1/*
2 *	Linux INET6 implementation
3 *	Forwarding Information Database
4 *
5 *	Authors:
6 *	Pedro Roque		<roque@di.fc.ul.pt>
7 *
8 *	This program is free software; you can redistribute it and/or
9 *      modify it under the terms of the GNU General Public License
10 *      as published by the Free Software Foundation; either version
11 *      2 of the License, or (at your option) any later version.
12 *
13 *	Changes:
14 *	Yuji SEKIYA @USAGI:	Support default route on router node;
15 *				remove ip6_null_entry from the top of
16 *				routing table.
17 *	Ville Nuorvala:		Fixed routing subtrees.
18 */
19
20#define pr_fmt(fmt) "IPv6: " fmt
21
22#include <linux/errno.h>
23#include <linux/types.h>
24#include <linux/net.h>
25#include <linux/route.h>
26#include <linux/netdevice.h>
27#include <linux/in6.h>
28#include <linux/init.h>
29#include <linux/list.h>
30#include <linux/slab.h>
31
32#include <net/ipv6.h>
33#include <net/ndisc.h>
34#include <net/addrconf.h>
35
36#include <net/ip6_fib.h>
37#include <net/ip6_route.h>
38
39#define RT6_DEBUG 2
40
41#if RT6_DEBUG >= 3
42#define RT6_TRACE(x...) pr_debug(x)
43#else
44#define RT6_TRACE(x...) do { ; } while (0)
45#endif
46
47static struct kmem_cache *fib6_node_kmem __read_mostly;
48
49struct fib6_cleaner {
50	struct fib6_walker w;
51	struct net *net;
52	int (*func)(struct rt6_info *, void *arg);
53	int sernum;
54	void *arg;
55};
56
57static DEFINE_RWLOCK(fib6_walker_lock);
58
59#ifdef CONFIG_IPV6_SUBTREES
60#define FWS_INIT FWS_S
61#else
62#define FWS_INIT FWS_L
63#endif
64
65static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
66static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
67static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
68static int fib6_walk(struct fib6_walker *w);
69static int fib6_walk_continue(struct fib6_walker *w);
70
71/*
72 *	A routing update causes an increase of the serial number on the
73 *	affected subtree. This allows for cached routes to be asynchronously
74 *	tested when modifications are made to the destination cache as a
75 *	result of redirects, path MTU changes, etc.
76 */
77
78static void fib6_gc_timer_cb(unsigned long arg);
79
80static LIST_HEAD(fib6_walkers);
81#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
82
83static void fib6_walker_link(struct fib6_walker *w)
84{
85	write_lock_bh(&fib6_walker_lock);
86	list_add(&w->lh, &fib6_walkers);
87	write_unlock_bh(&fib6_walker_lock);
88}
89
90static void fib6_walker_unlink(struct fib6_walker *w)
91{
92	write_lock_bh(&fib6_walker_lock);
93	list_del(&w->lh);
94	write_unlock_bh(&fib6_walker_lock);
95}
96
97static int fib6_new_sernum(struct net *net)
98{
99	int new, old;
100
101	do {
102		old = atomic_read(&net->ipv6.fib6_sernum);
103		new = old < INT_MAX ? old + 1 : 1;
104	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
105				old, new) != old);
106	return new;
107}
108
109enum {
110	FIB6_NO_SERNUM_CHANGE = 0,
111};
112
113/*
114 *	Auxiliary address test functions for the radix tree.
115 *
116 *	These assume a 32bit processor (although it will work on
117 *	64bit processors)
118 */
119
120/*
121 *	test bit
122 */
123#if defined(__LITTLE_ENDIAN)
124# define BITOP_BE32_SWIZZLE	(0x1F & ~7)
125#else
126# define BITOP_BE32_SWIZZLE	0
127#endif
128
129static __be32 addr_bit_set(const void *token, int fn_bit)
130{
131	const __be32 *addr = token;
132	/*
133	 * Here,
134	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
135	 * is optimized version of
136	 *	htonl(1 << ((~fn_bit)&0x1F))
137	 * See include/asm-generic/bitops/le.h.
138	 */
139	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
140	       addr[fn_bit >> 5];
141}
142
143static struct fib6_node *node_alloc(void)
144{
145	struct fib6_node *fn;
146
147	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
148
149	return fn;
150}
151
152static void node_free(struct fib6_node *fn)
153{
154	kmem_cache_free(fib6_node_kmem, fn);
155}
156
157static void rt6_release(struct rt6_info *rt)
158{
159	if (atomic_dec_and_test(&rt->rt6i_ref))
160		dst_free(&rt->dst);
161}
162
163static void fib6_link_table(struct net *net, struct fib6_table *tb)
164{
165	unsigned int h;
166
167	/*
168	 * Initialize table lock at a single place to give lockdep a key,
169	 * tables aren't visible prior to being linked to the list.
170	 */
171	rwlock_init(&tb->tb6_lock);
172
173	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
174
175	/*
176	 * No protection necessary, this is the only list mutatation
177	 * operation, tables never disappear once they exist.
