271
272	rt = NULL;
273	if (err)
274		goto failure;
275
276	return 0;
277
278failure:
279	/*
280	 * This unhashes the socket and releases the local port,
281	 * if necessary.
282	 */
283	tcp_set_state(sk, TCP_CLOSE);
284	ip_rt_put(rt);
285	sk->sk_route_caps = 0;
286	inet->inet_dport = 0;
287	return err;
288}
289EXPORT_SYMBOL(tcp_v4_connect);
290
291/*
292 * This routine does path mtu discovery as defined in RFC1191.
293 */
294static void do_pmtu_discovery(struct sock *sk, const struct iphdr *iph, u32 mtu)
295{
296	struct dst_entry *dst;
297	struct inet_sock *inet = inet_sk(sk);
298
299	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
300	 * send out by Linux are always <576bytes so they should go through
301	 * unfragmented).
302	 */
303	if (sk->sk_state == TCP_LISTEN)
304		return;
305
306	/* We don't check in the destentry if pmtu discovery is forbidden
307	 * on this route. We just assume that no packet_to_big packets
308	 * are send back when pmtu discovery is not active.
309	 * There is a small race when the user changes this flag in the
310	 * route, but I think that's acceptable.
311	 */
312	if ((dst = __sk_dst_check(sk, 0)) == NULL)
313		return;
314
315	dst->ops->update_pmtu(dst, mtu);
316
317	/* Something is about to be wrong... Remember soft error
318	 * for the case, if this connection will not able to recover.
319	 */
320	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
321		sk->sk_err_soft = EMSGSIZE;
322
323	mtu = dst_mtu(dst);
324
325	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
326	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
327		tcp_sync_mss(sk, mtu);
328
329		/* Resend the TCP packet because it's
330		 * clear that the old packet has been
331		 * dropped. This is the new "fast" path mtu
332		 * discovery.
333		 */
334		tcp_simple_retransmit(sk);
335	} /* else let the usual retransmit timer handle it */
336}
337
338/*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition.  If err < 0 then the socket should
341 * be closed and the error returned to the user.  If err > 0
342 * it's just the icmp type << 8 | icmp code.  After adjustment
343 * header points to the first 8 bytes of the tcp header.  We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
355{
356	const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
357	struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
358	struct inet_connection_sock *icsk;
359	struct tcp_sock *tp;
360	struct inet_sock *inet;
361	const int type = icmp_hdr(icmp_skb)->type;
362	const int code = icmp_hdr(icmp_skb)->code;
363	struct sock *sk;
364	struct sk_buff *skb;
365	__u32 seq;
366	__u32 remaining;
367	int err;
368	struct net *net = dev_net(icmp_skb->dev);
369
370	if (icmp_skb->len < (iph->ihl << 2) + 8) {
371		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
372		return;
373	}
374
375	sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
376			iph->saddr, th->source, inet_iif(icmp_skb));
377	if (!sk) {
378		ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
379		return;
380	}
381	if (sk->sk_state == TCP_TIME_WAIT) {
382		inet_twsk_put(inet_twsk(sk));
383		return;
384	}
385
386	bh_lock_sock(sk);
387	/* If too many ICMPs get dropped on busy
388	 * servers this needs to be solved differently.
389	 */
390	if (sock_owned_by_user(sk))
391		NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
392
393	if (sk->sk_state == TCP_CLOSE)
394		goto out;
395
396	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
397		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
398		goto out;
399	}
400
401	icsk = inet_csk(sk);
402	tp = tcp_sk(sk);
403	seq = ntohl(th->seq);
404	if (sk->sk_state != TCP_LISTEN &&
405	    !between(seq, tp->snd_una, tp->snd_nxt)) {
406		NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
407		goto out;
408	}
409
410	switch (type) {
411	case ICMP_SOURCE_QUENCH:
412		/* Just silently ignore these. */
413		goto out;
414	case ICMP_PARAMETERPROB:
415		err = EPROTO;
416		break;
417	case ICMP_DEST_UNREACH:
418		if (code > NR_ICMP_UNREACH)
419			goto out;
420
421		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
422			if (!sock_owned_by_user(sk))
423				do_pmtu_discovery(sk, iph, info);
424			goto out;
425		}
426
427		err = icmp_err_convert[code].errno;
428		/* check if icmp_skb allows revert of backoff
429		 * (see draft-zimmermann-tcp-lcd) */
430		if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
431			break;
432		if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
433		    !icsk->icsk_backoff)
434			break;
435
436		if (sock_owned_by_user(sk))
437			break;
438
439		icsk->icsk_backoff--;
440		inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
441			TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
442		tcp_bound_rto(sk);
443
444		skb = tcp_write_queue_head(sk);
445		BUG_ON(!skb);
446
447		remaining = icsk->icsk_rto - min(icsk->icsk_rto,
448				tcp_time_stamp - TCP_SKB_CB(skb)->when);
449
450		if (remaining) {
451			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
452						  remaining, TCP_RTO_MAX);
453		} else {
454			/* RTO revert clocked out retransmission.
455			 * Will retransmit now */
456			tcp_retransmit_timer(sk);
457		}
458
459		break;
460	case ICMP_TIME_EXCEEDED:
461		err = EHOSTUNREACH;
462		break;
463	default:
464		goto out;
465	}
466
467	switch (sk->sk_state) {
468		struct request_sock *req, **prev;
469	case TCP_LISTEN:
470		if (sock_owned_by_user(sk))
471			goto out;
472
473		req = inet_csk_search_req(sk, &prev, th->dest,
474					  iph->daddr, iph->saddr);
475		if (!req)
476			goto out;
477
478		/* ICMPs are not backlogged, hence we cannot get
479		   an established socket here.
480		 */
481		WARN_ON(req->sk);
482
483		if (seq != tcp_rsk(req)->snt_isn) {
484			NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
485			goto out;
486		}
487
488		/*
489		 * Still in SYN_RECV, just remove it silently.
490		 * There is no good way to pass the error to the newly
491		 * created socket, and POSIX does not want network
492		 * errors returned from accept().
493		 */
494		inet_csk_reqsk_queue_drop(sk, req, prev);
495		goto out;
496
497	case TCP_SYN_SENT:
498	case TCP_SYN_RECV:  /* Cannot happen.
499			       It can f.e. if SYNs crossed.
500			     */
501		if (!sock_owned_by_user(sk)) {
502			sk->sk_err = err;
503
504			sk->sk_error_report(sk);
505
506			tcp_done(sk);
507		} else {
508			sk->sk_err_soft = err;
509		}
510		goto out;
511	}
512
513	/* If we've already connected we will keep trying
514	 * until we time out, or the user gives up.
515	 *
516	 * rfc1122 4.2.3.9 allows to consider as hard errors
517	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
518	 * but it is obsoleted by pmtu discovery).
519	 *
520	 * Note, that in modern internet, where routing is unreliable
521	 * and in each dark corner broken firewalls sit, sending random
522	 * errors ordered by their masters even this two messages finally lose
523	 * their original sense (even Linux sends invalid PORT_UNREACHs)
524	 *
525	 * Now we are in compliance with RFCs.
526	 *							--ANK (980905)
527	 */
528
529	inet = inet_sk(sk);
530	if (!sock_owned_by_user(sk) && inet->recverr) {
531		sk->sk_err = err;
532		sk->sk_error_report(sk);
533	} else	{ /* Only an error on timeout */
534		sk->sk_err_soft = err;
535	}
536
537out:
538	bh_unlock_sock(sk);
539	sock_put(sk);
540}
541
542static void __tcp_v4_send_check(struct sk_buff *skb,
543				__be32 saddr, __be32 daddr)
544{
545	struct tcphdr *th = tcp_hdr(skb);
546
547	if (skb->ip_summed == CHECKSUM_PARTIAL) {
548		th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
549		skb->csum_start = skb_transport_header(skb) - skb->head;
550		skb->csum_offset = offsetof(struct tcphdr, check);
551	} else {
552		th->check = tcp_v4_check(skb->len, saddr, daddr,
553					 csum_partial(th,
554						      th->doff << 2,
555						      skb->csum));
556	}
557}
558
559/* This routine computes an IPv4 TCP checksum. */
560void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
561{
562	const struct inet_sock *inet = inet_sk(sk);
563
564	__tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
565}
566EXPORT_SYMBOL(tcp_v4_send_check);
567
568int tcp_v4_gso_send_check(struct sk_buff *skb)
569{
570	const struct iphdr *iph;
571	struct tcphdr *th;
572
573	if (!pskb_may_pull(skb, sizeof(*th)))
574		return -EINVAL;
575
576	iph = ip_hdr(skb);
577	th = tcp_hdr(skb);
578
579	th->check = 0;
580	skb->ip_summed = CHECKSUM_PARTIAL;
581	__tcp_v4_send_check(skb, iph->saddr, iph->daddr);
582	return 0;
583}
584
585/*
586 *	This routine will send an RST to the other tcp.
587 *
588 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
589 *		      for reset.
590 *	Answer: if a packet caused RST, it is not for a socket
591 *		existing in our system, if it is matched to a socket,
592 *		it is just duplicate segment or bug in other side's TCP.
593 *		So that we build reply only basing on parameters
594 *		arrived with segment.
595 *	Exception: precedence violation. We do not implement it in any case.
