1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 *                 ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING.  If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 *    lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 *    La Monte H.P. Yarroll <piggy@acm.org>
34 *    Karl Knutson          <karl@athena.chicago.il.us>
35 *    Jon Grimm             <jgrimm@us.ibm.com>
36 *    Xingang Guo           <xingang.guo@intel.com>
37 *    Hui Huang             <hui.huang@nokia.com>
38 *    Sridhar Samudrala	    <sri@us.ibm.com>
39 *    Daisy Chang	    <daisyc@us.ibm.com>
40 *    Ryan Layer	    <rmlayer@us.ibm.com>
41 *    Kevin Gao             <kevin.gao@intel.com>
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/types.h>
47#include <linux/fcntl.h>
48#include <linux/poll.h>
49#include <linux/init.h>
50
51#include <linux/slab.h>
52#include <linux/in.h>
53#include <net/ipv6.h>
54#include <net/sctp/sctp.h>
55#include <net/sctp/sm.h>
56
57/* Forward declarations for internal functions. */
58static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59static void sctp_assoc_bh_rcv(struct work_struct *work);
60static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62
63/* 1st Level Abstractions. */
64
65/* Initialize a new association from provided memory. */
66static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67					  const struct sctp_endpoint *ep,
68					  const struct sock *sk,
69					  sctp_scope_t scope,
70					  gfp_t gfp)
71{
72	struct net *net = sock_net(sk);
73	struct sctp_sock *sp;
74	int i;
75	sctp_paramhdr_t *p;
76	int err;
77
78	/* Retrieve the SCTP per socket area.  */
79	sp = sctp_sk((struct sock *)sk);
80
81	/* Discarding const is appropriate here.  */
82	asoc->ep = (struct sctp_endpoint *)ep;
83	asoc->base.sk = (struct sock *)sk;
84
85	sctp_endpoint_hold(asoc->ep);
86	sock_hold(asoc->base.sk);
87
88	/* Initialize the common base substructure.  */
89	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90
91	/* Initialize the object handling fields.  */
92	atomic_set(&asoc->base.refcnt, 1);
93
94	/* Initialize the bind addr area.  */
95	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96
97	asoc->state = SCTP_STATE_CLOSED;
98	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99	asoc->user_frag = sp->user_frag;
100
101	/* Set the association max_retrans and RTO values from the
102	 * socket values.
103	 */
104	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105	asoc->pf_retrans  = net->sctp.pf_retrans;
106
107	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110
111	/* Initialize the association's heartbeat interval based on the
112	 * sock configured value.
113	 */
114	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115
116	/* Initialize path max retrans value. */
117	asoc->pathmaxrxt = sp->pathmaxrxt;
118
119	/* Initialize default path MTU. */
120	asoc->pathmtu = sp->pathmtu;
121
122	/* Set association default SACK delay */
123	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124	asoc->sackfreq = sp->sackfreq;
125
126	/* Set the association default flags controlling
127	 * Heartbeat, SACK delay, and Path MTU Discovery.
128	 */
129	asoc->param_flags = sp->param_flags;
130
131	/* Initialize the maximum number of new data packets that can be sent
132	 * in a burst.
133	 */
134	asoc->max_burst = sp->max_burst;
135
136	/* initialize association timers */
137	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140
141	/* sctpimpguide Section 2.12.2
142	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143	 * recommended value of 5 times 'RTO.Max'.
144	 */
145	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146		= 5 * asoc->rto_max;
147
148	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150
151	/* Initializes the timers */
152	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153		setup_timer(&asoc->timers[i], sctp_timer_events[i],
154				(unsigned long)asoc);
155
156	/* Pull default initialization values from the sock options.
157	 * Note: This assumes that the values have already been
158	 * validated in the sock.
159	 */
160	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
162	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
163
164	asoc->max_init_timeo =
165		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166
167	/* Set the local window size for receive.
168	 * This is also the rcvbuf space per association.
169	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170	 * 1500 bytes in one SCTP packet.
171	 */
172	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174	else
175		asoc->rwnd = sk->sk_rcvbuf/2;
176
177	asoc->a_rwnd = asoc->rwnd;
178
179	/* Use my own max window until I learn something better.  */
180	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181
182	/* Initialize the receive memory counter */
183	atomic_set(&asoc->rmem_alloc, 0);
184
185	init_waitqueue_head(&asoc->wait);
186
187	asoc->c.my_vtag = sctp_generate_tag(ep);
188	asoc->c.my_port = ep->base.bind_addr.port;
189
190	asoc->c.initial_tsn = sctp_generate_tsn(ep);
191
192	asoc->next_tsn = asoc->c.initial_tsn;
193
194	asoc->ctsn_ack_point = asoc->next_tsn - 1;
195	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196	asoc->highest_sacked = asoc->ctsn_ack_point;
197	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198
199	/* ADDIP Section 4.1 Asconf Chunk Procedures
200	 *
201	 * When an endpoint has an ASCONF signaled change to be sent to the
202	 * remote endpoint it should do the following:
203	 * ...
204	 * A2) a serial number should be assigned to the chunk. The serial
205	 * number SHOULD be a monotonically increasing number. The serial
206	 * numbers SHOULD be initialized at the start of the
207	 * association to the same value as the initial TSN.
208	 */
209	asoc->addip_serial = asoc->c.initial_tsn;
210
211	INIT_LIST_HEAD(&asoc->addip_chunk_list);
212	INIT_LIST_HEAD(&asoc->asconf_ack_list);
213
214	/* Make an empty list of remote transport addresses.  */
215	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216
217	/* RFC 2960 5.1 Normal Establishment of an Association
218	 *
219	 * After the reception of the first data chunk in an
220	 * association the endpoint must immediately respond with a
221	 * sack to acknowledge the data chunk.  Subsequent
222	 * acknowledgements should be done as described in Section
223	 * 6.2.
224	 *
225	 * [We implement this by telling a new association that it
226	 * already received one packet.]
227	 */
228	asoc->peer.sack_needed = 1;
229	asoc->peer.sack_generation = 1;
230
231	/* Assume that the peer will tell us if he recognizes ASCONF
232	 * as part of INIT exchange.
233	 * The sctp_addip_noauth option is there for backward compatibility
234	 * and will revert old behavior.
235	 */
236	if (net->sctp.addip_noauth)
237		asoc->peer.asconf_capable = 1;
238
239	/* Create an input queue.  */
240	sctp_inq_init(&asoc->base.inqueue);
241	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242
243	/* Create an output queue.  */
244	sctp_outq_init(asoc, &asoc->outqueue);
245
246	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247		goto fail_init;
248
249	/* Assume that peer would support both address types unless we are
250	 * told otherwise.