178	 */
179	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
180}
181
182#ifdef CONFIG_IPV6_MULTIPLE_TABLES
183
184static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
185{
186	struct fib6_table *table;
187
188	table = kzalloc(sizeof(*table), GFP_ATOMIC);
189	if (table) {
190		table->tb6_id = id;
191		table->tb6_root.leaf = net->ipv6.ip6_null_entry;
192		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
193		inet_peer_base_init(&table->tb6_peers);
194	}
195
196	return table;
197}
198
199struct fib6_table *fib6_new_table(struct net *net, u32 id)
200{
201	struct fib6_table *tb;
202
203	if (id == 0)
204		id = RT6_TABLE_MAIN;
205	tb = fib6_get_table(net, id);
206	if (tb)
207		return tb;
208
209	tb = fib6_alloc_table(net, id);
210	if (tb)
211		fib6_link_table(net, tb);
212
213	return tb;
214}
215
216struct fib6_table *fib6_get_table(struct net *net, u32 id)
217{
218	struct fib6_table *tb;
219	struct hlist_head *head;
220	unsigned int h;
221
222	if (id == 0)
223		id = RT6_TABLE_MAIN;
224	h = id & (FIB6_TABLE_HASHSZ - 1);
225	rcu_read_lock();
226	head = &net->ipv6.fib_table_hash[h];
227	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
228		if (tb->tb6_id == id) {
229			rcu_read_unlock();
230			return tb;
231		}
232	}
233	rcu_read_unlock();
234
235	return NULL;
236}
237
238static void __net_init fib6_tables_init(struct net *net)
239{
240	fib6_link_table(net, net->ipv6.fib6_main_tbl);
241	fib6_link_table(net, net->ipv6.fib6_local_tbl);
242}
243#else
244
245struct fib6_table *fib6_new_table(struct net *net, u32 id)
246{
247	return fib6_get_table(net, id);
248}
249
250struct fib6_table *fib6_get_table(struct net *net, u32 id)
251{
252	  return net->ipv6.fib6_main_tbl;
253}
254
255struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
256				   int flags, pol_lookup_t lookup)
257{
258	return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
259}
260
261static void __net_init fib6_tables_init(struct net *net)
262{
263	fib6_link_table(net, net->ipv6.fib6_main_tbl);
264}
265
266#endif
267
268static int fib6_dump_node(struct fib6_walker *w)
269{
270	int res;
271	struct rt6_info *rt;
272
273	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
274		res = rt6_dump_route(rt, w->args);
275		if (res < 0) {
276			/* Frame is full, suspend walking */
277			w->leaf = rt;
278			return 1;
279		}
280		WARN_ON(res == 0);
281	}
282	w->leaf = NULL;
283	return 0;
284}
285
286static void fib6_dump_end(struct netlink_callback *cb)
287{
288	struct fib6_walker *w = (void *)cb->args[2];
289
290	if (w) {
291		if (cb->args[4]) {
292			cb->args[4] = 0;
293			fib6_walker_unlink(w);
294		}
295		cb->args[2] = 0;
296		kfree(w);
297	}
298	cb->done = (void *)cb->args[3];
299	cb->args[1] = 3;
300}
301
302static int fib6_dump_done(struct netlink_callback *cb)
303{
304	fib6_dump_end(cb);
305	return cb->done ? cb->done(cb) : 0;
306}
307
308static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
309			   struct netlink_callback *cb)
310{
311	struct fib6_walker *w;
312	int res;
313
314	w = (void *)cb->args[2];
315	w->root = &table->tb6_root;
316
317	if (cb->args[4] == 0) {
318		w->count = 0;
319		w->skip = 0;
320
321		read_lock_bh(&table->tb6_lock);
322		res = fib6_walk(w);
323		read_unlock_bh(&table->tb6_lock);
324		if (res > 0) {
325			cb->args[4] = 1;
326			cb->args[5] = w->root->fn_sernum;
327		}
328	} else {
329		if (cb->args[5] != w->root->fn_sernum) {
330			/* Begin at the root if the tree changed */
331			cb->args[5] = w->root->fn_sernum;
332			w->state = FWS_INIT;
333			w->node = w->root;
334			w->skip = w->count;
335		} else
336			w->skip = 0;
337
338		read_lock_bh(&table->tb6_lock);
339		res = fib6_walk_continue(w);
340		read_unlock_bh(&table->tb6_lock);
341		if (res <= 0) {
342			fib6_walker_unlink(w);
343			cb->args[4] = 0;
344		}
345	}
346
347	return res;
348}
349
350static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
351{
352	struct net *net = sock_net(skb->sk);
353	unsigned int h, s_h;
354	unsigned int e = 0, s_e;
355	struct rt6_rtnl_dump_arg arg;
356	struct fib6_walker *w;
357	struct fib6_table *tb;
358	struct hlist_head *head;
359	int res = 0;
360
361	s_h = cb->args[0];
362	s_e = cb->args[1];
363
364	w = (void *)cb->args[2];
365	if (!w) {
366		/* New dump:
367		 *
368		 * 1. hook callback destructor.
369		 */
370		cb->args[3] = (long)cb->done;
371		cb->done = fib6_dump_done;
372
373		/*
374		 * 2. allocate and initialize walker.
375		 */
376		w = kzalloc(sizeof(*w), GFP_ATOMIC);
377		if (!w)
378			return -ENOMEM;
379		w->func = fib6_dump_node;
380		cb->args[2] = (long)w;
381	}
382
383	arg.skb = skb;
384	arg.cb = cb;
385	arg.net = net;
386	w->args = &arg;
387
388	rcu_read_lock();
389	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
390		e = 0;
391		head = &net->ipv6.fib_table_hash[h];
392		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
393			if (e < s_e)
394				goto next;
395			res = fib6_dump_table(tb, skb, cb);
396			if (res != 0)
397				goto out;
398next:
399			e++;
400		}
401	}
402out:
403	rcu_read_unlock();
404	cb->args[1] = e;
405	cb->args[0] = h;
406
407	res = res < 0 ? res : skb->len;
408	if (res <= 0)
409		fib6_dump_end(cb);
410	return res;
411}
412
413/*
414 *	Routing Table
415 *
416 *	return the appropriate node for a routing tree "add" operation
417 *	by either creating and inserting or by returning an existing
418 *	node.
419 */
420
421static struct fib6_node *fib6_add_1(struct fib6_node *root,
422				     struct in6_addr *addr, int plen,
423				     int offset, int allow_create,
424				     int replace_required, int sernum)
425{
426	struct fib6_node *fn, *in, *ln;
427	struct fib6_node *pn = NULL;
428	struct rt6key *key;
429	int	bit;
430	__be32	dir = 0;
431
432	RT6_TRACE("fib6_add_1\n");
433
434	/* insert node in tree */
435
436	fn = root;
437
438	do {
439		key = (struct rt6key *)((u8 *)fn->leaf + offset);
440
441		/*
442		 *	Prefix match
443		 */
444		if (plen < fn->fn_bit ||
445		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
446			if (!allow_create) {
447				if (replace_required) {
448					pr_warn("Can't replace route, no match found\n");
449					return ERR_PTR(-ENOENT);
450				}
451				pr_warn("NLM_F_CREATE should be set when creating new route\n");
452			}
453			goto insert_above;
454		}
455
456		/*
457		 *	Exact match ?
458		 */
459
460		if (plen == fn->fn_bit) {
461			/* clean up an intermediate node */
462			if (!(fn->fn_flags & RTN_RTINFO)) {
463				rt6_release(fn->leaf);
464				fn->leaf = NULL;
465			}
466
467			fn->fn_sernum = sernum;
468
469			return fn;
470		}
471
472		/*
473		 *	We have more bits to go
474		 */
475
476		/* Try to walk down on tree. */
477		fn->fn_sernum = sernum;
478		dir = addr_bit_set(addr, fn->fn_bit);
479		pn = fn;
480		fn = dir ? fn->right : fn->left;
481	} while (fn);
482
483	if (!allow_create) {
484		/* We should not create new node because
485		 * NLM_F_REPLACE was specified without NLM_F_CREATE
486		 * I assume it is safe to require NLM_F_CREATE when
487		 * REPLACE flag is used! Later we may want to remove the
488		 * check for replace_required, because according
489		 * to netlink specification, NLM_F_CREATE
490		 * MUST be specified if new route is created.
491		 * That would keep IPv6 consistent with IPv4
492		 */
493		if (replace_required) {
494			pr_warn("Can't replace route, no match found\n");
495			return ERR_PTR(-ENOENT);
496		}
497		pr_warn("NLM_F_CREATE should be set when creating new route\n");
498	}
499	/*
500	 *	We walked to the bottom of tree.
501	 *	Create new leaf node without children.
502	 */
503
504	ln = node_alloc();
505
506	if (!ln)
507		return ERR_PTR(-ENOMEM);
508	ln->fn_bit = plen;
509
510	ln->parent = pn;
511	ln->fn_sernum = sernum;
512
513	if (dir)
514		pn->right = ln;
515	else
516		pn->left  = ln;
517
518	return ln;
519
520
521insert_above:
522	/*
523	 * split since we don't have a common prefix anymore or
524	 * we have a less significant route.
