1/*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/init.h>
23#include <linux/workqueue.h>
24#include <linux/capability.h>
25#include <linux/list.h>
26#include <linux/mutex.h>
27#include <linux/rfkill.h>
28#include <linux/sched.h>
29#include <linux/spinlock.h>
30#include <linux/device.h>
31#include <linux/miscdevice.h>
32#include <linux/wait.h>
33#include <linux/poll.h>
34#include <linux/fs.h>
35#include <linux/slab.h>
36
37#include "rfkill.h"
38
39#define POLL_INTERVAL		(5 * HZ)
40
41#define RFKILL_BLOCK_HW		BIT(0)
42#define RFKILL_BLOCK_SW		BIT(1)
43#define RFKILL_BLOCK_SW_PREV	BIT(2)
44#define RFKILL_BLOCK_ANY	(RFKILL_BLOCK_HW |\
45				 RFKILL_BLOCK_SW |\
46				 RFKILL_BLOCK_SW_PREV)
47#define RFKILL_BLOCK_SW_SETCALL	BIT(31)
48
49struct rfkill {
50	spinlock_t		lock;
51
52	const char		*name;
53	enum rfkill_type	type;
54
55	unsigned long		state;
56
57	u32			idx;
58
59	bool			registered;
60	bool			persistent;
61
62	const struct rfkill_ops	*ops;
63	void			*data;
64
65#ifdef CONFIG_RFKILL_LEDS
66	struct led_trigger	led_trigger;
67	const char		*ledtrigname;
68#endif
69
70	struct device		dev;
71	struct list_head	node;
72
73	struct delayed_work	poll_work;
74	struct work_struct	uevent_work;
75	struct work_struct	sync_work;
76};
77#define to_rfkill(d)	container_of(d, struct rfkill, dev)
78
79struct rfkill_int_event {
80	struct list_head	list;
81	struct rfkill_event	ev;
82};
83
84struct rfkill_data {
85	struct list_head	list;
86	struct list_head	events;
87	struct mutex		mtx;
88	wait_queue_head_t	read_wait;
89	bool			input_handler;
90};
91
92
93MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
94MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
95MODULE_DESCRIPTION("RF switch support");
96MODULE_LICENSE("GPL");
97
98
99/*
100 * The locking here should be made much smarter, we currently have
101 * a bit of a stupid situation because drivers might want to register
102 * the rfkill struct under their own lock, and take this lock during
103 * rfkill method calls -- which will cause an AB-BA deadlock situation.
104 *
105 * To fix that, we need to rework this code here to be mostly lock-free
106 * and only use the mutex for list manipulations, not to protect the
107 * various other global variables. Then we can avoid holding the mutex
108 * around driver operations, and all is happy.
109 */
110static LIST_HEAD(rfkill_list);	/* list of registered rf switches */
111static DEFINE_MUTEX(rfkill_global_mutex);
112static LIST_HEAD(rfkill_fds);	/* list of open fds of /dev/rfkill */
113
114static unsigned int rfkill_default_state = 1;
115module_param_named(default_state, rfkill_default_state, uint, 0444);
116MODULE_PARM_DESC(default_state,
117		 "Default initial state for all radio types, 0 = radio off");
118
119static struct {
120	bool cur, sav;
121} rfkill_global_states[NUM_RFKILL_TYPES];
122
123static bool rfkill_epo_lock_active;
124
125
126#ifdef CONFIG_RFKILL_LEDS
127static void rfkill_led_trigger_event(struct rfkill *rfkill)
128{
129	struct led_trigger *trigger;
130
131	if (!rfkill->registered)
132		return;
133
134	trigger = &rfkill->led_trigger;
135
136	if (rfkill->state & RFKILL_BLOCK_ANY)
137		led_trigger_event(trigger, LED_OFF);
138	else
139		led_trigger_event(trigger, LED_FULL);
140}
141
142static void rfkill_led_trigger_activate(struct led_classdev *led)
143{
144	struct rfkill *rfkill;
145
146	rfkill = container_of(led->trigger, struct rfkill, led_trigger);
147
148	rfkill_led_trigger_event(rfkill);
149}
150
151const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
152{
153	return rfkill->led_trigger.name;
154}
155EXPORT_SYMBOL(rfkill_get_led_trigger_name);
156
157void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
158{
159	BUG_ON(!rfkill);
160
161	rfkill->ledtrigname = name;
162}
163EXPORT_SYMBOL(rfkill_set_led_trigger_name);
164
165static int rfkill_led_trigger_register(struct rfkill *rfkill)
166{
167	rfkill->led_trigger.name = rfkill->ledtrigname
168					? : dev_name(&rfkill->dev);
169	rfkill->led_trigger.activate = rfkill_led_trigger_activate;
170	return led_trigger_register(&rfkill->led_trigger);
171}
172
173static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
174{
175	led_trigger_unregister(&rfkill->led_trigger);
176}
177#else
178static void rfkill_led_trigger_event(struct rfkill *rfkill)
179{
180}
181
182static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
183{
184	return 0;
185}
186