251	 */
252	asoc->peer.ipv4_address = 1;
253	if (asoc->base.sk->sk_family == PF_INET6)
254		asoc->peer.ipv6_address = 1;
255	INIT_LIST_HEAD(&asoc->asocs);
256
257	asoc->default_stream = sp->default_stream;
258	asoc->default_ppid = sp->default_ppid;
259	asoc->default_flags = sp->default_flags;
260	asoc->default_context = sp->default_context;
261	asoc->default_timetolive = sp->default_timetolive;
262	asoc->default_rcv_context = sp->default_rcv_context;
263
264	/* AUTH related initializations */
265	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267	if (err)
268		goto fail_init;
269
270	asoc->active_key_id = ep->active_key_id;
271
272	/* Save the hmacs and chunks list into this association */
273	if (ep->auth_hmacs_list)
274		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
275			ntohs(ep->auth_hmacs_list->param_hdr.length));
276	if (ep->auth_chunk_list)
277		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
278			ntohs(ep->auth_chunk_list->param_hdr.length));
279
280	/* Get the AUTH random number for this association */
281	p = (sctp_paramhdr_t *)asoc->c.auth_random;
282	p->type = SCTP_PARAM_RANDOM;
283	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
284	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
285
286	return asoc;
287
288fail_init:
289	sock_put(asoc->base.sk);
290	sctp_endpoint_put(asoc->ep);
291	return NULL;
292}
293
294/* Allocate and initialize a new association */
295struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
296					 const struct sock *sk,
297					 sctp_scope_t scope,
298					 gfp_t gfp)
299{
300	struct sctp_association *asoc;
301
302	asoc = kzalloc(sizeof(*asoc), gfp);
303	if (!asoc)
304		goto fail;
305
306	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
307		goto fail_init;
308
309	SCTP_DBG_OBJCNT_INC(assoc);
310
311	pr_debug("Created asoc %p\n", asoc);
312
313	return asoc;
314
315fail_init:
316	kfree(asoc);
317fail:
318	return NULL;
319}
320
321/* Free this association if possible.  There may still be users, so
322 * the actual deallocation may be delayed.
323 */
324void sctp_association_free(struct sctp_association *asoc)
325{
326	struct sock *sk = asoc->base.sk;
327	struct sctp_transport *transport;
328	struct list_head *pos, *temp;
329	int i;
330
331	/* Only real associations count against the endpoint, so
332	 * don't bother for if this is a temporary association.
333	 */
334	if (!list_empty(&asoc->asocs)) {
335		list_del(&asoc->asocs);
336
337		/* Decrement the backlog value for a TCP-style listening
338		 * socket.
339		 */
340		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
341			sk->sk_ack_backlog--;
342	}
343
344	/* Mark as dead, so other users can know this structure is
345	 * going away.
346	 */
347	asoc->base.dead = true;
348
349	/* Dispose of any data lying around in the outqueue. */
350	sctp_outq_free(&asoc->outqueue);
351
352	/* Dispose of any pending messages for the upper layer. */
353	sctp_ulpq_free(&asoc->ulpq);
354
355	/* Dispose of any pending chunks on the inqueue. */
356	sctp_inq_free(&asoc->base.inqueue);
357
358	sctp_tsnmap_free(&asoc->peer.tsn_map);
359
360	/* Free ssnmap storage. */
361	sctp_ssnmap_free(asoc->ssnmap);
362
363	/* Clean up the bound address list. */
364	sctp_bind_addr_free(&asoc->base.bind_addr);
365
366	/* Do we need to go through all of our timers and
367	 * delete them?   To be safe we will try to delete all, but we
368	 * should be able to go through and make a guess based
369	 * on our state.
370	 */
371	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
372		if (del_timer(&asoc->timers[i]))
373			sctp_association_put(asoc);
374	}
375
376	/* Free peer's cached cookie. */
377	kfree(asoc->peer.cookie);
378	kfree(asoc->peer.peer_random);
379	kfree(asoc->peer.peer_chunks);
380	kfree(asoc->peer.peer_hmacs);
381
382	/* Release the transport structures. */
383	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
384		transport = list_entry(pos, struct sctp_transport, transports);
385		list_del_rcu(pos);
386		sctp_transport_free(transport);
387	}
388
389	asoc->peer.transport_count = 0;
390
391	sctp_asconf_queue_teardown(asoc);
392
393	/* Free pending address space being deleted */
394	if (asoc->asconf_addr_del_pending != NULL)
395		kfree(asoc->asconf_addr_del_pending);
396
397	/* AUTH - Free the endpoint shared keys */
398	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
399
400	/* AUTH - Free the association shared key */
401	sctp_auth_key_put(asoc->asoc_shared_key);
402
403	sctp_association_put(asoc);
404}
405
406/* Cleanup and free up an association. */
407static void sctp_association_destroy(struct sctp_association *asoc)
408{
409	if (unlikely(!asoc->base.dead)) {
410		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
411		return;
412	}
413
414	sctp_endpoint_put(asoc->ep);
415	sock_put(asoc->base.sk);
416
417	if (asoc->assoc_id != 0) {
418		spin_lock_bh(&sctp_assocs_id_lock);
419		idr_remove(&sctp_assocs_id, asoc->assoc_id);
420		spin_unlock_bh(&sctp_assocs_id_lock);
421	}
422
423	WARN_ON(atomic_read(&asoc->rmem_alloc));
424
425	kfree(asoc);
426	SCTP_DBG_OBJCNT_DEC(assoc);
427}
428
429/* Change the primary destination address for the peer. */
430void sctp_assoc_set_primary(struct sctp_association *asoc,
431			    struct sctp_transport *transport)
432{
433	int changeover = 0;
434
435	/* it's a changeover only if we already have a primary path
436	 * that we are changing
437	 */
438	if (asoc->peer.primary_path != NULL &&
439	    asoc->peer.primary_path != transport)
440		changeover = 1 ;
441
442	asoc->peer.primary_path = transport;
443
444	/* Set a default msg_name for events. */
445	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
446	       sizeof(union sctp_addr));
447
448	/* If the primary path is changing, assume that the
449	 * user wants to use this new path.
