associola.c revision 4814326b59db0cfd18ac652626d955ad3f57fb0f
1/* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51#include <linux/types.h> 52#include <linux/fcntl.h> 53#include <linux/poll.h> 54#include <linux/init.h> 55 56#include <linux/slab.h> 57#include <linux/in.h> 58#include <net/ipv6.h> 59#include <net/sctp/sctp.h> 60#include <net/sctp/sm.h> 61 62/* Forward declarations for internal functions. */ 63static void sctp_assoc_bh_rcv(struct work_struct *work); 64static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 65 66/* Keep track of the new idr low so that we don't re-use association id 67 * numbers too fast. It is protected by they idr spin lock is in the 68 * range of 1 - INT_MAX. 69 */ 70static u32 idr_low = 1; 71 72 73/* 1st Level Abstractions. */ 74 75/* Initialize a new association from provided memory. */ 76static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 77 const struct sctp_endpoint *ep, 78 const struct sock *sk, 79 sctp_scope_t scope, 80 gfp_t gfp) 81{ 82 struct sctp_sock *sp; 83 int i; 84 sctp_paramhdr_t *p; 85 int err; 86 87 /* Retrieve the SCTP per socket area. */ 88 sp = sctp_sk((struct sock *)sk); 89 90 /* Init all variables to a known value. */ 91 memset(asoc, 0, sizeof(struct sctp_association)); 92 93 /* Discarding const is appropriate here. */ 94 asoc->ep = (struct sctp_endpoint *)ep; 95 sctp_endpoint_hold(asoc->ep); 96 97 /* Hold the sock. */ 98 asoc->base.sk = (struct sock *)sk; 99 sock_hold(asoc->base.sk); 100 101 /* Initialize the common base substructure. */ 102 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 103 104 /* Initialize the object handling fields. */ 105 atomic_set(&asoc->base.refcnt, 1); 106 asoc->base.dead = 0; 107 asoc->base.malloced = 0; 108 109 /* Initialize the bind addr area. */ 110 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 111 112 asoc->state = SCTP_STATE_CLOSED; 113 114 /* Set these values from the socket values, a conversion between 115 * millsecons to seconds/microseconds must also be done. 116 */ 117 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 118 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 119 * 1000; 120 asoc->frag_point = 0; 121 asoc->user_frag = sp->user_frag; 122 123 /* Set the association max_retrans and RTO values from the 124 * socket values. 125 */ 126 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 127 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 128 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 129 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 130 131 asoc->overall_error_count = 0; 132 133 /* Initialize the association's heartbeat interval based on the 134 * sock configured value. 135 */ 136 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 137 138 /* Initialize path max retrans value. */ 139 asoc->pathmaxrxt = sp->pathmaxrxt; 140 141 /* Initialize default path MTU. */ 142 asoc->pathmtu = sp->pathmtu; 143 144 /* Set association default SACK delay */ 145 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 146 asoc->sackfreq = sp->sackfreq; 147 148 /* Set the association default flags controlling 149 * Heartbeat, SACK delay, and Path MTU Discovery. 150 */ 151 asoc->param_flags = sp->param_flags; 152 153 /* Initialize the maximum mumber of new data packets that can be sent 154 * in a burst. 155 */ 156 asoc->max_burst = sp->max_burst; 157 158 /* initialize association timers */ 159 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 160 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 162 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 163 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 164 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 165 166 /* sctpimpguide Section 2.12.2 167 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 168 * recommended value of 5 times 'RTO.Max'. 169 */ 170 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 171 = 5 * asoc->rto_max; 172 173 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 174 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 175 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 176 (unsigned long)sp->autoclose * HZ; 177 178 /* Initilizes the timers */ 179 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 180 setup_timer(&asoc->timers[i], sctp_timer_events[i], 181 (unsigned long)asoc); 182 183 /* Pull default initialization values from the sock options. 184 * Note: This assumes that the values have already been 185 * validated in the sock. 186 */ 187 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 188 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 189 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 190 191 asoc->max_init_timeo = 192 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 193 194 /* Allocate storage for the ssnmap after the inbound and outbound 195 * streams have been negotiated during Init. 196 */ 197 asoc->ssnmap = NULL; 198 199 /* Set the local window size for receive. 200 * This is also the rcvbuf space per association. 201 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 202 * 1500 bytes in one SCTP packet. 