187static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
188{
189}
190#endif /* CONFIG_RFKILL_LEDS */
191
192static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
193			      enum rfkill_operation op)
194{
195	unsigned long flags;
196
197	ev->idx = rfkill->idx;
198	ev->type = rfkill->type;
199	ev->op = op;
200
201	spin_lock_irqsave(&rfkill->lock, flags);
202	ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
203	ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
204					RFKILL_BLOCK_SW_PREV));
205	spin_unlock_irqrestore(&rfkill->lock, flags);
206}
207
208static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
209{
210	struct rfkill_data *data;
211	struct rfkill_int_event *ev;
212
213	list_for_each_entry(data, &rfkill_fds, list) {
214		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
215		if (!ev)
216			continue;
217		rfkill_fill_event(&ev->ev, rfkill, op);
218		mutex_lock(&data->mtx);
219		list_add_tail(&ev->list, &data->events);
220		mutex_unlock(&data->mtx);
221		wake_up_interruptible(&data->read_wait);
222	}
223}
224
225static void rfkill_event(struct rfkill *rfkill)
226{
227	if (!rfkill->registered)
228		return;
229
230	kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
231
232	/* also send event to /dev/rfkill */
233	rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
234}
235
236static bool __rfkill_set_hw_state(struct rfkill *rfkill,
237				  bool blocked, bool *change)
238{
239	unsigned long flags;
240	bool prev, any;
241
242	BUG_ON(!rfkill);
243
244	spin_lock_irqsave(&rfkill->lock, flags);
245	prev = !!(rfkill->state & RFKILL_BLOCK_HW);
246	if (blocked)
247		rfkill->state |= RFKILL_BLOCK_HW;
248	else
249		rfkill->state &= ~RFKILL_BLOCK_HW;
250	*change = prev != blocked;
251	any = !!(rfkill->state & RFKILL_BLOCK_ANY);
252	spin_unlock_irqrestore(&rfkill->lock, flags);
253
254	rfkill_led_trigger_event(rfkill);
255
256	return any;
257}
258
259/**
260 * rfkill_set_block - wrapper for set_block method
261 *
262 * @rfkill: the rfkill struct to use
263 * @blocked: the new software state
264 *
265 * Calls the set_block method (when applicable) and handles notifications
266 * etc. as well.
267 */
268static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
269{
270	unsigned long flags;
271	bool prev, curr;
272	int err;
273
274	if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
275		return;
276
277	/*
278	 * Some platforms (...!) generate input events which affect the
279	 * _hard_ kill state -- whenever something tries to change the
280	 * current software state query the hardware state too.
281	 */
282	if (rfkill->ops->query)
283		rfkill->ops->query(rfkill, rfkill->data);
284
285	spin_lock_irqsave(&rfkill->lock, flags);
286	prev = rfkill->state & RFKILL_BLOCK_SW;
287
288	if (rfkill->state & RFKILL_BLOCK_SW)
289		rfkill->state |= RFKILL_BLOCK_SW_PREV;
290	else
291		rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
292
293	if (blocked)
294		rfkill->state |= RFKILL_BLOCK_SW;
295	else
296		rfkill->state &= ~RFKILL_BLOCK_SW;
297
298	rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
299	spin_unlock_irqrestore(&rfkill->lock, flags);
300
301	err = rfkill->ops->set_block(rfkill->data, blocked);
302
303	spin_lock_irqsave(&rfkill->lock, flags);
304	if (err) {
305		/*
306		 * Failed -- reset status to _prev, this may be different
307		 * from what set set _PREV to earlier in this function
308		 * if rfkill_set_sw_state was invoked.
309		 */
310		if (rfkill->state & RFKILL_BLOCK_SW_PREV)
311			rfkill->state |= RFKILL_BLOCK_SW;
312		else
313			rfkill->state &= ~RFKILL_BLOCK_SW;
314	}
315	rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
316	rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
317	curr = rfkill->state & RFKILL_BLOCK_SW;
318	spin_unlock_irqrestore(&rfkill->lock, flags);
319
320	rfkill_led_trigger_event(rfkill);
321
322	if (prev != curr)
323		rfkill_event(rfkill);
324}
325
326#ifdef CONFIG_RFKILL_INPUT
327static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
328
329/**
330 * __rfkill_switch_all - Toggle state of all switches of given type
331 * @type: type of interfaces to be affected
332 * @blocked: the new state
333 *
334 * This function sets the state of all switches of given type,
335 * unless a specific switch is claimed by userspace (in which case,
336 * that switch is left alone) or suspended.
337 *
338 * Caller must have acquired rfkill_global_mutex.
