tcp_ipv4.c revision f8ab18d2d987a59ccbf0495032b2aef05b730037
1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version:	$Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9 *
10 *		IPv4 specific functions
11 *
12 *
13 *		code split from:
14 *		linux/ipv4/tcp.c
15 *		linux/ipv4/tcp_input.c
16 *		linux/ipv4/tcp_output.c
17 *
18 *		See tcp.c for author information
19 *
20 *	This program is free software; you can redistribute it and/or
21 *      modify it under the terms of the GNU General Public License
22 *      as published by the Free Software Foundation; either version
23 *      2 of the License, or (at your option) any later version.
24 */
25
26/*
27 * Changes:
28 *		David S. Miller	:	New socket lookup architecture.
29 *					This code is dedicated to John Dyson.
30 *		David S. Miller :	Change semantics of established hash,
31 *					half is devoted to TIME_WAIT sockets
32 *					and the rest go in the other half.
33 *		Andi Kleen :		Add support for syncookies and fixed
34 *					some bugs: ip options weren't passed to
35 *					the TCP layer, missed a check for an
36 *					ACK bit.
37 *		Andi Kleen :		Implemented fast path mtu discovery.
38 *	     				Fixed many serious bugs in the
39 *					request_sock handling and moved
40 *					most of it into the af independent code.
41 *					Added tail drop and some other bugfixes.
42 *					Added new listen semantics.
43 *		Mike McLagan	:	Routing by source
44 *	Juan Jose Ciarlante:		ip_dynaddr bits
45 *		Andi Kleen:		various fixes.
46 *	Vitaly E. Lavrov	:	Transparent proxy revived after year
47 *					coma.
48 *	Andi Kleen		:	Fix new listen.
49 *	Andi Kleen		:	Fix accept error reporting.
50 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
51 *	Alexey Kuznetsov		allow both IPv4 and IPv6 sockets to bind
52 *					a single port at the same time.
53 */
54
55
56#include <linux/types.h>
57#include <linux/fcntl.h>
58#include <linux/module.h>
59#include <linux/random.h>
60#include <linux/cache.h>
61#include <linux/jhash.h>
62#include <linux/init.h>
63#include <linux/times.h>
64
65#include <net/icmp.h>
66#include <net/inet_hashtables.h>
67#include <net/tcp.h>
68#include <net/transp_v6.h>
69#include <net/ipv6.h>
70#include <net/inet_common.h>
71#include <net/timewait_sock.h>
72#include <net/xfrm.h>
73#include <net/netdma.h>
74
75#include <linux/inet.h>
76#include <linux/ipv6.h>
77#include <linux/stddef.h>
78#include <linux/proc_fs.h>
79#include <linux/seq_file.h>
80
81#include <linux/crypto.h>
82#include <linux/scatterlist.h>
83
84int sysctl_tcp_tw_reuse __read_mostly;
85int sysctl_tcp_low_latency __read_mostly;
86
87/* Check TCP sequence numbers in ICMP packets. */
88#define ICMP_MIN_LENGTH 8
89
90/* Socket used for sending RSTs */
91static struct socket *tcp_socket __read_mostly;
92
93void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
94
95#ifdef CONFIG_TCP_MD5SIG
96static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
97						   __be32 addr);
98static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
99				   __be32 saddr, __be32 daddr,
100				   struct tcphdr *th, int protocol,
101				   int tcplen);
102#endif
103
104struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
105	.lhash_lock  = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
106	.lhash_users = ATOMIC_INIT(0),
107	.lhash_wait  = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
108};
109
110static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
111{
112	return inet_csk_get_port(&tcp_hashinfo, sk, snum,
113				 inet_csk_bind_conflict);
114}
115
116static void tcp_v4_hash(struct sock *sk)
117{
118	inet_hash(&tcp_hashinfo, sk);
119}
120
121void tcp_unhash(struct sock *sk)
122{
123	inet_unhash(&tcp_hashinfo, sk);
124}
125
126static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
127{
128	return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
129					  ip_hdr(skb)->saddr,
130					  tcp_hdr(skb)->dest,
131					  tcp_hdr(skb)->source);
132}
133
134int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
135{
136	const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
137	struct tcp_sock *tp = tcp_sk(sk);
138
139	/* With PAWS, it is safe from the viewpoint
140	   of data integrity. Even without PAWS it is safe provided sequence
141	   spaces do not overlap i.e. at data rates <= 80Mbit/sec.
142
143	   Actually, the idea is close to VJ's one, only timestamp cache is
144	   held not per host, but per port pair and TW bucket is used as state
145	   holder.
146
147	   If TW bucket has been already destroyed we fall back to VJ's scheme
148	   and use initial timestamp retrieved from peer table.
149	 */
150	if (tcptw->tw_ts_recent_stamp &&
151	    (twp == NULL || (sysctl_tcp_tw_reuse &&
152			     get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
153		tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
154		if (tp->write_seq == 0)
155			tp->write_seq = 1;
156		tp->rx_opt.ts_recent	   = tcptw->tw_ts_recent;
157		tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
158		sock_hold(sktw);
159		return 1;
160	}
161
162	return 0;
163}
164
165EXPORT_SYMBOL_GPL(tcp_twsk_unique);
166
167/* This will initiate an outgoing connection. */
168int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
169{
170	struct inet_sock *inet = inet_sk(sk);
171	struct tcp_sock *tp = tcp_sk(sk);
172	struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
173	struct rtable *rt;
174	__be32 daddr, nexthop;
175	int tmp;
176	int err;
177
178	if (addr_len < sizeof(struct sockaddr_in))
179		return -EINVAL;
180
181	if (usin->sin_family != AF_INET)
182		return -EAFNOSUPPORT;
183
184	nexthop = daddr = usin->sin_addr.s_addr;
185	if (inet->opt && inet->opt->srr) {
186		if (!daddr)
187			return -EINVAL;
188		nexthop = inet->opt->faddr;
189	}
190
191	tmp = ip_route_connect(&rt, nexthop, inet->saddr,
192			       RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
193			       IPPROTO_TCP,
194			       inet->sport, usin->sin_port, sk, 1);
195	if (tmp < 0) {
196		if (tmp == -ENETUNREACH)
197			IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
198		return tmp;
199	}
200
201	if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
202		ip_rt_put(rt);
203		return -ENETUNREACH;
204	}
205
206	if (!inet->opt || !inet->opt->srr)
207		daddr = rt->rt_dst;
208
209	if (!inet->saddr)
210		inet->saddr = rt->rt_src;
211	inet->rcv_saddr = inet->saddr;
212
213	if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
214		/* Reset inherited state */
215		tp->rx_opt.ts_recent	   = 0;
216		tp->rx_opt.ts_recent_stamp = 0;
217		tp->write_seq		   = 0;
218	}
219
220	if (tcp_death_row.sysctl_tw_recycle &&
221	    !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
222		struct inet_peer *peer = rt_get_peer(rt);
223		/*
224		 * VJ's idea. We save last timestamp seen from
225		 * the destination in peer table, when entering state
226		 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
227		 * when trying new connection.
228		 */
229		if (peer != NULL &&
230		    peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
231			tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
232			tp->rx_opt.ts_recent = peer->tcp_ts;
233		}
234	}
235
236	inet->dport = usin->sin_port;
237	inet->daddr = daddr;
238
239	inet_csk(sk)->icsk_ext_hdr_len = 0;
240	if (inet->opt)
241		inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
242
243	tp->rx_opt.mss_clamp = 536;
244
245	/* Socket identity is still unknown (sport may be zero).
246	 * However we set state to SYN-SENT and not releasing socket
247	 * lock select source port, enter ourselves into the hash tables and
248	 * complete initialization after this.
249	 */
250	tcp_set_state(sk, TCP_SYN_SENT);
251	err = inet_hash_connect(&tcp_death_row, sk);
252	if (err)
253		goto failure;
254
255	err = ip_route_newports(&rt, IPPROTO_TCP,
256				inet->sport, inet->dport, sk);
257	if (err)
258		goto failure;
259
260	/* OK, now commit destination to socket.  */
261	sk->sk_gso_type = SKB_GSO_TCPV4;
262	sk_setup_caps(sk, &rt->u.dst);
263
264	if (!tp->write_seq)
265		tp->write_seq = secure_tcp_sequence_number(inet->saddr,
266							   inet->daddr,
267							   inet->sport,
268							   usin->sin_port);
269
270	inet->id = tp->write_seq ^ jiffies;
271
272	err = tcp_connect(sk);
273	rt = NULL;
274	if (err)
275		goto failure;
276
277	return 0;
278
279failure:
280	/*
281	 * This unhashes the socket and releases the local port,
282	 * if necessary.
283	 */
284	tcp_set_state(sk, TCP_CLOSE);
285	ip_rt_put(rt);
286	sk->sk_route_caps = 0;
287	inet->dport = 0;
288	return err;
289}
290
291/*
292 * This routine does path mtu discovery as defined in RFC1191.
293 */
294static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
295{
296	struct dst_entry *dst;
297	struct inet_sock *inet = inet_sk(sk);
298
299	/* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
300	 * send out by Linux are always <576bytes so they should go through
301	 * unfragmented).
302	 */
303	if (sk->sk_state == TCP_LISTEN)
304		return;
305
306	/* We don't check in the destentry if pmtu discovery is forbidden
307	 * on this route. We just assume that no packet_to_big packets
308	 * are send back when pmtu discovery is not active.
309	 * There is a small race when the user changes this flag in the
310	 * route, but I think that's acceptable.
311	 */
312	if ((dst = __sk_dst_check(sk, 0)) == NULL)
313		return;
314
315	dst->ops->update_pmtu(dst, mtu);
316
317	/* Something is about to be wrong... Remember soft error
318	 * for the case, if this connection will not able to recover.