596 */
597
598static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
599{
600	const struct tcphdr *th = tcp_hdr(skb);
601	struct {
602		struct tcphdr th;
603#ifdef CONFIG_TCP_MD5SIG
604		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
605#endif
606	} rep;
607	struct ip_reply_arg arg;
608#ifdef CONFIG_TCP_MD5SIG
609	struct tcp_md5sig_key *key;
610	const __u8 *hash_location = NULL;
611	unsigned char newhash[16];
612	int genhash;
613	struct sock *sk1 = NULL;
614#endif
615	struct net *net;
616
617	/* Never send a reset in response to a reset. */
618	if (th->rst)
619		return;
620
621	if (skb_rtable(skb)->rt_type != RTN_LOCAL)
622		return;
623
624	/* Swap the send and the receive. */
625	memset(&rep, 0, sizeof(rep));
626	rep.th.dest   = th->source;
627	rep.th.source = th->dest;
628	rep.th.doff   = sizeof(struct tcphdr) / 4;
629	rep.th.rst    = 1;
630
631	if (th->ack) {
632		rep.th.seq = th->ack_seq;
633	} else {
634		rep.th.ack = 1;
635		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
636				       skb->len - (th->doff << 2));
637	}
638
639	memset(&arg, 0, sizeof(arg));
640	arg.iov[0].iov_base = (unsigned char *)&rep;
641	arg.iov[0].iov_len  = sizeof(rep.th);
642
643#ifdef CONFIG_TCP_MD5SIG
644	hash_location = tcp_parse_md5sig_option(th);
645	if (!sk && hash_location) {
646		/*
647		 * active side is lost. Try to find listening socket through
648		 * source port, and then find md5 key through listening socket.
649		 * we are not loose security here:
650		 * Incoming packet is checked with md5 hash with finding key,
651		 * no RST generated if md5 hash doesn't match.
652		 */
653		sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
654					     &tcp_hashinfo, ip_hdr(skb)->daddr,
655					     ntohs(th->source), inet_iif(skb));
656		/* don't send rst if it can't find key */
657		if (!sk1)
658			return;
659		rcu_read_lock();
660		key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
661					&ip_hdr(skb)->saddr, AF_INET);
662		if (!key)
663			goto release_sk1;
664
665		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
666		if (genhash || memcmp(hash_location, newhash, 16) != 0)
667			goto release_sk1;
668	} else {
669		key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
670					     &ip_hdr(skb)->saddr,
671					     AF_INET) : NULL;
672	}
673
674	if (key) {
675		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
676				   (TCPOPT_NOP << 16) |
677				   (TCPOPT_MD5SIG << 8) |
678				   TCPOLEN_MD5SIG);
679		/* Update length and the length the header thinks exists */
680		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
681		rep.th.doff = arg.iov[0].iov_len / 4;
682
683		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
684				     key, ip_hdr(skb)->saddr,
685				     ip_hdr(skb)->daddr, &rep.th);
686	}
687#endif
688	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
689				      ip_hdr(skb)->saddr, /* XXX */
690				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
691	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
692	arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
693	/* When socket is gone, all binding information is lost.
694	 * routing might fail in this case. using iif for oif to
695	 * make sure we can deliver it
696	 */
697	arg.bound_dev_if = sk ? sk->sk_bound_dev_if : inet_iif(skb);
698
699	net = dev_net(skb_dst(skb)->dev);
700	arg.tos = ip_hdr(skb)->tos;
701	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
702		      &arg, arg.iov[0].iov_len);
703
704	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
705	TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
706
707#ifdef CONFIG_TCP_MD5SIG
708release_sk1:
709	if (sk1) {
710		rcu_read_unlock();
711		sock_put(sk1);
712	}
713#endif
714}
715
716/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
717   outside socket context is ugly, certainly. What can I do?
718 */
719
720static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
721			    u32 win, u32 ts, int oif,
722			    struct tcp_md5sig_key *key,
723			    int reply_flags, u8 tos)
724{
725	const struct tcphdr *th = tcp_hdr(skb);
726	struct {
727		struct tcphdr th;
728		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
729#ifdef CONFIG_TCP_MD5SIG
730			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
731#endif
732			];
733	} rep;
734	struct ip_reply_arg arg;
735	struct net *net = dev_net(skb_dst(skb)->dev);
736
737	memset(&rep.th, 0, sizeof(struct tcphdr));
738	memset(&arg, 0, sizeof(arg));
739
740	arg.iov[0].iov_base = (unsigned char *)&rep;
741	arg.iov[0].iov_len  = sizeof(rep.th);
742	if (ts) {
743		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
744				   (TCPOPT_TIMESTAMP << 8) |
745				   TCPOLEN_TIMESTAMP);
746		rep.opt[1] = htonl(tcp_time_stamp);
747		rep.opt[2] = htonl(ts);
748		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
749	}
750
751	/* Swap the send and the receive. */
752	rep.th.dest    = th->source;
753	rep.th.source  = th->dest;
754	rep.th.doff    = arg.iov[0].iov_len / 4;
755	rep.th.seq     = htonl(seq);
756	rep.th.ack_seq = htonl(ack);
757	rep.th.ack     = 1;
758	rep.th.window  = htons(win);
759
760#ifdef CONFIG_TCP_MD5SIG
761	if (key) {
762		int offset = (ts) ? 3 : 0;
763
764		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
765					  (TCPOPT_NOP << 16) |
766					  (TCPOPT_MD5SIG << 8) |
767					  TCPOLEN_MD5SIG);
768		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
769		rep.th.doff = arg.iov[0].iov_len/4;
770
771		tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
772				    key, ip_hdr(skb)->saddr,
773				    ip_hdr(skb)->daddr, &rep.th);
774	}
775#endif
776	arg.flags = reply_flags;
777	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
778				      ip_hdr(skb)->saddr, /* XXX */
779				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
780	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
781	if (oif)
782		arg.bound_dev_if = oif;
783	arg.tos = tos;
784	ip_send_reply(net->ipv4.tcp_sock, skb, ip_hdr(skb)->saddr,
785		      &arg, arg.iov[0].iov_len);
786
787	TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
788}
789
790static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
791{
792	struct inet_timewait_sock *tw = inet_twsk(sk);
793	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
794
795	tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
796			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
797			tcptw->tw_ts_recent,
798			tw->tw_bound_dev_if,
799			tcp_twsk_md5_key(tcptw),
800			tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
801			tw->tw_tos
802			);
803
804	inet_twsk_put(tw);
805}
806
807static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
808				  struct request_sock *req)
809{
810	tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
811			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
812			req->ts_recent,
813			0,
814			tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
815					  AF_INET),
816			inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
817			ip_hdr(skb)->tos);
818}
819
820/*
821 *	Send a SYN-ACK after having received a SYN.
822 *	This still operates on a request_sock only, not on a big
823 *	socket.
824 */
825static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
826			      struct request_sock *req,
827			      struct request_values *rvp)
828{
829	const struct inet_request_sock *ireq = inet_rsk(req);
830	struct flowi4 fl4;
831	int err = -1;
832	struct sk_buff * skb;
833
834	/* First, grab a route. */
835	if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
836		return -1;
837
838	skb = tcp_make_synack(sk, dst, req, rvp);
839
840	if (skb) {
841		__tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
842
843		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
844					    ireq->rmt_addr,
845					    ireq->opt);
846		err = net_xmit_eval(err);
847	}
848
849	dst_release(dst);
850	return err;
851}
852
853static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req,
854			      struct request_values *rvp)
855{
856	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
857	return tcp_v4_send_synack(sk, NULL, req, rvp);
858}
859
860/*
861 *	IPv4 request_sock destructor.
862 */
863static void tcp_v4_reqsk_destructor(struct request_sock *req)
864{
865	kfree(inet_rsk(req)->opt);
866}
867
868/*
869 * Return 1 if a syncookie should be sent
870 */
871int tcp_syn_flood_action(struct sock *sk,
872			 const struct sk_buff *skb,
873			 const char *proto)
874{
875	const char *msg = "Dropping request";
876	int want_cookie = 0;
877	struct listen_sock *lopt;
878
879
880
881#ifdef CONFIG_SYN_COOKIES
882	if (sysctl_tcp_syncookies) {
883		msg = "Sending cookies";
884		want_cookie = 1;
885		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
886	} else
887#endif
888		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
889
890	lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
891	if (!lopt->synflood_warned) {
892		lopt->synflood_warned = 1;
893		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
894			proto, ntohs(tcp_hdr(skb)->dest), msg);
895	}
896	return want_cookie;
897}
898EXPORT_SYMBOL(tcp_syn_flood_action);
899
900/*
901 * Save and compile IPv4 options into the request_sock if needed.
902 */
903static struct ip_options_rcu *tcp_v4_save_options(struct sock *sk,
904						  struct sk_buff *skb)
905{
906	const struct ip_options *opt = &(IPCB(skb)->opt);
907	struct ip_options_rcu *dopt = NULL;
908
909	if (opt && opt->optlen) {
910		int opt_size = sizeof(*dopt) + opt->optlen;
911
912		dopt = kmalloc(opt_size, GFP_ATOMIC);
913		if (dopt) {
914			if (ip_options_echo(&dopt->opt, skb)) {
915				kfree(dopt);
916				dopt = NULL;
917			}
918		}
919	}
920	return dopt;
921}
922
923#ifdef CONFIG_TCP_MD5SIG
924/*
925 * RFC2385 MD5 checksumming requires a mapping of
926 * IP address->MD5 Key.
