1/*
2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
3 *		operating system.  INET is implemented using the  BSD Socket
4 *		interface as the means of communication with the user level.
5 *
6 *		Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors:	Ross Biro
9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12 *		Florian La Roche, <flla@stud.uni-sb.de>
13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 *		Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/slab.h>
24#include <linux/sysctl.h>
25#include <linux/workqueue.h>
26#include <net/tcp.h>
27#include <net/inet_common.h>
28#include <net/xfrm.h>
29
30int sysctl_tcp_syncookies __read_mostly = 1;
31EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33int sysctl_tcp_abort_on_overflow __read_mostly;
34
35struct inet_timewait_death_row tcp_death_row = {
36	.sysctl_max_tw_buckets = NR_FILE * 2,
37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39	.hashinfo	= &tcp_hashinfo,
40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41					    (unsigned long)&tcp_death_row),
42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43					     inet_twdr_twkill_work),
44/* Short-time timewait calendar */
45
46	.twcal_hand	= -1,
47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48					    (unsigned long)&tcp_death_row),
49};
50EXPORT_SYMBOL_GPL(tcp_death_row);
51
52static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53{
54	if (seq == s_win)
55		return true;
56	if (after(end_seq, s_win) && before(seq, e_win))
57		return true;
58	return seq == e_win && seq == end_seq;
59}
60
61/*
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 *   (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 *   lifetime in the internet, which results in wrong conclusion, that
67 *   it is set to catch "old duplicate segments" wandering out of their path.
68 *   It is not quite correct. This timeout is calculated so that it exceeds
69 *   maximal retransmission timeout enough to allow to lose one (or more)
70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 *   finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 *
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
82 *
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc.  --ANK
88 *
89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
90 */
91enum tcp_tw_status
92tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93			   const struct tcphdr *th)
94{
95	struct tcp_options_received tmp_opt;
96	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
97	bool paws_reject = false;
98
99	tmp_opt.saw_tstamp = 0;
100	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101		tcp_parse_options(skb, &tmp_opt, 0, NULL);
102
103		if (tmp_opt.saw_tstamp) {
104			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
105			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108		}
109	}
110
111	if (tw->tw_substate == TCP_FIN_WAIT2) {
112		/* Just repeat all the checks of tcp_rcv_state_process() */
113
114		/* Out of window, send ACK */
115		if (paws_reject ||
116		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117				   tcptw->tw_rcv_nxt,
118				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119			return TCP_TW_ACK;
120
121		if (th->rst)
122			goto kill;
123
124		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
125			goto kill_with_rst;
126
127		/* Dup ACK? */
128		if (!th->ack ||
129		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
130		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
131			inet_twsk_put(tw);
132			return TCP_TW_SUCCESS;
133		}
134
135		/* New data or FIN. If new data arrive after half-duplex close,
136		 * reset.
137		 */
138		if (!th->fin ||
139		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
140kill_with_rst:
141			inet_twsk_deschedule(tw, &tcp_death_row);
142			inet_twsk_put(tw);
143			return TCP_TW_RST;
144		}
145
146		/* FIN arrived, enter true time-wait state. */
147		tw->tw_substate	  = TCP_TIME_WAIT;
148		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
149		if (tmp_opt.saw_tstamp) {
150			tcptw->tw_ts_recent_stamp = get_seconds();
151			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
152		}
153
154		if (tcp_death_row.sysctl_tw_recycle &&
155		    tcptw->tw_ts_recent_stamp &&
156		    tcp_tw_remember_stamp(tw))
157			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
158					   TCP_TIMEWAIT_LEN);
159		else
160			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
161					   TCP_TIMEWAIT_LEN);
162		return TCP_TW_ACK;
163	}
164
165	/*
166	 *	Now real TIME-WAIT state.
167	 *
168	 *	RFC 1122:
169	 *	"When a connection is [...] on TIME-WAIT state [...]
170	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171	 *	reopen the connection directly, if it:
172	 *
173	 *	(1)  assigns its initial sequence number for the new
174	 *	connection to be larger than the largest sequence
175	 *	number it used on the previous connection incarnation,
176	 *	and
177	 *
178	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179	 *	to be an old duplicate".