319	 */
320	if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
321		sk->sk_err_soft = EMSGSIZE;
322
323	mtu = dst_mtu(dst);
324
325	if (inet->pmtudisc != IP_PMTUDISC_DONT &&
326	    inet_csk(sk)->icsk_pmtu_cookie > mtu) {
327		tcp_sync_mss(sk, mtu);
328
329		/* Resend the TCP packet because it's
330		 * clear that the old packet has been
331		 * dropped. This is the new "fast" path mtu
332		 * discovery.
333		 */
334		tcp_simple_retransmit(sk);
335	} /* else let the usual retransmit timer handle it */
336}
337
338/*
339 * This routine is called by the ICMP module when it gets some
340 * sort of error condition.  If err < 0 then the socket should
341 * be closed and the error returned to the user.  If err > 0
342 * it's just the icmp type << 8 | icmp code.  After adjustment
343 * header points to the first 8 bytes of the tcp header.  We need
344 * to find the appropriate port.
345 *
346 * The locking strategy used here is very "optimistic". When
347 * someone else accesses the socket the ICMP is just dropped
348 * and for some paths there is no check at all.
349 * A more general error queue to queue errors for later handling
350 * is probably better.
351 *
352 */
353
354void tcp_v4_err(struct sk_buff *skb, u32 info)
355{
356	struct iphdr *iph = (struct iphdr *)skb->data;
357	struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
358	struct tcp_sock *tp;
359	struct inet_sock *inet;
360	const int type = icmp_hdr(skb)->type;
361	const int code = icmp_hdr(skb)->code;
362	struct sock *sk;
363	__u32 seq;
364	int err;
365
366	if (skb->len < (iph->ihl << 2) + 8) {
367		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
368		return;
369	}
370
371	sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
372			 th->source, inet_iif(skb));
373	if (!sk) {
374		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
375		return;
376	}
377	if (sk->sk_state == TCP_TIME_WAIT) {
378		inet_twsk_put(inet_twsk(sk));
379		return;
380	}
381
382	bh_lock_sock(sk);
383	/* If too many ICMPs get dropped on busy
384	 * servers this needs to be solved differently.
385	 */
386	if (sock_owned_by_user(sk))
387		NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
388
389	if (sk->sk_state == TCP_CLOSE)
390		goto out;
391
392	tp = tcp_sk(sk);
393	seq = ntohl(th->seq);
394	if (sk->sk_state != TCP_LISTEN &&
395	    !between(seq, tp->snd_una, tp->snd_nxt)) {
396		NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
397		goto out;
398	}
399
400	switch (type) {
401	case ICMP_SOURCE_QUENCH:
402		/* Just silently ignore these. */
403		goto out;
404	case ICMP_PARAMETERPROB:
405		err = EPROTO;
406		break;
407	case ICMP_DEST_UNREACH:
408		if (code > NR_ICMP_UNREACH)
409			goto out;
410
411		if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
412			if (!sock_owned_by_user(sk))
413				do_pmtu_discovery(sk, iph, info);
414			goto out;
415		}
416
417		err = icmp_err_convert[code].errno;
418		break;
419	case ICMP_TIME_EXCEEDED:
420		err = EHOSTUNREACH;
421		break;
422	default:
423		goto out;
424	}
425
426	switch (sk->sk_state) {
427		struct request_sock *req, **prev;
428	case TCP_LISTEN:
429		if (sock_owned_by_user(sk))
430			goto out;
431
432		req = inet_csk_search_req(sk, &prev, th->dest,
433					  iph->daddr, iph->saddr);
434		if (!req)
435			goto out;
436
437		/* ICMPs are not backlogged, hence we cannot get
438		   an established socket here.
439		 */
440		BUG_TRAP(!req->sk);
441
442		if (seq != tcp_rsk(req)->snt_isn) {
443			NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
444			goto out;
445		}
446
447		/*
448		 * Still in SYN_RECV, just remove it silently.
449		 * There is no good way to pass the error to the newly
450		 * created socket, and POSIX does not want network
451		 * errors returned from accept().
452		 */
453		inet_csk_reqsk_queue_drop(sk, req, prev);
454		goto out;
455
456	case TCP_SYN_SENT:
457	case TCP_SYN_RECV:  /* Cannot happen.
458			       It can f.e. if SYNs crossed.
459			     */
460		if (!sock_owned_by_user(sk)) {
461			sk->sk_err = err;
462
463			sk->sk_error_report(sk);
464
465			tcp_done(sk);
466		} else {
467			sk->sk_err_soft = err;
468		}
469		goto out;
470	}
471
472	/* If we've already connected we will keep trying
473	 * until we time out, or the user gives up.
474	 *
475	 * rfc1122 4.2.3.9 allows to consider as hard errors
476	 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
477	 * but it is obsoleted by pmtu discovery).
478	 *
479	 * Note, that in modern internet, where routing is unreliable
480	 * and in each dark corner broken firewalls sit, sending random
481	 * errors ordered by their masters even this two messages finally lose
482	 * their original sense (even Linux sends invalid PORT_UNREACHs)
483	 *
484	 * Now we are in compliance with RFCs.
485	 *							--ANK (980905)
486	 */
487
488	inet = inet_sk(sk);
489	if (!sock_owned_by_user(sk) && inet->recverr) {
490		sk->sk_err = err;
491		sk->sk_error_report(sk);
492	} else	{ /* Only an error on timeout */
493		sk->sk_err_soft = err;
494	}
495
496out:
497	bh_unlock_sock(sk);
498	sock_put(sk);
499}
500
501/* This routine computes an IPv4 TCP checksum. */
502void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
503{
504	struct inet_sock *inet = inet_sk(sk);
505	struct tcphdr *th = tcp_hdr(skb);
506
507	if (skb->ip_summed == CHECKSUM_PARTIAL) {
508		th->check = ~tcp_v4_check(len, inet->saddr,
509					  inet->daddr, 0);
510		skb->csum_start = skb_transport_header(skb) - skb->head;
511		skb->csum_offset = offsetof(struct tcphdr, check);
512	} else {
513		th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
514					 csum_partial((char *)th,
515						      th->doff << 2,
516						      skb->csum));
517	}
518}
519
520int tcp_v4_gso_send_check(struct sk_buff *skb)
521{
522	const struct iphdr *iph;
523	struct tcphdr *th;
524
525	if (!pskb_may_pull(skb, sizeof(*th)))
526		return -EINVAL;
527
528	iph = ip_hdr(skb);
529	th = tcp_hdr(skb);
530
531	th->check = 0;
532	th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
533	skb->csum_start = skb_transport_header(skb) - skb->head;
534	skb->csum_offset = offsetof(struct tcphdr, check);
535	skb->ip_summed = CHECKSUM_PARTIAL;
536	return 0;
537}
538
539/*
540 *	This routine will send an RST to the other tcp.
541 *
542 *	Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
543 *		      for reset.
544 *	Answer: if a packet caused RST, it is not for a socket
545 *		existing in our system, if it is matched to a socket,
546 *		it is just duplicate segment or bug in other side's TCP.
547 *		So that we build reply only basing on parameters
548 *		arrived with segment.
549 *	Exception: precedence violation. We do not implement it in any case.
550 */
551
552static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
553{
554	struct tcphdr *th = tcp_hdr(skb);
555	struct {
556		struct tcphdr th;
557#ifdef CONFIG_TCP_MD5SIG
558		__be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
559#endif
560	} rep;
561	struct ip_reply_arg arg;
562#ifdef CONFIG_TCP_MD5SIG
563	struct tcp_md5sig_key *key;
564#endif
565
566	/* Never send a reset in response to a reset. */
567	if (th->rst)
568		return;
569
570	if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
571		return;
572
573	/* Swap the send and the receive. */
574	memset(&rep, 0, sizeof(rep));
575	rep.th.dest   = th->source;
576	rep.th.source = th->dest;
577	rep.th.doff   = sizeof(struct tcphdr) / 4;
578	rep.th.rst    = 1;
579
580	if (th->ack) {
581		rep.th.seq = th->ack_seq;
582	} else {
583		rep.th.ack = 1;
584		rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
585				       skb->len - (th->doff << 2));
586	}
587
588	memset(&arg, 0, sizeof(arg));
589	arg.iov[0].iov_base = (unsigned char *)&rep;
590	arg.iov[0].iov_len  = sizeof(rep.th);
591
592#ifdef CONFIG_TCP_MD5SIG
593	key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
594	if (key) {
595		rep.opt[0] = htonl((TCPOPT_NOP << 24) |
596				   (TCPOPT_NOP << 16) |
597				   (TCPOPT_MD5SIG << 8) |
598				   TCPOLEN_MD5SIG);
599		/* Update length and the length the header thinks exists */
600		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
601		rep.th.doff = arg.iov[0].iov_len / 4;
602
603		tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[1],
604					key,
605					ip_hdr(skb)->daddr,
606					ip_hdr(skb)->saddr,
607					&rep.th, IPPROTO_TCP,
608					arg.iov[0].iov_len);
609	}
610#endif
611	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
612				      ip_hdr(skb)->saddr, /* XXX */
613				      sizeof(struct tcphdr), IPPROTO_TCP, 0);
614	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
615
616	ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
617
618	TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
619	TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
620}
621
622/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
623   outside socket context is ugly, certainly. What can I do?