927 * We need to maintain these in the sk structure.
928 */
929
930/* Find the Key structure for an address.  */
931struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
932					 const union tcp_md5_addr *addr,
933					 int family)
934{
935	struct tcp_sock *tp = tcp_sk(sk);
936	struct tcp_md5sig_key *key;
937	struct hlist_node *pos;
938	unsigned int size = sizeof(struct in_addr);
939	struct tcp_md5sig_info *md5sig;
940
941	/* caller either holds rcu_read_lock() or socket lock */
942	md5sig = rcu_dereference_check(tp->md5sig_info,
943				       sock_owned_by_user(sk) ||
944				       lockdep_is_held(&sk->sk_lock.slock));
945	if (!md5sig)
946		return NULL;
947#if IS_ENABLED(CONFIG_IPV6)
948	if (family == AF_INET6)
949		size = sizeof(struct in6_addr);
950#endif
951	hlist_for_each_entry_rcu(key, pos, &md5sig->head, node) {
952		if (key->family != family)
953			continue;
954		if (!memcmp(&key->addr, addr, size))
955			return key;
956	}
957	return NULL;
958}
959EXPORT_SYMBOL(tcp_md5_do_lookup);
960
961struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
962					 struct sock *addr_sk)
963{
964	union tcp_md5_addr *addr;
965
966	addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
967	return tcp_md5_do_lookup(sk, addr, AF_INET);
968}
969EXPORT_SYMBOL(tcp_v4_md5_lookup);
970
971static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
972						      struct request_sock *req)
973{
974	union tcp_md5_addr *addr;
975
976	addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
977	return tcp_md5_do_lookup(sk, addr, AF_INET);
978}
979
980/* This can be called on a newly created socket, from other files */
981int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
982		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
983{
984	/* Add Key to the list */
985	struct tcp_md5sig_key *key;
986	struct tcp_sock *tp = tcp_sk(sk);
987	struct tcp_md5sig_info *md5sig;
988
989	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
990	if (key) {
991		/* Pre-existing entry - just update that one. */
992		memcpy(key->key, newkey, newkeylen);
993		key->keylen = newkeylen;
994		return 0;
995	}
996
997	md5sig = rcu_dereference_protected(tp->md5sig_info,
998					   sock_owned_by_user(sk));
999	if (!md5sig) {
1000		md5sig = kmalloc(sizeof(*md5sig), gfp);
1001		if (!md5sig)
1002			return -ENOMEM;
1003
1004		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005		INIT_HLIST_HEAD(&md5sig->head);
1006		rcu_assign_pointer(tp->md5sig_info, md5sig);
1007	}
1008
1009	key = sock_kmalloc(sk, sizeof(*key), gfp);
1010	if (!key)
1011		return -ENOMEM;
1012	if (hlist_empty(&md5sig->head) && !tcp_alloc_md5sig_pool(sk)) {
1013		sock_kfree_s(sk, key, sizeof(*key));
1014		return -ENOMEM;
1015	}
1016
1017	memcpy(key->key, newkey, newkeylen);
1018	key->keylen = newkeylen;
1019	key->family = family;
1020	memcpy(&key->addr, addr,
1021	       (family == AF_INET6) ? sizeof(struct in6_addr) :
1022				      sizeof(struct in_addr));
1023	hlist_add_head_rcu(&key->node, &md5sig->head);
1024	return 0;
1025}
1026EXPORT_SYMBOL(tcp_md5_do_add);
1027
1028int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1029{
1030	struct tcp_sock *tp = tcp_sk(sk);
1031	struct tcp_md5sig_key *key;
1032	struct tcp_md5sig_info *md5sig;
1033
1034	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&addr, AF_INET);
1035	if (!key)
1036		return -ENOENT;
1037	hlist_del_rcu(&key->node);
1038	atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1039	kfree_rcu(key, rcu);
1040	md5sig = rcu_dereference_protected(tp->md5sig_info,
1041					   sock_owned_by_user(sk));
1042	if (hlist_empty(&md5sig->head))
1043		tcp_free_md5sig_pool();
1044	return 0;
1045}
1046EXPORT_SYMBOL(tcp_md5_do_del);
1047
1048void tcp_clear_md5_list(struct sock *sk)
1049{
1050	struct tcp_sock *tp = tcp_sk(sk);
1051	struct tcp_md5sig_key *key;
1052	struct hlist_node *pos, *n;
1053	struct tcp_md5sig_info *md5sig;
1054
1055	md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1056
1057	if (!hlist_empty(&md5sig->head))
1058		tcp_free_md5sig_pool();
1059	hlist_for_each_entry_safe(key, pos, n, &md5sig->head, node) {
1060		hlist_del_rcu(&key->node);
1061		atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1062		kfree_rcu(key, rcu);
1063	}
1064}
1065
1066static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1067				 int optlen)
1068{
1069	struct tcp_md5sig cmd;
1070	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1071
1072	if (optlen < sizeof(cmd))
1073		return -EINVAL;
1074
1075	if (copy_from_user(&cmd, optval, sizeof(cmd)))
1076		return -EFAULT;
1077
1078	if (sin->sin_family != AF_INET)
1079		return -EINVAL;
1080
1081	if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1082		return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1083				      AF_INET);
1084
1085	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1086		return -EINVAL;
1087
1088	return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1089			      AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1090			      GFP_KERNEL);
1091}
1092
1093static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1094					__be32 daddr, __be32 saddr, int nbytes)
1095{
1096	struct tcp4_pseudohdr *bp;
1097	struct scatterlist sg;
1098
1099	bp = &hp->md5_blk.ip4;
1100
1101	/*
1102	 * 1. the TCP pseudo-header (in the order: source IP address,
1103	 * destination IP address, zero-padded protocol number, and
1104	 * segment length)
1105	 */
1106	bp->saddr = saddr;
1107	bp->daddr = daddr;
1108	bp->pad = 0;
1109	bp->protocol = IPPROTO_TCP;
1110	bp->len = cpu_to_be16(nbytes);
1111
1112	sg_init_one(&sg, bp, sizeof(*bp));
1113	return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1114}
1115
1116static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1117			       __be32 daddr, __be32 saddr, const struct tcphdr *th)
1118{
1119	struct tcp_md5sig_pool *hp;
1120	struct hash_desc *desc;
1121
1122	hp = tcp_get_md5sig_pool();
1123	if (!hp)
1124		goto clear_hash_noput;
1125	desc = &hp->md5_desc;
1126
1127	if (crypto_hash_init(desc))
1128		goto clear_hash;
1129	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1130		goto clear_hash;
1131	if (tcp_md5_hash_header(hp, th))
1132		goto clear_hash;
1133	if (tcp_md5_hash_key(hp, key))
1134		goto clear_hash;
1135	if (crypto_hash_final(desc, md5_hash))
1136		goto clear_hash;
1137
1138	tcp_put_md5sig_pool();
1139	return 0;
1140
1141clear_hash:
1142	tcp_put_md5sig_pool();
1143clear_hash_noput:
1144	memset(md5_hash, 0, 16);
1145	return 1;
1146}
1147
1148int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1149			const struct sock *sk, const struct request_sock *req,
1150			const struct sk_buff *skb)
1151{
1152	struct tcp_md5sig_pool *hp;
1153	struct hash_desc *desc;
1154	const struct tcphdr *th = tcp_hdr(skb);
1155	__be32 saddr, daddr;
1156
1157	if (sk) {
1158		saddr = inet_sk(sk)->inet_saddr;
1159		daddr = inet_sk(sk)->inet_daddr;
1160	} else if (req) {
1161		saddr = inet_rsk(req)->loc_addr;
1162		daddr = inet_rsk(req)->rmt_addr;
1163	} else {
1164		const struct iphdr *iph = ip_hdr(skb);
1165		saddr = iph->saddr;
1166		daddr = iph->daddr;
1167	}
1168
1169	hp = tcp_get_md5sig_pool();
1170	if (!hp)
1171		goto clear_hash_noput;
1172	desc = &hp->md5_desc;
1173
1174	if (crypto_hash_init(desc))
1175		goto clear_hash;
1176
1177	if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1178		goto clear_hash;
1179	if (tcp_md5_hash_header(hp, th))
1180		goto clear_hash;
1181	if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1182		goto clear_hash;
1183	if (tcp_md5_hash_key(hp, key))
1184		goto clear_hash;
1185	if (crypto_hash_final(desc, md5_hash))
1186		goto clear_hash;
1187
1188	tcp_put_md5sig_pool();
1189	return 0;
1190
1191clear_hash:
1192	tcp_put_md5sig_pool();
1193clear_hash_noput:
1194	memset(md5_hash, 0, 16);
1195	return 1;
1196}
1197EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1198
1199static int tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1200{
1201	/*
1202	 * This gets called for each TCP segment that arrives
1203	 * so we want to be efficient.
1204	 * We have 3 drop cases:
1205	 * o No MD5 hash and one expected.
1206	 * o MD5 hash and we're not expecting one.
1207	 * o MD5 hash and its wrong.