180	 */
181
182	if (!paws_reject &&
183	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185		/* In window segment, it may be only reset or bare ack. */
186
187		if (th->rst) {
188			/* This is TIME_WAIT assassination, in two flavors.
189			 * Oh well... nobody has a sufficient solution to this
190			 * protocol bug yet.
191			 */
192			if (sysctl_tcp_rfc1337 == 0) {
193kill:
194				inet_twsk_deschedule(tw, &tcp_death_row);
195				inet_twsk_put(tw);
196				return TCP_TW_SUCCESS;
197			}
198		}
199		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
200				   TCP_TIMEWAIT_LEN);
201
202		if (tmp_opt.saw_tstamp) {
203			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
204			tcptw->tw_ts_recent_stamp = get_seconds();
205		}
206
207		inet_twsk_put(tw);
208		return TCP_TW_SUCCESS;
209	}
210
211	/* Out of window segment.
212
213	   All the segments are ACKed immediately.
214
215	   The only exception is new SYN. We accept it, if it is
216	   not old duplicate and we are not in danger to be killed
217	   by delayed old duplicates. RFC check is that it has
218	   newer sequence number works at rates <40Mbit/sec.
219	   However, if paws works, it is reliable AND even more,
220	   we even may relax silly seq space cutoff.
221
222	   RED-PEN: we violate main RFC requirement, if this SYN will appear
223	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
224	   we must return socket to time-wait state. It is not good,
225	   but not fatal yet.
226	 */
227
228	if (th->syn && !th->rst && !th->ack && !paws_reject &&
229	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
230	     (tmp_opt.saw_tstamp &&
231	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
232		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
233		if (isn == 0)
234			isn++;
235		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
236		return TCP_TW_SYN;
237	}
238
239	if (paws_reject)
240		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
241
242	if (!th->rst) {
243		/* In this case we must reset the TIMEWAIT timer.
244		 *
245		 * If it is ACKless SYN it may be both old duplicate
246		 * and new good SYN with random sequence number <rcv_nxt.
247		 * Do not reschedule in the last case.
248		 */
249		if (paws_reject || th->ack)
250			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
251					   TCP_TIMEWAIT_LEN);
252
253		/* Send ACK. Note, we do not put the bucket,
254		 * it will be released by caller.
255		 */
256		return TCP_TW_ACK;
257	}
258	inet_twsk_put(tw);
259	return TCP_TW_SUCCESS;
260}
261EXPORT_SYMBOL(tcp_timewait_state_process);
262
263/*
264 * Move a socket to time-wait or dead fin-wait-2 state.
265 */
266void tcp_time_wait(struct sock *sk, int state, int timeo)
267{
268	struct inet_timewait_sock *tw = NULL;
269	const struct inet_connection_sock *icsk = inet_csk(sk);
270	const struct tcp_sock *tp = tcp_sk(sk);
271	bool recycle_ok = false;
272
273	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
274		recycle_ok = tcp_remember_stamp(sk);
275
276	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
277		tw = inet_twsk_alloc(sk, state);
278
279	if (tw != NULL) {
280		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282		struct inet_sock *inet = inet_sk(sk);
283
284		tw->tw_transparent	= inet->transparent;
285		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287		tcptw->tw_snd_nxt	= tp->snd_nxt;
288		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291		tcptw->tw_ts_offset	= tp->tsoffset;
292
293#if IS_ENABLED(CONFIG_IPV6)
294		if (tw->tw_family == PF_INET6) {
295			struct ipv6_pinfo *np = inet6_sk(sk);
296
297			tw->tw_v6_daddr = sk->sk_v6_daddr;
298			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
299			tw->tw_tclass = np->tclass;
300			tw->tw_flowlabel = np->flow_label >> 12;
301			tw->tw_ipv6only = sk->sk_ipv6only;
302		}
303#endif
304
305#ifdef CONFIG_TCP_MD5SIG
306		/*
307		 * The timewait bucket does not have the key DB from the
308		 * sock structure. We just make a quick copy of the
309		 * md5 key being used (if indeed we are using one)
310		 * so the timewait ack generating code has the key.