624 */
625
626static void tcp_v4_send_ack(struct tcp_timewait_sock *twsk,
627			    struct sk_buff *skb, u32 seq, u32 ack,
628			    u32 win, u32 ts)
629{
630	struct tcphdr *th = tcp_hdr(skb);
631	struct {
632		struct tcphdr th;
633		__be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
634#ifdef CONFIG_TCP_MD5SIG
635			   + (TCPOLEN_MD5SIG_ALIGNED >> 2)
636#endif
637			];
638	} rep;
639	struct ip_reply_arg arg;
640#ifdef CONFIG_TCP_MD5SIG
641	struct tcp_md5sig_key *key;
642	struct tcp_md5sig_key tw_key;
643#endif
644
645	memset(&rep.th, 0, sizeof(struct tcphdr));
646	memset(&arg, 0, sizeof(arg));
647
648	arg.iov[0].iov_base = (unsigned char *)&rep;
649	arg.iov[0].iov_len  = sizeof(rep.th);
650	if (ts) {
651		rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
652				   (TCPOPT_TIMESTAMP << 8) |
653				   TCPOLEN_TIMESTAMP);
654		rep.opt[1] = htonl(tcp_time_stamp);
655		rep.opt[2] = htonl(ts);
656		arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
657	}
658
659	/* Swap the send and the receive. */
660	rep.th.dest    = th->source;
661	rep.th.source  = th->dest;
662	rep.th.doff    = arg.iov[0].iov_len / 4;
663	rep.th.seq     = htonl(seq);
664	rep.th.ack_seq = htonl(ack);
665	rep.th.ack     = 1;
666	rep.th.window  = htons(win);
667
668#ifdef CONFIG_TCP_MD5SIG
669	/*
670	 * The SKB holds an imcoming packet, but may not have a valid ->sk
671	 * pointer. This is especially the case when we're dealing with a
672	 * TIME_WAIT ack, because the sk structure is long gone, and only
673	 * the tcp_timewait_sock remains. So the md5 key is stashed in that
674	 * structure, and we use it in preference.  I believe that (twsk ||
675	 * skb->sk) holds true, but we program defensively.
676	 */
677	if (!twsk && skb->sk) {
678		key = tcp_v4_md5_do_lookup(skb->sk, ip_hdr(skb)->daddr);
679	} else if (twsk && twsk->tw_md5_keylen) {
680		tw_key.key = twsk->tw_md5_key;
681		tw_key.keylen = twsk->tw_md5_keylen;
682		key = &tw_key;
683	} else
684		key = NULL;
685
686	if (key) {
687		int offset = (ts) ? 3 : 0;
688
689		rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
690					  (TCPOPT_NOP << 16) |
691					  (TCPOPT_MD5SIG << 8) |
692					  TCPOLEN_MD5SIG);
693		arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
694		rep.th.doff = arg.iov[0].iov_len/4;
695
696		tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[offset],
697					key,
698					ip_hdr(skb)->daddr,
699					ip_hdr(skb)->saddr,
700					&rep.th, IPPROTO_TCP,
701					arg.iov[0].iov_len);
702	}
703#endif
704	arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
705				      ip_hdr(skb)->saddr, /* XXX */
706				      arg.iov[0].iov_len, IPPROTO_TCP, 0);
707	arg.csumoffset = offsetof(struct tcphdr, check) / 2;
708	if (twsk)
709		arg.bound_dev_if = twsk->tw_sk.tw_bound_dev_if;
710
711	ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
712
713	TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
714}
715
716static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
717{
718	struct inet_timewait_sock *tw = inet_twsk(sk);
719	struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
720
721	tcp_v4_send_ack(tcptw, skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
722			tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
723			tcptw->tw_ts_recent);
724
725	inet_twsk_put(tw);
726}
727
728static void tcp_v4_reqsk_send_ack(struct sk_buff *skb,
729				  struct request_sock *req)
730{
731	tcp_v4_send_ack(NULL, skb, tcp_rsk(req)->snt_isn + 1,
732			tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
733			req->ts_recent);
734}
735
736/*
737 *	Send a SYN-ACK after having received an ACK.
738 *	This still operates on a request_sock only, not on a big
739 *	socket.
740 */
741static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
742			      struct dst_entry *dst)
743{
744	const struct inet_request_sock *ireq = inet_rsk(req);
745	int err = -1;
746	struct sk_buff * skb;
747
748	/* First, grab a route. */
749	if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
750		goto out;
751
752	skb = tcp_make_synack(sk, dst, req);
753
754	if (skb) {
755		struct tcphdr *th = tcp_hdr(skb);
756
757		th->check = tcp_v4_check(skb->len,
758					 ireq->loc_addr,
759					 ireq->rmt_addr,
760					 csum_partial((char *)th, skb->len,
761						      skb->csum));
762
763		err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
764					    ireq->rmt_addr,
765					    ireq->opt);
766		err = net_xmit_eval(err);
767	}
768
769out:
770	dst_release(dst);
771	return err;
772}
773
774/*
775 *	IPv4 request_sock destructor.
776 */
777static void tcp_v4_reqsk_destructor(struct request_sock *req)
778{
779	kfree(inet_rsk(req)->opt);
780}
781
782#ifdef CONFIG_SYN_COOKIES
783static void syn_flood_warning(struct sk_buff *skb)
784{
785	static unsigned long warntime;
786
787	if (time_after(jiffies, (warntime + HZ * 60))) {
788		warntime = jiffies;
789		printk(KERN_INFO
790		       "possible SYN flooding on port %d. Sending cookies.\n",
791		       ntohs(tcp_hdr(skb)->dest));
792	}
793}
794#endif
795
796/*
797 * Save and compile IPv4 options into the request_sock if needed.
798 */
799static struct ip_options *tcp_v4_save_options(struct sock *sk,
800					      struct sk_buff *skb)
801{
802	struct ip_options *opt = &(IPCB(skb)->opt);
803	struct ip_options *dopt = NULL;
804
805	if (opt && opt->optlen) {
806		int opt_size = optlength(opt);
807		dopt = kmalloc(opt_size, GFP_ATOMIC);
808		if (dopt) {
809			if (ip_options_echo(dopt, skb)) {
810				kfree(dopt);
811				dopt = NULL;
812			}
813		}
814	}
815	return dopt;
816}
817
818#ifdef CONFIG_TCP_MD5SIG
819/*
820 * RFC2385 MD5 checksumming requires a mapping of
821 * IP address->MD5 Key.
822 * We need to maintain these in the sk structure.
823 */
824
825/* Find the Key structure for an address.  */
826static struct tcp_md5sig_key *
827			tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
828{
829	struct tcp_sock *tp = tcp_sk(sk);
830	int i;
831
832	if (!tp->md5sig_info || !tp->md5sig_info->entries4)
833		return NULL;
834	for (i = 0; i < tp->md5sig_info->entries4; i++) {
835		if (tp->md5sig_info->keys4[i].addr == addr)
836			return &tp->md5sig_info->keys4[i].base;
837	}
838	return NULL;
839}
840
841struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
842					 struct sock *addr_sk)
843{
844	return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
845}
846
847EXPORT_SYMBOL(tcp_v4_md5_lookup);
848
849static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
850						      struct request_sock *req)
851{
852	return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
853}
854
855/* This can be called on a newly created socket, from other files */
856int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
857		      u8 *newkey, u8 newkeylen)
858{
859	/* Add Key to the list */
860	struct tcp4_md5sig_key *key;
861	struct tcp_sock *tp = tcp_sk(sk);
862	struct tcp4_md5sig_key *keys;
863
864	key = (struct tcp4_md5sig_key *)tcp_v4_md5_do_lookup(sk, addr);
865	if (key) {
866		/* Pre-existing entry - just update that one. */
867		kfree(key->base.key);
868		key->base.key = newkey;
869		key->base.keylen = newkeylen;
870	} else {
871		struct tcp_md5sig_info *md5sig;
872
873		if (!tp->md5sig_info) {
874			tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
875						  GFP_ATOMIC);
876			if (!tp->md5sig_info) {
877				kfree(newkey);
878				return -ENOMEM;
879			}
880			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
881		}
882		if (tcp_alloc_md5sig_pool() == NULL) {
883			kfree(newkey);
884			return -ENOMEM;
885		}
886		md5sig = tp->md5sig_info;
887
888		if (md5sig->alloced4 == md5sig->entries4) {
889			keys = kmalloc((sizeof(*keys) *
890					(md5sig->entries4 + 1)), GFP_ATOMIC);
891			if (!keys) {
892				kfree(newkey);
893				tcp_free_md5sig_pool();
894				return -ENOMEM;
895			}
896
897			if (md5sig->entries4)
898				memcpy(keys, md5sig->keys4,
899				       sizeof(*keys) * md5sig->entries4);
900
901			/* Free old key list, and reference new one */
902			if (md5sig->keys4)
903				kfree(md5sig->keys4);
904			md5sig->keys4 = keys;
905			md5sig->alloced4++;
906		}
907		md5sig->entries4++;
908		md5sig->keys4[md5sig->entries4 - 1].addr        = addr;
909		md5sig->keys4[md5sig->entries4 - 1].base.key    = newkey;
910		md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
911	}
912	return 0;
913}
914
915EXPORT_SYMBOL(tcp_v4_md5_do_add);
916
917static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
918			       u8 *newkey, u8 newkeylen)
919{
920	return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
921				 newkey, newkeylen);
922}
923
924int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
925{
926	struct tcp_sock *tp = tcp_sk(sk);
927	int i;
928
929	for (i = 0; i < tp->md5sig_info->entries4; i++) {
930		if (tp->md5sig_info->keys4[i].addr == addr) {
931			/* Free the key */
932			kfree(tp->md5sig_info->keys4[i].base.key);
933			tp->md5sig_info->entries4--;
934
935			if (tp->md5sig_info->entries4 == 0) {
936				kfree(tp->md5sig_info->keys4);
937				tp->md5sig_info->keys4 = NULL;
938				tp->md5sig_info->alloced4 = 0;
939			} else if (tp->md5sig_info->entries4 != i) {
940				/* Need to do some manipulation */
941				memcpy(&tp->md5sig_info->keys4[i],
942				       &tp->md5sig_info->keys4[i+1],
943				       (tp->md5sig_info->entries4 - i) *
944					sizeof(struct tcp4_md5sig_key));
945			}
946			tcp_free_md5sig_pool();
947			return 0;
948		}
949	}
950	return -ENOENT;
951}
952
953EXPORT_SYMBOL(tcp_v4_md5_do_del);
954
955static void tcp_v4_clear_md5_list(struct sock *sk)
956{
957	struct tcp_sock *tp = tcp_sk(sk);
958
959	/* Free each key, then the set of key keys,
960	 * the crypto element, and then decrement our
961	 * hold on the last resort crypto.