203 */ 204 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 205 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 206 else 207 asoc->rwnd = sk->sk_rcvbuf/2; 208 209 asoc->a_rwnd = asoc->rwnd; 210 211 asoc->rwnd_over = 0; 212 asoc->rwnd_press = 0; 213 214 /* Use my own max window until I learn something better. */ 215 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 216 217 /* Set the sndbuf size for transmit. */ 218 asoc->sndbuf_used = 0; 219 220 /* Initialize the receive memory counter */ 221 atomic_set(&asoc->rmem_alloc, 0); 222 223 init_waitqueue_head(&asoc->wait); 224 225 asoc->c.my_vtag = sctp_generate_tag(ep); 226 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 227 asoc->c.peer_vtag = 0; 228 asoc->c.my_ttag = 0; 229 asoc->c.peer_ttag = 0; 230 asoc->c.my_port = ep->base.bind_addr.port; 231 232 asoc->c.initial_tsn = sctp_generate_tsn(ep); 233 234 asoc->next_tsn = asoc->c.initial_tsn; 235 236 asoc->ctsn_ack_point = asoc->next_tsn - 1; 237 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 238 asoc->highest_sacked = asoc->ctsn_ack_point; 239 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 240 asoc->unack_data = 0; 241 242 /* ADDIP Section 4.1 Asconf Chunk Procedures 243 * 244 * When an endpoint has an ASCONF signaled change to be sent to the 245 * remote endpoint it should do the following: 246 * ... 247 * A2) a serial number should be assigned to the chunk. The serial 248 * number SHOULD be a monotonically increasing number. The serial 249 * numbers SHOULD be initialized at the start of the 250 * association to the same value as the initial TSN. 251 */ 252 asoc->addip_serial = asoc->c.initial_tsn; 253 254 INIT_LIST_HEAD(&asoc->addip_chunk_list); 255 INIT_LIST_HEAD(&asoc->asconf_ack_list); 256 257 /* Make an empty list of remote transport addresses. */ 258 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 259 asoc->peer.transport_count = 0; 260 261 /* RFC 2960 5.1 Normal Establishment of an Association 262 * 263 * After the reception of the first data chunk in an 264 * association the endpoint must immediately respond with a 265 * sack to acknowledge the data chunk. Subsequent 266 * acknowledgements should be done as described in Section 267 * 6.2. 268 * 269 * [We implement this by telling a new association that it 270 * already received one packet.] 271 */ 272 asoc->peer.sack_needed = 1; 273 asoc->peer.sack_cnt = 0; 274 275 /* Assume that the peer will tell us if he recognizes ASCONF 276 * as part of INIT exchange. 277 * The sctp_addip_noauth option is there for backward compatibilty 278 * and will revert old behavior. 279 */ 280 asoc->peer.asconf_capable = 0; 281 if (sctp_addip_noauth) 282 asoc->peer.asconf_capable = 1; 283 284 /* Create an input queue. */ 285 sctp_inq_init(&asoc->base.inqueue); 286 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 287 288 /* Create an output queue. */ 289 sctp_outq_init(asoc, &asoc->outqueue); 290 291 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 292 goto fail_init; 293 294 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 295 296 asoc->need_ecne = 0; 297 298 asoc->assoc_id = 0; 299 300 /* Assume that peer would support both address types unless we are 301 * told otherwise. 302 */ 303 asoc->peer.ipv4_address = 1; 304 if (asoc->base.sk->sk_family == PF_INET6) 305 asoc->peer.ipv6_address = 1; 306 INIT_LIST_HEAD(&asoc->asocs); 307 308 asoc->autoclose = sp->autoclose; 309 310 asoc->default_stream = sp->default_stream; 311 asoc->default_ppid = sp->default_ppid; 312 asoc->default_flags = sp->default_flags; 313 asoc->default_context = sp->default_context; 314 asoc->default_timetolive = sp->default_timetolive; 315 asoc->default_rcv_context = sp->default_rcv_context; 316 317 /* AUTH related initializations */ 318 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 319 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 320 if (err) 321 goto fail_init; 322 323 asoc->active_key_id = ep->active_key_id; 324 asoc->asoc_shared_key = NULL; 325 326 asoc->default_hmac_id = 0; 327 /* Save the hmacs and chunks list into this association */ 328 if (ep->auth_hmacs_list) 329 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 330 ntohs(ep->auth_hmacs_list->param_hdr.length)); 331 if (ep->auth_chunk_list) 332 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 333 ntohs(ep->auth_chunk_list->param_hdr.length)); 334 335 /* Get the AUTH random number for this association */ 336 p = (sctp_paramhdr_t *)asoc->c.auth_random; 337 p->type = SCTP_PARAM_RANDOM; 338 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 339 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 340 341 return asoc; 342 343fail_init: 344 sctp_endpoint_put(asoc->ep); 345 sock_put(asoc->base.sk); 346 return NULL; 347} 348 349/* Allocate and initialize a new association */ 350struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 351 const struct sock *sk, 352 sctp_scope_t scope, 353 gfp_t gfp) 354{ 355 struct sctp_association *asoc; 356 357 asoc = t_new(struct sctp_association, gfp); 358 if (!asoc) 359 goto fail; 360 361 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 362 goto fail_init; 363 364 asoc->base.malloced = 1; 365 SCTP_DBG_OBJCNT_INC(assoc); 366 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 367 368 return asoc; 369 370fail_init: 371 kfree(asoc); 372fail: 373 return NULL; 374} 375 376/* Free this association if possible. There may still be users, so 377 * the actual deallocation may be delayed. 378 */ 379void sctp_association_free(struct sctp_association *asoc) 380{ 381 struct sock *sk = asoc->base.sk; 382 struct sctp_transport *transport; 383 struct list_head *pos, *temp; 384 int i; 385 386 /* Only real associations count against the endpoint, so 387 * don't bother for if this is a temporary association. 388 */ 389 if (!asoc->temp) { 390 list_del(&asoc->asocs); 391 392 /* Decrement the backlog value for a TCP-style listening 393 * socket. 