311		 */
312		do {
313			struct tcp_md5sig_key *key;
314			tcptw->tw_md5_key = NULL;
315			key = tp->af_specific->md5_lookup(sk, sk);
316			if (key != NULL) {
317				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
318				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
319					BUG();
320			}
321		} while (0);
322#endif
323
324		/* Linkage updates. */
325		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
326
327		/* Get the TIME_WAIT timeout firing. */
328		if (timeo < rto)
329			timeo = rto;
330
331		if (recycle_ok) {
332			tw->tw_timeout = rto;
333		} else {
334			tw->tw_timeout = TCP_TIMEWAIT_LEN;
335			if (state == TCP_TIME_WAIT)
336				timeo = TCP_TIMEWAIT_LEN;
337		}
338
339		inet_twsk_schedule(tw, &tcp_death_row, timeo,
340				   TCP_TIMEWAIT_LEN);
341		inet_twsk_put(tw);
342	} else {
343		/* Sorry, if we're out of memory, just CLOSE this
344		 * socket up.  We've got bigger problems than
345		 * non-graceful socket closings.
346		 */
347		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
348	}
349
350	tcp_update_metrics(sk);
351	tcp_done(sk);
352}
353
354void tcp_twsk_destructor(struct sock *sk)
355{
356#ifdef CONFIG_TCP_MD5SIG
357	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
358
359	if (twsk->tw_md5_key)
360		kfree_rcu(twsk->tw_md5_key, rcu);
361#endif
362}
363EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
364
365void tcp_openreq_init_rwin(struct request_sock *req,
366			   struct sock *sk, struct dst_entry *dst)
367{
368	struct inet_request_sock *ireq = inet_rsk(req);
369	struct tcp_sock *tp = tcp_sk(sk);
370	__u8 rcv_wscale;
371	int mss = dst_metric_advmss(dst);
372
373	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
374		mss = tp->rx_opt.user_mss;
375
376	/* Set this up on the first call only */
377	req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
378
379	/* limit the window selection if the user enforce a smaller rx buffer */
380	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
381	    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
382		req->window_clamp = tcp_full_space(sk);
383
384	/* tcp_full_space because it is guaranteed to be the first packet */
385	tcp_select_initial_window(tcp_full_space(sk),
386		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
387		&req->rcv_wnd,
388		&req->window_clamp,
389		ireq->wscale_ok,
390		&rcv_wscale,
391		dst_metric(dst, RTAX_INITRWND));
392	ireq->rcv_wscale = rcv_wscale;
393}
394EXPORT_SYMBOL(tcp_openreq_init_rwin);
395
396static void tcp_ecn_openreq_child(struct tcp_sock *tp,
397				  const struct request_sock *req)
398{
399	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
400}
401
402/* This is not only more efficient than what we used to do, it eliminates
403 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
404 *
405 * Actually, we could lots of memory writes here. tp of listening
406 * socket contains all necessary default parameters.