962	 */
963	if (tp->md5sig_info->entries4) {
964		int i;
965		for (i = 0; i < tp->md5sig_info->entries4; i++)
966			kfree(tp->md5sig_info->keys4[i].base.key);
967		tp->md5sig_info->entries4 = 0;
968		tcp_free_md5sig_pool();
969	}
970	if (tp->md5sig_info->keys4) {
971		kfree(tp->md5sig_info->keys4);
972		tp->md5sig_info->keys4 = NULL;
973		tp->md5sig_info->alloced4  = 0;
974	}
975}
976
977static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
978				 int optlen)
979{
980	struct tcp_md5sig cmd;
981	struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
982	u8 *newkey;
983
984	if (optlen < sizeof(cmd))
985		return -EINVAL;
986
987	if (copy_from_user(&cmd, optval, sizeof(cmd)))
988		return -EFAULT;
989
990	if (sin->sin_family != AF_INET)
991		return -EINVAL;
992
993	if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
994		if (!tcp_sk(sk)->md5sig_info)
995			return -ENOENT;
996		return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
997	}
998
999	if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1000		return -EINVAL;
1001
1002	if (!tcp_sk(sk)->md5sig_info) {
1003		struct tcp_sock *tp = tcp_sk(sk);
1004		struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
1005
1006		if (!p)
1007			return -EINVAL;
1008
1009		tp->md5sig_info = p;
1010		sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1011	}
1012
1013	newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1014	if (!newkey)
1015		return -ENOMEM;
1016	return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1017				 newkey, cmd.tcpm_keylen);
1018}
1019
1020static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1021				   __be32 saddr, __be32 daddr,
1022				   struct tcphdr *th, int protocol,
1023				   int tcplen)
1024{
1025	struct scatterlist sg[4];
1026	__u16 data_len;
1027	int block = 0;
1028	__sum16 old_checksum;
1029	struct tcp_md5sig_pool *hp;
1030	struct tcp4_pseudohdr *bp;
1031	struct hash_desc *desc;
1032	int err;
1033	unsigned int nbytes = 0;
1034
1035	/*
1036	 * Okay, so RFC2385 is turned on for this connection,
1037	 * so we need to generate the MD5 hash for the packet now.
1038	 */
1039
1040	hp = tcp_get_md5sig_pool();
1041	if (!hp)
1042		goto clear_hash_noput;
1043
1044	bp = &hp->md5_blk.ip4;
1045	desc = &hp->md5_desc;
1046
1047	/*
1048	 * 1. the TCP pseudo-header (in the order: source IP address,
1049	 * destination IP address, zero-padded protocol number, and
1050	 * segment length)
1051	 */
1052	bp->saddr = saddr;
1053	bp->daddr = daddr;
1054	bp->pad = 0;
1055	bp->protocol = protocol;
1056	bp->len = htons(tcplen);
1057	sg_set_buf(&sg[block++], bp, sizeof(*bp));
1058	nbytes += sizeof(*bp);
1059
1060	/* 2. the TCP header, excluding options, and assuming a
1061	 * checksum of zero/
1062	 */
1063	old_checksum = th->check;
1064	th->check = 0;
1065	sg_set_buf(&sg[block++], th, sizeof(struct tcphdr));
1066	nbytes += sizeof(struct tcphdr);
1067
1068	/* 3. the TCP segment data (if any) */
1069	data_len = tcplen - (th->doff << 2);
1070	if (data_len > 0) {
1071		unsigned char *data = (unsigned char *)th + (th->doff << 2);
1072		sg_set_buf(&sg[block++], data, data_len);
1073		nbytes += data_len;
1074	}
1075
1076	/* 4. an independently-specified key or password, known to both
1077	 * TCPs and presumably connection-specific
1078	 */
1079	sg_set_buf(&sg[block++], key->key, key->keylen);
1080	nbytes += key->keylen;
1081
1082	/* Now store the Hash into the packet */
1083	err = crypto_hash_init(desc);
1084	if (err)
1085		goto clear_hash;
1086	err = crypto_hash_update(desc, sg, nbytes);
1087	if (err)
1088		goto clear_hash;
1089	err = crypto_hash_final(desc, md5_hash);
1090	if (err)
1091		goto clear_hash;
1092
1093	/* Reset header, and free up the crypto */
1094	tcp_put_md5sig_pool();
1095	th->check = old_checksum;
1096
1097out:
1098	return 0;
1099clear_hash:
1100	tcp_put_md5sig_pool();
1101clear_hash_noput:
1102	memset(md5_hash, 0, 16);
1103	goto out;
1104}
1105
1106int tcp_v4_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1107			 struct sock *sk,
1108			 struct dst_entry *dst,
1109			 struct request_sock *req,
1110			 struct tcphdr *th, int protocol,
1111			 int tcplen)
1112{
1113	__be32 saddr, daddr;
1114
1115	if (sk) {
1116		saddr = inet_sk(sk)->saddr;
1117		daddr = inet_sk(sk)->daddr;
1118	} else {
1119		struct rtable *rt = (struct rtable *)dst;
1120		BUG_ON(!rt);
1121		saddr = rt->rt_src;
1122		daddr = rt->rt_dst;
1123	}
1124	return tcp_v4_do_calc_md5_hash(md5_hash, key,
1125				       saddr, daddr,
1126				       th, protocol, tcplen);
1127}
1128
1129EXPORT_SYMBOL(tcp_v4_calc_md5_hash);
1130
1131static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1132{
1133	/*
1134	 * This gets called for each TCP segment that arrives
1135	 * so we want to be efficient.
1136	 * We have 3 drop cases:
1137	 * o No MD5 hash and one expected.
1138	 * o MD5 hash and we're not expecting one.
1139	 * o MD5 hash and its wrong.
1140	 */
1141	__u8 *hash_location = NULL;
1142	struct tcp_md5sig_key *hash_expected;
1143	const struct iphdr *iph = ip_hdr(skb);
1144	struct tcphdr *th = tcp_hdr(skb);
1145	int length = (th->doff << 2) - sizeof(struct tcphdr);
1146	int genhash;
1147	unsigned char *ptr;
1148	unsigned char newhash[16];
1149
1150	hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1151
1152	/*
1153	 * If the TCP option length is less than the TCP_MD5SIG
1154	 * option length, then we can shortcut
1155	 */
1156	if (length < TCPOLEN_MD5SIG) {
1157		if (hash_expected)
1158			return 1;
1159		else
1160			return 0;
1161	}
1162
1163	/* Okay, we can't shortcut - we have to grub through the options */
1164	ptr = (unsigned char *)(th + 1);
1165	while (length > 0) {
1166		int opcode = *ptr++;
1167		int opsize;
1168
1169		switch (opcode) {
1170		case TCPOPT_EOL:
1171			goto done_opts;
1172		case TCPOPT_NOP:
1173			length--;
1174			continue;
1175		default:
1176			opsize = *ptr++;
1177			if (opsize < 2)
1178				goto done_opts;
1179			if (opsize > length)
1180				goto done_opts;
1181
1182			if (opcode == TCPOPT_MD5SIG) {
1183				hash_location = ptr;
1184				goto done_opts;
1185			}
1186		}
1187		ptr += opsize-2;
1188		length -= opsize;
1189	}
1190done_opts:
1191	/* We've parsed the options - do we have a hash? */
1192	if (!hash_expected && !hash_location)
1193		return 0;
1194
1195	if (hash_expected && !hash_location) {
1196		LIMIT_NETDEBUG(KERN_INFO "MD5 Hash expected but NOT found "
1197			       "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1198			       NIPQUAD(iph->saddr), ntohs(th->source),
1199			       NIPQUAD(iph->daddr), ntohs(th->dest));
1200		return 1;
1201	}
1202
1203	if (!hash_expected && hash_location) {
1204		LIMIT_NETDEBUG(KERN_INFO "MD5 Hash NOT expected but found "
1205			       "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1206			       NIPQUAD(iph->saddr), ntohs(th->source),
1207			       NIPQUAD(iph->daddr), ntohs(th->dest));
1208		return 1;
1209	}
1210
1211	/* Okay, so this is hash_expected and hash_location -
1212	 * so we need to calculate the checksum.
1213	 */
1214	genhash = tcp_v4_do_calc_md5_hash(newhash,
1215					  hash_expected,
1216					  iph->saddr, iph->daddr,
1217					  th, sk->sk_protocol,
1218					  skb->len);
1219
1220	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1221		if (net_ratelimit()) {
1222			printk(KERN_INFO "MD5 Hash failed for "
1223			       "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1224			       NIPQUAD(iph->saddr), ntohs(th->source),
1225			       NIPQUAD(iph->daddr), ntohs(th->dest),
1226			       genhash ? " tcp_v4_calc_md5_hash failed" : "");
1227		}
1228		return 1;
1229	}
1230	return 0;
1231}
1232
1233#endif
1234
1235struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1236	.family		=	PF_INET,
1237	.obj_size	=	sizeof(struct tcp_request_sock),
1238	.rtx_syn_ack	=	tcp_v4_send_synack,
1239	.send_ack	=	tcp_v4_reqsk_send_ack,
1240	.destructor	=	tcp_v4_reqsk_destructor,
1241	.send_reset	=	tcp_v4_send_reset,
1242};
1243
1244#ifdef CONFIG_TCP_MD5SIG
1245static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1246	.md5_lookup	=	tcp_v4_reqsk_md5_lookup,
1247};
1248#endif
1249
1250static struct timewait_sock_ops tcp_timewait_sock_ops = {
1251	.twsk_obj_size	= sizeof(struct tcp_timewait_sock),
1252	.twsk_unique	= tcp_twsk_unique,
1253	.twsk_destructor= tcp_twsk_destructor,
1254};
1255
1256int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1257{
1258	struct inet_request_sock *ireq;
1259	struct tcp_options_received tmp_opt;
1260	struct request_sock *req;
1261	__be32 saddr = ip_hdr(skb)->saddr;
1262	__be32 daddr = ip_hdr(skb)->daddr;
1263	__u32 isn = TCP_SKB_CB(skb)->when;
1264	struct dst_entry *dst = NULL;
1265#ifdef CONFIG_SYN_COOKIES
1266	int want_cookie = 0;
1267#else
1268#define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1269#endif
1270
1271	/* Never answer to SYNs send to broadcast or multicast */
1272	if (((struct rtable *)skb->dst)->rt_flags &
1273	    (RTCF_BROADCAST | RTCF_MULTICAST))
1274		goto drop;
1275
1276	/* TW buckets are converted to open requests without
1277	 * limitations, they conserve resources and peer is
1278	 * evidently real one.