394 */ 395 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 396 sk->sk_ack_backlog--; 397 } 398 399 /* Mark as dead, so other users can know this structure is 400 * going away. 401 */ 402 asoc->base.dead = 1; 403 404 /* Dispose of any data lying around in the outqueue. */ 405 sctp_outq_free(&asoc->outqueue); 406 407 /* Dispose of any pending messages for the upper layer. */ 408 sctp_ulpq_free(&asoc->ulpq); 409 410 /* Dispose of any pending chunks on the inqueue. */ 411 sctp_inq_free(&asoc->base.inqueue); 412 413 sctp_tsnmap_free(&asoc->peer.tsn_map); 414 415 /* Free ssnmap storage. */ 416 sctp_ssnmap_free(asoc->ssnmap); 417 418 /* Clean up the bound address list. */ 419 sctp_bind_addr_free(&asoc->base.bind_addr); 420 421 /* Do we need to go through all of our timers and 422 * delete them? To be safe we will try to delete all, but we 423 * should be able to go through and make a guess based 424 * on our state. 425 */ 426 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 427 if (timer_pending(&asoc->timers[i]) && 428 del_timer(&asoc->timers[i])) 429 sctp_association_put(asoc); 430 } 431 432 /* Free peer's cached cookie. */ 433 kfree(asoc->peer.cookie); 434 kfree(asoc->peer.peer_random); 435 kfree(asoc->peer.peer_chunks); 436 kfree(asoc->peer.peer_hmacs); 437 438 /* Release the transport structures. */ 439 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 440 transport = list_entry(pos, struct sctp_transport, transports); 441 list_del(pos); 442 sctp_transport_free(transport); 443 } 444 445 asoc->peer.transport_count = 0; 446 447 /* Free any cached ASCONF_ACK chunk. */ 448 sctp_assoc_free_asconf_acks(asoc); 449 450 /* Free any cached ASCONF chunk. */ 451 if (asoc->addip_last_asconf) 452 sctp_chunk_free(asoc->addip_last_asconf); 453 454 /* AUTH - Free the endpoint shared keys */ 455 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 456 457 /* AUTH - Free the association shared key */ 458 sctp_auth_key_put(asoc->asoc_shared_key); 459 460 sctp_association_put(asoc); 461} 462 463/* Cleanup and free up an association. */ 464static void sctp_association_destroy(struct sctp_association *asoc) 465{ 466 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 467 468 sctp_endpoint_put(asoc->ep); 469 sock_put(asoc->base.sk); 470 471 if (asoc->assoc_id != 0) { 472 spin_lock_bh(&sctp_assocs_id_lock); 473 idr_remove(&sctp_assocs_id, asoc->assoc_id); 474 spin_unlock_bh(&sctp_assocs_id_lock); 475 } 476 477 WARN_ON(atomic_read(&asoc->rmem_alloc)); 478 479 if (asoc->base.malloced) { 480 kfree(asoc); 481 SCTP_DBG_OBJCNT_DEC(assoc); 482 } 483} 484 485/* Change the primary destination address for the peer. */ 486void sctp_assoc_set_primary(struct sctp_association *asoc, 487 struct sctp_transport *transport) 488{ 489 int changeover = 0; 490 491 /* it's a changeover only if we already have a primary path 492 * that we are changing 493 */ 494 if (asoc->peer.primary_path != NULL && 495 asoc->peer.primary_path != transport) 496 changeover = 1 ; 497 498 asoc->peer.primary_path = transport; 499 500 /* Set a default msg_name for events. */ 501 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 502 sizeof(union sctp_addr)); 503 504 /* If the primary path is changing, assume that the 505 * user wants to use this new path. 506 */ 507 if ((transport->state == SCTP_ACTIVE) || 508 (transport->state == SCTP_UNKNOWN)) 509 asoc->peer.active_path = transport; 510 511 /* 512 * SFR-CACC algorithm: 513 * Upon the receipt of a request to change the primary 514 * destination address, on the data structure for the new 515 * primary destination, the sender MUST do the following: 516 * 517 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 518 * to this destination address earlier. The sender MUST set 519 * CYCLING_CHANGEOVER to indicate that this switch is a 520 * double switch to the same destination address. 521 * 522 * Really, only bother is we have data queued or outstanding on 523 * the association. 524 */ 525 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) 526 return; 527 528 if (transport->cacc.changeover_active) 529 transport->cacc.cycling_changeover = changeover; 530 531 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 532 * a changeover has occurred. 533 */ 534 transport->cacc.changeover_active = changeover; 535 536 /* 3) The sender MUST store the next TSN to be sent in 537 * next_tsn_at_change. 538 */ 539 transport->cacc.next_tsn_at_change = asoc->next_tsn; 540} 541 542/* Remove a transport from an association. */ 543void sctp_assoc_rm_peer(struct sctp_association *asoc, 544 struct sctp_transport *peer) 545{ 546 struct list_head *pos; 547 struct sctp_transport *transport; 548 549 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 550 " port: %d\n", 551 asoc, 552 (&peer->ipaddr), 553 ntohs(peer->ipaddr.v4.sin_port)); 554 555 /* If we are to remove the current retran_path, update it 556 * to the next peer before removing this peer from the list. 557 */ 558 if (asoc->peer.retran_path == peer) 559 sctp_assoc_update_retran_path(asoc); 560 561 /* Remove this peer from the list. */ 562 list_del(&peer->transports); 563 564 /* Get the first transport of asoc. */ 565 pos = asoc->peer.transport_addr_list.next; 566 transport = list_entry(pos, struct sctp_transport, transports); 567 568 /* Update any entries that match the peer to be deleted. */ 569 if (asoc->peer.primary_path == peer) 570 sctp_assoc_set_primary(asoc, transport); 571 if (asoc->peer.active_path == peer) 572 asoc->peer.active_path = transport; 573 if (asoc->peer.last_data_from == peer) 574 asoc->peer.last_data_from = transport; 575 576 /* If we remove the transport an INIT was last sent to, set it to 577 * NULL. Combined with the update of the retran path above, this 578 * will cause the next INIT to be sent to the next available 579 * transport, maintaining the cycle. 