407 */
408struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
409{
410	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
411
412	if (newsk != NULL) {
413		const struct inet_request_sock *ireq = inet_rsk(req);
414		struct tcp_request_sock *treq = tcp_rsk(req);
415		struct inet_connection_sock *newicsk = inet_csk(newsk);
416		struct tcp_sock *newtp = tcp_sk(newsk);
417
418		/* Now setup tcp_sock */
419		newtp->pred_flags = 0;
420
421		newtp->rcv_wup = newtp->copied_seq =
422		newtp->rcv_nxt = treq->rcv_isn + 1;
423
424		newtp->snd_sml = newtp->snd_una =
425		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
426
427		tcp_prequeue_init(newtp);
428		INIT_LIST_HEAD(&newtp->tsq_node);
429
430		tcp_init_wl(newtp, treq->rcv_isn);
431
432		newtp->srtt_us = 0;
433		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
434		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
435
436		newtp->packets_out = 0;
437		newtp->retrans_out = 0;
438		newtp->sacked_out = 0;
439		newtp->fackets_out = 0;
440		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
441		tcp_enable_early_retrans(newtp);
442		newtp->tlp_high_seq = 0;
443		newtp->lsndtime = treq->snt_synack;
444		newtp->total_retrans = req->num_retrans;
445
446		/* So many TCP implementations out there (incorrectly) count the
447		 * initial SYN frame in their delayed-ACK and congestion control
448		 * algorithms that we must have the following bandaid to talk
449		 * efficiently to them.  -DaveM
450		 */
451		newtp->snd_cwnd = TCP_INIT_CWND;
452		newtp->snd_cwnd_cnt = 0;
453
454		if (!try_module_get(newicsk->icsk_ca_ops->owner))
455			tcp_assign_congestion_control(newsk);
456
457		tcp_set_ca_state(newsk, TCP_CA_Open);
458		tcp_init_xmit_timers(newsk);
459		__skb_queue_head_init(&newtp->out_of_order_queue);
460		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
461
462		newtp->rx_opt.saw_tstamp = 0;
463
464		newtp->rx_opt.dsack = 0;
465		newtp->rx_opt.num_sacks = 0;
466
467		newtp->urg_data = 0;
468
469		if (sock_flag(newsk, SOCK_KEEPOPEN))
470			inet_csk_reset_keepalive_timer(newsk,
471						       keepalive_time_when(newtp));
472
473		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
474		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
475			if (sysctl_tcp_fack)
476				tcp_enable_fack(newtp);
477		}
478		newtp->window_clamp = req->window_clamp;
479		newtp->rcv_ssthresh = req->rcv_wnd;
480		newtp->rcv_wnd = req->rcv_wnd;
481		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
482		if (newtp->rx_opt.wscale_ok) {
483			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
484			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
485		} else {
486			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
487			newtp->window_clamp = min(newtp->window_clamp, 65535U);
488		}
489		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
490				  newtp->rx_opt.snd_wscale);
491		newtp->max_window = newtp->snd_wnd;
492
493		if (newtp->rx_opt.tstamp_ok) {
494			newtp->rx_opt.ts_recent = req->ts_recent;
495			newtp->rx_opt.ts_recent_stamp = get_seconds();
496			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
497		} else {
498			newtp->rx_opt.ts_recent_stamp = 0;
499			newtp->tcp_header_len = sizeof(struct tcphdr);
500		}
501		newtp->tsoffset = 0;
502#ifdef CONFIG_TCP_MD5SIG
503		newtp->md5sig_info = NULL;	/*XXX*/
504		if (newtp->af_specific->md5_lookup(sk, newsk))
505			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
506#endif
507		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
508			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
509		newtp->rx_opt.mss_clamp = req->mss;
510		tcp_ecn_openreq_child(newtp, req);
511		newtp->fastopen_rsk = NULL;
512		newtp->syn_data_acked = 0;
513
514		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
515	}
516	return newsk;
517}
518EXPORT_SYMBOL(tcp_create_openreq_child);
519
520/*
521 * Process an incoming packet for SYN_RECV sockets represented as a
522 * request_sock. Normally sk is the listener socket but for TFO it
523 * points to the child socket.
524 *
525 * XXX (TFO) - The current impl contains a special check for ack
526 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
527 *
528 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
529 */
530
531struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
532			   struct request_sock *req,
533			   struct request_sock **prev,
534			   bool fastopen)
535{
536	struct tcp_options_received tmp_opt;
537	struct sock *child;
538	const struct tcphdr *th = tcp_hdr(skb);
539	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
540	bool paws_reject = false;
541
542	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
543
544	tmp_opt.saw_tstamp = 0;
545	if (th->doff > (sizeof(struct tcphdr)>>2)) {
546		tcp_parse_options(skb, &tmp_opt, 0, NULL);
547
548		if (tmp_opt.saw_tstamp) {
549			tmp_opt.ts_recent = req->ts_recent;
550			/* We do not store true stamp, but it is not required,
551			 * it can be estimated (approximately)
552			 * from another data.