525	 * we've to insert an intermediate node on the list
526	 * this new node will point to the one we need to create
527	 * and the current
528	 */
529
530	pn = fn->parent;
531
532	/* find 1st bit in difference between the 2 addrs.
533
534	   See comment in __ipv6_addr_diff: bit may be an invalid value,
535	   but if it is >= plen, the value is ignored in any case.
536	 */
537
538	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
539
540	/*
541	 *		(intermediate)[in]
542	 *	          /	   \
543	 *	(new leaf node)[ln] (old node)[fn]
544	 */
545	if (plen > bit) {
546		in = node_alloc();
547		ln = node_alloc();
548
549		if (!in || !ln) {
550			if (in)
551				node_free(in);
552			if (ln)
553				node_free(ln);
554			return ERR_PTR(-ENOMEM);
555		}
556
557		/*
558		 * new intermediate node.
559		 * RTN_RTINFO will
560		 * be off since that an address that chooses one of
561		 * the branches would not match less specific routes
562		 * in the other branch
563		 */
564
565		in->fn_bit = bit;
566
567		in->parent = pn;
568		in->leaf = fn->leaf;
569		atomic_inc(&in->leaf->rt6i_ref);
570
571		in->fn_sernum = sernum;
572
573		/* update parent pointer */
574		if (dir)
575			pn->right = in;
576		else
577			pn->left  = in;
578
579		ln->fn_bit = plen;
580
581		ln->parent = in;
582		fn->parent = in;
583
584		ln->fn_sernum = sernum;
585
586		if (addr_bit_set(addr, bit)) {
587			in->right = ln;
588			in->left  = fn;
589		} else {
590			in->left  = ln;
591			in->right = fn;
592		}
593	} else { /* plen <= bit */
594
595		/*
596		 *		(new leaf node)[ln]
597		 *	          /	   \
598		 *	     (old node)[fn] NULL
599		 */
600
601		ln = node_alloc();
602
603		if (!ln)
604			return ERR_PTR(-ENOMEM);
605
606		ln->fn_bit = plen;
607
608		ln->parent = pn;
609
610		ln->fn_sernum = sernum;
611
612		if (dir)
613			pn->right = ln;
614		else
615			pn->left  = ln;
616
617		if (addr_bit_set(&key->addr, plen))
618			ln->right = fn;
619		else
620			ln->left  = fn;
621
622		fn->parent = ln;
623	}
624	return ln;
625}
626
627static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
628{
629	return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
630	       RTF_GATEWAY;
631}
632
633static int fib6_commit_metrics(struct dst_entry *dst,
634			       struct nlattr *mx, int mx_len)
635{
636	struct nlattr *nla;
637	int remaining;
638	u32 *mp;
639
640	if (dst->flags & DST_HOST) {
641		mp = dst_metrics_write_ptr(dst);
642	} else {
643		mp = kzalloc(sizeof(u32) * RTAX_MAX, GFP_ATOMIC);
644		if (!mp)
645			return -ENOMEM;
646		dst_init_metrics(dst, mp, 0);
647	}
648
649	nla_for_each_attr(nla, mx, mx_len, remaining) {
650		int type = nla_type(nla);
651
652		if (type) {
653			if (type > RTAX_MAX)
654				return -EINVAL;
655
656			mp[type - 1] = nla_get_u32(nla);
657		}
658	}
659	return 0;
660}
661
662/*
663 *	Insert routing information in a node.
664 */
665
666static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
667			    struct nl_info *info, struct nlattr *mx, int mx_len)
668{
669	struct rt6_info *iter = NULL;
670	struct rt6_info **ins;
671	int replace = (info->nlh &&
672		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
673	int add = (!info->nlh ||
674		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
675	int found = 0;
676	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
677	int err;
678
679	ins = &fn->leaf;
680
681	for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
682		/*
683		 *	Search for duplicates
684		 */
685
686		if (iter->rt6i_metric == rt->rt6i_metric) {
687			/*
688			 *	Same priority level
689			 */
690			if (info->nlh &&
691			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
692				return -EEXIST;
693			if (replace) {
694				found++;
695				break;
696			}
697
698			if (iter->dst.dev == rt->dst.dev &&
699			    iter->rt6i_idev == rt->rt6i_idev &&
700			    ipv6_addr_equal(&iter->rt6i_gateway,
701					    &rt->rt6i_gateway)) {
702				if (rt->rt6i_nsiblings)
703					rt->rt6i_nsiblings = 0;
704				if (!(iter->rt6i_flags & RTF_EXPIRES))
705					return -EEXIST;
706				if (!(rt->rt6i_flags & RTF_EXPIRES))
707					rt6_clean_expires(iter);
708				else
709					rt6_set_expires(iter, rt->dst.expires);
710				return -EEXIST;
711			}
712			/* If we have the same destination and the same metric,
713			 * but not the same gateway, then the route we try to
714			 * add is sibling to this route, increment our counter
715			 * of siblings, and later we will add our route to the
716			 * list.
717			 * Only static routes (which don't have flag
718			 * RTF_EXPIRES) are used for ECMPv6.
719			 *
720			 * To avoid long list, we only had siblings if the
721			 * route have a gateway.
722			 */
723			if (rt_can_ecmp &&
724			    rt6_qualify_for_ecmp(iter))
725				rt->rt6i_nsiblings++;
726		}
727
728		if (iter->rt6i_metric > rt->rt6i_metric)
729			break;
730
731		ins = &iter->dst.rt6_next;
732	}
733
734	/* Reset round-robin state, if necessary */
735	if (ins == &fn->leaf)
736		fn->rr_ptr = NULL;
737
738	/* Link this route to others same route. */
739	if (rt->rt6i_nsiblings) {
740		unsigned int rt6i_nsiblings;
741		struct rt6_info *sibling, *temp_sibling;
742
743		/* Find the first route that have the same metric */
744		sibling = fn->leaf;
745		while (sibling) {
746			if (sibling->rt6i_metric == rt->rt6i_metric &&
747			    rt6_qualify_for_ecmp(sibling)) {
748				list_add_tail(&rt->rt6i_siblings,
749					      &sibling->rt6i_siblings);
750				break;
751			}
752			sibling = sibling->dst.rt6_next;
753		}
754		/* For each sibling in the list, increment the counter of
755		 * siblings. BUG() if counters does not match, list of siblings
756		 * is broken!