1208	 */
1209	const __u8 *hash_location = NULL;
1210	struct tcp_md5sig_key *hash_expected;
1211	const struct iphdr *iph = ip_hdr(skb);
1212	const struct tcphdr *th = tcp_hdr(skb);
1213	int genhash;
1214	unsigned char newhash[16];
1215
1216	hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1217					  AF_INET);
1218	hash_location = tcp_parse_md5sig_option(th);
1219
1220	/* We've parsed the options - do we have a hash? */
1221	if (!hash_expected && !hash_location)
1222		return 0;
1223
1224	if (hash_expected && !hash_location) {
1225		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1226		return 1;
1227	}
1228
1229	if (!hash_expected && hash_location) {
1230		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1231		return 1;
1232	}
1233
1234	/* Okay, so this is hash_expected and hash_location -
1235	 * so we need to calculate the checksum.
1236	 */
1237	genhash = tcp_v4_md5_hash_skb(newhash,
1238				      hash_expected,
1239				      NULL, NULL, skb);
1240
1241	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1242		net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1243				     &iph->saddr, ntohs(th->source),
1244				     &iph->daddr, ntohs(th->dest),
1245				     genhash ? " tcp_v4_calc_md5_hash failed"
1246				     : "");
1247		return 1;
1248	}
1249	return 0;
1250}
1251
1252#endif
1253
1254struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1255	.family		=	PF_INET,
1256	.obj_size	=	sizeof(struct tcp_request_sock),
1257	.rtx_syn_ack	=	tcp_v4_rtx_synack,
1258	.send_ack	=	tcp_v4_reqsk_send_ack,
1259	.destructor	=	tcp_v4_reqsk_destructor,
1260	.send_reset	=	tcp_v4_send_reset,
1261	.syn_ack_timeout = 	tcp_syn_ack_timeout,
1262};
1263
1264#ifdef CONFIG_TCP_MD5SIG
1265static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1266	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1267	.calc_md5_hash	=	tcp_v4_md5_hash_skb,
1268};
1269#endif
1270
1271int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1272{
1273	struct tcp_extend_values tmp_ext;
1274	struct tcp_options_received tmp_opt;
1275	const u8 *hash_location;
1276	struct request_sock *req;
1277	struct inet_request_sock *ireq;
1278	struct tcp_sock *tp = tcp_sk(sk);
1279	struct dst_entry *dst = NULL;
1280	__be32 saddr = ip_hdr(skb)->saddr;
1281	__be32 daddr = ip_hdr(skb)->daddr;
1282	__u32 isn = TCP_SKB_CB(skb)->when;
1283	int want_cookie = 0;
1284
1285	/* Never answer to SYNs send to broadcast or multicast */
1286	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1287		goto drop;
1288
1289	/* TW buckets are converted to open requests without
1290	 * limitations, they conserve resources and peer is
1291	 * evidently real one.
1292	 */
1293	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1294		want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1295		if (!want_cookie)
1296			goto drop;
1297	}
1298
1299	/* Accept backlog is full. If we have already queued enough
1300	 * of warm entries in syn queue, drop request. It is better than
1301	 * clogging syn queue with openreqs with exponentially increasing
1302	 * timeout.
1303	 */
1304	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1305		goto drop;
1306
1307	req = inet_reqsk_alloc(&tcp_request_sock_ops);
1308	if (!req)
1309		goto drop;
1310
1311#ifdef CONFIG_TCP_MD5SIG
1312	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1313#endif
1314
1315	tcp_clear_options(&tmp_opt);
1316	tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1317	tmp_opt.user_mss  = tp->rx_opt.user_mss;
1318	tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
1319
1320	if (tmp_opt.cookie_plus > 0 &&
1321	    tmp_opt.saw_tstamp &&
1322	    !tp->rx_opt.cookie_out_never &&
1323	    (sysctl_tcp_cookie_size > 0 ||
1324	     (tp->cookie_values != NULL &&
1325	      tp->cookie_values->cookie_desired > 0))) {
1326		u8 *c;
1327		u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1328		int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1329
1330		if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1331			goto drop_and_release;
1332
1333		/* Secret recipe starts with IP addresses */
1334		*mess++ ^= (__force u32)daddr;
1335		*mess++ ^= (__force u32)saddr;
1336
1337		/* plus variable length Initiator Cookie */
1338		c = (u8 *)mess;
1339		while (l-- > 0)
1340			*c++ ^= *hash_location++;
1341
1342		want_cookie = 0;	/* not our kind of cookie */
1343		tmp_ext.cookie_out_never = 0; /* false */
1344		tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1345	} else if (!tp->rx_opt.cookie_in_always) {
1346		/* redundant indications, but ensure initialization. */
1347		tmp_ext.cookie_out_never = 1; /* true */
1348		tmp_ext.cookie_plus = 0;
1349	} else {
1350		goto drop_and_release;
1351	}
1352	tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1353
1354	if (want_cookie && !tmp_opt.saw_tstamp)
1355		tcp_clear_options(&tmp_opt);
1356
1357	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1358	tcp_openreq_init(req, &tmp_opt, skb);
1359
1360	ireq = inet_rsk(req);
1361	ireq->loc_addr = daddr;
1362	ireq->rmt_addr = saddr;
1363	ireq->no_srccheck = inet_sk(sk)->transparent;
1364	ireq->opt = tcp_v4_save_options(sk, skb);
1365
1366	if (security_inet_conn_request(sk, skb, req))
1367		goto drop_and_free;
1368
1369	if (!want_cookie || tmp_opt.tstamp_ok)
1370		TCP_ECN_create_request(req, skb);
1371
1372	if (want_cookie) {
1373		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1374		req->cookie_ts = tmp_opt.tstamp_ok;
1375	} else if (!isn) {
1376		struct inet_peer *peer = NULL;
1377		struct flowi4 fl4;
1378
1379		/* VJ's idea. We save last timestamp seen
1380		 * from the destination in peer table, when entering
1381		 * state TIME-WAIT, and check against it before
1382		 * accepting new connection request.
1383		 *
1384		 * If "isn" is not zero, this request hit alive
1385		 * timewait bucket, so that all the necessary checks
1386		 * are made in the function processing timewait state.
1387		 */
1388		if (tmp_opt.saw_tstamp &&
1389		    tcp_death_row.sysctl_tw_recycle &&
1390		    (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1391		    fl4.daddr == saddr &&
1392		    (peer = rt_get_peer((struct rtable *)dst, fl4.daddr)) != NULL) {
1393			inet_peer_refcheck(peer);
1394			if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1395			    (s32)(peer->tcp_ts - req->ts_recent) >
1396							TCP_PAWS_WINDOW) {
1397				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1398				goto drop_and_release;
1399			}
1400		}
1401		/* Kill the following clause, if you dislike this way. */
1402		else if (!sysctl_tcp_syncookies &&
1403			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1404			  (sysctl_max_syn_backlog >> 2)) &&
1405			 (!peer || !peer->tcp_ts_stamp) &&
1406			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1407			/* Without syncookies last quarter of
1408			 * backlog is filled with destinations,
1409			 * proven to be alive.
1410			 * It means that we continue to communicate
1411			 * to destinations, already remembered
1412			 * to the moment of synflood.
1413			 */
1414			LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1415				       &saddr, ntohs(tcp_hdr(skb)->source));
1416			goto drop_and_release;
1417		}
1418
1419		isn = tcp_v4_init_sequence(skb);
1420	}
1421	tcp_rsk(req)->snt_isn = isn;
1422	tcp_rsk(req)->snt_synack = tcp_time_stamp;
1423
1424	if (tcp_v4_send_synack(sk, dst, req,
1425			       (struct request_values *)&tmp_ext) ||
1426	    want_cookie)
1427		goto drop_and_free;
1428
1429	inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1430	return 0;
1431
1432drop_and_release:
1433	dst_release(dst);
1434drop_and_free:
1435	reqsk_free(req);
1436drop:
1437	return 0;
1438}
1439EXPORT_SYMBOL(tcp_v4_conn_request);
1440
1441
1442/*
1443 * The three way handshake has completed - we got a valid synack -
1444 * now create the new socket.