553			 */
554			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
555			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
556		}
557	}
558
559	/* Check for pure retransmitted SYN. */
560	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
561	    flg == TCP_FLAG_SYN &&
562	    !paws_reject) {
563		/*
564		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
565		 * this case on figure 6 and figure 8, but formal
566		 * protocol description says NOTHING.
567		 * To be more exact, it says that we should send ACK,
568		 * because this segment (at least, if it has no data)
569		 * is out of window.
570		 *
571		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
572		 *  describe SYN-RECV state. All the description
573		 *  is wrong, we cannot believe to it and should
574		 *  rely only on common sense and implementation
575		 *  experience.
576		 *
577		 * Enforce "SYN-ACK" according to figure 8, figure 6
578		 * of RFC793, fixed by RFC1122.
579		 *
580		 * Note that even if there is new data in the SYN packet
581		 * they will be thrown away too.
582		 *
583		 * Reset timer after retransmitting SYNACK, similar to
584		 * the idea of fast retransmit in recovery.
585		 */
586		if (!inet_rtx_syn_ack(sk, req))
587			req->expires = min(TCP_TIMEOUT_INIT << req->num_timeout,
588					   TCP_RTO_MAX) + jiffies;
589		return NULL;
590	}
591
592	/* Further reproduces section "SEGMENT ARRIVES"
593	   for state SYN-RECEIVED of RFC793.
594	   It is broken, however, it does not work only
595	   when SYNs are crossed.
596
597	   You would think that SYN crossing is impossible here, since
598	   we should have a SYN_SENT socket (from connect()) on our end,
599	   but this is not true if the crossed SYNs were sent to both
600	   ends by a malicious third party.  We must defend against this,
601	   and to do that we first verify the ACK (as per RFC793, page
602	   36) and reset if it is invalid.  Is this a true full defense?
603	   To convince ourselves, let us consider a way in which the ACK
604	   test can still pass in this 'malicious crossed SYNs' case.
605	   Malicious sender sends identical SYNs (and thus identical sequence
606	   numbers) to both A and B:
607
608		A: gets SYN, seq=7
609		B: gets SYN, seq=7
610
611	   By our good fortune, both A and B select the same initial
612	   send sequence number of seven :-)
613
614		A: sends SYN|ACK, seq=7, ack_seq=8
615		B: sends SYN|ACK, seq=7, ack_seq=8
616
617	   So we are now A eating this SYN|ACK, ACK test passes.  So
618	   does sequence test, SYN is truncated, and thus we consider
619	   it a bare ACK.
620
621	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
622	   bare ACK.  Otherwise, we create an established connection.  Both
623	   ends (listening sockets) accept the new incoming connection and try
624	   to talk to each other. 8-)
625
626	   Note: This case is both harmless, and rare.  Possibility is about the
627	   same as us discovering intelligent life on another plant tomorrow.
628
629	   But generally, we should (RFC lies!) to accept ACK
630	   from SYNACK both here and in tcp_rcv_state_process().
631	   tcp_rcv_state_process() does not, hence, we do not too.
632
633	   Note that the case is absolutely generic:
634	   we cannot optimize anything here without
635	   violating protocol. All the checks must be made
636	   before attempt to create socket.
637	 */
638
639	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
640	 *                  and the incoming segment acknowledges something not yet
641	 *                  sent (the segment carries an unacceptable ACK) ...
642	 *                  a reset is sent."
643	 *
644	 * Invalid ACK: reset will be sent by listening socket.
645	 * Note that the ACK validity check for a Fast Open socket is done
646	 * elsewhere and is checked directly against the child socket rather
647	 * than req because user data may have been sent out.
648	 */
649	if ((flg & TCP_FLAG_ACK) && !fastopen &&
650	    (TCP_SKB_CB(skb)->ack_seq !=
651	     tcp_rsk(req)->snt_isn + 1))
652		return sk;
653
654	/* Also, it would be not so bad idea to check rcv_tsecr, which
655	 * is essentially ACK extension and too early or too late values
656	 * should cause reset in unsynchronized states.