1279	 */
1280	if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1281#ifdef CONFIG_SYN_COOKIES
1282		if (sysctl_tcp_syncookies) {
1283			want_cookie = 1;
1284		} else
1285#endif
1286		goto drop;
1287	}
1288
1289	/* Accept backlog is full. If we have already queued enough
1290	 * of warm entries in syn queue, drop request. It is better than
1291	 * clogging syn queue with openreqs with exponentially increasing
1292	 * timeout.
1293	 */
1294	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1295		goto drop;
1296
1297	req = reqsk_alloc(&tcp_request_sock_ops);
1298	if (!req)
1299		goto drop;
1300
1301#ifdef CONFIG_TCP_MD5SIG
1302	tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1303#endif
1304
1305	tcp_clear_options(&tmp_opt);
1306	tmp_opt.mss_clamp = 536;
1307	tmp_opt.user_mss  = tcp_sk(sk)->rx_opt.user_mss;
1308
1309	tcp_parse_options(skb, &tmp_opt, 0);
1310
1311	if (want_cookie) {
1312		tcp_clear_options(&tmp_opt);
1313		tmp_opt.saw_tstamp = 0;
1314	}
1315
1316	if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1317		/* Some OSes (unknown ones, but I see them on web server, which
1318		 * contains information interesting only for windows'
1319		 * users) do not send their stamp in SYN. It is easy case.
1320		 * We simply do not advertise TS support.
1321		 */
1322		tmp_opt.saw_tstamp = 0;
1323		tmp_opt.tstamp_ok  = 0;
1324	}
1325	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1326
1327	tcp_openreq_init(req, &tmp_opt, skb);
1328
1329	if (security_inet_conn_request(sk, skb, req))
1330		goto drop_and_free;
1331
1332	ireq = inet_rsk(req);
1333	ireq->loc_addr = daddr;
1334	ireq->rmt_addr = saddr;
1335	ireq->opt = tcp_v4_save_options(sk, skb);
1336	if (!want_cookie)
1337		TCP_ECN_create_request(req, tcp_hdr(skb));
1338
1339	if (want_cookie) {
1340#ifdef CONFIG_SYN_COOKIES
1341		syn_flood_warning(skb);
1342#endif
1343		isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1344	} else if (!isn) {
1345		struct inet_peer *peer = NULL;
1346
1347		/* VJ's idea. We save last timestamp seen
1348		 * from the destination in peer table, when entering
1349		 * state TIME-WAIT, and check against it before
1350		 * accepting new connection request.
1351		 *
1352		 * If "isn" is not zero, this request hit alive
1353		 * timewait bucket, so that all the necessary checks
1354		 * are made in the function processing timewait state.
1355		 */
1356		if (tmp_opt.saw_tstamp &&
1357		    tcp_death_row.sysctl_tw_recycle &&
1358		    (dst = inet_csk_route_req(sk, req)) != NULL &&
1359		    (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1360		    peer->v4daddr == saddr) {
1361			if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1362			    (s32)(peer->tcp_ts - req->ts_recent) >
1363							TCP_PAWS_WINDOW) {
1364				NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
1365				dst_release(dst);
1366				goto drop_and_free;
1367			}
1368		}
1369		/* Kill the following clause, if you dislike this way. */
1370		else if (!sysctl_tcp_syncookies &&
1371			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1372			  (sysctl_max_syn_backlog >> 2)) &&
1373			 (!peer || !peer->tcp_ts_stamp) &&
1374			 (!dst || !dst_metric(dst, RTAX_RTT))) {
1375			/* Without syncookies last quarter of
1376			 * backlog is filled with destinations,
1377			 * proven to be alive.
1378			 * It means that we continue to communicate
1379			 * to destinations, already remembered
1380			 * to the moment of synflood.
1381			 */
1382			LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1383				       "request from %u.%u.%u.%u/%u\n",
1384				       NIPQUAD(saddr),
1385				       ntohs(tcp_hdr(skb)->source));
1386			dst_release(dst);
1387			goto drop_and_free;
1388		}
1389
1390		isn = tcp_v4_init_sequence(skb);
1391	}
1392	tcp_rsk(req)->snt_isn = isn;
1393
1394	if (tcp_v4_send_synack(sk, req, dst))
1395		goto drop_and_free;
1396
1397	if (want_cookie) {
1398		reqsk_free(req);
1399	} else {
1400		inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1401	}
1402	return 0;
1403
1404drop_and_free:
1405	reqsk_free(req);
1406drop:
1407	return 0;
1408}
1409
1410
1411/*
1412 * The three way handshake has completed - we got a valid synack -
1413 * now create the new socket.
1414 */
1415struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1416				  struct request_sock *req,
1417				  struct dst_entry *dst)
1418{
1419	struct inet_request_sock *ireq;
1420	struct inet_sock *newinet;
1421	struct tcp_sock *newtp;
1422	struct sock *newsk;
1423#ifdef CONFIG_TCP_MD5SIG
1424	struct tcp_md5sig_key *key;
1425#endif
1426
1427	if (sk_acceptq_is_full(sk))
1428		goto exit_overflow;
1429
1430	if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1431		goto exit;
1432
1433	newsk = tcp_create_openreq_child(sk, req, skb);
1434	if (!newsk)
1435		goto exit;
1436
1437	newsk->sk_gso_type = SKB_GSO_TCPV4;
1438	sk_setup_caps(newsk, dst);
1439
1440	newtp		      = tcp_sk(newsk);
1441	newinet		      = inet_sk(newsk);
1442	ireq		      = inet_rsk(req);
1443	newinet->daddr	      = ireq->rmt_addr;
1444	newinet->rcv_saddr    = ireq->loc_addr;
1445	newinet->saddr	      = ireq->loc_addr;
1446	newinet->opt	      = ireq->opt;
1447	ireq->opt	      = NULL;
1448	newinet->mc_index     = inet_iif(skb);
1449	newinet->mc_ttl	      = ip_hdr(skb)->ttl;
1450	inet_csk(newsk)->icsk_ext_hdr_len = 0;
1451	if (newinet->opt)
1452		inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1453	newinet->id = newtp->write_seq ^ jiffies;
1454
1455	tcp_mtup_init(newsk);
1456	tcp_sync_mss(newsk, dst_mtu(dst));
1457	newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1458	tcp_initialize_rcv_mss(newsk);
1459
1460#ifdef CONFIG_TCP_MD5SIG
1461	/* Copy over the MD5 key from the original socket */
1462	if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1463		/*
1464		 * We're using one, so create a matching key
1465		 * on the newsk structure. If we fail to get
1466		 * memory, then we end up not copying the key
1467		 * across. Shucks.
1468		 */
1469		char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1470		if (newkey != NULL)
1471			tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1472					  newkey, key->keylen);
1473	}
1474#endif
1475
1476	__inet_hash(&tcp_hashinfo, newsk, 0);
1477	__inet_inherit_port(&tcp_hashinfo, sk, newsk);
1478
1479	return newsk;
1480
1481exit_overflow:
1482	NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1483exit:
1484	NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1485	dst_release(dst);
1486	return NULL;
1487}
1488
1489static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1490{
1491	struct tcphdr *th = tcp_hdr(skb);
1492	const struct iphdr *iph = ip_hdr(skb);
1493	struct sock *nsk;
1494	struct request_sock **prev;
1495	/* Find possible connection requests. */
1496	struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1497						       iph->saddr, iph->daddr);
1498	if (req)
1499		return tcp_check_req(sk, skb, req, prev);
1500
1501	nsk = inet_lookup_established(&tcp_hashinfo, iph->saddr, th->source,
1502				      iph->daddr, th->dest, inet_iif(skb));
1503
1504	if (nsk) {
1505		if (nsk->sk_state != TCP_TIME_WAIT) {
1506			bh_lock_sock(nsk);
1507			return nsk;
1508		}
1509		inet_twsk_put(inet_twsk(nsk));
1510		return NULL;
1511	}
1512
1513#ifdef CONFIG_SYN_COOKIES
1514	if (!th->rst && !th->syn && th->ack)
1515		sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1516#endif
1517	return sk;
1518}
1519
1520static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1521{
1522	const struct iphdr *iph = ip_hdr(skb);
1523
1524	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1525		if (!tcp_v4_check(skb->len, iph->saddr,
1526				  iph->daddr, skb->csum)) {
1527			skb->ip_summed = CHECKSUM_UNNECESSARY;
1528			return 0;
1529		}
1530	}
1531
1532	skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1533				       skb->len, IPPROTO_TCP, 0);
1534
1535	if (skb->len <= 76) {
1536		return __skb_checksum_complete(skb);
1537	}
1538	return 0;
1539}
1540
1541
1542/* The socket must have it's spinlock held when we get
1543 * here.
1544 *
1545 * We have a potential double-lock case here, so even when
1546 * doing backlog processing we use the BH locking scheme.
1547 * This is because we cannot sleep with the original spinlock
1548 * held.