1445 */
1446struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1447				  struct request_sock *req,
1448				  struct dst_entry *dst)
1449{
1450	struct inet_request_sock *ireq;
1451	struct inet_sock *newinet;
1452	struct tcp_sock *newtp;
1453	struct sock *newsk;
1454#ifdef CONFIG_TCP_MD5SIG
1455	struct tcp_md5sig_key *key;
1456#endif
1457	struct ip_options_rcu *inet_opt;
1458
1459	if (sk_acceptq_is_full(sk))
1460		goto exit_overflow;
1461
1462	newsk = tcp_create_openreq_child(sk, req, skb);
1463	if (!newsk)
1464		goto exit_nonewsk;
1465
1466	newsk->sk_gso_type = SKB_GSO_TCPV4;
1467
1468	newtp		      = tcp_sk(newsk);
1469	newinet		      = inet_sk(newsk);
1470	ireq		      = inet_rsk(req);
1471	newinet->inet_daddr   = ireq->rmt_addr;
1472	newinet->inet_rcv_saddr = ireq->loc_addr;
1473	newinet->inet_saddr	      = ireq->loc_addr;
1474	inet_opt	      = ireq->opt;
1475	rcu_assign_pointer(newinet->inet_opt, inet_opt);
1476	ireq->opt	      = NULL;
1477	newinet->mc_index     = inet_iif(skb);
1478	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1479	newinet->rcv_tos      = ip_hdr(skb)->tos;
1480	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1481	if (inet_opt)
1482		inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1483	newinet->inet_id = newtp->write_seq ^ jiffies;
1484
1485	if (!dst) {
1486		dst = inet_csk_route_child_sock(sk, newsk, req);
1487		if (!dst)
1488			goto put_and_exit;
1489	} else {
1490		/* syncookie case : see end of cookie_v4_check() */
1491	}
1492	sk_setup_caps(newsk, dst);
1493
1494	tcp_mtup_init(newsk);
1495	tcp_sync_mss(newsk, dst_mtu(dst));
1496	newtp->advmss = dst_metric_advmss(dst);
1497	if (tcp_sk(sk)->rx_opt.user_mss &&
1498	    tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1499		newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1500
1501	tcp_initialize_rcv_mss(newsk);
1502	if (tcp_rsk(req)->snt_synack)
1503		tcp_valid_rtt_meas(newsk,
1504		    tcp_time_stamp - tcp_rsk(req)->snt_synack);
1505	newtp->total_retrans = req->retrans;
1506
1507#ifdef CONFIG_TCP_MD5SIG
1508	/* Copy over the MD5 key from the original socket */
1509	key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1510				AF_INET);
1511	if (key != NULL) {
1512		/*
1513		 * We're using one, so create a matching key
1514		 * on the newsk structure. If we fail to get
1515		 * memory, then we end up not copying the key
1516		 * across. Shucks.
1517		 */
1518		tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1519			       AF_INET, key->key, key->keylen, GFP_ATOMIC);
1520		sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1521	}
1522#endif
1523
1524	if (__inet_inherit_port(sk, newsk) < 0)
1525		goto put_and_exit;
1526	__inet_hash_nolisten(newsk, NULL);
1527
1528	return newsk;
1529
1530exit_overflow:
1531	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1532exit_nonewsk:
1533	dst_release(dst);
1534exit:
1535	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1536	return NULL;
1537put_and_exit:
1538	tcp_clear_xmit_timers(newsk);
1539	tcp_cleanup_congestion_control(newsk);
1540	bh_unlock_sock(newsk);
1541	sock_put(newsk);
1542	goto exit;
1543}
1544EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1545
1546static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1547{
1548	struct tcphdr *th = tcp_hdr(skb);
1549	const struct iphdr *iph = ip_hdr(skb);
1550	struct sock *nsk;
1551	struct request_sock **prev;
1552	/* Find possible connection requests. */
1553	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1554						       iph->saddr, iph->daddr);
1555	if (req)
1556		return tcp_check_req(sk, skb, req, prev);
1557
1558	nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1559			th->source, iph->daddr, th->dest, inet_iif(skb));
1560
1561	if (nsk) {
1562		if (nsk->sk_state != TCP_TIME_WAIT) {
1563			bh_lock_sock(nsk);
1564			return nsk;
1565		}
1566		inet_twsk_put(inet_twsk(nsk));
1567		return NULL;
1568	}
1569
1570#ifdef CONFIG_SYN_COOKIES
1571	if (!th->syn)
1572		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1573#endif
1574	return sk;
1575}
1576
1577static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1578{
1579	const struct iphdr *iph = ip_hdr(skb);
1580
1581	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1582		if (!tcp_v4_check(skb->len, iph->saddr,
1583				  iph->daddr, skb->csum)) {
1584			skb->ip_summed = CHECKSUM_UNNECESSARY;
1585			return 0;
1586		}
1587	}
1588
1589	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1590				       skb->len, IPPROTO_TCP, 0);
1591
1592	if (skb->len <= 76) {
1593		return __skb_checksum_complete(skb);
1594	}
1595	return 0;
1596}
1597
1598
1599/* The socket must have it's spinlock held when we get
1600 * here.
1601 *
1602 * We have a potential double-lock case here, so even when
1603 * doing backlog processing we use the BH locking scheme.
1604 * This is because we cannot sleep with the original spinlock
1605 * held.
1606 */
1607int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1608{
1609	struct sock *rsk;
1610#ifdef CONFIG_TCP_MD5SIG
1611	/*
1612	 * We really want to reject the packet as early as possible
1613	 * if:
1614	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1615	 *  o There is an MD5 option and we're not expecting one
1616	 */
1617	if (tcp_v4_inbound_md5_hash(sk, skb))
1618		goto discard;
1619#endif
1620
1621	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1622		sock_rps_save_rxhash(sk, skb);
1623		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1624			rsk = sk;
1625			goto reset;
1626		}
1627		return 0;
1628	}
1629
1630	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1631		goto csum_err;
1632
1633	if (sk->sk_state == TCP_LISTEN) {
1634		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1635		if (!nsk)
1636			goto discard;
1637
1638		if (nsk != sk) {
1639			sock_rps_save_rxhash(nsk, skb);
1640			if (tcp_child_process(sk, nsk, skb)) {
1641				rsk = nsk;
1642				goto reset;
1643			}
1644			return 0;
1645		}
1646	} else
1647		sock_rps_save_rxhash(sk, skb);
1648
1649	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1650		rsk = sk;
1651		goto reset;
1652	}
1653	return 0;
1654
1655reset:
1656	tcp_v4_send_reset(rsk, skb);
1657discard:
1658	kfree_skb(skb);
1659	/* Be careful here. If this function gets more complicated and
1660	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1661	 * might be destroyed here. This current version compiles correctly,
1662	 * but you have been warned.
1663	 */
1664	return 0;
1665
1666csum_err:
1667	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1668	goto discard;
1669}
1670EXPORT_SYMBOL(tcp_v4_do_rcv);
1671
1672/*
1673 *	From tcp_input.c
1674 */
1675
1676int tcp_v4_rcv(struct sk_buff *skb)
1677{
1678	const struct iphdr *iph;
1679	const struct tcphdr *th;
1680	struct sock *sk;
1681	int ret;
1682	struct net *net = dev_net(skb->dev);
1683
1684	if (skb->pkt_type != PACKET_HOST)
1685		goto discard_it;
1686
1687	/* Count it even if it's bad */
1688	TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1689
1690	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1691		goto discard_it;
1692
1693	th = tcp_hdr(skb);
1694
1695	if (th->doff < sizeof(struct tcphdr) / 4)
1696		goto bad_packet;
1697	if (!pskb_may_pull(skb, th->doff * 4))
1698		goto discard_it;
1699
1700	/* An explanation is required here, I think.
1701	 * Packet length and doff are validated by header prediction,
1702	 * provided case of th->doff==0 is eliminated.