339 */
340static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
341{
342	struct rfkill *rfkill;
343
344	rfkill_global_states[type].cur = blocked;
345	list_for_each_entry(rfkill, &rfkill_list, node) {
346		if (rfkill->type != type && type != RFKILL_TYPE_ALL)
347			continue;
348
349		rfkill_set_block(rfkill, blocked);
350	}
351}
352
353/**
354 * rfkill_switch_all - Toggle state of all switches of given type
355 * @type: type of interfaces to be affected
356 * @blocked: the new state
357 *
358 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
359 * Please refer to __rfkill_switch_all() for details.
360 *
361 * Does nothing if the EPO lock is active.
362 */
363void rfkill_switch_all(enum rfkill_type type, bool blocked)
364{
365	if (atomic_read(&rfkill_input_disabled))
366		return;
367
368	mutex_lock(&rfkill_global_mutex);
369
370	if (!rfkill_epo_lock_active)
371		__rfkill_switch_all(type, blocked);
372
373	mutex_unlock(&rfkill_global_mutex);
374}
375
376/**
377 * rfkill_epo - emergency power off all transmitters
378 *
379 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
380 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
381 *
382 * The global state before the EPO is saved and can be restored later
383 * using rfkill_restore_states().
384 */
385void rfkill_epo(void)
386{
387	struct rfkill *rfkill;
388	int i;
389
390	if (atomic_read(&rfkill_input_disabled))
391		return;
392
393	mutex_lock(&rfkill_global_mutex);
394
395	rfkill_epo_lock_active = true;
396	list_for_each_entry(rfkill, &rfkill_list, node)
397		rfkill_set_block(rfkill, true);
398
399	for (i = 0; i < NUM_RFKILL_TYPES; i++) {
400		rfkill_global_states[i].sav = rfkill_global_states[i].cur;
401		rfkill_global_states[i].cur = true;
402	}
403
404	mutex_unlock(&rfkill_global_mutex);
405}
406
407/**
408 * rfkill_restore_states - restore global states
409 *
410 * Restore (and sync switches to) the global state from the
411 * states in rfkill_default_states.  This can undo the effects of
412 * a call to rfkill_epo().
413 */
414void rfkill_restore_states(void)
415{
416	int i;
417
418	if (atomic_read(&rfkill_input_disabled))
419		return;
420
421	mutex_lock(&rfkill_global_mutex);
422
423	rfkill_epo_lock_active = false;
424	for (i = 0; i < NUM_RFKILL_TYPES; i++)
425		__rfkill_switch_all(i, rfkill_global_states[i].sav);
426	mutex_unlock(&rfkill_global_mutex);
427}
428
429/**
430 * rfkill_remove_epo_lock - unlock state changes
431 *
432 * Used by rfkill-input manually unlock state changes, when
433 * the EPO switch is deactivated.
434 */
435void rfkill_remove_epo_lock(void)
436{
437	if (atomic_read(&rfkill_input_disabled))
438		return;
439
440	mutex_lock(&rfkill_global_mutex);
441	rfkill_epo_lock_active = false;
442	mutex_unlock(&rfkill_global_mutex);
443}
444
445/**
446 * rfkill_is_epo_lock_active - returns true EPO is active
447 *
448 * Returns 0 (false) if there is NOT an active EPO contidion,
449 * and 1 (true) if there is an active EPO contition, which
450 * locks all radios in one of the BLOCKED states.
451 *
452 * Can be called in atomic context.
453 */
454bool rfkill_is_epo_lock_active(void)
455{
456	return rfkill_epo_lock_active;
457}
458
459/**
460 * rfkill_get_global_sw_state - returns global state for a type
461 * @type: the type to get the global state of
462 *
463 * Returns the current global state for a given wireless
464 * device type.