580 */ 581 if (asoc->init_last_sent_to == peer) 582 asoc->init_last_sent_to = NULL; 583 584 /* If we remove the transport an SHUTDOWN was last sent to, set it 585 * to NULL. Combined with the update of the retran path above, this 586 * will cause the next SHUTDOWN to be sent to the next available 587 * transport, maintaining the cycle. 588 */ 589 if (asoc->shutdown_last_sent_to == peer) 590 asoc->shutdown_last_sent_to = NULL; 591 592 /* If we remove the transport an ASCONF was last sent to, set it to 593 * NULL. 594 */ 595 if (asoc->addip_last_asconf && 596 asoc->addip_last_asconf->transport == peer) 597 asoc->addip_last_asconf->transport = NULL; 598 599 /* If we have something on the transmitted list, we have to 600 * save it off. The best place is the active path. 601 */ 602 if (!list_empty(&peer->transmitted)) { 603 struct sctp_transport *active = asoc->peer.active_path; 604 struct sctp_chunk *ch; 605 606 /* Reset the transport of each chunk on this list */ 607 list_for_each_entry(ch, &peer->transmitted, 608 transmitted_list) { 609 ch->transport = NULL; 610 ch->rtt_in_progress = 0; 611 } 612 613 list_splice_tail_init(&peer->transmitted, 614 &active->transmitted); 615 616 /* Start a T3 timer here in case it wasn't running so 617 * that these migrated packets have a chance to get 618 * retrnasmitted. 619 */ 620 if (!timer_pending(&active->T3_rtx_timer)) 621 if (!mod_timer(&active->T3_rtx_timer, 622 jiffies + active->rto)) 623 sctp_transport_hold(active); 624 } 625 626 asoc->peer.transport_count--; 627 628 sctp_transport_free(peer); 629} 630 631/* Add a transport address to an association. */ 632struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 633 const union sctp_addr *addr, 634 const gfp_t gfp, 635 const int peer_state) 636{ 637 struct sctp_transport *peer; 638 struct sctp_sock *sp; 639 unsigned short port; 640 641 sp = sctp_sk(asoc->base.sk); 642 643 /* AF_INET and AF_INET6 share common port field. */ 644 port = ntohs(addr->v4.sin_port); 645 646 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 647 " port: %d state:%d\n", 648 asoc, 649 addr, 650 port, 651 peer_state); 652 653 /* Set the port if it has not been set yet. */ 654 if (0 == asoc->peer.port) 655 asoc->peer.port = port; 656 657 /* Check to see if this is a duplicate. */ 658 peer = sctp_assoc_lookup_paddr(asoc, addr); 659 if (peer) { 660 /* An UNKNOWN state is only set on transports added by 661 * user in sctp_connectx() call. Such transports should be 662 * considered CONFIRMED per RFC 4960, Section 5.4. 663 */ 664 if (peer->state == SCTP_UNKNOWN) { 665 peer->state = SCTP_ACTIVE; 666 } 667 return peer; 668 } 669 670 peer = sctp_transport_new(addr, gfp); 671 if (!peer) 672 return NULL; 673 674 sctp_transport_set_owner(peer, asoc); 675 676 /* Initialize the peer's heartbeat interval based on the 677 * association configured value. 678 */ 679 peer->hbinterval = asoc->hbinterval; 680 681 /* Set the path max_retrans. */ 682 peer->pathmaxrxt = asoc->pathmaxrxt; 683 684 /* Initialize the peer's SACK delay timeout based on the 685 * association configured value. 686 */ 687 peer->sackdelay = asoc->sackdelay; 688 peer->sackfreq = asoc->sackfreq; 689 690 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 691 * based on association setting. 692 */ 693 peer->param_flags = asoc->param_flags; 694 695 sctp_transport_route(peer, NULL, sp); 696 697 /* Initialize the pmtu of the transport. */ 698 if (peer->param_flags & SPP_PMTUD_DISABLE) { 699 if (asoc->pathmtu) 700 peer->pathmtu = asoc->pathmtu; 701 else 702 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 703 } 704 705 /* If this is the first transport addr on this association, 706 * initialize the association PMTU to the peer's PMTU. 707 * If not and the current association PMTU is higher than the new 708 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 709 */ 710 if (asoc->pathmtu) 711 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 712 else 713 asoc->pathmtu = peer->pathmtu; 714 715 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 716 "%d\n", asoc, asoc->pathmtu); 717 peer->pmtu_pending = 0; 718 719 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 720 721 /* The asoc->peer.port might not be meaningful yet, but 722 * initialize the packet structure anyway. 723 */ 724 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 725 asoc->peer.port); 726 727 /* 7.2.1 Slow-Start 728 * 729 * o The initial cwnd before DATA transmission or after a sufficiently 730 * long idle period MUST be set to 731 * min(4*MTU, max(2*MTU, 4380 bytes)) 732 * 733 * o The initial value of ssthresh MAY be arbitrarily high 734 * (for example, implementations MAY use the size of the 735 * receiver advertised window). 736 */ 737 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 738 739 /* At this point, we may not have the receiver's advertised window, 740 * so initialize ssthresh to the default value and it will be set 741 * later when we process the INIT. 742 */ 743 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 744 745 peer->partial_bytes_acked = 0; 746 peer->flight_size = 0; 747 peer->burst_limited = 0; 748 749 /* Set the transport's RTO.initial value */ 750 peer->rto = asoc->rto_initial; 751 752 /* Set the peer's active state. */ 753 peer->state = peer_state; 754 755 /* Attach the remote transport to our asoc. */ 756 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 757 asoc->peer.transport_count++; 758 759 /* If we do not yet have a primary path, set one. */ 760 if (!asoc->peer.primary_path) { 761 sctp_assoc_set_primary(asoc, peer); 762 asoc->peer.retran_path = peer; 763 } 764 765 if (asoc->peer.active_path == asoc->peer.retran_path) { 766 asoc->peer.retran_path = peer; 767 } 768 769 return peer; 770} 771 772/* Delete a transport address from an association. */ 773void sctp_assoc_del_peer(struct sctp_association *asoc, 774 const union sctp_addr *addr) 775{ 776 struct list_head *pos; 777 struct list_head *temp; 778 struct sctp_transport *transport; 779 780 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 781 transport = list_entry(pos, struct sctp_transport, transports); 782 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 783 /* Do book keeping for removing the peer and free it. */ 784 sctp_assoc_rm_peer(asoc, transport); 785 break; 786 } 787 } 788} 789 790/* Lookup a transport by address. */ 791struct sctp_transport *sctp_assoc_lookup_paddr( 792 const struct sctp_association *asoc, 793 const union sctp_addr *address) 794{ 795 struct sctp_transport *t; 796 797 /* Cycle through all transports searching for a peer address. */ 798 799 list_for_each_entry(t, &asoc->peer.transport_addr_list, 800 transports) { 801 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 802 return t; 803 } 804 805 return NULL; 806} 807 808/* Remove all transports except a give one */ 809void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 810 struct sctp_transport *primary) 811{ 812 struct sctp_transport *temp; 813 struct sctp_transport *t; 814 815 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 816 transports) { 817 /* if the current transport is not the primary one, delete it */ 818 if (t != primary) 819 sctp_assoc_rm_peer(asoc, t); 820 } 821 822 return; 823} 824 825/* Engage in transport control operations. 826 * Mark the transport up or down and send a notification to the user. 827 * Select and update the new active and retran paths. 828 */ 829void sctp_assoc_control_transport(struct sctp_association *asoc, 830 struct sctp_transport *transport, 831 sctp_transport_cmd_t command, 832 sctp_sn_error_t error) 833{ 834 struct sctp_transport *t = NULL; 835 struct sctp_transport *first; 836 struct sctp_transport *second; 837 struct sctp_ulpevent *event; 838 struct sockaddr_storage addr; 839 int spc_state = 0; 840 841 /* Record the transition on the transport. */ 842 switch (command) { 843 case SCTP_TRANSPORT_UP: 844 /* If we are moving from UNCONFIRMED state due 845 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 846 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 847 */ 848 if (SCTP_UNCONFIRMED == transport->state && 849 SCTP_HEARTBEAT_SUCCESS == error) 850 spc_state = SCTP_ADDR_CONFIRMED; 851 else 852 spc_state = SCTP_ADDR_AVAILABLE; 853 transport->state = SCTP_ACTIVE; 854 break; 855 856 case SCTP_TRANSPORT_DOWN: 857 /* If the transport was never confirmed, do not transition it 858 * to inactive state. Also, release the cached route since 859 * there may be a better route next time. 860 */ 861 if (transport->state != SCTP_UNCONFIRMED) 862 transport->state = SCTP_INACTIVE; 863 else { 864 dst_release(transport->dst); 865 transport->dst = NULL; 866 } 867 868 spc_state = SCTP_ADDR_UNREACHABLE; 869 break; 870 871 default: 872 return; 873 } 874 875 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 876 * user. 877 */ 878 memset(&addr, 0, sizeof(struct sockaddr_storage)); 879 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len); 880 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 881 0, spc_state, error, GFP_ATOMIC); 882 if (event) 883 sctp_ulpq_tail_event(&asoc->ulpq, event); 884 885 /* Select new active and retran paths. */ 886 887 /* Look for the two most recently used active transports. 888 * 889 * This code produces the wrong ordering whenever jiffies 890 * rolls over, but we still get usable transports, so we don't 891 * worry about it. 892 */ 893 first = NULL; second = NULL; 894 895 list_for_each_entry(t, &asoc->peer.transport_addr_list, 896 transports) { 897 898 if ((t->state == SCTP_INACTIVE) || 899 (t->state == SCTP_UNCONFIRMED)) 900 continue; 901 if (!first || t->last_time_heard > first->last_time_heard) { 902 second = first; 903 first = t; 904 } 905 if (!second || t->last_time_heard > second->last_time_heard) 906 second = t; 907 } 908 909 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 910 * 911 * By default, an endpoint should always transmit to the 912 * primary path, unless the SCTP user explicitly specifies the 913 * destination transport address (and possibly source 914 * transport address) to use. 915 * 916 * [If the primary is active but not most recent, bump the most 917 * recently used transport.] 918 */ 919 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 920 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 921 first != asoc->peer.primary_path) { 922 second = first; 923 first = asoc->peer.primary_path; 924 } 925 926 /* If we failed to find a usable transport, just camp on the 927 * primary, even if it is inactive. 928 */ 929 if (!first) { 930 first = asoc->peer.primary_path; 931 second = asoc->peer.primary_path; 932 } 933 934 /* Set the active and retran transports. */ 935 asoc->peer.active_path = first; 936 asoc->peer.retran_path = second; 937} 938 939/* Hold a reference to an association. */ 940void sctp_association_hold(struct sctp_association *asoc) 941{ 942 atomic_inc(&asoc->base.refcnt); 943} 944 945/* Release a reference to an association and cleanup 946 * if there are no more references. 947 */ 948void sctp_association_put(struct sctp_association *asoc) 949{ 950 if (atomic_dec_and_test(&asoc->base.refcnt)) 951 sctp_association_destroy(asoc); 952} 953 954/* Allocate the next TSN, Transmission Sequence Number, for the given 955 * association. 