450	 */
451	if ((transport->state == SCTP_ACTIVE) ||
452	    (transport->state == SCTP_UNKNOWN))
453		asoc->peer.active_path = transport;
454
455	/*
456	 * SFR-CACC algorithm:
457	 * Upon the receipt of a request to change the primary
458	 * destination address, on the data structure for the new
459	 * primary destination, the sender MUST do the following:
460	 *
461	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
462	 * to this destination address earlier. The sender MUST set
463	 * CYCLING_CHANGEOVER to indicate that this switch is a
464	 * double switch to the same destination address.
465	 *
466	 * Really, only bother is we have data queued or outstanding on
467	 * the association.
468	 */
469	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
470		return;
471
472	if (transport->cacc.changeover_active)
473		transport->cacc.cycling_changeover = changeover;
474
475	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
476	 * a changeover has occurred.
477	 */
478	transport->cacc.changeover_active = changeover;
479
480	/* 3) The sender MUST store the next TSN to be sent in
481	 * next_tsn_at_change.
482	 */
483	transport->cacc.next_tsn_at_change = asoc->next_tsn;
484}
485
486/* Remove a transport from an association.  */
487void sctp_assoc_rm_peer(struct sctp_association *asoc,
488			struct sctp_transport *peer)
489{
490	struct list_head	*pos;
491	struct sctp_transport	*transport;
492
493	pr_debug("%s: association:%p addr:%pISpc\n",
494		 __func__, asoc, &peer->ipaddr.sa);
495
496	/* If we are to remove the current retran_path, update it
497	 * to the next peer before removing this peer from the list.
498	 */
499	if (asoc->peer.retran_path == peer)
500		sctp_assoc_update_retran_path(asoc);
501
502	/* Remove this peer from the list. */
503	list_del_rcu(&peer->transports);
504
505	/* Get the first transport of asoc. */
506	pos = asoc->peer.transport_addr_list.next;
507	transport = list_entry(pos, struct sctp_transport, transports);
508
509	/* Update any entries that match the peer to be deleted. */
510	if (asoc->peer.primary_path == peer)
511		sctp_assoc_set_primary(asoc, transport);
512	if (asoc->peer.active_path == peer)
513		asoc->peer.active_path = transport;
514	if (asoc->peer.retran_path == peer)
515		asoc->peer.retran_path = transport;
516	if (asoc->peer.last_data_from == peer)
517		asoc->peer.last_data_from = transport;
518
519	/* If we remove the transport an INIT was last sent to, set it to
520	 * NULL. Combined with the update of the retran path above, this
521	 * will cause the next INIT to be sent to the next available
522	 * transport, maintaining the cycle.
523	 */
524	if (asoc->init_last_sent_to == peer)
525		asoc->init_last_sent_to = NULL;
526
527	/* If we remove the transport an SHUTDOWN was last sent to, set it
528	 * to NULL. Combined with the update of the retran path above, this
529	 * will cause the next SHUTDOWN to be sent to the next available
530	 * transport, maintaining the cycle.
531	 */
532	if (asoc->shutdown_last_sent_to == peer)
533		asoc->shutdown_last_sent_to = NULL;
534
535	/* If we remove the transport an ASCONF was last sent to, set it to
536	 * NULL.
537	 */
538	if (asoc->addip_last_asconf &&
539	    asoc->addip_last_asconf->transport == peer)
540		asoc->addip_last_asconf->transport = NULL;
541
542	/* If we have something on the transmitted list, we have to
543	 * save it off.  The best place is the active path.
544	 */
545	if (!list_empty(&peer->transmitted)) {
546		struct sctp_transport *active = asoc->peer.active_path;
547		struct sctp_chunk *ch;
548
549		/* Reset the transport of each chunk on this list */
550		list_for_each_entry(ch, &peer->transmitted,
551					transmitted_list) {
552			ch->transport = NULL;
553			ch->rtt_in_progress = 0;
554		}
555
556		list_splice_tail_init(&peer->transmitted,
557					&active->transmitted);
558
559		/* Start a T3 timer here in case it wasn't running so
560		 * that these migrated packets have a chance to get
561		 * retransmitted.
562		 */
563		if (!timer_pending(&active->T3_rtx_timer))
564			if (!mod_timer(&active->T3_rtx_timer,
565					jiffies + active->rto))
566				sctp_transport_hold(active);
567	}
568
569	asoc->peer.transport_count--;
570
571	sctp_transport_free(peer);
572}
573
574/* Add a transport address to an association.  */
575struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
576					   const union sctp_addr *addr,
577					   const gfp_t gfp,
578					   const int peer_state)
579{
580	struct net *net = sock_net(asoc->base.sk);
581	struct sctp_transport *peer;
582	struct sctp_sock *sp;
583	unsigned short port;
584
585	sp = sctp_sk(asoc->base.sk);
586
587	/* AF_INET and AF_INET6 share common port field. */
588	port = ntohs(addr->v4.sin_port);
589
590	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
591		 asoc, &addr->sa, peer_state);
592
593	/* Set the port if it has not been set yet.  */
594	if (0 == asoc->peer.port)
595		asoc->peer.port = port;
596
597	/* Check to see if this is a duplicate. */
598	peer = sctp_assoc_lookup_paddr(asoc, addr);
599	if (peer) {
600		/* An UNKNOWN state is only set on transports added by
601		 * user in sctp_connectx() call.  Such transports should be
602		 * considered CONFIRMED per RFC 4960, Section 5.4.
603		 */
604		if (peer->state == SCTP_UNKNOWN) {
605			peer->state = SCTP_ACTIVE;
606		}
607		return peer;
608	}
609
610	peer = sctp_transport_new(net, addr, gfp);
611	if (!peer)
612		return NULL;
613
614	sctp_transport_set_owner(peer, asoc);
615
616	/* Initialize the peer's heartbeat interval based on the
617	 * association configured value.
618	 */
619	peer->hbinterval = asoc->hbinterval;
620
621	/* Set the path max_retrans.  */
622	peer->pathmaxrxt = asoc->pathmaxrxt;
623
624	/* And the partial failure retrans threshold */
625	peer->pf_retrans = asoc->pf_retrans;
626
627	/* Initialize the peer's SACK delay timeout based on the
628	 * association configured value.
629	 */
630	peer->sackdelay = asoc->sackdelay;
631	peer->sackfreq = asoc->sackfreq;
632
633	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
634	 * based on association setting.