465 */
466bool rfkill_get_global_sw_state(const enum rfkill_type type)
467{
468	return rfkill_global_states[type].cur;
469}
470#endif
471
472
473bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
474{
475	bool ret, change;
476
477	ret = __rfkill_set_hw_state(rfkill, blocked, &change);
478
479	if (!rfkill->registered)
480		return ret;
481
482	if (change)
483		schedule_work(&rfkill->uevent_work);
484
485	return ret;
486}
487EXPORT_SYMBOL(rfkill_set_hw_state);
488
489static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
490{
491	u32 bit = RFKILL_BLOCK_SW;
492
493	/* if in a ops->set_block right now, use other bit */
494	if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
495		bit = RFKILL_BLOCK_SW_PREV;
496
497	if (blocked)
498		rfkill->state |= bit;
499	else
500		rfkill->state &= ~bit;
501}
502
503bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
504{
505	unsigned long flags;
506	bool prev, hwblock;
507
508	BUG_ON(!rfkill);
509
510	spin_lock_irqsave(&rfkill->lock, flags);
511	prev = !!(rfkill->state & RFKILL_BLOCK_SW);
512	__rfkill_set_sw_state(rfkill, blocked);
513	hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
514	blocked = blocked || hwblock;
515	spin_unlock_irqrestore(&rfkill->lock, flags);
516
517	if (!rfkill->registered)
518		return blocked;
519
520	if (prev != blocked && !hwblock)
521		schedule_work(&rfkill->uevent_work);
522
523	rfkill_led_trigger_event(rfkill);
524
525	return blocked;
526}
527EXPORT_SYMBOL(rfkill_set_sw_state);
528
529void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
530{
531	unsigned long flags;
532
533	BUG_ON(!rfkill);
534	BUG_ON(rfkill->registered);
535
536	spin_lock_irqsave(&rfkill->lock, flags);
537	__rfkill_set_sw_state(rfkill, blocked);
538	rfkill->persistent = true;
539	spin_unlock_irqrestore(&rfkill->lock, flags);
540}
541EXPORT_SYMBOL(rfkill_init_sw_state);
542
543void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
544{
545	unsigned long flags;
546	bool swprev, hwprev;
547
548	BUG_ON(!rfkill);
549
550	spin_lock_irqsave(&rfkill->lock, flags);
551
552	/*
553	 * No need to care about prev/setblock ... this is for uevent only
554	 * and that will get triggered by rfkill_set_block anyway.
555	 */
556	swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
557	hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
558	__rfkill_set_sw_state(rfkill, sw);
559	if (hw)
560		rfkill->state |= RFKILL_BLOCK_HW;
561	else
562		rfkill->state &= ~RFKILL_BLOCK_HW;
563
564	spin_unlock_irqrestore(&rfkill->lock, flags);
565
566	if (!rfkill->registered) {
567		rfkill->persistent = true;
568	} else {
569		if (swprev != sw || hwprev != hw)
570			schedule_work(&rfkill->uevent_work);
571
572		rfkill_led_trigger_event(rfkill);
573	}
574}
575EXPORT_SYMBOL(rfkill_set_states);
576
577static ssize_t name_show(struct device *dev, struct device_attribute *attr,
578			 char *buf)
579{
580	struct rfkill *rfkill = to_rfkill(dev);
581
582	return sprintf(buf, "%s\n", rfkill->name);
583}
584static DEVICE_ATTR_RO(name);
585
586static const char *rfkill_get_type_str(enum rfkill_type type)
587{
588	BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1);
589
590	switch (type) {
591	case RFKILL_TYPE_WLAN:
592		return "wlan";
593	case RFKILL_TYPE_BLUETOOTH:
594		return "bluetooth";
595	case RFKILL_TYPE_UWB:
596		return "ultrawideband";
597	case RFKILL_TYPE_WIMAX:
598		return "wimax";
599	case RFKILL_TYPE_WWAN:
600		return "wwan";
601	case RFKILL_TYPE_GPS:
602		return "gps";
603	case RFKILL_TYPE_FM:
604		return "fm";
605	case RFKILL_TYPE_NFC:
606		return "nfc";
607	default:
608		BUG();
609	}
610}
611
612static ssize_t type_show(struct device *dev, struct device_attribute *attr,
613			 char *buf)
614{
615	struct rfkill *rfkill = to_rfkill(dev);
616
617	return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
618}
619static DEVICE_ATTR_RO(type);
620
621static ssize_t index_show(struct device *dev, struct device_attribute *attr,
622			  char *buf)
623{
624	struct rfkill *rfkill = to_rfkill(dev);
625
626	return sprintf(buf, "%d\n", rfkill->idx);
627}
628static DEVICE_ATTR_RO(index);
629
630static ssize_t persistent_show(struct device *dev,
631			       struct device_attribute *attr, char *buf)
632{
633	struct rfkill *rfkill = to_rfkill(dev);
634