1549 */
1550int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1551{
1552	struct sock *rsk;
1553#ifdef CONFIG_TCP_MD5SIG
1554	/*
1555	 * We really want to reject the packet as early as possible
1556	 * if:
1557	 *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1558	 *  o There is an MD5 option and we're not expecting one
1559	 */
1560	if (tcp_v4_inbound_md5_hash(sk, skb))
1561		goto discard;
1562#endif
1563
1564	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1565		TCP_CHECK_TIMER(sk);
1566		if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1567			rsk = sk;
1568			goto reset;
1569		}
1570		TCP_CHECK_TIMER(sk);
1571		return 0;
1572	}
1573
1574	if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1575		goto csum_err;
1576
1577	if (sk->sk_state == TCP_LISTEN) {
1578		struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1579		if (!nsk)
1580			goto discard;
1581
1582		if (nsk != sk) {
1583			if (tcp_child_process(sk, nsk, skb)) {
1584				rsk = nsk;
1585				goto reset;
1586			}
1587			return 0;
1588		}
1589	}
1590
1591	TCP_CHECK_TIMER(sk);
1592	if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1593		rsk = sk;
1594		goto reset;
1595	}
1596	TCP_CHECK_TIMER(sk);
1597	return 0;
1598
1599reset:
1600	tcp_v4_send_reset(rsk, skb);
1601discard:
1602	kfree_skb(skb);
1603	/* Be careful here. If this function gets more complicated and
1604	 * gcc suffers from register pressure on the x86, sk (in %ebx)
1605	 * might be destroyed here. This current version compiles correctly,
1606	 * but you have been warned.
1607	 */
1608	return 0;
1609
1610csum_err:
1611	TCP_INC_STATS_BH(TCP_MIB_INERRS);
1612	goto discard;
1613}
1614
1615/*
1616 *	From tcp_input.c
1617 */
1618
1619int tcp_v4_rcv(struct sk_buff *skb)
1620{
1621	const struct iphdr *iph;
1622	struct tcphdr *th;
1623	struct sock *sk;
1624	int ret;
1625
1626	if (skb->pkt_type != PACKET_HOST)
1627		goto discard_it;
1628
1629	/* Count it even if it's bad */
1630	TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1631
1632	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1633		goto discard_it;
1634
1635	th = tcp_hdr(skb);
1636
1637	if (th->doff < sizeof(struct tcphdr) / 4)
1638		goto bad_packet;
1639	if (!pskb_may_pull(skb, th->doff * 4))
1640		goto discard_it;
1641
1642	/* An explanation is required here, I think.
1643	 * Packet length and doff are validated by header prediction,
1644	 * provided case of th->doff==0 is eliminated.
1645	 * So, we defer the checks. */
1646	if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1647		goto bad_packet;
1648
1649	th = tcp_hdr(skb);
1650	iph = ip_hdr(skb);
1651	TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1652	TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1653				    skb->len - th->doff * 4);
1654	TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1655	TCP_SKB_CB(skb)->when	 = 0;
1656	TCP_SKB_CB(skb)->flags	 = iph->tos;
1657	TCP_SKB_CB(skb)->sacked	 = 0;
1658
1659	sk = __inet_lookup(&tcp_hashinfo, iph->saddr, th->source,
1660			   iph->daddr, th->dest, inet_iif(skb));
1661	if (!sk)
1662		goto no_tcp_socket;
1663
1664process:
1665	if (sk->sk_state == TCP_TIME_WAIT)
1666		goto do_time_wait;
1667
1668	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1669		goto discard_and_relse;
1670	nf_reset(skb);
1671
1672	if (sk_filter(sk, skb))
1673		goto discard_and_relse;
1674
1675	skb->dev = NULL;
1676
1677	bh_lock_sock_nested(sk);
1678	ret = 0;
1679	if (!sock_owned_by_user(sk)) {
1680#ifdef CONFIG_NET_DMA
1681		struct tcp_sock *tp = tcp_sk(sk);
1682		if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1683			tp->ucopy.dma_chan = get_softnet_dma();
1684		if (tp->ucopy.dma_chan)
1685			ret = tcp_v4_do_rcv(sk, skb);
1686		else
1687#endif
1688		{
1689			if (!tcp_prequeue(sk, skb))
1690			ret = tcp_v4_do_rcv(sk, skb);
1691		}
1692	} else
1693		sk_add_backlog(sk, skb);
1694	bh_unlock_sock(sk);
1695
1696	sock_put(sk);
1697
1698	return ret;
1699
1700no_tcp_socket:
1701	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1702		goto discard_it;
1703
1704	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1705bad_packet:
1706		TCP_INC_STATS_BH(TCP_MIB_INERRS);
1707	} else {
1708		tcp_v4_send_reset(NULL, skb);
1709	}
1710
1711discard_it:
1712	/* Discard frame. */
1713	kfree_skb(skb);
1714	return 0;
1715
1716discard_and_relse:
1717	sock_put(sk);
1718	goto discard_it;
1719
1720do_time_wait:
1721	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1722		inet_twsk_put(inet_twsk(sk));
1723		goto discard_it;
1724	}
1725
1726	if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1727		TCP_INC_STATS_BH(TCP_MIB_INERRS);
1728		inet_twsk_put(inet_twsk(sk));
1729		goto discard_it;
1730	}
1731	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1732	case TCP_TW_SYN: {
1733		struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1734							iph->daddr, th->dest,
1735							inet_iif(skb));
1736		if (sk2) {
1737			inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1738			inet_twsk_put(inet_twsk(sk));
1739			sk = sk2;
1740			goto process;
1741		}
1742		/* Fall through to ACK */
1743	}
1744	case TCP_TW_ACK:
1745		tcp_v4_timewait_ack(sk, skb);
1746		break;
1747	case TCP_TW_RST:
1748		goto no_tcp_socket;
1749	case TCP_TW_SUCCESS:;
1750	}
1751	goto discard_it;
1752}
1753
1754/* VJ's idea. Save last timestamp seen from this destination
1755 * and hold it at least for normal timewait interval to use for duplicate
1756 * segment detection in subsequent connections, before they enter synchronized
1757 * state.
1758 */
1759
1760int tcp_v4_remember_stamp(struct sock *sk)
1761{
1762	struct inet_sock *inet = inet_sk(sk);
1763	struct tcp_sock *tp = tcp_sk(sk);
1764	struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1765	struct inet_peer *peer = NULL;
1766	int release_it = 0;
1767
1768	if (!rt || rt->rt_dst != inet->daddr) {
1769		peer = inet_getpeer(inet->daddr, 1);
1770		release_it = 1;
1771	} else {
1772		if (!rt->peer)
1773			rt_bind_peer(rt, 1);
1774		peer = rt->peer;
1775	}
1776
1777	if (peer) {
1778		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1779		    (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1780		     peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1781			peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1782			peer->tcp_ts = tp->rx_opt.ts_recent;
1783		}
1784		if (release_it)
1785			inet_putpeer(peer);
1786		return 1;
1787	}
1788
1789	return 0;
1790}
1791
1792int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1793{
1794	struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1795
1796	if (peer) {
1797		const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1798
1799		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1800		    (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1801		     peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1802			peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1803			peer->tcp_ts	   = tcptw->tw_ts_recent;
1804		}
1805		inet_putpeer(peer);
1806		return 1;
1807	}
1808
1809	return 0;
1810}
1811
1812struct inet_connection_sock_af_ops ipv4_specific = {
1813	.queue_xmit	   = ip_queue_xmit,
1814	.send_check	   = tcp_v4_send_check,
1815	.rebuild_header	   = inet_sk_rebuild_header,
1816	.conn_request	   = tcp_v4_conn_request,
1817	.syn_recv_sock	   = tcp_v4_syn_recv_sock,
1818	.remember_stamp	   = tcp_v4_remember_stamp,
1819	.net_header_len	   = sizeof(struct iphdr),
1820	.setsockopt	   = ip_setsockopt,
1821	.getsockopt	   = ip_getsockopt,
1822	.addr2sockaddr	   = inet_csk_addr2sockaddr,
1823	.sockaddr_len	   = sizeof(struct sockaddr_in),
1824#ifdef CONFIG_COMPAT
1825	.compat_setsockopt = compat_ip_setsockopt,
1826	.compat_getsockopt = compat_ip_getsockopt,
1827#endif
1828};
1829
1830#ifdef CONFIG_TCP_MD5SIG
1831static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1832	.md5_lookup		= tcp_v4_md5_lookup,
1833	.calc_md5_hash		= tcp_v4_calc_md5_hash,
1834	.md5_add		= tcp_v4_md5_add_func,
1835	.md5_parse		= tcp_v4_parse_md5_keys,
1836};
1837#endif
1838
1839/* NOTE: A lot of things set to zero explicitly by call to
1840 *       sk_alloc() so need not be done here.
1841 */
1842static int tcp_v4_init_sock(struct sock *sk)
1843{
1844	struct inet_connection_sock *icsk = inet_csk(sk);
1845	struct tcp_sock *tp = tcp_sk(sk);
1846
1847	skb_queue_head_init(&tp->out_of_order_queue);
1848	tcp_init_xmit_timers(sk);
1849	tcp_prequeue_init(tp);
1850
1851	icsk->icsk_rto = TCP_TIMEOUT_INIT;
1852	tp->mdev = TCP_TIMEOUT_INIT;
1853
1854	/* So many TCP implementations out there (incorrectly) count the
1855	 * initial SYN frame in their delayed-ACK and congestion control
1856	 * algorithms that we must have the following bandaid to talk
1857	 * efficiently to them.  -DaveM
1858	 */
1859	tp->snd_cwnd = 2;
1860
1861	/* See draft-stevens-tcpca-spec-01 for discussion of the
1862	 * initialization of these values.