635	 */
636	peer->param_flags = asoc->param_flags;
637
638	sctp_transport_route(peer, NULL, sp);
639
640	/* Initialize the pmtu of the transport. */
641	if (peer->param_flags & SPP_PMTUD_DISABLE) {
642		if (asoc->pathmtu)
643			peer->pathmtu = asoc->pathmtu;
644		else
645			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
646	}
647
648	/* If this is the first transport addr on this association,
649	 * initialize the association PMTU to the peer's PMTU.
650	 * If not and the current association PMTU is higher than the new
651	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
652	 */
653	if (asoc->pathmtu)
654		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
655	else
656		asoc->pathmtu = peer->pathmtu;
657
658	pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
659		 asoc->pathmtu);
660
661	peer->pmtu_pending = 0;
662
663	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
664
665	/* The asoc->peer.port might not be meaningful yet, but
666	 * initialize the packet structure anyway.
667	 */
668	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
669			 asoc->peer.port);
670
671	/* 7.2.1 Slow-Start
672	 *
673	 * o The initial cwnd before DATA transmission or after a sufficiently
674	 *   long idle period MUST be set to
675	 *      min(4*MTU, max(2*MTU, 4380 bytes))
676	 *
677	 * o The initial value of ssthresh MAY be arbitrarily high
678	 *   (for example, implementations MAY use the size of the
679	 *   receiver advertised window).
680	 */
681	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
682
683	/* At this point, we may not have the receiver's advertised window,
684	 * so initialize ssthresh to the default value and it will be set
685	 * later when we process the INIT.
686	 */
687	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
688
689	peer->partial_bytes_acked = 0;
690	peer->flight_size = 0;
691	peer->burst_limited = 0;
692
693	/* Set the transport's RTO.initial value */
694	peer->rto = asoc->rto_initial;
695	sctp_max_rto(asoc, peer);
696
697	/* Set the peer's active state. */
698	peer->state = peer_state;
699
700	/* Attach the remote transport to our asoc.  */
701	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
702	asoc->peer.transport_count++;
703
704	/* If we do not yet have a primary path, set one.  */
705	if (!asoc->peer.primary_path) {
706		sctp_assoc_set_primary(asoc, peer);
707		asoc->peer.retran_path = peer;
708	}
709
710	if (asoc->peer.active_path == asoc->peer.retran_path &&
711	    peer->state != SCTP_UNCONFIRMED) {
712		asoc->peer.retran_path = peer;
713	}
714
715	return peer;
716}
717
718/* Delete a transport address from an association.  */
719void sctp_assoc_del_peer(struct sctp_association *asoc,
720			 const union sctp_addr *addr)
721{
722	struct list_head	*pos;
723	struct list_head	*temp;
724	struct sctp_transport	*transport;
725
726	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
727		transport = list_entry(pos, struct sctp_transport, transports);
728		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
729			/* Do book keeping for removing the peer and free it. */
730			sctp_assoc_rm_peer(asoc, transport);
731			break;
732		}
733	}
734}
735
736/* Lookup a transport by address. */
737struct sctp_transport *sctp_assoc_lookup_paddr(
738					const struct sctp_association *asoc,
739					const union sctp_addr *address)
740{
741	struct sctp_transport *t;
742
743	/* Cycle through all transports searching for a peer address. */
744
745	list_for_each_entry(t, &asoc->peer.transport_addr_list,
746			transports) {
747		if (sctp_cmp_addr_exact(address, &t->ipaddr))
748			return t;
749	}
750
751	return NULL;
752}
753
754/* Remove all transports except a give one */
755void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
756				     struct sctp_transport *primary)
757{
758	struct sctp_transport	*temp;
759	struct sctp_transport	*t;
760
761	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
762				 transports) {
763		/* if the current transport is not the primary one, delete it */
764		if (t != primary)
765			sctp_assoc_rm_peer(asoc, t);
766	}
767}
768
769/* Engage in transport control operations.
770 * Mark the transport up or down and send a notification to the user.
771 * Select and update the new active and retran paths.
772 */
773void sctp_assoc_control_transport(struct sctp_association *asoc,
774				  struct sctp_transport *transport,
775				  sctp_transport_cmd_t command,
776				  sctp_sn_error_t error)
777{
778	struct sctp_ulpevent *event;
779	struct sockaddr_storage addr;
780	int spc_state = 0;
781	bool ulp_notify = true;
782
783	/* Record the transition on the transport.  */
784	switch (command) {
785	case SCTP_TRANSPORT_UP:
786		/* If we are moving from UNCONFIRMED state due
787		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
788		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
789		 */
790		if (SCTP_UNCONFIRMED == transport->state &&
791		    SCTP_HEARTBEAT_SUCCESS == error)
792			spc_state = SCTP_ADDR_CONFIRMED;
793		else
794			spc_state = SCTP_ADDR_AVAILABLE;
795		/* Don't inform ULP about transition from PF to
796		 * active state and set cwnd to 1 MTU, see SCTP
797		 * Quick failover draft section 5.1, point 5
798		 */
799		if (transport->state == SCTP_PF) {
800			ulp_notify = false;
801			transport->cwnd = asoc->pathmtu;
802		}
803		transport->state = SCTP_ACTIVE;
804		break;
805
806	case SCTP_TRANSPORT_DOWN:
807		/* If the transport was never confirmed, do not transition it
808		 * to inactive state.  Also, release the cached route since
809		 * there may be a better route next time.
810		 */
811		if (transport->state != SCTP_UNCONFIRMED)
812			transport->state = SCTP_INACTIVE;
813		else {
814			dst_release(transport->dst);
815			transport->dst = NULL;
816			ulp_notify = false;
817		}
818
819		spc_state = SCTP_ADDR_UNREACHABLE;
820		break;
821
822	case SCTP_TRANSPORT_PF:
823		transport->state = SCTP_PF;
824		ulp_notify = false;
825		break;
826
827	default:
828		return;
829	}
830
831	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification
832	 * to the user.
833	 */
834	if (ulp_notify) {
835		memset(&addr, 0, sizeof(struct sockaddr_storage));
836		memcpy(&addr, &transport->ipaddr,
837		       transport->af_specific->sockaddr_len);
838
839		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
840					0, spc_state, error, GFP_ATOMIC);
841		if (event)
842			sctp_ulpq_tail_event(&asoc->ulpq, event);
843	}
844
845	/* Select new active and retran paths. */
846	sctp_select_active_and_retran_path(asoc);
847}
848
849/* Hold a reference to an association. */
850void sctp_association_hold(struct sctp_association *asoc)
851{
852	atomic_inc(&asoc->base.refcnt);
853}
854
855/* Release a reference to an association and cleanup
856 * if there are no more references.