635	return sprintf(buf, "%d\n", rfkill->persistent);
636}
637static DEVICE_ATTR_RO(persistent);
638
639static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
640			 char *buf)
641{
642	struct rfkill *rfkill = to_rfkill(dev);
643
644	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
645}
646static DEVICE_ATTR_RO(hard);
647
648static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
649			 char *buf)
650{
651	struct rfkill *rfkill = to_rfkill(dev);
652
653	return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
654}
655
656static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
657			  const char *buf, size_t count)
658{
659	struct rfkill *rfkill = to_rfkill(dev);
660	unsigned long state;
661	int err;
662
663	if (!capable(CAP_NET_ADMIN))
664		return -EPERM;
665
666	err = kstrtoul(buf, 0, &state);
667	if (err)
668		return err;
669
670	if (state > 1 )
671		return -EINVAL;
672
673	mutex_lock(&rfkill_global_mutex);
674	rfkill_set_block(rfkill, state);
675	mutex_unlock(&rfkill_global_mutex);
676
677	return count;
678}
679static DEVICE_ATTR_RW(soft);
680
681static u8 user_state_from_blocked(unsigned long state)
682{
683	if (state & RFKILL_BLOCK_HW)
684		return RFKILL_USER_STATE_HARD_BLOCKED;
685	if (state & RFKILL_BLOCK_SW)
686		return RFKILL_USER_STATE_SOFT_BLOCKED;
687
688	return RFKILL_USER_STATE_UNBLOCKED;
689}
690
691static ssize_t state_show(struct device *dev, struct device_attribute *attr,
692			  char *buf)
693{
694	struct rfkill *rfkill = to_rfkill(dev);
695
696	return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
697}
698
699static ssize_t state_store(struct device *dev, struct device_attribute *attr,
700			   const char *buf, size_t count)
701{
702	struct rfkill *rfkill = to_rfkill(dev);
703	unsigned long state;
704	int err;
705
706	if (!capable(CAP_NET_ADMIN))
707		return -EPERM;
708
709	err = kstrtoul(buf, 0, &state);
710	if (err)
711		return err;
712
713	if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
714	    state != RFKILL_USER_STATE_UNBLOCKED)
715		return -EINVAL;
716
717	mutex_lock(&rfkill_global_mutex);
718	rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
719	mutex_unlock(&rfkill_global_mutex);
720
721	return count;
722}
723static DEVICE_ATTR_RW(state);
724
725static ssize_t claim_show(struct device *dev, struct device_attribute *attr,
726			  char *buf)
727{
728	return sprintf(buf, "%d\n", 0);
729}
730static DEVICE_ATTR_RO(claim);
731
732static struct attribute *rfkill_dev_attrs[] = {
733	&dev_attr_name.attr,
734	&dev_attr_type.attr,
735	&dev_attr_index.attr,
736	&dev_attr_persistent.attr,
737	&dev_attr_state.attr,
738	&dev_attr_claim.attr,
739	&dev_attr_soft.attr,
740	&dev_attr_hard.attr,
741	NULL,
742};
743ATTRIBUTE_GROUPS(rfkill_dev);
744
745static void rfkill_release(struct device *dev)
746{
747	struct rfkill *rfkill = to_rfkill(dev);
748
749	kfree(rfkill);
750}
751
752static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
753{
754	struct rfkill *rfkill = to_rfkill(dev);
755	unsigned long flags;
756	u32 state;
757	int error;
758
759	error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
760	if (error)
761		return error;
762	error = add_uevent_var(env, "RFKILL_TYPE=%s",
763			       rfkill_get_type_str(rfkill->type));
764	if (error)
765		return error;
766	spin_lock_irqsave(&rfkill->lock, flags);
767	state = rfkill->state;
768	spin_unlock_irqrestore(&rfkill->lock, flags);
769	error = add_uevent_var(env, "RFKILL_STATE=%d",
770			       user_state_from_blocked(state));
771	return error;
772}
773
774void rfkill_pause_polling(struct rfkill *rfkill)
775{
776	BUG_ON(!rfkill);
777
778	if (!rfkill->ops->poll)
779		return;
780
781	cancel_delayed_work_sync(&rfkill->poll_work);
782}
783EXPORT_SYMBOL(rfkill_pause_polling);
784
785#ifdef CONFIG_RFKILL_PM
786void rfkill_resume_polling(struct rfkill *rfkill)
787{
788	BUG_ON(!rfkill);
789
790	if (!rfkill->ops->poll)
791		return;
792
793	queue_delayed_work(system_power_efficient_wq,
794			   &rfkill->poll_work, 0);
795}
796EXPORT_SYMBOL(rfkill_resume_polling);
797
798static int rfkill_suspend(struct device *dev, pm_message_t state)
799{
800	struct rfkill *rfkill = to_rfkill(dev);
801
802	rfkill_pause_polling(rfkill);
803
804	return 0;
805}
806
807static int rfkill_resume(struct device *dev)
808{
809	struct rfkill *rfkill = to_rfkill(dev);