1703	 * So, we defer the checks. */
1704	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1705		goto bad_packet;
1706
1707	th = tcp_hdr(skb);
1708	iph = ip_hdr(skb);
1709	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1710	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1711				    skb->len - th->doff * 4);
1712	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1713	TCP_SKB_CB(skb)->when	 = 0;
1714	TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1715	TCP_SKB_CB(skb)->sacked	 = 0;
1716
1717	sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1718	if (!sk)
1719		goto no_tcp_socket;
1720
1721process:
1722	if (sk->sk_state == TCP_TIME_WAIT)
1723		goto do_time_wait;
1724
1725	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1726		NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1727		goto discard_and_relse;
1728	}
1729
1730	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1731		goto discard_and_relse;
1732	nf_reset(skb);
1733
1734	if (sk_filter(sk, skb))
1735		goto discard_and_relse;
1736
1737	skb->dev = NULL;
1738
1739	bh_lock_sock_nested(sk);
1740	ret = 0;
1741	if (!sock_owned_by_user(sk)) {
1742#ifdef CONFIG_NET_DMA
1743		struct tcp_sock *tp = tcp_sk(sk);
1744		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1745			tp->ucopy.dma_chan = net_dma_find_channel();
1746		if (tp->ucopy.dma_chan)
1747			ret = tcp_v4_do_rcv(sk, skb);
1748		else
1749#endif
1750		{
1751			if (!tcp_prequeue(sk, skb))
1752				ret = tcp_v4_do_rcv(sk, skb);
1753		}
1754	} else if (unlikely(sk_add_backlog(sk, skb,
1755					   sk->sk_rcvbuf + sk->sk_sndbuf))) {
1756		bh_unlock_sock(sk);
1757		NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1758		goto discard_and_relse;
1759	}
1760	bh_unlock_sock(sk);
1761
1762	sock_put(sk);
1763
1764	return ret;
1765
1766no_tcp_socket:
1767	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1768		goto discard_it;
1769
1770	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1771bad_packet:
1772		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1773	} else {
1774		tcp_v4_send_reset(NULL, skb);
1775	}
1776
1777discard_it:
1778	/* Discard frame. */
1779	kfree_skb(skb);
1780	return 0;
1781
1782discard_and_relse:
1783	sock_put(sk);
1784	goto discard_it;
1785
1786do_time_wait:
1787	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1788		inet_twsk_put(inet_twsk(sk));
1789		goto discard_it;
1790	}
1791
1792	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1793		TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1794		inet_twsk_put(inet_twsk(sk));
1795		goto discard_it;
1796	}
1797	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1798	case TCP_TW_SYN: {
1799		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1800							&tcp_hashinfo,
1801							iph->daddr, th->dest,
1802							inet_iif(skb));
1803		if (sk2) {
1804			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1805			inet_twsk_put(inet_twsk(sk));
1806			sk = sk2;
1807			goto process;
1808		}
1809		/* Fall through to ACK */
1810	}
1811	case TCP_TW_ACK:
1812		tcp_v4_timewait_ack(sk, skb);
1813		break;
1814	case TCP_TW_RST:
1815		goto no_tcp_socket;
1816	case TCP_TW_SUCCESS:;
1817	}
1818	goto discard_it;
1819}
1820
1821struct inet_peer *tcp_v4_get_peer(struct sock *sk, bool *release_it)
1822{
1823	struct rtable *rt = (struct rtable *) __sk_dst_get(sk);
1824	struct inet_sock *inet = inet_sk(sk);
1825	struct inet_peer *peer;
1826
1827	if (!rt ||
1828	    inet->cork.fl.u.ip4.daddr != inet->inet_daddr) {
1829		peer = inet_getpeer_v4(inet->inet_daddr, 1);
1830		*release_it = true;
1831	} else {
1832		if (!rt->peer)
1833			rt_bind_peer(rt, inet->inet_daddr, 1);
1834		peer = rt->peer;
1835		*release_it = false;
1836	}
1837
1838	return peer;
1839}
1840EXPORT_SYMBOL(tcp_v4_get_peer);
1841
1842void *tcp_v4_tw_get_peer(struct sock *sk)
1843{
1844	const struct inet_timewait_sock *tw = inet_twsk(sk);
1845
1846	return inet_getpeer_v4(tw->tw_daddr, 1);
1847}
1848EXPORT_SYMBOL(tcp_v4_tw_get_peer);
1849
1850static struct timewait_sock_ops tcp_timewait_sock_ops = {
1851	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1852	.twsk_unique	= tcp_twsk_unique,
1853	.twsk_destructor= tcp_twsk_destructor,
1854	.twsk_getpeer	= tcp_v4_tw_get_peer,
1855};
1856
1857const struct inet_connection_sock_af_ops ipv4_specific = {
1858	.queue_xmit	   = ip_queue_xmit,
1859	.send_check	   = tcp_v4_send_check,
1860	.rebuild_header	   = inet_sk_rebuild_header,
1861	.conn_request	   = tcp_v4_conn_request,
1862	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1863	.get_peer	   = tcp_v4_get_peer,
1864	.net_header_len	   = sizeof(struct iphdr),
1865	.setsockopt	   = ip_setsockopt,
1866	.getsockopt	   = ip_getsockopt,
1867	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1868	.sockaddr_len	   = sizeof(struct sockaddr_in),
1869	.bind_conflict	   = inet_csk_bind_conflict,
1870#ifdef CONFIG_COMPAT
1871	.compat_setsockopt = compat_ip_setsockopt,
1872	.compat_getsockopt = compat_ip_getsockopt,
1873#endif
1874};
1875EXPORT_SYMBOL(ipv4_specific);
1876
1877#ifdef CONFIG_TCP_MD5SIG
1878static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1879	.md5_lookup		= tcp_v4_md5_lookup,
1880	.calc_md5_hash		= tcp_v4_md5_hash_skb,
1881	.md5_parse		= tcp_v4_parse_md5_keys,
1882};
1883#endif
1884
1885/* NOTE: A lot of things set to zero explicitly by call to
1886 *       sk_alloc() so need not be done here.
1887 */
1888static int tcp_v4_init_sock(struct sock *sk)
1889{
1890	struct inet_connection_sock *icsk = inet_csk(sk);
1891
1892	tcp_init_sock(sk);
1893
1894	icsk->icsk_af_ops = &ipv4_specific;
1895
1896#ifdef CONFIG_TCP_MD5SIG
1897	tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1898#endif
1899
1900	return 0;
1901}
1902
1903void tcp_v4_destroy_sock(struct sock *sk)
1904{
1905	struct tcp_sock *tp = tcp_sk(sk);
1906
1907	tcp_clear_xmit_timers(sk);
1908
1909	tcp_cleanup_congestion_control(sk);
1910
1911	/* Cleanup up the write buffer. */
1912	tcp_write_queue_purge(sk);
1913
1914	/* Cleans up our, hopefully empty, out_of_order_queue. */
1915	__skb_queue_purge(&tp->out_of_order_queue);
1916
1917#ifdef CONFIG_TCP_MD5SIG
1918	/* Clean up the MD5 key list, if any */
1919	if (tp->md5sig_info) {
1920		tcp_clear_md5_list(sk);
1921		kfree_rcu(tp->md5sig_info, rcu);
1922		tp->md5sig_info = NULL;
1923	}
1924#endif
1925
1926#ifdef CONFIG_NET_DMA
1927	/* Cleans up our sk_async_wait_queue */
1928	__skb_queue_purge(&sk->sk_async_wait_queue);
1929#endif
1930
1931	/* Clean prequeue, it must be empty really */
1932	__skb_queue_purge(&tp->ucopy.prequeue);
1933
1934	/* Clean up a referenced TCP bind bucket. */
1935	if (inet_csk(sk)->icsk_bind_hash)
1936		inet_put_port(sk);
1937
1938	/*
1939	 * If sendmsg cached page exists, toss it.
1940	 */
1941	if (sk->sk_sndmsg_page) {
1942		__free_page(sk->sk_sndmsg_page);
1943		sk->sk_sndmsg_page = NULL;
1944	}
1945
1946	/* TCP Cookie Transactions */
1947	if (tp->cookie_values != NULL) {
1948		kref_put(&tp->cookie_values->kref,
1949			 tcp_cookie_values_release);
1950		tp->cookie_values = NULL;
1951	}
1952
1953	sk_sockets_allocated_dec(sk);
1954	sock_release_memcg(sk);
1955}
1956EXPORT_SYMBOL(tcp_v4_destroy_sock);
1957
1958#ifdef CONFIG_PROC_FS
1959/* Proc filesystem TCP sock list dumping. */
1960
1961static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1962{
1963	return hlist_nulls_empty(head) ? NULL :
1964		list_entry(head->first, struct inet_timewait_sock, tw_node);
1965}
1966
1967static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1968{
1969	return !is_a_nulls(tw->tw_node.next) ?
1970		hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1971}
1972
1973/*
1974 * Get next listener socket follow cur.  If cur is NULL, get first socket
1975 * starting from bucket given in st->bucket; when st->bucket is zero the
1976 * very first socket in the hash table is returned.
1977 */
1978static void *listening_get_next(struct seq_file *seq, void *cur)
1979{
1980	struct inet_connection_sock *icsk;
1981	struct hlist_nulls_node *node;
1982	struct sock *sk = cur;
1983	struct inet_listen_hashbucket *ilb;
1984	struct tcp_iter_state *st = seq->private;
1985	struct net *net = seq_file_net(seq);
1986
1987	if (!sk) {
1988		ilb = &tcp_hashinfo.listening_hash[st->bucket];
1989		spin_lock_bh(&ilb->lock);
1990		sk = sk_nulls_head(&ilb->head);
1991		st->offset = 0;
1992		goto get_sk;
1993	}
1994	ilb = &tcp_hashinfo.listening_hash[st->bucket];
1995	++st->num;
1996	++st->offset;
1997
1998	if (st->state == TCP_SEQ_STATE_OPENREQ) {
1999		struct request_sock *req = cur;
2000
2001		icsk = inet_csk(st->syn_wait_sk);
2002		req = req->dl_next;
2003		while (1) {
2004			while (req) {
2005				if (req->rsk_ops->family == st->family) {
2006					cur = req;
2007					goto out;
2008				}
2009				req = req->dl_next;
2010			}
2011			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2012				break;
2013get_req:
2014			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2015		}
2016		sk	  = sk_nulls_next(st->syn_wait_sk);
2017		st->state = TCP_SEQ_STATE_LISTENING;
2018		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2019	} else {
2020		icsk = inet_csk(sk);
2021		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2022		if (reqsk_queue_len(&icsk->icsk_accept_queue))
2023			goto start_req;
2024		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2025		sk = sk_nulls_next(sk);
2026	}
2027get_sk:
2028	sk_nulls_for_each_from(sk, node) {
2029		if (!net_eq(sock_net(sk), net))
2030			continue;
2031		if (sk->sk_family == st->family) {
2032			cur = sk;
2033			goto out;
2034		}
2035		icsk = inet_csk(sk);
2036		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2037		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2038start_req:
2039			st->uid		= sock_i_uid(sk);
2040			st->syn_wait_sk = sk;
2041			st->state	= TCP_SEQ_STATE_OPENREQ;
2042			st->sbucket	= 0;
2043			goto get_req;
2044		}
2045		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2046	}
2047	spin_unlock_bh(&ilb->lock);
2048	st->offset = 0;
2049	if (++st->bucket < INET_LHTABLE_SIZE) {
2050		ilb = &tcp_hashinfo.listening_hash[st->bucket];
2051		spin_lock_bh(&ilb->lock);
2052		sk = sk_nulls_head(&ilb->head);
2053		goto get_sk;
2054	}
2055	cur = NULL;
2056out:
2057	return cur;
2058}
2059
2060static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2061{
2062	struct tcp_iter_state *st = seq->private;
2063	void *rc;
2064
2065	st->bucket = 0;
2066	st->offset = 0;
2067	rc = listening_get_next(seq, NULL);
2068
2069	while (rc && *pos) {
2070		rc = listening_get_next(seq, rc);
2071		--*pos;
2072	}
2073	return rc;
2074}
2075
2076static inline int empty_bucket(struct tcp_iter_state *st)
2077{
2078	return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2079		hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2080}
2081
2082/*
2083 * Get first established socket starting from bucket given in st->bucket.