857 */
858void sctp_association_put(struct sctp_association *asoc)
859{
860	if (atomic_dec_and_test(&asoc->base.refcnt))
861		sctp_association_destroy(asoc);
862}
863
864/* Allocate the next TSN, Transmission Sequence Number, for the given
865 * association.
866 */
867__u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
868{
869	/* From Section 1.6 Serial Number Arithmetic:
870	 * Transmission Sequence Numbers wrap around when they reach
871	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
872	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
873	 */
874	__u32 retval = asoc->next_tsn;
875	asoc->next_tsn++;
876	asoc->unack_data++;
877
878	return retval;
879}
880
881/* Compare two addresses to see if they match.  Wildcard addresses
882 * only match themselves.
883 */
884int sctp_cmp_addr_exact(const union sctp_addr *ss1,
885			const union sctp_addr *ss2)
886{
887	struct sctp_af *af;
888
889	af = sctp_get_af_specific(ss1->sa.sa_family);
890	if (unlikely(!af))
891		return 0;
892
893	return af->cmp_addr(ss1, ss2);
894}
895
896/* Return an ecne chunk to get prepended to a packet.
897 * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
898 * No we don't, but we could/should.
899 */
900struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
901{
902	if (!asoc->need_ecne)
903		return NULL;
904
905	/* Send ECNE if needed.
906	 * Not being able to allocate a chunk here is not deadly.
907	 */
908	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
909}
910
911/*
912 * Find which transport this TSN was sent on.
913 */
914struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
915					     __u32 tsn)
916{
917	struct sctp_transport *active;
918	struct sctp_transport *match;
919	struct sctp_transport *transport;
920	struct sctp_chunk *chunk;
921	__be32 key = htonl(tsn);
922
923	match = NULL;
924
925	/*
926	 * FIXME: In general, find a more efficient data structure for
927	 * searching.
928	 */
929
930	/*
931	 * The general strategy is to search each transport's transmitted
932	 * list.   Return which transport this TSN lives on.
933	 *
934	 * Let's be hopeful and check the active_path first.
935	 * Another optimization would be to know if there is only one
936	 * outbound path and not have to look for the TSN at all.
937	 *
938	 */
939
940	active = asoc->peer.active_path;
941
942	list_for_each_entry(chunk, &active->transmitted,
943			transmitted_list) {
944
945		if (key == chunk->subh.data_hdr->tsn) {
946			match = active;
947			goto out;
948		}
949	}
950
951	/* If not found, go search all the other transports. */
952	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
953			transports) {
954
955		if (transport == active)
956			continue;
957		list_for_each_entry(chunk, &transport->transmitted,
958				transmitted_list) {
959			if (key == chunk->subh.data_hdr->tsn) {
960				match = transport;
961				goto out;
962			}
963		}
964	}
965out:
966	return match;
967}
968
969/* Is this the association we are looking for? */
970struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
971					   struct net *net,
972					   const union sctp_addr *laddr,
973					   const union sctp_addr *paddr)
974{
975	struct sctp_transport *transport;
976
977	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
978	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
979	    net_eq(sock_net(asoc->base.sk), net)) {
980		transport = sctp_assoc_lookup_paddr(asoc, paddr);
981		if (!transport)
982			goto out;
983
984		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
985					 sctp_sk(asoc->base.sk)))
986			goto out;
987	}
988	transport = NULL;
989
990out:
991	return transport;
992}
993
994/* Do delayed input processing.  This is scheduled by sctp_rcv(). */
995static void sctp_assoc_bh_rcv(struct work_struct *work)
996{
997	struct sctp_association *asoc =
998		container_of(work, struct sctp_association,
999			     base.inqueue.immediate);
1000	struct net *net = sock_net(asoc->base.sk);
1001	struct sctp_endpoint *ep;
1002	struct sctp_chunk *chunk;
1003	struct sctp_inq *inqueue;
1004	int state;
1005	sctp_subtype_t subtype;
1006	int error = 0;
1007
1008	/* The association should be held so we should be safe. */
1009	ep = asoc->ep;
1010
1011	inqueue = &asoc->base.inqueue;
1012	sctp_association_hold(asoc);
1013	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1014		state = asoc->state;
1015		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1016
1017		/* SCTP-AUTH, Section 6.3:
1018		 *    The receiver has a list of chunk types which it expects
1019		 *    to be received only after an AUTH-chunk.  This list has
1020		 *    been sent to the peer during the association setup.  It
1021		 *    MUST silently discard these chunks if they are not placed
1022		 *    after an AUTH chunk in the packet.
1023		 */
1024		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1025			continue;
1026
1027		/* Remember where the last DATA chunk came from so we
1028		 * know where to send the SACK.
1029		 */
1030		if (sctp_chunk_is_data(chunk))
1031			asoc->peer.last_data_from = chunk->transport;
1032		else {
1033			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1034			asoc->stats.ictrlchunks++;
1035			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1036				asoc->stats.isacks++;
1037		}
1038
1039		if (chunk->transport)
1040			chunk->transport->last_time_heard = ktime_get();
1041
1042		/* Run through the state machine. */
1043		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1044				   state, ep, asoc, chunk, GFP_ATOMIC);
1045
1046		/* Check to see if the association is freed in response to
1047		 * the incoming chunk.  If so, get out of the while loop.
1048		 */
1049		if (asoc->base.dead)
1050			break;
1051
1052		/* If there is an error on chunk, discard this packet. */
1053		if (error && chunk)
1054			chunk->pdiscard = 1;
1055	}
1056	sctp_association_put(asoc);
1057}
1058
1059/* This routine moves an association from its old sk to a new sk.  */
1060void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1061{
1062	struct sctp_sock *newsp = sctp_sk(newsk);
1063	struct sock *oldsk = assoc->base.sk;
1064
1065	/* Delete the association from the old endpoint's list of
1066	 * associations.