956 */ 957__u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 958{ 959 /* From Section 1.6 Serial Number Arithmetic: 960 * Transmission Sequence Numbers wrap around when they reach 961 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 962 * after transmitting TSN = 2*32 - 1 is TSN = 0. 963 */ 964 __u32 retval = asoc->next_tsn; 965 asoc->next_tsn++; 966 asoc->unack_data++; 967 968 return retval; 969} 970 971/* Compare two addresses to see if they match. Wildcard addresses 972 * only match themselves. 973 */ 974int sctp_cmp_addr_exact(const union sctp_addr *ss1, 975 const union sctp_addr *ss2) 976{ 977 struct sctp_af *af; 978 979 af = sctp_get_af_specific(ss1->sa.sa_family); 980 if (unlikely(!af)) 981 return 0; 982 983 return af->cmp_addr(ss1, ss2); 984} 985 986/* Return an ecne chunk to get prepended to a packet. 987 * Note: We are sly and return a shared, prealloced chunk. FIXME: 988 * No we don't, but we could/should. 989 */ 990struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 991{ 992 struct sctp_chunk *chunk; 993 994 /* Send ECNE if needed. 995 * Not being able to allocate a chunk here is not deadly. 996 */ 997 if (asoc->need_ecne) 998 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 999 else 1000 chunk = NULL; 1001 1002 return chunk; 1003} 1004 1005/* 1006 * Find which transport this TSN was sent on. 1007 */ 1008struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 1009 __u32 tsn) 1010{ 1011 struct sctp_transport *active; 1012 struct sctp_transport *match; 1013 struct sctp_transport *transport; 1014 struct sctp_chunk *chunk; 1015 __be32 key = htonl(tsn); 1016 1017 match = NULL; 1018 1019 /* 1020 * FIXME: In general, find a more efficient data structure for 1021 * searching. 1022 */ 1023 1024 /* 1025 * The general strategy is to search each transport's transmitted 1026 * list. Return which transport this TSN lives on. 1027 * 1028 * Let's be hopeful and check the active_path first. 1029 * Another optimization would be to know if there is only one 1030 * outbound path and not have to look for the TSN at all. 1031 * 1032 */ 1033 1034 active = asoc->peer.active_path; 1035 1036 list_for_each_entry(chunk, &active->transmitted, 1037 transmitted_list) { 1038 1039 if (key == chunk->subh.data_hdr->tsn) { 1040 match = active; 1041 goto out; 1042 } 1043 } 1044 1045 /* If not found, go search all the other transports. */ 1046 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1047 transports) { 1048 1049 if (transport == active) 1050 break; 1051 list_for_each_entry(chunk, &transport->transmitted, 1052 transmitted_list) { 1053 if (key == chunk->subh.data_hdr->tsn) { 1054 match = transport; 1055 goto out; 1056 } 1057 } 1058 } 1059out: 1060 return match; 1061} 1062 1063/* Is this the association we are looking for? */ 1064struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1065 const union sctp_addr *laddr, 1066 const union sctp_addr *paddr) 1067{ 1068 struct sctp_transport *transport; 1069 1070 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1071 (htons(asoc->peer.port) == paddr->v4.sin_port)) { 1072 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1073 if (!transport) 1074 goto out; 1075 1076 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1077 sctp_sk(asoc->base.sk))) 1078 goto out; 1079 } 1080 transport = NULL; 1081 1082out: 1083 return transport; 1084} 1085 1086/* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1087static void sctp_assoc_bh_rcv(struct work_struct *work) 1088{ 1089 struct sctp_association *asoc = 1090 container_of(work, struct sctp_association, 1091 base.inqueue.immediate); 1092 struct sctp_endpoint *ep; 1093 struct sctp_chunk *chunk; 1094 struct sock *sk; 1095 struct sctp_inq *inqueue; 1096 int state; 1097 sctp_subtype_t subtype; 1098 int error = 0; 1099 1100 /* The association should be held so we should be safe. */ 1101 ep = asoc->ep; 1102 sk = asoc->base.sk; 1103 1104 inqueue = &asoc->base.inqueue; 1105 sctp_association_hold(asoc); 1106 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1107 state = asoc->state; 1108 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1109 1110 /* SCTP-AUTH, Section 6.3: 1111 * The receiver has a list of chunk types which it expects 1112 * to be received only after an AUTH-chunk. This list has 1113 * been sent to the peer during the association setup. It 1114 * MUST silently discard these chunks if they are not placed 1115 * after an AUTH chunk in the packet. 1116 */ 1117 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1118 continue; 1119 1120 /* Remember where the last DATA chunk came from so we 1121 * know where to send the SACK. 1122 */ 1123 if (sctp_chunk_is_data(chunk)) 1124 asoc->peer.last_data_from = chunk->transport; 1125 else 1126 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 1127 1128 if (chunk->transport) 1129 chunk->transport->last_time_heard = jiffies; 1130 1131 /* Run through the state machine. */ 1132 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 1133 state, ep, asoc, chunk, GFP_ATOMIC); 1134 1135 /* Check to see if the association is freed in response to 1136 * the incoming chunk. If so, get out of the while loop. 1137 */ 1138 if (asoc->base.dead) 1139 break; 1140 1141 /* If there is an error on chunk, discard this packet. */ 1142 if (error && chunk) 1143 chunk->pdiscard = 1; 1144 } 1145 sctp_association_put(asoc); 1146} 1147 1148/* This routine moves an association from its old sk to a new sk. */ 1149void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1150{ 1151 struct sctp_sock *newsp = sctp_sk(newsk); 1152 struct sock *oldsk = assoc->base.sk; 1153 1154 /* Delete the association from the old endpoint's list of 1155 * associations. 