2084 * If st->bucket is zero, the very first socket in the hash is returned.
2085 */
2086static void *established_get_first(struct seq_file *seq)
2087{
2088	struct tcp_iter_state *st = seq->private;
2089	struct net *net = seq_file_net(seq);
2090	void *rc = NULL;
2091
2092	st->offset = 0;
2093	for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2094		struct sock *sk;
2095		struct hlist_nulls_node *node;
2096		struct inet_timewait_sock *tw;
2097		spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2098
2099		/* Lockless fast path for the common case of empty buckets */
2100		if (empty_bucket(st))
2101			continue;
2102
2103		spin_lock_bh(lock);
2104		sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2105			if (sk->sk_family != st->family ||
2106			    !net_eq(sock_net(sk), net)) {
2107				continue;
2108			}
2109			rc = sk;
2110			goto out;
2111		}
2112		st->state = TCP_SEQ_STATE_TIME_WAIT;
2113		inet_twsk_for_each(tw, node,
2114				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2115			if (tw->tw_family != st->family ||
2116			    !net_eq(twsk_net(tw), net)) {
2117				continue;
2118			}
2119			rc = tw;
2120			goto out;
2121		}
2122		spin_unlock_bh(lock);
2123		st->state = TCP_SEQ_STATE_ESTABLISHED;
2124	}
2125out:
2126	return rc;
2127}
2128
2129static void *established_get_next(struct seq_file *seq, void *cur)
2130{
2131	struct sock *sk = cur;
2132	struct inet_timewait_sock *tw;
2133	struct hlist_nulls_node *node;
2134	struct tcp_iter_state *st = seq->private;
2135	struct net *net = seq_file_net(seq);
2136
2137	++st->num;
2138	++st->offset;
2139
2140	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2141		tw = cur;
2142		tw = tw_next(tw);
2143get_tw:
2144		while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2145			tw = tw_next(tw);
2146		}
2147		if (tw) {
2148			cur = tw;
2149			goto out;
2150		}
2151		spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2152		st->state = TCP_SEQ_STATE_ESTABLISHED;
2153
2154		/* Look for next non empty bucket */
2155		st->offset = 0;
2156		while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2157				empty_bucket(st))
2158			;
2159		if (st->bucket > tcp_hashinfo.ehash_mask)
2160			return NULL;
2161
2162		spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2163		sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2164	} else
2165		sk = sk_nulls_next(sk);
2166
2167	sk_nulls_for_each_from(sk, node) {
2168		if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2169			goto found;
2170	}
2171
2172	st->state = TCP_SEQ_STATE_TIME_WAIT;
2173	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2174	goto get_tw;
2175found:
2176	cur = sk;
2177out:
2178	return cur;
2179}
2180
2181static void *established_get_idx(struct seq_file *seq, loff_t pos)
2182{
2183	struct tcp_iter_state *st = seq->private;
2184	void *rc;
2185
2186	st->bucket = 0;
2187	rc = established_get_first(seq);
2188
2189	while (rc && pos) {
2190		rc = established_get_next(seq, rc);
2191		--pos;
2192	}
2193	return rc;
2194}
2195
2196static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2197{
2198	void *rc;
2199	struct tcp_iter_state *st = seq->private;
2200
2201	st->state = TCP_SEQ_STATE_LISTENING;
2202	rc	  = listening_get_idx(seq, &pos);
2203
2204	if (!rc) {
2205		st->state = TCP_SEQ_STATE_ESTABLISHED;
2206		rc	  = established_get_idx(seq, pos);
2207	}
2208
2209	return rc;
2210}
2211
2212static void *tcp_seek_last_pos(struct seq_file *seq)
2213{
2214	struct tcp_iter_state *st = seq->private;
2215	int offset = st->offset;
2216	int orig_num = st->num;
2217	void *rc = NULL;
2218
2219	switch (st->state) {
2220	case TCP_SEQ_STATE_OPENREQ:
2221	case TCP_SEQ_STATE_LISTENING:
2222		if (st->bucket >= INET_LHTABLE_SIZE)
2223			break;
2224		st->state = TCP_SEQ_STATE_LISTENING;
2225		rc = listening_get_next(seq, NULL);
2226		while (offset-- && rc)
2227			rc = listening_get_next(seq, rc);
2228		if (rc)
2229			break;
2230		st->bucket = 0;
2231		/* Fallthrough */
2232	case TCP_SEQ_STATE_ESTABLISHED:
2233	case TCP_SEQ_STATE_TIME_WAIT:
2234		st->state = TCP_SEQ_STATE_ESTABLISHED;
2235		if (st->bucket > tcp_hashinfo.ehash_mask)
2236			break;
2237		rc = established_get_first(seq);
2238		while (offset-- && rc)
2239			rc = established_get_next(seq, rc);
2240	}
2241
2242	st->num = orig_num;
2243
2244	return rc;
2245}
2246
2247static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2248{
2249	struct tcp_iter_state *st = seq->private;
2250	void *rc;
2251
2252	if (*pos && *pos == st->last_pos) {
2253		rc = tcp_seek_last_pos(seq);
2254		if (rc)
2255			goto out;
2256	}
2257
2258	st->state = TCP_SEQ_STATE_LISTENING;
2259	st->num = 0;
2260	st->bucket = 0;
2261	st->offset = 0;
2262	rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2263
2264out:
2265	st->last_pos = *pos;
2266	return rc;
2267}
2268
2269static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2270{
2271	struct tcp_iter_state *st = seq->private;
2272	void *rc = NULL;
2273
2274	if (v == SEQ_START_TOKEN) {
2275		rc = tcp_get_idx(seq, 0);
2276		goto out;
2277	}
2278
2279	switch (st->state) {
2280	case TCP_SEQ_STATE_OPENREQ:
2281	case TCP_SEQ_STATE_LISTENING:
2282		rc = listening_get_next(seq, v);
2283		if (!rc) {
2284			st->state = TCP_SEQ_STATE_ESTABLISHED;
2285			st->bucket = 0;
2286			st->offset = 0;
2287			rc	  = established_get_first(seq);
2288		}
2289		break;
2290	case TCP_SEQ_STATE_ESTABLISHED:
2291	case TCP_SEQ_STATE_TIME_WAIT:
2292		rc = established_get_next(seq, v);
2293		break;
2294	}
2295out:
2296	++*pos;
2297	st->last_pos = *pos;
2298	return rc;
2299}
2300
2301static void tcp_seq_stop(struct seq_file *seq, void *v)
2302{
2303	struct tcp_iter_state *st = seq->private;
2304
2305	switch (st->state) {
2306	case TCP_SEQ_STATE_OPENREQ:
2307		if (v) {
2308			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2309			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2310		}
2311	case TCP_SEQ_STATE_LISTENING:
2312		if (v != SEQ_START_TOKEN)
2313			spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2314		break;
2315	case TCP_SEQ_STATE_TIME_WAIT:
2316	case TCP_SEQ_STATE_ESTABLISHED:
2317		if (v)
2318			spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2319		break;
2320	}
2321}
2322
2323int tcp_seq_open(struct inode *inode, struct file *file)
2324{
2325	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2326	struct tcp_iter_state *s;
2327	int err;
2328
2329	err = seq_open_net(inode, file, &afinfo->seq_ops,
2330			  sizeof(struct tcp_iter_state));
2331	if (err < 0)
2332		return err;
2333
2334	s = ((struct seq_file *)file->private_data)->private;
2335	s->family		= afinfo->family;
2336	s->last_pos 		= 0;
2337	return 0;
2338}
2339EXPORT_SYMBOL(tcp_seq_open);
2340
2341int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2342{
2343	int rc = 0;
2344	struct proc_dir_entry *p;
2345
2346	afinfo->seq_ops.start		= tcp_seq_start;
2347	afinfo->seq_ops.next		= tcp_seq_next;
2348	afinfo->seq_ops.stop		= tcp_seq_stop;
2349
2350	p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2351			     afinfo->seq_fops, afinfo);
2352	if (!p)
2353		rc = -ENOMEM;
2354	return rc;
2355}
2356EXPORT_SYMBOL(tcp_proc_register);
2357
2358void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2359{
2360	proc_net_remove(net, afinfo->name);
2361}
2362EXPORT_SYMBOL(tcp_proc_unregister);
2363
2364static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2365			 struct seq_file *f, int i, int uid, int *len)
2366{
2367	const struct inet_request_sock *ireq = inet_rsk(req);
2368	int ttd = req->expires - jiffies;
2369
2370	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2371		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2372		i,
2373		ireq->loc_addr,
2374		ntohs(inet_sk(sk)->inet_sport),
2375		ireq->rmt_addr,
2376		ntohs(ireq->rmt_port),
2377		TCP_SYN_RECV,
2378		0, 0, /* could print option size, but that is af dependent. */
2379		1,    /* timers active (only the expire timer) */
2380		jiffies_to_clock_t(ttd),
2381		req->retrans,