1067	 */
1068	list_del_init(&assoc->asocs);
1069
1070	/* Decrement the backlog value for a TCP-style socket. */
1071	if (sctp_style(oldsk, TCP))
1072		oldsk->sk_ack_backlog--;
1073
1074	/* Release references to the old endpoint and the sock.  */
1075	sctp_endpoint_put(assoc->ep);
1076	sock_put(assoc->base.sk);
1077
1078	/* Get a reference to the new endpoint.  */
1079	assoc->ep = newsp->ep;
1080	sctp_endpoint_hold(assoc->ep);
1081
1082	/* Get a reference to the new sock.  */
1083	assoc->base.sk = newsk;
1084	sock_hold(assoc->base.sk);
1085
1086	/* Add the association to the new endpoint's list of associations.  */
1087	sctp_endpoint_add_asoc(newsp->ep, assoc);
1088}
1089
1090/* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1091void sctp_assoc_update(struct sctp_association *asoc,
1092		       struct sctp_association *new)
1093{
1094	struct sctp_transport *trans;
1095	struct list_head *pos, *temp;
1096
1097	/* Copy in new parameters of peer. */
1098	asoc->c = new->c;
1099	asoc->peer.rwnd = new->peer.rwnd;
1100	asoc->peer.sack_needed = new->peer.sack_needed;
1101	asoc->peer.auth_capable = new->peer.auth_capable;
1102	asoc->peer.i = new->peer.i;
1103	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1104			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1105
1106	/* Remove any peer addresses not present in the new association. */
1107	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1108		trans = list_entry(pos, struct sctp_transport, transports);
1109		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1110			sctp_assoc_rm_peer(asoc, trans);
1111			continue;
1112		}
1113
1114		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1115			sctp_transport_reset(trans);
1116	}
1117
1118	/* If the case is A (association restart), use
1119	 * initial_tsn as next_tsn. If the case is B, use
1120	 * current next_tsn in case data sent to peer
1121	 * has been discarded and needs retransmission.
1122	 */
1123	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1124		asoc->next_tsn = new->next_tsn;
1125		asoc->ctsn_ack_point = new->ctsn_ack_point;
1126		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1127
1128		/* Reinitialize SSN for both local streams
1129		 * and peer's streams.
1130		 */
1131		sctp_ssnmap_clear(asoc->ssnmap);
1132
1133		/* Flush the ULP reassembly and ordered queue.
1134		 * Any data there will now be stale and will
1135		 * cause problems.
1136		 */
1137		sctp_ulpq_flush(&asoc->ulpq);
1138
1139		/* reset the overall association error count so
1140		 * that the restarted association doesn't get torn
1141		 * down on the next retransmission timer.
1142		 */
1143		asoc->overall_error_count = 0;
1144
1145	} else {
1146		/* Add any peer addresses from the new association. */
1147		list_for_each_entry(trans, &new->peer.transport_addr_list,
1148				transports) {
1149			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1150				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1151						    GFP_ATOMIC, trans->state);
1152		}
1153
1154		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1155		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1156		if (!asoc->ssnmap) {
1157			/* Move the ssnmap. */
1158			asoc->ssnmap = new->ssnmap;
1159			new->ssnmap = NULL;
1160		}
1161
1162		if (!asoc->assoc_id) {
1163			/* get a new association id since we don't have one
1164			 * yet.
1165			 */
1166			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1167		}
1168	}
1169
1170	/* SCTP-AUTH: Save the peer parameters from the new associations
1171	 * and also move the association shared keys over
1172	 */
1173	kfree(asoc->peer.peer_random);
1174	asoc->peer.peer_random = new->peer.peer_random;
1175	new->peer.peer_random = NULL;
1176
1177	kfree(asoc->peer.peer_chunks);
1178	asoc->peer.peer_chunks = new->peer.peer_chunks;
1179	new->peer.peer_chunks = NULL;
1180
1181	kfree(asoc->peer.peer_hmacs);
1182	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1183	new->peer.peer_hmacs = NULL;
1184
1185	sctp_auth_key_put(asoc->asoc_shared_key);
1186	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1187}
1188
1189/* Update the retran path for sending a retransmitted packet.
1190 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1191 *
1192 *   When there is outbound data to send and the primary path
1193 *   becomes inactive (e.g., due to failures), or where the
1194 *   SCTP user explicitly requests to send data to an
1195 *   inactive destination transport address, before reporting
1196 *   an error to its ULP, the SCTP endpoint should try to send
1197 *   the data to an alternate active destination transport
1198 *   address if one exists.
1199 *
1200 *   When retransmitting data that timed out, if the endpoint
1201 *   is multihomed, it should consider each source-destination
1202 *   address pair in its retransmission selection policy.
1203 *   When retransmitting timed-out data, the endpoint should
1204 *   attempt to pick the most divergent source-destination
1205 *   pair from the original source-destination pair to which
1206 *   the packet was transmitted.
1207 *
1208 *   Note: Rules for picking the most divergent source-destination
1209 *   pair are an implementation decision and are not specified
1210 *   within this document.
1211 *
1212 * Our basic strategy is to round-robin transports in priorities
1213 * according to sctp_state_prio_map[] e.g., if no such
1214 * transport with state SCTP_ACTIVE exists, round-robin through
1215 * SCTP_UNKNOWN, etc. You get the picture.
1216 */
1217static const u8 sctp_trans_state_to_prio_map[] = {
1218	[SCTP_ACTIVE]	= 3,	/* best case */
1219	[SCTP_UNKNOWN]	= 2,
1220	[SCTP_PF]	= 1,
1221	[SCTP_INACTIVE] = 0,	/* worst case */
1222};
1223
1224static u8 sctp_trans_score(const struct sctp_transport *trans)
1225{
1226	return sctp_trans_state_to_prio_map[trans->state];
1227}
1228
1229static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1230						   struct sctp_transport *trans2)
1231{
1232	if (trans1->error_count > trans2->error_count) {
1233		return trans2;
1234	} else if (trans1->error_count == trans2->error_count &&
1235		   ktime_after(trans2->last_time_heard,
1236			       trans1->last_time_heard)) {
1237		return trans2;
1238	} else {
1239		return trans1;
1240	}
1241}
1242
1243static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1244						    struct sctp_transport *best)
1245{
1246	u8 score_curr, score_best;
1247
1248	if (best == NULL || curr == best)
1249		return curr;
1250
1251	score_curr = sctp_trans_score(curr);
1252	score_best = sctp_trans_score(best);
1253
1254	/* First, try a score-based selection if both transport states
1255	 * differ. If we're in a tie, lets try to make a more clever
1256	 * decision here based on error counts and last time heard.
1257	 */
1258	if (score_curr > score_best)
1259		return curr;
1260	else if (score_curr == score_best)
1261		return sctp_trans_elect_tie(curr, best);
1262	else
1263		return best;
1264}
1265
1266void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1267{
1268	struct sctp_transport *trans = asoc->peer.retran_path;
1269	struct sctp_transport *trans_next = NULL;
1270
1271	/* We're done as we only have the one and only path. */
1272	if (asoc->peer.transport_count == 1)
1273		return;
1274	/* If active_path and retran_path are the same and active,
1275	 * then this is the only active path. Use it.