757		 */
758		rt6i_nsiblings = 0;
759		list_for_each_entry_safe(sibling, temp_sibling,
760					 &rt->rt6i_siblings, rt6i_siblings) {
761			sibling->rt6i_nsiblings++;
762			BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
763			rt6i_nsiblings++;
764		}
765		BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
766	}
767
768	/*
769	 *	insert node
770	 */
771	if (!replace) {
772		if (!add)
773			pr_warn("NLM_F_CREATE should be set when creating new route\n");
774
775add:
776		if (mx) {
777			err = fib6_commit_metrics(&rt->dst, mx, mx_len);
778			if (err)
779				return err;
780		}
781		rt->dst.rt6_next = iter;
782		*ins = rt;
783		rt->rt6i_node = fn;
784		atomic_inc(&rt->rt6i_ref);
785		inet6_rt_notify(RTM_NEWROUTE, rt, info);
786		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
787
788		if (!(fn->fn_flags & RTN_RTINFO)) {
789			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
790			fn->fn_flags |= RTN_RTINFO;
791		}
792
793	} else {
794		if (!found) {
795			if (add)
796				goto add;
797			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
798			return -ENOENT;
799		}
800		if (mx) {
801			err = fib6_commit_metrics(&rt->dst, mx, mx_len);
802			if (err)
803				return err;
804		}
805		*ins = rt;
806		rt->rt6i_node = fn;
807		rt->dst.rt6_next = iter->dst.rt6_next;
808		atomic_inc(&rt->rt6i_ref);
809		inet6_rt_notify(RTM_NEWROUTE, rt, info);
810		rt6_release(iter);
811		if (!(fn->fn_flags & RTN_RTINFO)) {
812			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
813			fn->fn_flags |= RTN_RTINFO;
814		}
815	}
816
817	return 0;
818}
819
820static void fib6_start_gc(struct net *net, struct rt6_info *rt)
821{
822	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
823	    (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
824		mod_timer(&net->ipv6.ip6_fib_timer,
825			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
826}
827
828void fib6_force_start_gc(struct net *net)
829{
830	if (!timer_pending(&net->ipv6.ip6_fib_timer))
831		mod_timer(&net->ipv6.ip6_fib_timer,
832			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
833}
834
835/*
836 *	Add routing information to the routing tree.
837 *	<destination addr>/<source addr>
838 *	with source addr info in sub-trees
839 */
840
841int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info,
842	     struct nlattr *mx, int mx_len)
843{
844	struct fib6_node *fn, *pn = NULL;
845	int err = -ENOMEM;
846	int allow_create = 1;
847	int replace_required = 0;
848	int sernum = fib6_new_sernum(info->nl_net);
849
850	if (info->nlh) {
851		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
852			allow_create = 0;
853		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
854			replace_required = 1;
855	}
856	if (!allow_create && !replace_required)
857		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
858
859	fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
860			offsetof(struct rt6_info, rt6i_dst), allow_create,
861			replace_required, sernum);
862	if (IS_ERR(fn)) {
863		err = PTR_ERR(fn);
864		fn = NULL;
865		goto out;
866	}
867
868	pn = fn;
869
870#ifdef CONFIG_IPV6_SUBTREES
871	if (rt->rt6i_src.plen) {
872		struct fib6_node *sn;
873
874		if (!fn->subtree) {
875			struct fib6_node *sfn;
876
877			/*
878			 * Create subtree.
879			 *
880			 *		fn[main tree]
881			 *		|
882			 *		sfn[subtree root]
883			 *		   \
884			 *		    sn[new leaf node]
885			 */
886
887			/* Create subtree root node */
888			sfn = node_alloc();
889			if (!sfn)
890				goto st_failure;
891
892			sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
893			atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
894			sfn->fn_flags = RTN_ROOT;
895			sfn->fn_sernum = sernum;
896
897			/* Now add the first leaf node to new subtree */
898
899			sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
900					rt->rt6i_src.plen,
901					offsetof(struct rt6_info, rt6i_src),
902					allow_create, replace_required, sernum);
903
904			if (IS_ERR(sn)) {
905				/* If it is failed, discard just allocated
906				   root, and then (in st_failure) stale node
907				   in main tree.
908				 */
909				node_free(sfn);
910				err = PTR_ERR(sn);
911				goto st_failure;
912			}
913
914			/* Now link new subtree to main tree */
915			sfn->parent = fn;
916			fn->subtree = sfn;
917		} else {
918			sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
919					rt->rt6i_src.plen,
920					offsetof(struct rt6_info, rt6i_src),
921					allow_create, replace_required, sernum);
922
923			if (IS_ERR(sn)) {
924				err = PTR_ERR(sn);
925				goto st_failure;
926			}
927		}
928
929		if (!fn->leaf) {
930			fn->leaf = rt;
931			atomic_inc(&rt->rt6i_ref);
932		}
933		fn = sn;
934	}
935#endif
936
937	err = fib6_add_rt2node(fn, rt, info, mx, mx_len);
938	if (!err) {
939		fib6_start_gc(info->nl_net, rt);
940		if (!(rt->rt6i_flags & RTF_CACHE))
941			fib6_prune_clones(info->nl_net, pn);
942	}
943
944out:
945	if (err) {
946#ifdef CONFIG_IPV6_SUBTREES
947		/*
948		 * If fib6_add_1 has cleared the old leaf pointer in the
949		 * super-tree leaf node we have to find a new one for it.
950		 */
951		if (pn != fn && pn->leaf == rt) {
952			pn->leaf = NULL;
953			atomic_dec(&rt->rt6i_ref);
954		}
955		if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
956			pn->leaf = fib6_find_prefix(info->nl_net, pn);
957#if RT6_DEBUG >= 2
958			if (!pn->leaf) {
959				WARN_ON(pn->leaf == NULL);
960				pn->leaf = info->nl_net->ipv6.ip6_null_entry;
961			}
962#endif
963			atomic_inc(&pn->leaf->rt6i_ref);
964		}
965#endif
966		dst_free(&rt->dst);
967	}
968	return err;
969
970#ifdef CONFIG_IPV6_SUBTREES
971	/* Subtree creation failed, probably main tree node
972	   is orphan. If it is, shoot it.