810	bool cur;
811
812	if (!rfkill->persistent) {
813		cur = !!(rfkill->state & RFKILL_BLOCK_SW);
814		rfkill_set_block(rfkill, cur);
815	}
816
817	rfkill_resume_polling(rfkill);
818
819	return 0;
820}
821#endif
822
823static struct class rfkill_class = {
824	.name		= "rfkill",
825	.dev_release	= rfkill_release,
826	.dev_groups	= rfkill_dev_groups,
827	.dev_uevent	= rfkill_dev_uevent,
828#ifdef CONFIG_RFKILL_PM
829	.suspend	= rfkill_suspend,
830	.resume		= rfkill_resume,
831#endif
832};
833
834bool rfkill_blocked(struct rfkill *rfkill)
835{
836	unsigned long flags;
837	u32 state;
838
839	spin_lock_irqsave(&rfkill->lock, flags);
840	state = rfkill->state;
841	spin_unlock_irqrestore(&rfkill->lock, flags);
842
843	return !!(state & RFKILL_BLOCK_ANY);
844}
845EXPORT_SYMBOL(rfkill_blocked);
846
847
848struct rfkill * __must_check rfkill_alloc(const char *name,
849					  struct device *parent,
850					  const enum rfkill_type type,
851					  const struct rfkill_ops *ops,
852					  void *ops_data)
853{
854	struct rfkill *rfkill;
855	struct device *dev;
856
857	if (WARN_ON(!ops))
858		return NULL;
859
860	if (WARN_ON(!ops->set_block))
861		return NULL;
862
863	if (WARN_ON(!name))
864		return NULL;
865
866	if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
867		return NULL;
868
869	rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
870	if (!rfkill)
871		return NULL;
872
873	spin_lock_init(&rfkill->lock);
874	INIT_LIST_HEAD(&rfkill->node);
875	rfkill->type = type;
876	rfkill->name = name;
877	rfkill->ops = ops;
878	rfkill->data = ops_data;
879
880	dev = &rfkill->dev;
881	dev->class = &rfkill_class;
882	dev->parent = parent;
883	device_initialize(dev);
884
885	return rfkill;
886}
887EXPORT_SYMBOL(rfkill_alloc);
888
889static void rfkill_poll(struct work_struct *work)
890{
891	struct rfkill *rfkill;
892
893	rfkill = container_of(work, struct rfkill, poll_work.work);
894
895	/*
896	 * Poll hardware state -- driver will use one of the
897	 * rfkill_set{,_hw,_sw}_state functions and use its
898	 * return value to update the current status.
899	 */
900	rfkill->ops->poll(rfkill, rfkill->data);
901
902	queue_delayed_work(system_power_efficient_wq,
903		&rfkill->poll_work,
904		round_jiffies_relative(POLL_INTERVAL));
905}
906
907static void rfkill_uevent_work(struct work_struct *work)
908{
909	struct rfkill *rfkill;
910
911	rfkill = container_of(work, struct rfkill, uevent_work);
912
913	mutex_lock(&rfkill_global_mutex);
914	rfkill_event(rfkill);
915	mutex_unlock(&rfkill_global_mutex);
916}
917
918static void rfkill_sync_work(struct work_struct *work)
919{
920	struct rfkill *rfkill;
921	bool cur;
922
923	rfkill = container_of(work, struct rfkill, sync_work);
924
925	mutex_lock(&rfkill_global_mutex);
926	cur = rfkill_global_states[rfkill->type].cur;
927	rfkill_set_block(rfkill, cur);
928	mutex_unlock(&rfkill_global_mutex);
929}
930
931int __must_check rfkill_register(struct rfkill *rfkill)
932{
933	static unsigned long rfkill_no;
934	struct device *dev = &rfkill->dev;
935	int error;
936
937	BUG_ON(!rfkill);
938
939	mutex_lock(&rfkill_global_mutex);
940
941	if (rfkill->registered) {
942		error = -EALREADY;
943		goto unlock;
944	}
945
946	rfkill->idx = rfkill_no;
947	dev_set_name(dev, "rfkill%lu", rfkill_no);
948	rfkill_no++;
949
950	list_add_tail(&rfkill->node, &rfkill_list);
951
952	error = device_add(dev);
953	if (error)
954		goto remove;
955
956	error = rfkill_led_trigger_register(rfkill);
957	if (error)
958		goto devdel;
959
960	rfkill->registered = true;
961
962	INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
963	INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
964	INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
965
966	if (rfkill->ops->poll)
967		queue_delayed_work(system_power_efficient_wq,
968			&rfkill->poll_work,
969			round_jiffies_relative(POLL_INTERVAL));
970
971	if (!rfkill->persistent || rfkill_epo_lock_active) {
972		schedule_work(&rfkill->sync_work);
973	} else {
974#ifdef CONFIG_RFKILL_INPUT
975		bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
976
977		if (!atomic_read(&rfkill_input_disabled))
978			__rfkill_switch_all(rfkill->type, soft_blocked);
979#endif
980	}
981
982	rfkill_send_events(rfkill, RFKILL_OP_ADD);
983
984	mutex_unlock(&rfkill_global_mutex);