1276	 */
1277	if (asoc->peer.active_path == asoc->peer.retran_path &&
1278	    asoc->peer.active_path->state == SCTP_ACTIVE)
1279		return;
1280
1281	/* Iterate from retran_path's successor back to retran_path. */
1282	for (trans = list_next_entry(trans, transports); 1;
1283	     trans = list_next_entry(trans, transports)) {
1284		/* Manually skip the head element. */
1285		if (&trans->transports == &asoc->peer.transport_addr_list)
1286			continue;
1287		if (trans->state == SCTP_UNCONFIRMED)
1288			continue;
1289		trans_next = sctp_trans_elect_best(trans, trans_next);
1290		/* Active is good enough for immediate return. */
1291		if (trans_next->state == SCTP_ACTIVE)
1292			break;
1293		/* We've reached the end, time to update path. */
1294		if (trans == asoc->peer.retran_path)
1295			break;
1296	}
1297
1298	asoc->peer.retran_path = trans_next;
1299
1300	pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1301		 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1302}
1303
1304static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1305{
1306	struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1307	struct sctp_transport *trans_pf = NULL;
1308
1309	/* Look for the two most recently used active transports. */
1310	list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1311			    transports) {
1312		/* Skip uninteresting transports. */
1313		if (trans->state == SCTP_INACTIVE ||
1314		    trans->state == SCTP_UNCONFIRMED)
1315			continue;
1316		/* Keep track of the best PF transport from our
1317		 * list in case we don't find an active one.
1318		 */
1319		if (trans->state == SCTP_PF) {
1320			trans_pf = sctp_trans_elect_best(trans, trans_pf);
1321			continue;
1322		}
1323		/* For active transports, pick the most recent ones. */
1324		if (trans_pri == NULL ||
1325		    ktime_after(trans->last_time_heard,
1326				trans_pri->last_time_heard)) {
1327			trans_sec = trans_pri;
1328			trans_pri = trans;
1329		} else if (trans_sec == NULL ||
1330			   ktime_after(trans->last_time_heard,
1331				       trans_sec->last_time_heard)) {
1332			trans_sec = trans;
1333		}
1334	}
1335
1336	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1337	 *
1338	 * By default, an endpoint should always transmit to the primary
1339	 * path, unless the SCTP user explicitly specifies the
1340	 * destination transport address (and possibly source transport
1341	 * address) to use. [If the primary is active but not most recent,
1342	 * bump the most recently used transport.]
1343	 */
1344	if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1345	     asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1346	     asoc->peer.primary_path != trans_pri) {
1347		trans_sec = trans_pri;
1348		trans_pri = asoc->peer.primary_path;
1349	}
1350
1351	/* We did not find anything useful for a possible retransmission
1352	 * path; either primary path that we found is the the same as
1353	 * the current one, or we didn't generally find an active one.
1354	 */
1355	if (trans_sec == NULL)
1356		trans_sec = trans_pri;
1357
1358	/* If we failed to find a usable transport, just camp on the
1359	 * active or pick a PF iff it's the better choice.
1360	 */
1361	if (trans_pri == NULL) {
1362		trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1363		trans_sec = trans_pri;
1364	}
1365
1366	/* Set the active and retran transports. */
1367	asoc->peer.active_path = trans_pri;
1368	asoc->peer.retran_path = trans_sec;
1369}
1370
1371struct sctp_transport *
1372sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1373				  struct sctp_transport *last_sent_to)
1374{
1375	/* If this is the first time packet is sent, use the active path,
1376	 * else use the retran path. If the last packet was sent over the
1377	 * retran path, update the retran path and use it.
1378	 */
1379	if (last_sent_to == NULL) {
1380		return asoc->peer.active_path;
1381	} else {
1382		if (last_sent_to == asoc->peer.retran_path)
1383			sctp_assoc_update_retran_path(asoc);
1384
1385		return asoc->peer.retran_path;
1386	}
1387}
1388
1389/* Update the association's pmtu and frag_point by going through all the
1390 * transports. This routine is called when a transport's PMTU has changed.
1391 */
1392void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1393{
1394	struct sctp_transport *t;
1395	__u32 pmtu = 0;
1396
1397	if (!asoc)
1398		return;
1399
1400	/* Get the lowest pmtu of all the transports. */
1401	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1402				transports) {
1403		if (t->pmtu_pending && t->dst) {
1404			sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1405			t->pmtu_pending = 0;
1406		}
1407		if (!pmtu || (t->pathmtu < pmtu))
1408			pmtu = t->pathmtu;
1409	}
1410
1411	if (pmtu) {
1412		asoc->pathmtu = pmtu;
1413		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1414	}
1415
1416	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1417		 asoc->pathmtu, asoc->frag_point);
1418}
1419
1420/* Should we send a SACK to update our peer? */
1421static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1422{
1423	struct net *net = sock_net(asoc->base.sk);
1424	switch (asoc->state) {
1425	case SCTP_STATE_ESTABLISHED:
1426	case SCTP_STATE_SHUTDOWN_PENDING:
1427	case SCTP_STATE_SHUTDOWN_RECEIVED:
1428	case SCTP_STATE_SHUTDOWN_SENT:
1429		if ((asoc->rwnd > asoc->a_rwnd) &&
1430		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1431			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1432			   asoc->pathmtu)))
1433			return true;
1434		break;
1435	default:
1436		break;
1437	}
1438	return false;
1439}
1440
1441/* Increase asoc's rwnd by len and send any window update SACK if needed. */
1442void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1443{
1444	struct sctp_chunk *sack;
1445	struct timer_list *timer;
1446
1447	if (asoc->rwnd_over) {
1448		if (asoc->rwnd_over >= len) {
1449			asoc->rwnd_over -= len;
1450		} else {
1451			asoc->rwnd += (len - asoc->rwnd_over);
1452			asoc->rwnd_over = 0;
1453		}
1454	} else {
1455		asoc->rwnd += len;
1456	}
1457
1458	/* If we had window pressure, start recovering it
1459	 * once our rwnd had reached the accumulated pressure
1460	 * threshold.  The idea is to recover slowly, but up
1461	 * to the initial advertised window.