973	 */
974st_failure:
975	if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
976		fib6_repair_tree(info->nl_net, fn);
977	dst_free(&rt->dst);
978	return err;
979#endif
980}
981
982/*
983 *	Routing tree lookup
984 *
985 */
986
987struct lookup_args {
988	int			offset;		/* key offset on rt6_info	*/
989	const struct in6_addr	*addr;		/* search key			*/
990};
991
992static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
993				       struct lookup_args *args)
994{
995	struct fib6_node *fn;
996	__be32 dir;
997
998	if (unlikely(args->offset == 0))
999		return NULL;
1000
1001	/*
1002	 *	Descend on a tree
1003	 */
1004
1005	fn = root;
1006
1007	for (;;) {
1008		struct fib6_node *next;
1009
1010		dir = addr_bit_set(args->addr, fn->fn_bit);
1011
1012		next = dir ? fn->right : fn->left;
1013
1014		if (next) {
1015			fn = next;
1016			continue;
1017		}
1018		break;
1019	}
1020
1021	while (fn) {
1022		if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1023			struct rt6key *key;
1024
1025			key = (struct rt6key *) ((u8 *) fn->leaf +
1026						 args->offset);
1027
1028			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1029#ifdef CONFIG_IPV6_SUBTREES
1030				if (fn->subtree) {
1031					struct fib6_node *sfn;
1032					sfn = fib6_lookup_1(fn->subtree,
1033							    args + 1);
1034					if (!sfn)
1035						goto backtrack;
1036					fn = sfn;
1037				}
1038#endif
1039				if (fn->fn_flags & RTN_RTINFO)
1040					return fn;
1041			}
1042		}
1043#ifdef CONFIG_IPV6_SUBTREES
1044backtrack:
1045#endif
1046		if (fn->fn_flags & RTN_ROOT)
1047			break;
1048
1049		fn = fn->parent;
1050	}
1051
1052	return NULL;
1053}
1054
1055struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1056			      const struct in6_addr *saddr)
1057{
1058	struct fib6_node *fn;
1059	struct lookup_args args[] = {
1060		{
1061			.offset = offsetof(struct rt6_info, rt6i_dst),
1062			.addr = daddr,
1063		},
1064#ifdef CONFIG_IPV6_SUBTREES
1065		{
1066			.offset = offsetof(struct rt6_info, rt6i_src),
1067			.addr = saddr,
1068		},
1069#endif
1070		{
1071			.offset = 0,	/* sentinel */
1072		}
1073	};
1074
1075	fn = fib6_lookup_1(root, daddr ? args : args + 1);
1076	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1077		fn = root;
1078
1079	return fn;
1080}
1081
1082/*
1083 *	Get node with specified destination prefix (and source prefix,
1084 *	if subtrees are used)
1085 */
1086
1087
1088static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1089				       const struct in6_addr *addr,
1090				       int plen, int offset)
1091{
1092	struct fib6_node *fn;
1093
1094	for (fn = root; fn ; ) {
1095		struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1096
1097		/*
1098		 *	Prefix match
1099		 */
1100		if (plen < fn->fn_bit ||
1101		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1102			return NULL;
1103
1104		if (plen == fn->fn_bit)
1105			return fn;
1106
1107		/*
1108		 *	We have more bits to go
1109		 */
1110		if (addr_bit_set(addr, fn->fn_bit))
1111			fn = fn->right;
1112		else
1113			fn = fn->left;
1114	}
1115	return NULL;
1116}
1117
1118struct fib6_node *fib6_locate(struct fib6_node *root,
1119			      const struct in6_addr *daddr, int dst_len,
1120			      const struct in6_addr *saddr, int src_len)
1121{
1122	struct fib6_node *fn;
1123
1124	fn = fib6_locate_1(root, daddr, dst_len,
1125			   offsetof(struct rt6_info, rt6i_dst));
1126
1127#ifdef CONFIG_IPV6_SUBTREES
1128	if (src_len) {
1129		WARN_ON(saddr == NULL);
1130		if (fn && fn->subtree)
1131			fn = fib6_locate_1(fn->subtree, saddr, src_len,
1132					   offsetof(struct rt6_info, rt6i_src));
1133	}
1134#endif
1135
1136	if (fn && fn->fn_flags & RTN_RTINFO)
1137		return fn;
1138
1139	return NULL;
1140}
1141
1142
1143/*
1144 *	Deletion
1145 *
1146 */
1147
1148static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1149{
1150	if (fn->fn_flags & RTN_ROOT)
1151		return net->ipv6.ip6_null_entry;
1152
1153	while (fn) {
1154		if (fn->left)
1155			return fn->left->leaf;
1156		if (fn->right)
1157			return fn->right->leaf;
1158
1159		fn = FIB6_SUBTREE(fn);
1160	}
1161	return NULL;
1162}
1163
1164/*
1165 *	Called to trim the tree of intermediate nodes when possible. "fn"
1166 *	is the node we want to try and remove.
1167 */
1168
1169static struct fib6_node *fib6_repair_tree(struct net *net,
1170					   struct fib6_node *fn)
1171{
1172	int children;
1173	int nstate;
1174	struct fib6_node *child, *pn;
1175	struct fib6_walker *w;
1176	int iter = 0;
1177
1178	for (;;) {
1179		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1180		iter++;
1181
1182		WARN_ON(fn->fn_flags & RTN_RTINFO);
1183		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1184		WARN_ON(fn->leaf != NULL);
1185
1186		children = 0;
1187		child = NULL;
1188		if (fn->right)
1189			child = fn->right, children |= 1;
1190		if (fn->left)
1191			child = fn->left, children |= 2;
1192
1193		if (children == 3 || FIB6_SUBTREE(fn)
1194#ifdef CONFIG_IPV6_SUBTREES
1195		    /* Subtree root (i.e. fn) may have one child */
1196		    || (children && fn->fn_flags & RTN_ROOT)
1197#endif
1198		    ) {
1199			fn->leaf = fib6_find_prefix(net, fn);
1200#if RT6_DEBUG >= 2
1201			if (!fn->leaf) {
1202				WARN_ON(!fn->leaf);
1203				fn->leaf = net->ipv6.ip6_null_entry;
1204			}
1205#endif
1206			atomic_inc(&fn->leaf->rt6i_ref);
1207			return fn->parent;
1208		}
1209
1210		pn = fn->parent;
1211#ifdef CONFIG_IPV6_SUBTREES
1212		if (FIB6_SUBTREE(pn) == fn) {
1213			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1214			FIB6_SUBTREE(pn) = NULL;
1215			nstate = FWS_L;
1216		} else {
1217			WARN_ON(fn->fn_flags & RTN_ROOT);
1218#endif
1219			if (pn->right == fn)
1220				pn->right = child;
1221			else if (pn->left == fn)
1222				pn->left = child;
1223#if RT6_DEBUG >= 2
1224			else
1225				WARN_ON(1);
1226#endif
1227			if (child)
1228				child->parent = pn;
1229			nstate = FWS_R;
1230#ifdef CONFIG_IPV6_SUBTREES
1231		}
1232#endif
1233
1234		read_lock(&fib6_walker_lock);
1235		FOR_WALKERS(w) {
1236			if (!child) {
1237				if (w->root == fn) {
1238					w->root = w->node = NULL;
1239					RT6_TRACE("W %p adjusted by delroot 1\n", w);
1240				} else if (w->node == fn) {
1241					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1242					w->node = pn;
1243					w->state = nstate;
1244				}
1245			} else {
1246				if (w->root == fn) {
1247					w->root = child;
1248					RT6_TRACE("W %p adjusted by delroot 2\n", w);
1249				}
1250				if (w->node == fn) {
1251					w->node = child;
1252					if (children&2) {
1253						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1254						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1255					} else {
1256						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1257						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1258					}
1259				}
1260			}
1261		}
1262		read_unlock(&fib6_walker_lock);
1263
1264		node_free(fn);
1265		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1266			return pn;
1267
1268		rt6_release(pn->leaf);
1269		pn->leaf = NULL;
1270		fn = pn;
1271	}
1272}
1273
1274static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1275			   struct nl_info *info)
1276{
1277	struct fib6_walker *w;
1278	struct rt6_info *rt = *rtp;
1279	struct net *net = info->nl_net;
1280
1281	RT6_TRACE("fib6_del_route\n");
1282
1283	/* Unlink it */
1284	*rtp = rt->dst.rt6_next;
1285	rt->rt6i_node = NULL;
1286	net->ipv6.rt6_stats->fib_rt_entries--;
1287	net->ipv6.rt6_stats->fib_discarded_routes++;
1288
1289	/* Reset round-robin state, if necessary */
1290	if (fn->rr_ptr == rt)
1291		fn->rr_ptr = NULL;
1292
1293	/* Remove this entry from other siblings */
1294	if (rt->rt6i_nsiblings) {
1295		struct rt6_info *sibling, *next_sibling;
1296
1297		list_for_each_entry_safe(sibling, next_sibling,
1298					 &rt->rt6i_siblings, rt6i_siblings)
1299			sibling->rt6i_nsiblings--;
1300		rt->rt6i_nsiblings = 0;
1301		list_del_init(&rt->rt6i_siblings);
1302	}
1303
1304	/* Adjust walkers */
1305	read_lock(&fib6_walker_lock);
1306	FOR_WALKERS(w) {
1307		if (w->state == FWS_C && w->leaf == rt) {
1308			RT6_TRACE("walker %p adjusted by delroute\n", w);
1309			w->leaf = rt->dst.rt6_next;
1310			if (!w->leaf)
1311				w->state = FWS_U;
1312		}
1313	}
1314	read_unlock(&fib6_walker_lock);
1315
1316	rt->dst.rt6_next = NULL;
1317
1318	/* If it was last route, expunge its radix tree node */
1319	if (!fn->leaf) {
1320		fn->fn_flags &= ~RTN_RTINFO;
1321		net->ipv6.rt6_stats->fib_route_nodes--;
1322		fn = fib6_repair_tree(net, fn);
1323	}
1324
1325	if (atomic_read(&rt->rt6i_ref) != 1) {
1326		/* This route is used as dummy address holder in some split
1327		 * nodes. It is not leaked, but it still holds other resources,
1328		 * which must be released in time. So, scan ascendant nodes
1329		 * and replace dummy references to this route with references
1330		 * to still alive ones.