1156 */ 1157 list_del_init(&assoc->asocs); 1158 1159 /* Decrement the backlog value for a TCP-style socket. */ 1160 if (sctp_style(oldsk, TCP)) 1161 oldsk->sk_ack_backlog--; 1162 1163 /* Release references to the old endpoint and the sock. */ 1164 sctp_endpoint_put(assoc->ep); 1165 sock_put(assoc->base.sk); 1166 1167 /* Get a reference to the new endpoint. */ 1168 assoc->ep = newsp->ep; 1169 sctp_endpoint_hold(assoc->ep); 1170 1171 /* Get a reference to the new sock. */ 1172 assoc->base.sk = newsk; 1173 sock_hold(assoc->base.sk); 1174 1175 /* Add the association to the new endpoint's list of associations. */ 1176 sctp_endpoint_add_asoc(newsp->ep, assoc); 1177} 1178 1179/* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1180void sctp_assoc_update(struct sctp_association *asoc, 1181 struct sctp_association *new) 1182{ 1183 struct sctp_transport *trans; 1184 struct list_head *pos, *temp; 1185 1186 /* Copy in new parameters of peer. */ 1187 asoc->c = new->c; 1188 asoc->peer.rwnd = new->peer.rwnd; 1189 asoc->peer.sack_needed = new->peer.sack_needed; 1190 asoc->peer.i = new->peer.i; 1191 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1192 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1193 1194 /* Remove any peer addresses not present in the new association. */ 1195 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1196 trans = list_entry(pos, struct sctp_transport, transports); 1197 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) 1198 sctp_assoc_del_peer(asoc, &trans->ipaddr); 1199 1200 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1201 sctp_transport_reset(trans); 1202 } 1203 1204 /* If the case is A (association restart), use 1205 * initial_tsn as next_tsn. If the case is B, use 1206 * current next_tsn in case data sent to peer 1207 * has been discarded and needs retransmission. 1208 */ 1209 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1210 asoc->next_tsn = new->next_tsn; 1211 asoc->ctsn_ack_point = new->ctsn_ack_point; 1212 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1213 1214 /* Reinitialize SSN for both local streams 1215 * and peer's streams. 1216 */ 1217 sctp_ssnmap_clear(asoc->ssnmap); 1218 1219 /* Flush the ULP reassembly and ordered queue. 1220 * Any data there will now be stale and will 1221 * cause problems. 1222 */ 1223 sctp_ulpq_flush(&asoc->ulpq); 1224 1225 /* reset the overall association error count so 1226 * that the restarted association doesn't get torn 1227 * down on the next retransmission timer. 1228 */ 1229 asoc->overall_error_count = 0; 1230 1231 } else { 1232 /* Add any peer addresses from the new association. */ 1233 list_for_each_entry(trans, &new->peer.transport_addr_list, 1234 transports) { 1235 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1236 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1237 GFP_ATOMIC, trans->state); 1238 } 1239 1240 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1241 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1242 if (!asoc->ssnmap) { 1243 /* Move the ssnmap. */ 1244 asoc->ssnmap = new->ssnmap; 1245 new->ssnmap = NULL; 1246 } 1247 1248 if (!asoc->assoc_id) { 1249 /* get a new association id since we don't have one 1250 * yet. 1251 */ 1252 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1253 } 1254 } 1255 1256 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1257 * and also move the association shared keys over 1258 */ 1259 kfree(asoc->peer.peer_random); 1260 asoc->peer.peer_random = new->peer.peer_random; 1261 new->peer.peer_random = NULL; 1262 1263 kfree(asoc->peer.peer_chunks); 1264 asoc->peer.peer_chunks = new->peer.peer_chunks; 1265 new->peer.peer_chunks = NULL; 1266 1267 kfree(asoc->peer.peer_hmacs); 1268 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1269 new->peer.peer_hmacs = NULL; 1270 1271 sctp_auth_key_put(asoc->asoc_shared_key); 1272 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1273} 1274 1275/* Update the retran path for sending a retransmitted packet. 1276 * Round-robin through the active transports, else round-robin 1277 * through the inactive transports as this is the next best thing 1278 * we can try. 1279 */ 1280void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1281{ 1282 struct sctp_transport *t, *next; 1283 struct list_head *head = &asoc->peer.transport_addr_list; 1284 struct list_head *pos; 1285 1286 if (asoc->peer.transport_count == 1) 1287 return; 1288 1289 /* Find the next transport in a round-robin fashion. */ 1290 t = asoc->peer.retran_path; 1291 pos = &t->transports; 1292 next = NULL; 1293 1294 while (1) { 1295 /* Skip the head. */ 1296 if (pos->next == head) 1297 pos = head->next; 1298 else 1299 pos = pos->next; 1300 1301 t = list_entry(pos, struct sctp_transport, transports); 1302 1303 /* We have exhausted the list, but didn't find any 1304 * other active transports. If so, use the next 1305 * transport. 1306 */ 1307 if (t == asoc->peer.retran_path) { 1308 t = next; 1309 break; 1310 } 1311 1312 /* Try to find an active transport. */ 1313 1314 if ((t->state == SCTP_ACTIVE) || 1315 (t->state == SCTP_UNKNOWN)) { 1316 break; 1317 } else { 1318 /* Keep track of the next transport in case 1319 * we don't find any active transport. 