1462	 */
1463	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1464		int change = min(asoc->pathmtu, asoc->rwnd_press);
1465		asoc->rwnd += change;
1466		asoc->rwnd_press -= change;
1467	}
1468
1469	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1470		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1471		 asoc->a_rwnd);
1472
1473	/* Send a window update SACK if the rwnd has increased by at least the
1474	 * minimum of the association's PMTU and half of the receive buffer.
1475	 * The algorithm used is similar to the one described in
1476	 * Section 4.2.3.3 of RFC 1122.
1477	 */
1478	if (sctp_peer_needs_update(asoc)) {
1479		asoc->a_rwnd = asoc->rwnd;
1480
1481		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1482			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1483			 asoc->a_rwnd);
1484
1485		sack = sctp_make_sack(asoc);
1486		if (!sack)
1487			return;
1488
1489		asoc->peer.sack_needed = 0;
1490
1491		sctp_outq_tail(&asoc->outqueue, sack);
1492
1493		/* Stop the SACK timer.  */
1494		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1495		if (del_timer(timer))
1496			sctp_association_put(asoc);
1497	}
1498}
1499
1500/* Decrease asoc's rwnd by len. */
1501void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1502{
1503	int rx_count;
1504	int over = 0;
1505
1506	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1507		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1508			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1509			 asoc->rwnd, asoc->rwnd_over);
1510
1511	if (asoc->ep->rcvbuf_policy)
1512		rx_count = atomic_read(&asoc->rmem_alloc);
1513	else
1514		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1515
1516	/* If we've reached or overflowed our receive buffer, announce
1517	 * a 0 rwnd if rwnd would still be positive.  Store the
1518	 * the potential pressure overflow so that the window can be restored
1519	 * back to original value.
1520	 */
1521	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1522		over = 1;
1523
1524	if (asoc->rwnd >= len) {
1525		asoc->rwnd -= len;
1526		if (over) {
1527			asoc->rwnd_press += asoc->rwnd;
1528			asoc->rwnd = 0;
1529		}
1530	} else {
1531		asoc->rwnd_over = len - asoc->rwnd;
1532		asoc->rwnd = 0;
1533	}
1534
1535	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1536		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1537		 asoc->rwnd_press);
1538}
1539
1540/* Build the bind address list for the association based on info from the
1541 * local endpoint and the remote peer.
1542 */
1543int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1544				     sctp_scope_t scope, gfp_t gfp)
1545{
1546	int flags;
1547
1548	/* Use scoping rules to determine the subset of addresses from
1549	 * the endpoint.
1550	 */
1551	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1552	if (asoc->peer.ipv4_address)
1553		flags |= SCTP_ADDR4_PEERSUPP;
1554	if (asoc->peer.ipv6_address)
1555		flags |= SCTP_ADDR6_PEERSUPP;
1556
1557	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1558				   &asoc->base.bind_addr,
1559				   &asoc->ep->base.bind_addr,
1560				   scope, gfp, flags);
1561}
1562
1563/* Build the association's bind address list from the cookie.  */
1564int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1565					 struct sctp_cookie *cookie,
1566					 gfp_t gfp)
1567{
1568	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1569	int var_size3 = cookie->raw_addr_list_len;
1570	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1571
1572	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1573				      asoc->ep->base.bind_addr.port, gfp);
1574}
1575
1576/* Lookup laddr in the bind address list of an association. */
1577int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1578			    const union sctp_addr *laddr)
1579{
1580	int found = 0;
1581
1582	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1583	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1584				 sctp_sk(asoc->base.sk)))
1585		found = 1;
1586
1587	return found;
1588}
1589
1590/* Set an association id for a given association */
1591int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1592{
1593	bool preload = !!(gfp & __GFP_WAIT);
1594	int ret;
1595
1596	/* If the id is already assigned, keep it. */
1597	if (asoc->assoc_id)
1598		return 0;
1599
1600	if (preload)
1601		idr_preload(gfp);
1602	spin_lock_bh(&sctp_assocs_id_lock);
1603	/* 0 is not a valid assoc_id, must be >= 1 */
1604	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1605	spin_unlock_bh(&sctp_assocs_id_lock);
1606	if (preload)
1607		idr_preload_end();
1608	if (ret < 0)
1609		return ret;
1610
1611	asoc->assoc_id = (sctp_assoc_t)ret;
1612	return 0;
1613}
1614
1615/* Free the ASCONF queue */
1616static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1617{
1618	struct sctp_chunk *asconf;
1619	struct sctp_chunk *tmp;
1620
1621	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1622		list_del_init(&asconf->list);
1623		sctp_chunk_free(asconf);
1624	}
1625}
1626
1627/* Free asconf_ack cache */
1628static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1629{
1630	struct sctp_chunk *ack;
1631	struct sctp_chunk *tmp;
1632
1633	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1634				transmitted_list) {
1635		list_del_init(&ack->transmitted_list);
1636		sctp_chunk_free(ack);
1637	}
1638}
1639
1640/* Clean up the ASCONF_ACK queue */
1641void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1642{
1643	struct sctp_chunk *ack;
1644	struct sctp_chunk *tmp;
1645
1646	/* We can remove all the entries from the queue up to
1647	 * the "Peer-Sequence-Number".
1648	 */
1649	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1650				transmitted_list) {
1651		if (ack->subh.addip_hdr->serial ==
1652				htonl(asoc->peer.addip_serial))
1653			break;
1654
1655		list_del_init(&ack->transmitted_list);
1656		sctp_chunk_free(ack);
1657	}
1658}
1659
1660/* Find the ASCONF_ACK whose serial number matches ASCONF */
1661struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1662					const struct sctp_association *asoc,
1663					__be32 serial)
1664{
1665	struct sctp_chunk *ack;
1666
1667	/* Walk through the list of cached ASCONF-ACKs and find the
1668	 * ack chunk whose serial number matches that of the request.
1669	 */
1670	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1671		if (sctp_chunk_pending(ack))
1672			continue;
1673		if (ack->subh.addip_hdr->serial == serial) {
1674			sctp_chunk_hold(ack);
1675			return ack;
1676		}
1677	}
1678
1679	return NULL;
1680}
1681
1682void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1683{
1684	/* Free any cached ASCONF_ACK chunk. */
1685	sctp_assoc_free_asconf_acks(asoc);
1686
1687	/* Free the ASCONF queue. */
1688	sctp_assoc_free_asconf_queue(asoc);
1689
1690	/* Free any cached ASCONF chunk. */
1691	if (asoc->addip_last_asconf)
1692		sctp_chunk_free(asoc->addip_last_asconf);
1693}
1694