1331		 */
1332		while (fn) {
1333			if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1334				fn->leaf = fib6_find_prefix(net, fn);
1335				atomic_inc(&fn->leaf->rt6i_ref);
1336				rt6_release(rt);
1337			}
1338			fn = fn->parent;
1339		}
1340		/* No more references are possible at this point. */
1341		BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1342	}
1343
1344	inet6_rt_notify(RTM_DELROUTE, rt, info);
1345	rt6_release(rt);
1346}
1347
1348int fib6_del(struct rt6_info *rt, struct nl_info *info)
1349{
1350	struct net *net = info->nl_net;
1351	struct fib6_node *fn = rt->rt6i_node;
1352	struct rt6_info **rtp;
1353
1354#if RT6_DEBUG >= 2
1355	if (rt->dst.obsolete > 0) {
1356		WARN_ON(fn != NULL);
1357		return -ENOENT;
1358	}
1359#endif
1360	if (!fn || rt == net->ipv6.ip6_null_entry)
1361		return -ENOENT;
1362
1363	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1364
1365	if (!(rt->rt6i_flags & RTF_CACHE)) {
1366		struct fib6_node *pn = fn;
1367#ifdef CONFIG_IPV6_SUBTREES
1368		/* clones of this route might be in another subtree */
1369		if (rt->rt6i_src.plen) {
1370			while (!(pn->fn_flags & RTN_ROOT))
1371				pn = pn->parent;
1372			pn = pn->parent;
1373		}
1374#endif
1375		fib6_prune_clones(info->nl_net, pn);
1376	}
1377
1378	/*
1379	 *	Walk the leaf entries looking for ourself
1380	 */
1381
1382	for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1383		if (*rtp == rt) {
1384			fib6_del_route(fn, rtp, info);
1385			return 0;
1386		}
1387	}
1388	return -ENOENT;
1389}
1390
1391/*
1392 *	Tree traversal function.
1393 *
1394 *	Certainly, it is not interrupt safe.
1395 *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1396 *	It means, that we can modify tree during walking
1397 *	and use this function for garbage collection, clone pruning,
1398 *	cleaning tree when a device goes down etc. etc.
1399 *
1400 *	It guarantees that every node will be traversed,
1401 *	and that it will be traversed only once.
1402 *
1403 *	Callback function w->func may return:
1404 *	0 -> continue walking.
1405 *	positive value -> walking is suspended (used by tree dumps,
1406 *	and probably by gc, if it will be split to several slices)
1407 *	negative value -> terminate walking.
1408 *
1409 *	The function itself returns:
1410 *	0   -> walk is complete.
1411 *	>0  -> walk is incomplete (i.e. suspended)
1412 *	<0  -> walk is terminated by an error.
1413 */
1414
1415static int fib6_walk_continue(struct fib6_walker *w)
1416{
1417	struct fib6_node *fn, *pn;
1418
1419	for (;;) {
1420		fn = w->node;
1421		if (!fn)
1422			return 0;
1423
1424		if (w->prune && fn != w->root &&
1425		    fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1426			w->state = FWS_C;
1427			w->leaf = fn->leaf;
1428		}
1429		switch (w->state) {
1430#ifdef CONFIG_IPV6_SUBTREES
1431		case FWS_S:
1432			if (FIB6_SUBTREE(fn)) {
1433				w->node = FIB6_SUBTREE(fn);
1434				continue;
1435			}
1436			w->state = FWS_L;
1437#endif
1438		case FWS_L:
1439			if (fn->left) {
1440				w->node = fn->left;
1441				w->state = FWS_INIT;
1442				continue;
1443			}
1444			w->state = FWS_R;
1445		case FWS_R:
1446			if (fn->right) {
1447				w->node = fn->right;
1448				w->state = FWS_INIT;
1449				continue;
1450			}
1451			w->state = FWS_C;
1452			w->leaf = fn->leaf;
1453		case FWS_C:
1454			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1455				int err;
1456
1457				if (w->skip) {
1458					w->skip--;
1459					goto skip;
1460				}
1461
1462				err = w->func(w);
1463				if (err)
1464					return err;
1465
1466				w->count++;
1467				continue;
1468			}
1469skip:
1470			w->state = FWS_U;
1471		case FWS_U:
1472			if (fn == w->root)
1473				return 0;
1474			pn = fn->parent;
1475			w->node = pn;
1476#ifdef CONFIG_IPV6_SUBTREES
1477			if (FIB6_SUBTREE(pn) == fn) {
1478				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1479				w->state = FWS_L;
1480				continue;
1481			}
1482#endif
1483			if (pn->left == fn) {
1484				w->state = FWS_R;
1485				continue;
1486			}
1487			if (pn->right == fn) {
1488				w->state = FWS_C;
1489				w->leaf = w->node->leaf;
1490				continue;
1491			}
1492#if RT6_DEBUG >= 2
1493			WARN_ON(1);
1494#endif
1495		}
1496	}
1497}
1498
1499static int fib6_walk(struct fib6_walker *w)
1500{
1501	int res;
1502
1503	w->state = FWS_INIT;
1504	w->node = w->root;
1505
1506	fib6_walker_link(w);
1507	res = fib6_walk_continue(w);
1508	if (res <= 0)
1509		fib6_walker_unlink(w);
1510	return res;
1511}
1512
1513static int fib6_clean_node(struct fib6_walker *w)
1514{
1515	int res;
1516	struct rt6_info *rt;
1517	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1518	struct nl_info info = {
1519		.nl_net = c->net,
1520	};
1521
1522	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1523	    w->node->fn_sernum != c->sernum)
1524		w->node->fn_sernum = c->sernum;
1525
1526	if (!c->func) {
1527		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1528		w->leaf = NULL;
1529		return 0;
1530	}
1531
1532	for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1533		res = c->func(rt, c->arg);
1534		if (res < 0) {
1535			w->leaf = rt;
1536			res = fib6_del(rt, &info);
1537			if (res) {
1538#if RT6_DEBUG >= 2
1539				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1540					 __func__, rt, rt->rt6i_node, res);
1541#endif
1542				continue;
1543			}
1544			return 0;
1545		}
1546		WARN_ON(res != 0);
1547	}
1548	w->leaf = rt;
1549	return 0;
1550}
1551
1552/*
1553 *	Convenient frontend to tree walker.