657	 */
658
659	/* RFC793: "first check sequence number". */
660
661	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
662					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
663		/* Out of window: send ACK and drop. */
664		if (!(flg & TCP_FLAG_RST))
665			req->rsk_ops->send_ack(sk, skb, req);
666		if (paws_reject)
667			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
668		return NULL;
669	}
670
671	/* In sequence, PAWS is OK. */
672
673	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
674		req->ts_recent = tmp_opt.rcv_tsval;
675
676	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
677		/* Truncate SYN, it is out of window starting
678		   at tcp_rsk(req)->rcv_isn + 1. */
679		flg &= ~TCP_FLAG_SYN;
680	}
681
682	/* RFC793: "second check the RST bit" and
683	 *	   "fourth, check the SYN bit"
684	 */
685	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
686		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
687		goto embryonic_reset;
688	}
689
690	/* ACK sequence verified above, just make sure ACK is
691	 * set.  If ACK not set, just silently drop the packet.
692	 *
693	 * XXX (TFO) - if we ever allow "data after SYN", the
694	 * following check needs to be removed.
695	 */
696	if (!(flg & TCP_FLAG_ACK))
697		return NULL;
698
699	/* For Fast Open no more processing is needed (sk is the
700	 * child socket).
701	 */
702	if (fastopen)
703		return sk;
704
705	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
706	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
707	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
708		inet_rsk(req)->acked = 1;
709		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
710		return NULL;
711	}
712
713	/* OK, ACK is valid, create big socket and
714	 * feed this segment to it. It will repeat all
715	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
716	 * ESTABLISHED STATE. If it will be dropped after
717	 * socket is created, wait for troubles.
718	 */
719	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
720	if (child == NULL)
721		goto listen_overflow;
722
723	inet_csk_reqsk_queue_unlink(sk, req, prev);
724	inet_csk_reqsk_queue_removed(sk, req);
725
726	inet_csk_reqsk_queue_add(sk, req, child);
727	return child;
728
729listen_overflow:
730	if (!sysctl_tcp_abort_on_overflow) {
731		inet_rsk(req)->acked = 1;
732		return NULL;
733	}
734
735embryonic_reset:
736	if (!(flg & TCP_FLAG_RST)) {
737		/* Received a bad SYN pkt - for TFO We try not to reset
738		 * the local connection unless it's really necessary to
739		 * avoid becoming vulnerable to outside attack aiming at
740		 * resetting legit local connections.
741		 */
742		req->rsk_ops->send_reset(sk, skb);
743	} else if (fastopen) { /* received a valid RST pkt */
744		reqsk_fastopen_remove(sk, req, true);
745		tcp_reset(sk);
746	}
747	if (!fastopen) {
748		inet_csk_reqsk_queue_drop(sk, req, prev);
749		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
750	}
751	return NULL;
752}
753EXPORT_SYMBOL(tcp_check_req);
754
755/*
756 * Queue segment on the new socket if the new socket is active,
757 * otherwise we just shortcircuit this and continue with
758 * the new socket.
759 *
760 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
761 * when entering. But other states are possible due to a race condition
762 * where after __inet_lookup_established() fails but before the listener
763 * locked is obtained, other packets cause the same connection to
764 * be created.
765 */
766
767int tcp_child_process(struct sock *parent, struct sock *child,
768		      struct sk_buff *skb)
769{
770	int ret = 0;
771	int state = child->sk_state;
772
773	if (!sock_owned_by_user(child)) {
774		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
775					    skb->len);
776		/* Wakeup parent, send SIGIO */
777		if (state == TCP_SYN_RECV && child->sk_state != state)
778			parent->sk_data_ready(parent);
779	} else {
780		/* Alas, it is possible again, because we do lookup
781		 * in main socket hash table and lock on listening
782		 * socket does not protect us more.
783		 */
784		__sk_add_backlog(child, skb);
785	}
786
787	bh_unlock_sock(child);
788	sock_put(child);
789	return ret;
790}
791EXPORT_SYMBOL(tcp_child_process);
792