985	return 0;
986
987 devdel:
988	device_del(&rfkill->dev);
989 remove:
990	list_del_init(&rfkill->node);
991 unlock:
992	mutex_unlock(&rfkill_global_mutex);
993	return error;
994}
995EXPORT_SYMBOL(rfkill_register);
996
997void rfkill_unregister(struct rfkill *rfkill)
998{
999	BUG_ON(!rfkill);
1000
1001	if (rfkill->ops->poll)
1002		cancel_delayed_work_sync(&rfkill->poll_work);
1003
1004	cancel_work_sync(&rfkill->uevent_work);
1005	cancel_work_sync(&rfkill->sync_work);
1006
1007	rfkill->registered = false;
1008
1009	device_del(&rfkill->dev);
1010
1011	mutex_lock(&rfkill_global_mutex);
1012	rfkill_send_events(rfkill, RFKILL_OP_DEL);
1013	list_del_init(&rfkill->node);
1014	mutex_unlock(&rfkill_global_mutex);
1015
1016	rfkill_led_trigger_unregister(rfkill);
1017}
1018EXPORT_SYMBOL(rfkill_unregister);
1019
1020void rfkill_destroy(struct rfkill *rfkill)
1021{
1022	if (rfkill)
1023		put_device(&rfkill->dev);
1024}
1025EXPORT_SYMBOL(rfkill_destroy);
1026
1027static int rfkill_fop_open(struct inode *inode, struct file *file)
1028{
1029	struct rfkill_data *data;
1030	struct rfkill *rfkill;
1031	struct rfkill_int_event *ev, *tmp;
1032
1033	data = kzalloc(sizeof(*data), GFP_KERNEL);
1034	if (!data)
1035		return -ENOMEM;
1036
1037	INIT_LIST_HEAD(&data->events);
1038	mutex_init(&data->mtx);
1039	init_waitqueue_head(&data->read_wait);
1040
1041	mutex_lock(&rfkill_global_mutex);
1042	mutex_lock(&data->mtx);
1043	/*
1044	 * start getting events from elsewhere but hold mtx to get
1045	 * startup events added first
1046	 */
1047
1048	list_for_each_entry(rfkill, &rfkill_list, node) {
1049		ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1050		if (!ev)
1051			goto free;
1052		rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1053		list_add_tail(&ev->list, &data->events);
1054	}
1055	list_add(&data->list, &rfkill_fds);
1056	mutex_unlock(&data->mtx);
1057	mutex_unlock(&rfkill_global_mutex);
1058
1059	file->private_data = data;
1060
1061	return nonseekable_open(inode, file);
1062
1063 free:
1064	mutex_unlock(&data->mtx);
1065	mutex_unlock(&rfkill_global_mutex);
1066	mutex_destroy(&data->mtx);
1067	list_for_each_entry_safe(ev, tmp, &data->events, list)
1068		kfree(ev);
1069	kfree(data);
1070	return -ENOMEM;
1071}
1072
1073static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1074{
1075	struct rfkill_data *data = file->private_data;
1076	unsigned int res = POLLOUT | POLLWRNORM;
1077
1078	poll_wait(file, &data->read_wait, wait);
1079
1080	mutex_lock(&data->mtx);
1081	if (!list_empty(&data->events))
1082		res = POLLIN | POLLRDNORM;
1083	mutex_unlock(&data->mtx);
1084
1085	return res;
1086}
1087
1088static bool rfkill_readable(struct rfkill_data *data)
1089{
1090	bool r;
1091
1092	mutex_lock(&data->mtx);
1093	r = !list_empty(&data->events);
1094	mutex_unlock(&data->mtx);
1095
1096	return r;
1097}
1098
1099static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1100			       size_t count, loff_t *pos)
1101{
1102	struct rfkill_data *data = file->private_data;
1103	struct rfkill_int_event *ev;
1104	unsigned long sz;
1105	int ret;
1106
1107	mutex_lock(&data->mtx);
1108
1109	while (list_empty(&data->events)) {
1110		if (file->f_flags & O_NONBLOCK) {
1111			ret = -EAGAIN;
1112			goto out;
1113		}
1114		mutex_unlock(&data->mtx);
1115		ret = wait_event_interruptible(data->read_wait,
1116					       rfkill_readable(data));
1117		mutex_lock(&data->mtx);
1118
1119		if (ret)
1120			goto out;
1121	}
1122
1123	ev = list_first_entry(&data->events, struct rfkill_int_event,
1124				list);
1125
1126	sz = min_t(unsigned long, sizeof(ev->ev), count);
1127	ret = sz;
1128	if (copy_to_user(buf, &ev->ev, sz))
1129		ret = -EFAULT;
1130
1131	list_del(&ev->list);
1132	kfree(ev);
1133 out:
1134	mutex_unlock(&data->mtx);
1135	return ret;
1136}
1137
1138static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1139				size_t count, loff_t *pos)
1140{
1141	struct rfkill *rfkill;
1142	struct rfkill_event ev;
1143
1144	/* we don't need the 'hard' variable but accept it */
1145	if (count < RFKILL_EVENT_SIZE_V1 - 1)
1146		return -EINVAL;
1147
1148	/*
1149	 * Copy as much data as we can accept into our 'ev' buffer,
1150	 * but tell userspace how much we've copied so it can determine
1151	 * our API version even in a write() call, if it cares.