1554 *
1555 *	func is called on each route.
1556 *		It may return -1 -> delete this route.
1557 *		              0  -> continue walking
1558 *
1559 *	prune==1 -> only immediate children of node (certainly,
1560 *	ignoring pure split nodes) will be scanned.
1561 */
1562
1563static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1564			    int (*func)(struct rt6_info *, void *arg),
1565			    bool prune, int sernum, void *arg)
1566{
1567	struct fib6_cleaner c;
1568
1569	c.w.root = root;
1570	c.w.func = fib6_clean_node;
1571	c.w.prune = prune;
1572	c.w.count = 0;
1573	c.w.skip = 0;
1574	c.func = func;
1575	c.sernum = sernum;
1576	c.arg = arg;
1577	c.net = net;
1578
1579	fib6_walk(&c.w);
1580}
1581
1582static void __fib6_clean_all(struct net *net,
1583			     int (*func)(struct rt6_info *, void *),
1584			     int sernum, void *arg)
1585{
1586	struct fib6_table *table;
1587	struct hlist_head *head;
1588	unsigned int h;
1589
1590	rcu_read_lock();
1591	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1592		head = &net->ipv6.fib_table_hash[h];
1593		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1594			write_lock_bh(&table->tb6_lock);
1595			fib6_clean_tree(net, &table->tb6_root,
1596					func, false, sernum, arg);
1597			write_unlock_bh(&table->tb6_lock);
1598		}
1599	}
1600	rcu_read_unlock();
1601}
1602
1603void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1604		    void *arg)
1605{
1606	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1607}
1608
1609static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1610{
1611	if (rt->rt6i_flags & RTF_CACHE) {
1612		RT6_TRACE("pruning clone %p\n", rt);
1613		return -1;
1614	}
1615
1616	return 0;
1617}
1618
1619static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1620{
1621	fib6_clean_tree(net, fn, fib6_prune_clone, true,
1622			FIB6_NO_SERNUM_CHANGE, NULL);
1623}
1624
1625static void fib6_flush_trees(struct net *net)
1626{
1627	int new_sernum = fib6_new_sernum(net);
1628
1629	__fib6_clean_all(net, NULL, new_sernum, NULL);
1630}
1631
1632/*
1633 *	Garbage collection
1634 */
1635
1636static struct fib6_gc_args
1637{
1638	int			timeout;
1639	int			more;
1640} gc_args;
1641
1642static int fib6_age(struct rt6_info *rt, void *arg)
1643{
1644	unsigned long now = jiffies;
1645
1646	/*
1647	 *	check addrconf expiration here.
1648	 *	Routes are expired even if they are in use.
1649	 *
1650	 *	Also age clones. Note, that clones are aged out
1651	 *	only if they are not in use now.
1652	 */
1653
1654	if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1655		if (time_after(now, rt->dst.expires)) {
1656			RT6_TRACE("expiring %p\n", rt);
1657			return -1;
1658		}
1659		gc_args.more++;
1660	} else if (rt->rt6i_flags & RTF_CACHE) {
1661		if (atomic_read(&rt->dst.__refcnt) == 0 &&
1662		    time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1663			RT6_TRACE("aging clone %p\n", rt);
1664			return -1;
1665		} else if (rt->rt6i_flags & RTF_GATEWAY) {
1666			struct neighbour *neigh;
1667			__u8 neigh_flags = 0;
1668
1669			neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1670			if (neigh) {
1671				neigh_flags = neigh->flags;
1672				neigh_release(neigh);
1673			}
1674			if (!(neigh_flags & NTF_ROUTER)) {
1675				RT6_TRACE("purging route %p via non-router but gateway\n",
1676					  rt);
1677				return -1;
1678			}
1679		}
1680		gc_args.more++;
1681	}
1682
1683	return 0;
1684}
1685
1686static DEFINE_SPINLOCK(fib6_gc_lock);
1687
1688void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1689{
1690	unsigned long now;
1691
1692	if (force) {
1693		spin_lock_bh(&fib6_gc_lock);
1694	} else if (!spin_trylock_bh(&fib6_gc_lock)) {
1695		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1696		return;
1697	}
1698	gc_args.timeout = expires ? (int)expires :
1699			  net->ipv6.sysctl.ip6_rt_gc_interval;
1700
1701	gc_args.more = icmp6_dst_gc();
1702
1703	fib6_clean_all(net, fib6_age, NULL);
1704	now = jiffies;
1705	net->ipv6.ip6_rt_last_gc = now;
1706
1707	if (gc_args.more)
1708		mod_timer(&net->ipv6.ip6_fib_timer,
1709			  round_jiffies(now
1710					+ net->ipv6.sysctl.ip6_rt_gc_interval));
1711	else
1712		del_timer(&net->ipv6.ip6_fib_timer);
1713	spin_unlock_bh(&fib6_gc_lock);
1714}
1715
1716static void fib6_gc_timer_cb(unsigned long arg)
1717{
1718	fib6_run_gc(0, (struct net *)arg, true);
1719}
1720
1721static int __net_init fib6_net_init(struct net *net)
1722{
1723	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1724
1725	setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1726
1727	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1728	if (!net->ipv6.rt6_stats)
1729		goto out_timer;
1730
1731	/* Avoid false sharing : Use at least a full cache line */
1732	size = max_t(size_t, size, L1_CACHE_BYTES);
1733
1734	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1735	if (!net->ipv6.fib_table_hash)
1736		goto out_rt6_stats;
1737
1738	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1739					  GFP_KERNEL);
1740	if (!net->ipv6.fib6_main_tbl)
1741		goto out_fib_table_hash;
1742
1743	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1744	net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1745	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1746		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1747	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1748
1749#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1750	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1751					   GFP_KERNEL);
1752	if (!net->ipv6.fib6_local_tbl)
1753		goto out_fib6_main_tbl;
1754	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1755	net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1756	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1757		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1758	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1759#endif
1760	fib6_tables_init(net);
1761
1762	return 0;
1763
1764#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1765out_fib6_main_tbl:
1766	kfree(net->ipv6.fib6_main_tbl);
1767#endif
1768out_fib_table_hash:
1769	kfree(net->ipv6.fib_table_hash);
1770out_rt6_stats:
1771	kfree(net->ipv6.rt6_stats);
1772out_timer:
1773	return -ENOMEM;
1774}
1775
1776static void fib6_net_exit(struct net *net)
1777{
1778	rt6_ifdown(net, NULL);