2382		uid,
2383		0,  /* non standard timer */
2384		0, /* open_requests have no inode */
2385		atomic_read(&sk->sk_refcnt),
2386		req,
2387		len);
2388}
2389
2390static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2391{
2392	int timer_active;
2393	unsigned long timer_expires;
2394	const struct tcp_sock *tp = tcp_sk(sk);
2395	const struct inet_connection_sock *icsk = inet_csk(sk);
2396	const struct inet_sock *inet = inet_sk(sk);
2397	__be32 dest = inet->inet_daddr;
2398	__be32 src = inet->inet_rcv_saddr;
2399	__u16 destp = ntohs(inet->inet_dport);
2400	__u16 srcp = ntohs(inet->inet_sport);
2401	int rx_queue;
2402
2403	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2404		timer_active	= 1;
2405		timer_expires	= icsk->icsk_timeout;
2406	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2407		timer_active	= 4;
2408		timer_expires	= icsk->icsk_timeout;
2409	} else if (timer_pending(&sk->sk_timer)) {
2410		timer_active	= 2;
2411		timer_expires	= sk->sk_timer.expires;
2412	} else {
2413		timer_active	= 0;
2414		timer_expires = jiffies;
2415	}
2416
2417	if (sk->sk_state == TCP_LISTEN)
2418		rx_queue = sk->sk_ack_backlog;
2419	else
2420		/*
2421		 * because we dont lock socket, we might find a transient negative value
2422		 */
2423		rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2424
2425	seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2426			"%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2427		i, src, srcp, dest, destp, sk->sk_state,
2428		tp->write_seq - tp->snd_una,
2429		rx_queue,
2430		timer_active,
2431		jiffies_to_clock_t(timer_expires - jiffies),
2432		icsk->icsk_retransmits,
2433		sock_i_uid(sk),
2434		icsk->icsk_probes_out,
2435		sock_i_ino(sk),
2436		atomic_read(&sk->sk_refcnt), sk,
2437		jiffies_to_clock_t(icsk->icsk_rto),
2438		jiffies_to_clock_t(icsk->icsk_ack.ato),
2439		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2440		tp->snd_cwnd,
2441		tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2442		len);
2443}
2444
2445static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2446			       struct seq_file *f, int i, int *len)
2447{
2448	__be32 dest, src;
2449	__u16 destp, srcp;
2450	int ttd = tw->tw_ttd - jiffies;
2451
2452	if (ttd < 0)
2453		ttd = 0;
2454
2455	dest  = tw->tw_daddr;
2456	src   = tw->tw_rcv_saddr;
2457	destp = ntohs(tw->tw_dport);
2458	srcp  = ntohs(tw->tw_sport);
2459
2460	seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2461		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2462		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2463		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2464		atomic_read(&tw->tw_refcnt), tw, len);
2465}
2466
2467#define TMPSZ 150
2468
2469static int tcp4_seq_show(struct seq_file *seq, void *v)
2470{
2471	struct tcp_iter_state *st;
2472	int len;
2473
2474	if (v == SEQ_START_TOKEN) {
2475		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2476			   "  sl  local_address rem_address   st tx_queue "
2477			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2478			   "inode");
2479		goto out;
2480	}
2481	st = seq->private;
2482
2483	switch (st->state) {
2484	case TCP_SEQ_STATE_LISTENING:
2485	case TCP_SEQ_STATE_ESTABLISHED:
2486		get_tcp4_sock(v, seq, st->num, &len);
2487		break;
2488	case TCP_SEQ_STATE_OPENREQ:
2489		get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2490		break;
2491	case TCP_SEQ_STATE_TIME_WAIT:
2492		get_timewait4_sock(v, seq, st->num, &len);
2493		break;
2494	}
2495	seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2496out:
2497	return 0;
2498}
2499
2500static const struct file_operations tcp_afinfo_seq_fops = {
2501	.owner   = THIS_MODULE,
2502	.open    = tcp_seq_open,
2503	.read    = seq_read,
2504	.llseek  = seq_lseek,
2505	.release = seq_release_net
2506};
2507
2508static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2509	.name		= "tcp",
2510	.family		= AF_INET,
2511	.seq_fops	= &tcp_afinfo_seq_fops,
2512	.seq_ops	= {
2513		.show		= tcp4_seq_show,
2514	},
2515};
2516
2517static int __net_init tcp4_proc_init_net(struct net *net)
2518{
2519	return tcp_proc_register(net, &tcp4_seq_afinfo);
2520}
2521
2522static void __net_exit tcp4_proc_exit_net(struct net *net)
2523{
2524	tcp_proc_unregister(net, &tcp4_seq_afinfo);
2525}
2526
2527static struct pernet_operations tcp4_net_ops = {
2528	.init = tcp4_proc_init_net,
2529	.exit = tcp4_proc_exit_net,
2530};
2531
2532int __init tcp4_proc_init(void)
2533{
2534	return register_pernet_subsys(&tcp4_net_ops);
2535}
2536
2537void tcp4_proc_exit(void)
2538{
2539	unregister_pernet_subsys(&tcp4_net_ops);
2540}
2541#endif /* CONFIG_PROC_FS */
2542
2543struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2544{
2545	const struct iphdr *iph = skb_gro_network_header(skb);
2546
2547	switch (skb->ip_summed) {
2548	case CHECKSUM_COMPLETE:
2549		if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2550				  skb->csum)) {
2551			skb->ip_summed = CHECKSUM_UNNECESSARY;
2552			break;
2553		}
2554
2555		/* fall through */
2556	case CHECKSUM_NONE:
2557		NAPI_GRO_CB(skb)->flush = 1;
2558		return NULL;
2559	}
2560
2561	return tcp_gro_receive(head, skb);
2562}
2563
2564int tcp4_gro_complete(struct sk_buff *skb)
2565{
2566	const struct iphdr *iph = ip_hdr(skb);
2567	struct tcphdr *th = tcp_hdr(skb);
2568
2569	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2570				  iph->saddr, iph->daddr, 0);
2571	skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2572
2573	return tcp_gro_complete(skb);
2574}
2575
2576struct proto tcp_prot = {
2577	.name			= "TCP",
2578	.owner			= THIS_MODULE,
2579	.close			= tcp_close,
2580	.connect		= tcp_v4_connect,
2581	.disconnect		= tcp_disconnect,
2582	.accept			= inet_csk_accept,
2583	.ioctl			= tcp_ioctl,
2584	.init			= tcp_v4_init_sock,
2585	.destroy		= tcp_v4_destroy_sock,
2586	.shutdown		= tcp_shutdown,
2587	.setsockopt		= tcp_setsockopt,
2588	.getsockopt		= tcp_getsockopt,
2589	.recvmsg		= tcp_recvmsg,
2590	.sendmsg		= tcp_sendmsg,
2591	.sendpage		= tcp_sendpage,
2592	.backlog_rcv		= tcp_v4_do_rcv,
2593	.hash			= inet_hash,
2594	.unhash			= inet_unhash,
2595	.get_port		= inet_csk_get_port,
2596	.enter_memory_pressure	= tcp_enter_memory_pressure,
2597	.sockets_allocated	= &tcp_sockets_allocated,
2598	.orphan_count		= &tcp_orphan_count,
2599	.memory_allocated	= &tcp_memory_allocated,
2600	.memory_pressure	= &tcp_memory_pressure,
2601	.sysctl_wmem		= sysctl_tcp_wmem,
2602	.sysctl_rmem		= sysctl_tcp_rmem,
2603	.max_header		= MAX_TCP_HEADER,
2604	.obj_size		= sizeof(struct tcp_sock),
2605	.slab_flags		= SLAB_DESTROY_BY_RCU,
2606	.twsk_prot		= &tcp_timewait_sock_ops,
2607	.rsk_prot		= &tcp_request_sock_ops,
2608	.h.hashinfo		= &tcp_hashinfo,
2609	.no_autobind		= true,
2610#ifdef CONFIG_COMPAT
2611	.compat_setsockopt	= compat_tcp_setsockopt,
2612	.compat_getsockopt	= compat_tcp_getsockopt,
2613#endif
2614#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
2615	.init_cgroup		= tcp_init_cgroup,
2616	.destroy_cgroup		= tcp_destroy_cgroup,
2617	.proto_cgroup		= tcp_proto_cgroup,
2618#endif
2619};
2620EXPORT_SYMBOL(tcp_prot);
2621
2622static int __net_init tcp_sk_init(struct net *net)
2623{
2624	return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2625				    PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2626}
2627
2628static void __net_exit tcp_sk_exit(struct net *net)
2629{
2630	inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2631}
2632
2633static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2634{
2635	inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2636}
2637
2638static struct pernet_operations __net_initdata tcp_sk_ops = {
2639       .init	   = tcp_sk_init,
2640       .exit	   = tcp_sk_exit,
2641       .exit_batch = tcp_sk_exit_batch,
2642};
2643
2644void __init tcp_v4_init(void)
2645{
2646	inet_hashinfo_init(&tcp_hashinfo);
2647	if (register_pernet_subsys(&tcp_sk_ops))
2648		panic("Failed to create the TCP control socket.\n");
2649}
2650