1152	 */
1153	count = min(count, sizeof(ev));
1154	if (copy_from_user(&ev, buf, count))
1155		return -EFAULT;
1156
1157	if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1158		return -EINVAL;
1159
1160	if (ev.type >= NUM_RFKILL_TYPES)
1161		return -EINVAL;
1162
1163	mutex_lock(&rfkill_global_mutex);
1164
1165	if (ev.op == RFKILL_OP_CHANGE_ALL) {
1166		if (ev.type == RFKILL_TYPE_ALL) {
1167			enum rfkill_type i;
1168			for (i = 0; i < NUM_RFKILL_TYPES; i++)
1169				rfkill_global_states[i].cur = ev.soft;
1170		} else {
1171			rfkill_global_states[ev.type].cur = ev.soft;
1172		}
1173	}
1174
1175	list_for_each_entry(rfkill, &rfkill_list, node) {
1176		if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1177			continue;
1178
1179		if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1180			continue;
1181
1182		rfkill_set_block(rfkill, ev.soft);
1183	}
1184	mutex_unlock(&rfkill_global_mutex);
1185
1186	return count;
1187}
1188
1189static int rfkill_fop_release(struct inode *inode, struct file *file)
1190{
1191	struct rfkill_data *data = file->private_data;
1192	struct rfkill_int_event *ev, *tmp;
1193
1194	mutex_lock(&rfkill_global_mutex);
1195	list_del(&data->list);
1196	mutex_unlock(&rfkill_global_mutex);
1197
1198	mutex_destroy(&data->mtx);
1199	list_for_each_entry_safe(ev, tmp, &data->events, list)
1200		kfree(ev);
1201
1202#ifdef CONFIG_RFKILL_INPUT
1203	if (data->input_handler)
1204		if (atomic_dec_return(&rfkill_input_disabled) == 0)
1205			printk(KERN_DEBUG "rfkill: input handler enabled\n");
1206#endif
1207
1208	kfree(data);
1209
1210	return 0;
1211}
1212
1213#ifdef CONFIG_RFKILL_INPUT
1214static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1215			     unsigned long arg)
1216{
1217	struct rfkill_data *data = file->private_data;
1218
1219	if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1220		return -ENOSYS;
1221
1222	if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1223		return -ENOSYS;
1224
1225	mutex_lock(&data->mtx);
1226
1227	if (!data->input_handler) {
1228		if (atomic_inc_return(&rfkill_input_disabled) == 1)
1229			printk(KERN_DEBUG "rfkill: input handler disabled\n");
1230		data->input_handler = true;
1231	}
1232
1233	mutex_unlock(&data->mtx);
1234
1235	return 0;
1236}
1237#endif
1238
1239static const struct file_operations rfkill_fops = {
1240	.owner		= THIS_MODULE,
1241	.open		= rfkill_fop_open,
1242	.read		= rfkill_fop_read,
1243	.write		= rfkill_fop_write,
1244	.poll		= rfkill_fop_poll,
1245	.release	= rfkill_fop_release,
1246#ifdef CONFIG_RFKILL_INPUT
1247	.unlocked_ioctl	= rfkill_fop_ioctl,
1248	.compat_ioctl	= rfkill_fop_ioctl,
1249#endif
1250	.llseek		= no_llseek,
1251};
1252
1253static struct miscdevice rfkill_miscdev = {
1254	.name	= "rfkill",
1255	.fops	= &rfkill_fops,
1256	.minor	= MISC_DYNAMIC_MINOR,
1257};
1258
1259static int __init rfkill_init(void)
1260{
1261	int error;
1262	int i;
1263
1264	for (i = 0; i < NUM_RFKILL_TYPES; i++)
1265		rfkill_global_states[i].cur = !rfkill_default_state;
1266
1267	error = class_register(&rfkill_class);
1268	if (error)
1269		goto out;
1270
1271	error = misc_register(&rfkill_miscdev);
1272	if (error) {
1273		class_unregister(&rfkill_class);
1274		goto out;
1275	}
1276
1277#ifdef CONFIG_RFKILL_INPUT
1278	error = rfkill_handler_init();
1279	if (error) {
1280		misc_deregister(&rfkill_miscdev);
1281		class_unregister(&rfkill_class);
1282		goto out;
1283	}
1284#endif
1285
1286 out:
1287	return error;
1288}
1289subsys_initcall(rfkill_init);
1290
1291static void __exit rfkill_exit(void)
1292{
1293#ifdef CONFIG_RFKILL_INPUT
1294	rfkill_handler_exit();
1295#endif
1296	misc_deregister(&rfkill_miscdev);
1297	class_unregister(&rfkill_class);
1298}
1299module_exit(rfkill_exit);
1300