1779	del_timer_sync(&net->ipv6.ip6_fib_timer);
1780
1781#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1782	inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1783	kfree(net->ipv6.fib6_local_tbl);
1784#endif
1785	inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1786	kfree(net->ipv6.fib6_main_tbl);
1787	kfree(net->ipv6.fib_table_hash);
1788	kfree(net->ipv6.rt6_stats);
1789}
1790
1791static struct pernet_operations fib6_net_ops = {
1792	.init = fib6_net_init,
1793	.exit = fib6_net_exit,
1794};
1795
1796int __init fib6_init(void)
1797{
1798	int ret = -ENOMEM;
1799
1800	fib6_node_kmem = kmem_cache_create("fib6_nodes",
1801					   sizeof(struct fib6_node),
1802					   0, SLAB_HWCACHE_ALIGN,
1803					   NULL);
1804	if (!fib6_node_kmem)
1805		goto out;
1806
1807	ret = register_pernet_subsys(&fib6_net_ops);
1808	if (ret)
1809		goto out_kmem_cache_create;
1810
1811	ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1812			      NULL);
1813	if (ret)
1814		goto out_unregister_subsys;
1815
1816	__fib6_flush_trees = fib6_flush_trees;
1817out:
1818	return ret;
1819
1820out_unregister_subsys:
1821	unregister_pernet_subsys(&fib6_net_ops);
1822out_kmem_cache_create:
1823	kmem_cache_destroy(fib6_node_kmem);
1824	goto out;
1825}
1826
1827void fib6_gc_cleanup(void)
1828{
1829	unregister_pernet_subsys(&fib6_net_ops);
1830	kmem_cache_destroy(fib6_node_kmem);
1831}
1832
1833#ifdef CONFIG_PROC_FS
1834
1835struct ipv6_route_iter {
1836	struct seq_net_private p;
1837	struct fib6_walker w;
1838	loff_t skip;
1839	struct fib6_table *tbl;
1840	int sernum;
1841};
1842
1843static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1844{
1845	struct rt6_info *rt = v;
1846	struct ipv6_route_iter *iter = seq->private;
1847
1848	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1849
1850#ifdef CONFIG_IPV6_SUBTREES
1851	seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1852#else
1853	seq_puts(seq, "00000000000000000000000000000000 00 ");
1854#endif
1855	if (rt->rt6i_flags & RTF_GATEWAY)
1856		seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1857	else
1858		seq_puts(seq, "00000000000000000000000000000000");
1859
1860	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1861		   rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1862		   rt->dst.__use, rt->rt6i_flags,
1863		   rt->dst.dev ? rt->dst.dev->name : "");
1864	iter->w.leaf = NULL;
1865	return 0;
1866}
1867
1868static int ipv6_route_yield(struct fib6_walker *w)
1869{
1870	struct ipv6_route_iter *iter = w->args;
1871
1872	if (!iter->skip)
1873		return 1;
1874
1875	do {
1876		iter->w.leaf = iter->w.leaf->dst.rt6_next;
1877		iter->skip--;
1878		if (!iter->skip && iter->w.leaf)
1879			return 1;
1880	} while (iter->w.leaf);
1881
1882	return 0;
1883}
1884
1885static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1886{
1887	memset(&iter->w, 0, sizeof(iter->w));
1888	iter->w.func = ipv6_route_yield;
1889	iter->w.root = &iter->tbl->tb6_root;
1890	iter->w.state = FWS_INIT;
1891	iter->w.node = iter->w.root;
1892	iter->w.args = iter;
1893	iter->sernum = iter->w.root->fn_sernum;
1894	INIT_LIST_HEAD(&iter->w.lh);
1895	fib6_walker_link(&iter->w);
1896}
1897
1898static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1899						    struct net *net)
1900{
1901	unsigned int h;
1902	struct hlist_node *node;
1903
1904	if (tbl) {
1905		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1906		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1907	} else {
1908		h = 0;
1909		node = NULL;
1910	}
1911
1912	while (!node && h < FIB6_TABLE_HASHSZ) {
1913		node = rcu_dereference_bh(
1914			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1915	}
1916	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1917}
1918
1919static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1920{
1921	if (iter->sernum != iter->w.root->fn_sernum) {
1922		iter->sernum = iter->w.root->fn_sernum;
1923		iter->w.state = FWS_INIT;
1924		iter->w.node = iter->w.root;
1925		WARN_ON(iter->w.skip);
1926		iter->w.skip = iter->w.count;
1927	}
1928}
1929
1930static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1931{
1932	int r;
1933	struct rt6_info *n;
1934	struct net *net = seq_file_net(seq);
1935	struct ipv6_route_iter *iter = seq->private;
1936
1937	if (!v)
1938		goto iter_table;
1939
1940	n = ((struct rt6_info *)v)->dst.rt6_next;
1941	if (n) {
1942		++*pos;
1943		return n;
1944	}
1945
1946iter_table:
1947	ipv6_route_check_sernum(iter);
1948	read_lock(&iter->tbl->tb6_lock);
1949	r = fib6_walk_continue(&iter->w);
1950	read_unlock(&iter->tbl->tb6_lock);
1951	if (r > 0) {
1952		if (v)
1953			++*pos;
1954		return iter->w.leaf;
1955	} else if (r < 0) {
1956		fib6_walker_unlink(&iter->w);
1957		return NULL;
1958	}
1959	fib6_walker_unlink(&iter->w);
1960
1961	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
1962	if (!iter->tbl)
1963		return NULL;
1964
1965	ipv6_route_seq_setup_walk(iter);
1966	goto iter_table;
1967}
1968
1969static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
1970	__acquires(RCU_BH)
1971{
1972	struct net *net = seq_file_net(seq);
1973	struct ipv6_route_iter *iter = seq->private;
1974
1975	rcu_read_lock_bh();
1976	iter->tbl = ipv6_route_seq_next_table(NULL, net);
1977	iter->skip = *pos;
1978
1979	if (iter->tbl) {
1980		ipv6_route_seq_setup_walk(iter);
1981		return ipv6_route_seq_next(seq, NULL, pos);
1982	} else {
1983		return NULL;
1984	}
1985}
1986
1987static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
1988{
1989	struct fib6_walker *w = &iter->w;
1990	return w->node && !(w->state == FWS_U && w->node == w->root);
1991}
1992
1993static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
1994	__releases(RCU_BH)
1995{
1996	struct ipv6_route_iter *iter = seq->private;
1997
1998	if (ipv6_route_iter_active(iter))
1999		fib6_walker_unlink(&iter->w);
2000
2001	rcu_read_unlock_bh();
2002}
2003
2004static const struct seq_operations ipv6_route_seq_ops = {
2005	.start	= ipv6_route_seq_start,
2006	.next	= ipv6_route_seq_next,
2007	.stop	= ipv6_route_seq_stop,
2008	.show	= ipv6_route_seq_show
2009};
2010
2011int ipv6_route_open(struct inode *inode, struct file *file)
2012{
2013	return seq_open_net(inode, file, &ipv6_route_seq_ops,
2014			    sizeof(struct ipv6_route_iter));
2015}
2016
2017#endif /* CONFIG_PROC_FS */
2018