1863	 */
1864	tp->snd_ssthresh = 0x7fffffff;	/* Infinity */
1865	tp->snd_cwnd_clamp = ~0;
1866	tp->mss_cache = 536;
1867
1868	tp->reordering = sysctl_tcp_reordering;
1869	icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1870
1871	sk->sk_state = TCP_CLOSE;
1872
1873	sk->sk_write_space = sk_stream_write_space;
1874	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1875
1876	icsk->icsk_af_ops = &ipv4_specific;
1877	icsk->icsk_sync_mss = tcp_sync_mss;
1878#ifdef CONFIG_TCP_MD5SIG
1879	tp->af_specific = &tcp_sock_ipv4_specific;
1880#endif
1881
1882	sk->sk_sndbuf = sysctl_tcp_wmem[1];
1883	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1884
1885	atomic_inc(&tcp_sockets_allocated);
1886
1887	return 0;
1888}
1889
1890int tcp_v4_destroy_sock(struct sock *sk)
1891{
1892	struct tcp_sock *tp = tcp_sk(sk);
1893
1894	tcp_clear_xmit_timers(sk);
1895
1896	tcp_cleanup_congestion_control(sk);
1897
1898	/* Cleanup up the write buffer. */
1899	tcp_write_queue_purge(sk);
1900
1901	/* Cleans up our, hopefully empty, out_of_order_queue. */
1902	__skb_queue_purge(&tp->out_of_order_queue);
1903
1904#ifdef CONFIG_TCP_MD5SIG
1905	/* Clean up the MD5 key list, if any */
1906	if (tp->md5sig_info) {
1907		tcp_v4_clear_md5_list(sk);
1908		kfree(tp->md5sig_info);
1909		tp->md5sig_info = NULL;
1910	}
1911#endif
1912
1913#ifdef CONFIG_NET_DMA
1914	/* Cleans up our sk_async_wait_queue */
1915	__skb_queue_purge(&sk->sk_async_wait_queue);
1916#endif
1917
1918	/* Clean prequeue, it must be empty really */
1919	__skb_queue_purge(&tp->ucopy.prequeue);
1920
1921	/* Clean up a referenced TCP bind bucket. */
1922	if (inet_csk(sk)->icsk_bind_hash)
1923		inet_put_port(&tcp_hashinfo, sk);
1924
1925	/*
1926	 * If sendmsg cached page exists, toss it.
1927	 */
1928	if (sk->sk_sndmsg_page) {
1929		__free_page(sk->sk_sndmsg_page);
1930		sk->sk_sndmsg_page = NULL;
1931	}
1932
1933	atomic_dec(&tcp_sockets_allocated);
1934
1935	return 0;
1936}
1937
1938EXPORT_SYMBOL(tcp_v4_destroy_sock);
1939
1940#ifdef CONFIG_PROC_FS
1941/* Proc filesystem TCP sock list dumping. */
1942
1943static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1944{
1945	return hlist_empty(head) ? NULL :
1946		list_entry(head->first, struct inet_timewait_sock, tw_node);
1947}
1948
1949static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1950{
1951	return tw->tw_node.next ?
1952		hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1953}
1954
1955static void *listening_get_next(struct seq_file *seq, void *cur)
1956{
1957	struct inet_connection_sock *icsk;
1958	struct hlist_node *node;
1959	struct sock *sk = cur;
1960	struct tcp_iter_state* st = seq->private;
1961
1962	if (!sk) {
1963		st->bucket = 0;
1964		sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1965		goto get_sk;
1966	}
1967
1968	++st->num;
1969
1970	if (st->state == TCP_SEQ_STATE_OPENREQ) {
1971		struct request_sock *req = cur;
1972
1973		icsk = inet_csk(st->syn_wait_sk);
1974		req = req->dl_next;
1975		while (1) {
1976			while (req) {
1977				if (req->rsk_ops->family == st->family) {
1978					cur = req;
1979					goto out;
1980				}
1981				req = req->dl_next;
1982			}
1983			if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1984				break;
1985get_req:
1986			req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1987		}
1988		sk	  = sk_next(st->syn_wait_sk);
1989		st->state = TCP_SEQ_STATE_LISTENING;
1990		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1991	} else {
1992		icsk = inet_csk(sk);
1993		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1994		if (reqsk_queue_len(&icsk->icsk_accept_queue))
1995			goto start_req;
1996		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1997		sk = sk_next(sk);
1998	}
1999get_sk:
2000	sk_for_each_from(sk, node) {
2001		if (sk->sk_family == st->family) {
2002			cur = sk;
2003			goto out;
2004		}
2005		icsk = inet_csk(sk);
2006		read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2007		if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2008start_req:
2009			st->uid		= sock_i_uid(sk);
2010			st->syn_wait_sk = sk;
2011			st->state	= TCP_SEQ_STATE_OPENREQ;
2012			st->sbucket	= 0;
2013			goto get_req;
2014		}
2015		read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2016	}
2017	if (++st->bucket < INET_LHTABLE_SIZE) {
2018		sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
2019		goto get_sk;
2020	}
2021	cur = NULL;
2022out:
2023	return cur;
2024}
2025
2026static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2027{
2028	void *rc = listening_get_next(seq, NULL);
2029
2030	while (rc && *pos) {
2031		rc = listening_get_next(seq, rc);
2032		--*pos;
2033	}
2034	return rc;
2035}
2036
2037static void *established_get_first(struct seq_file *seq)
2038{
2039	struct tcp_iter_state* st = seq->private;
2040	void *rc = NULL;
2041
2042	for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
2043		struct sock *sk;
2044		struct hlist_node *node;
2045		struct inet_timewait_sock *tw;
2046
2047		read_lock_bh(&tcp_hashinfo.ehash[st->bucket].lock);
2048		sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2049			if (sk->sk_family != st->family) {
2050				continue;
2051			}
2052			rc = sk;
2053			goto out;
2054		}
2055		st->state = TCP_SEQ_STATE_TIME_WAIT;
2056		inet_twsk_for_each(tw, node,
2057				   &tcp_hashinfo.ehash[st->bucket].twchain) {
2058			if (tw->tw_family != st->family) {
2059				continue;
2060			}
2061			rc = tw;
2062			goto out;
2063		}
2064		read_unlock_bh(&tcp_hashinfo.ehash[st->bucket].lock);
2065		st->state = TCP_SEQ_STATE_ESTABLISHED;
2066	}
2067out:
2068	return rc;
2069}
2070
2071static void *established_get_next(struct seq_file *seq, void *cur)
2072{
2073	struct sock *sk = cur;
2074	struct inet_timewait_sock *tw;
2075	struct hlist_node *node;
2076	struct tcp_iter_state* st = seq->private;
2077
2078	++st->num;
2079
2080	if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2081		tw = cur;
2082		tw = tw_next(tw);
2083get_tw:
2084		while (tw && tw->tw_family != st->family) {
2085			tw = tw_next(tw);
2086		}
2087		if (tw) {
2088			cur = tw;
2089			goto out;
2090		}
2091		read_unlock_bh(&tcp_hashinfo.ehash[st->bucket].lock);
2092		st->state = TCP_SEQ_STATE_ESTABLISHED;
2093
2094		if (++st->bucket < tcp_hashinfo.ehash_size) {
2095			read_lock_bh(&tcp_hashinfo.ehash[st->bucket].lock);
2096			sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
2097		} else {
2098			cur = NULL;
2099			goto out;
2100		}
2101	} else
2102		sk = sk_next(sk);
2103
2104	sk_for_each_from(sk, node) {
2105		if (sk->sk_family == st->family)
2106			goto found;
2107	}
2108
2109	st->state = TCP_SEQ_STATE_TIME_WAIT;
2110	tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2111	goto get_tw;
2112found:
2113	cur = sk;
2114out:
2115	return cur;
2116}
2117
2118static void *established_get_idx(struct seq_file *seq, loff_t pos)
2119{
2120	void *rc = established_get_first(seq);
2121
2122	while (rc && pos) {
2123		rc = established_get_next(seq, rc);
2124		--pos;
2125	}
2126	return rc;
2127}
2128
2129static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2130{
2131	void *rc;
2132	struct tcp_iter_state* st = seq->private;
2133
2134	inet_listen_lock(&tcp_hashinfo);
2135	st->state = TCP_SEQ_STATE_LISTENING;
2136	rc	  = listening_get_idx(seq, &pos);
2137
2138	if (!rc) {
2139		inet_listen_unlock(&tcp_hashinfo);
2140		st->state = TCP_SEQ_STATE_ESTABLISHED;
2141		rc	  = established_get_idx(seq, pos);
2142	}
2143
2144	return rc;
2145}
2146
2147static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2148{
2149	struct tcp_iter_state* st = seq->private;
2150	st->state = TCP_SEQ_STATE_LISTENING;
2151	st->num = 0;
2152	return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2153}
2154
2155static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2156{
2157	void *rc = NULL;
2158	struct tcp_iter_state* st;
2159
2160	if (v == SEQ_START_TOKEN) {
2161		rc = tcp_get_idx(seq, 0);
2162		goto out;
2163	}
2164	st = seq->private;
2165
2166	switch (st->state) {
2167	case TCP_SEQ_STATE_OPENREQ:
2168	case TCP_SEQ_STATE_LISTENING:
2169		rc = listening_get_next(seq, v);
2170		if (!rc) {
2171			inet_listen_unlock(&tcp_hashinfo);
2172			st->state = TCP_SEQ_STATE_ESTABLISHED;
2173			rc	  = established_get_first(seq);
2174		}
2175		break;
2176	case TCP_SEQ_STATE_ESTABLISHED:
2177	case TCP_SEQ_STATE_TIME_WAIT:
2178		rc = established_get_next(seq, v);
2179		break;
2180	}
2181out:
2182	++*pos;
2183	return rc;
2184}
2185
2186static void tcp_seq_stop(struct seq_file *seq, void *v)
2187{
2188	struct tcp_iter_state* st = seq->private;
2189
2190	switch (st->state) {
2191	case TCP_SEQ_STATE_OPENREQ:
2192		if (v) {
2193			struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2194			read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2195		}
2196	case TCP_SEQ_STATE_LISTENING:
2197		if (v != SEQ_START_TOKEN)
2198			inet_listen_unlock(&tcp_hashinfo);
2199		break;
2200	case TCP_SEQ_STATE_TIME_WAIT:
2201	case TCP_SEQ_STATE_ESTABLISHED:
2202		if (v)
2203			read_unlock_bh(&tcp_hashinfo.ehash[st->bucket].lock);
2204		break;
2205	}
2206}
2207
2208static int tcp_seq_open(struct inode *inode, struct file *file)
2209{
2210	struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2211	struct seq_file *seq;
2212	struct tcp_iter_state *s;
2213	int rc;
2214
2215	if (unlikely(afinfo == NULL))
2216		return -EINVAL;
2217
2218	s = kzalloc(sizeof(*s), GFP_KERNEL);
2219	if (!s)
2220		return -ENOMEM;
2221	s->family		= afinfo->family;
2222	s->seq_ops.start	= tcp_seq_start;
2223	s->seq_ops.next		= tcp_seq_next;
2224	s->seq_ops.show		= afinfo->seq_show;
2225	s->seq_ops.stop		= tcp_seq_stop;
2226
2227	rc = seq_open(file, &s->seq_ops);
2228	if (rc)
2229		goto out_kfree;
2230	seq	     = file->private_data;
2231	seq->private = s;
2232out:
2233	return rc;
2234out_kfree:
2235	kfree(s);
2236	goto out;
2237}
2238
2239int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
2240{
2241	int rc = 0;
2242	struct proc_dir_entry *p;
2243
2244	if (!afinfo)
2245		return -EINVAL;
2246	afinfo->seq_fops->owner		= afinfo->owner;
2247	afinfo->seq_fops->open		= tcp_seq_open;
2248	afinfo->seq_fops->read		= seq_read;
2249	afinfo->seq_fops->llseek	= seq_lseek;
2250	afinfo->seq_fops->release	= seq_release_private;
2251
2252	p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
2253	if (p)
2254		p->data = afinfo;
2255	else
2256		rc = -ENOMEM;
2257	return rc;
2258}
2259
2260void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
2261{
2262	if (!afinfo)
2263		return;
2264	proc_net_remove(afinfo->name);
2265	memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
2266}
2267
2268static void get_openreq4(struct sock *sk, struct request_sock *req,
2269			 char *tmpbuf, int i, int uid)
2270{
2271	const struct inet_request_sock *ireq = inet_rsk(req);
2272	int ttd = req->expires - jiffies;
2273
2274	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2275		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
2276		i,
2277		ireq->loc_addr,
2278		ntohs(inet_sk(sk)->sport),
2279		ireq->rmt_addr,
2280		ntohs(ireq->rmt_port),
2281		TCP_SYN_RECV,
2282		0, 0, /* could print option size, but that is af dependent. */
2283		1,    /* timers active (only the expire timer) */
2284		jiffies_to_clock_t(ttd),
2285		req->retrans,
2286		uid,
2287		0,  /* non standard timer */
2288		0, /* open_requests have no inode */
2289		atomic_read(&sk->sk_refcnt),
2290		req);
2291}
2292
2293static void get_tcp4_sock(struct sock *sk, char *tmpbuf, int i)
2294{
2295	int timer_active;
2296	unsigned long timer_expires;
2297	struct tcp_sock *tp = tcp_sk(sk);
2298	const struct inet_connection_sock *icsk = inet_csk(sk);
2299	struct inet_sock *inet = inet_sk(sk);
2300	__be32 dest = inet->daddr;
2301	__be32 src = inet->rcv_saddr;
2302	__u16 destp = ntohs(inet->dport);
2303	__u16 srcp = ntohs(inet->sport);
2304
2305	if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2306		timer_active	= 1;
2307		timer_expires	= icsk->icsk_timeout;
2308	} else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2309		timer_active	= 4;
2310		timer_expires	= icsk->icsk_timeout;
2311	} else if (timer_pending(&sk->sk_timer)) {
2312		timer_active	= 2;
2313		timer_expires	= sk->sk_timer.expires;
2314	} else {
2315		timer_active	= 0;
2316		timer_expires = jiffies;
2317	}
2318
2319	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2320			"%08X %5d %8d %lu %d %p %u %u %u %u %d",
2321		i, src, srcp, dest, destp, sk->sk_state,
2322		tp->write_seq - tp->snd_una,
2323		sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2324					     (tp->rcv_nxt - tp->copied_seq),
2325		timer_active,
2326		jiffies_to_clock_t(timer_expires - jiffies),
2327		icsk->icsk_retransmits,
2328		sock_i_uid(sk),
2329		icsk->icsk_probes_out,
2330		sock_i_ino(sk),
2331		atomic_read(&sk->sk_refcnt), sk,
2332		icsk->icsk_rto,
2333		icsk->icsk_ack.ato,
2334		(icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2335		tp->snd_cwnd,
2336		tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
2337}
2338
2339static void get_timewait4_sock(struct inet_timewait_sock *tw,
2340			       char *tmpbuf, int i)
2341{
2342	__be32 dest, src;
2343	__u16 destp, srcp;
2344	int ttd = tw->tw_ttd - jiffies;
2345
2346	if (ttd < 0)
2347		ttd = 0;
2348
2349	dest  = tw->tw_daddr;
2350	src   = tw->tw_rcv_saddr;
2351	destp = ntohs(tw->tw_dport);
2352	srcp  = ntohs(tw->tw_sport);
2353
2354	sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2355		" %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
2356		i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2357		3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2358		atomic_read(&tw->tw_refcnt), tw);
2359}
2360
2361#define TMPSZ 150
2362
2363static int tcp4_seq_show(struct seq_file *seq, void *v)
2364{
2365	struct tcp_iter_state* st;
2366	char tmpbuf[TMPSZ + 1];
2367
2368	if (v == SEQ_START_TOKEN) {
2369		seq_printf(seq, "%-*s\n", TMPSZ - 1,
2370			   "  sl  local_address rem_address   st tx_queue "
2371			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2372			   "inode");
2373		goto out;
2374	}
2375	st = seq->private;
2376
2377	switch (st->state) {
2378	case TCP_SEQ_STATE_LISTENING:
2379	case TCP_SEQ_STATE_ESTABLISHED:
2380		get_tcp4_sock(v, tmpbuf, st->num);
2381		break;
2382	case TCP_SEQ_STATE_OPENREQ:
2383		get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
2384		break;
2385	case TCP_SEQ_STATE_TIME_WAIT:
2386		get_timewait4_sock(v, tmpbuf, st->num);
2387		break;
2388	}
2389	seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
2390out:
2391	return 0;
2392}
2393
2394static struct file_operations tcp4_seq_fops;
2395static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2396	.owner		= THIS_MODULE,
2397	.name		= "tcp",
2398	.family		= AF_INET,
2399	.seq_show	= tcp4_seq_show,
2400	.seq_fops	= &tcp4_seq_fops,
2401};
2402
2403int __init tcp4_proc_init(void)
2404{
2405	return tcp_proc_register(&tcp4_seq_afinfo);
2406}
2407
2408void tcp4_proc_exit(void)
2409{
2410	tcp_proc_unregister(&tcp4_seq_afinfo);
2411}
2412#endif /* CONFIG_PROC_FS */
2413
2414struct proto tcp_prot = {
2415	.name			= "TCP",
2416	.owner			= THIS_MODULE,
2417	.close			= tcp_close,
2418	.connect		= tcp_v4_connect,
2419	.disconnect		= tcp_disconnect,
2420	.accept			= inet_csk_accept,
2421	.ioctl			= tcp_ioctl,
2422	.init			= tcp_v4_init_sock,
2423	.destroy		= tcp_v4_destroy_sock,
2424	.shutdown		= tcp_shutdown,
2425	.setsockopt		= tcp_setsockopt,
2426	.getsockopt		= tcp_getsockopt,
2427	.recvmsg		= tcp_recvmsg,
2428	.backlog_rcv		= tcp_v4_do_rcv,
2429	.hash			= tcp_v4_hash,
2430	.unhash			= tcp_unhash,
2431	.get_port		= tcp_v4_get_port,
2432	.enter_memory_pressure	= tcp_enter_memory_pressure,
2433	.sockets_allocated	= &tcp_sockets_allocated,
2434	.orphan_count		= &tcp_orphan_count,
2435	.memory_allocated	= &tcp_memory_allocated,
2436	.memory_pressure	= &tcp_memory_pressure,
2437	.sysctl_mem		= sysctl_tcp_mem,
2438	.sysctl_wmem		= sysctl_tcp_wmem,
2439	.sysctl_rmem		= sysctl_tcp_rmem,
2440	.max_header		= MAX_TCP_HEADER,
2441	.obj_size		= sizeof(struct tcp_sock),
2442	.twsk_prot		= &tcp_timewait_sock_ops,
2443	.rsk_prot		= &tcp_request_sock_ops,
2444#ifdef CONFIG_COMPAT
2445	.compat_setsockopt	= compat_tcp_setsockopt,
2446	.compat_getsockopt	= compat_tcp_getsockopt,
2447#endif
2448};
2449
2450void __init tcp_v4_init(struct net_proto_family *ops)
2451{
2452	if (inet_csk_ctl_sock_create(&tcp_socket, PF_INET, SOCK_RAW,
2453				     IPPROTO_TCP) < 0)
2454		panic("Failed to create the TCP control socket.\n");
2455}
2456
2457EXPORT_SYMBOL(ipv4_specific);
2458EXPORT_SYMBOL(tcp_hashinfo);
2459EXPORT_SYMBOL(tcp_prot);
2460EXPORT_SYMBOL(tcp_unhash);
2461EXPORT_SYMBOL(tcp_v4_conn_request);
2462EXPORT_SYMBOL(tcp_v4_connect);
2463EXPORT_SYMBOL(tcp_v4_do_rcv);
2464EXPORT_SYMBOL(tcp_v4_remember_stamp);
2465EXPORT_SYMBOL(tcp_v4_send_check);
2466EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2467
2468#ifdef CONFIG_PROC_FS
2469EXPORT_SYMBOL(tcp_proc_register);
2470EXPORT_SYMBOL(tcp_proc_unregister);
2471#endif
2472EXPORT_SYMBOL(sysctl_local_port_range);
2473EXPORT_SYMBOL(sysctl_tcp_low_latency);
2474
2475