1320 */ 1321 if (!next) 1322 next = t; 1323 } 1324 } 1325 1326 asoc->peer.retran_path = t; 1327 1328 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1329 " %p addr: ", 1330 " port: %d\n", 1331 asoc, 1332 (&t->ipaddr), 1333 ntohs(t->ipaddr.v4.sin_port)); 1334} 1335 1336/* Choose the transport for sending retransmit packet. */ 1337struct sctp_transport *sctp_assoc_choose_alter_transport( 1338 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1339{ 1340 /* If this is the first time packet is sent, use the active path, 1341 * else use the retran path. If the last packet was sent over the 1342 * retran path, update the retran path and use it. 1343 */ 1344 if (!last_sent_to) 1345 return asoc->peer.active_path; 1346 else { 1347 if (last_sent_to == asoc->peer.retran_path) 1348 sctp_assoc_update_retran_path(asoc); 1349 return asoc->peer.retran_path; 1350 } 1351} 1352 1353/* Update the association's pmtu and frag_point by going through all the 1354 * transports. This routine is called when a transport's PMTU has changed. 1355 */ 1356void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1357{ 1358 struct sctp_transport *t; 1359 __u32 pmtu = 0; 1360 1361 if (!asoc) 1362 return; 1363 1364 /* Get the lowest pmtu of all the transports. */ 1365 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1366 transports) { 1367 if (t->pmtu_pending && t->dst) { 1368 sctp_transport_update_pmtu(t, dst_mtu(t->dst)); 1369 t->pmtu_pending = 0; 1370 } 1371 if (!pmtu || (t->pathmtu < pmtu)) 1372 pmtu = t->pathmtu; 1373 } 1374 1375 if (pmtu) { 1376 asoc->pathmtu = pmtu; 1377 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1378 } 1379 1380 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1381 __func__, asoc, asoc->pathmtu, asoc->frag_point); 1382} 1383 1384/* Should we send a SACK to update our peer? */ 1385static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1386{ 1387 switch (asoc->state) { 1388 case SCTP_STATE_ESTABLISHED: 1389 case SCTP_STATE_SHUTDOWN_PENDING: 1390 case SCTP_STATE_SHUTDOWN_RECEIVED: 1391 case SCTP_STATE_SHUTDOWN_SENT: 1392 if ((asoc->rwnd > asoc->a_rwnd) && 1393 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, 1394 (asoc->base.sk->sk_rcvbuf >> sctp_rwnd_upd_shift), 1395 asoc->pathmtu))) 1396 return 1; 1397 break; 1398 default: 1399 break; 1400 } 1401 return 0; 1402} 1403 1404/* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1405void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1406{ 1407 struct sctp_chunk *sack; 1408 struct timer_list *timer; 1409 1410 if (asoc->rwnd_over) { 1411 if (asoc->rwnd_over >= len) { 1412 asoc->rwnd_over -= len; 1413 } else { 1414 asoc->rwnd += (len - asoc->rwnd_over); 1415 asoc->rwnd_over = 0; 1416 } 1417 } else { 1418 asoc->rwnd += len; 1419 } 1420 1421 /* If we had window pressure, start recovering it 1422 * once our rwnd had reached the accumulated pressure 1423 * threshold. The idea is to recover slowly, but up 1424 * to the initial advertised window. 1425 */ 1426 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1427 int change = min(asoc->pathmtu, asoc->rwnd_press); 1428 asoc->rwnd += change; 1429 asoc->rwnd_press -= change; 1430 } 1431 1432 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1433 "- %u\n", __func__, asoc, len, asoc->rwnd, 1434 asoc->rwnd_over, asoc->a_rwnd); 1435 1436 /* Send a window update SACK if the rwnd has increased by at least the 1437 * minimum of the association's PMTU and half of the receive buffer. 1438 * The algorithm used is similar to the one described in 1439 * Section 4.2.3.3 of RFC 1122. 1440 */ 1441 if (sctp_peer_needs_update(asoc)) { 1442 asoc->a_rwnd = asoc->rwnd; 1443 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1444 "rwnd: %u a_rwnd: %u\n", __func__, 1445 asoc, asoc->rwnd, asoc->a_rwnd); 1446 sack = sctp_make_sack(asoc); 1447 if (!sack) 1448 return; 1449 1450 asoc->peer.sack_needed = 0; 1451 1452 sctp_outq_tail(&asoc->outqueue, sack); 1453 1454 /* Stop the SACK timer. */ 1455 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1456 if (timer_pending(timer) && del_timer(timer)) 1457 sctp_association_put(asoc); 1458 } 1459} 1460 1461/* Decrease asoc's rwnd by len. */ 1462void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1463{ 1464 int rx_count; 1465 int over = 0; 1466 1467 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1468 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1469 1470 if (asoc->ep->rcvbuf_policy) 1471 rx_count = atomic_read(&asoc->rmem_alloc); 1472 else 1473 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1474 1475 /* If we've reached or overflowed our receive buffer, announce 1476 * a 0 rwnd if rwnd would still be positive. Store the 1477 * the pottential pressure overflow so that the window can be restored 1478 * back to original value. 1479 */ 1480 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1481 over = 1; 1482 1483 if (asoc->rwnd >= len) { 1484 asoc->rwnd -= len; 1485 if (over) { 1486 asoc->rwnd_press = asoc->rwnd; 1487 asoc->rwnd = 0; 1488 } 1489 } else { 1490 asoc->rwnd_over = len - asoc->rwnd; 1491 asoc->rwnd = 0; 1492 } 1493 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n", 1494 __func__, asoc, len, asoc->rwnd, 1495 asoc->rwnd_over, asoc->rwnd_press); 1496} 1497 1498/* Build the bind address list for the association based on info from the 1499 * local endpoint and the remote peer. 1500 */ 1501int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1502 sctp_scope_t scope, gfp_t gfp) 1503{ 1504 int flags; 1505 1506 /* Use scoping rules to determine the subset of addresses from 1507 * the endpoint. 1508 */ 1509 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1510 if (asoc->peer.ipv4_address) 1511 flags |= SCTP_ADDR4_PEERSUPP; 1512 if (asoc->peer.ipv6_address) 1513 flags |= SCTP_ADDR6_PEERSUPP; 1514 1515 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1516 &asoc->ep->base.bind_addr, 1517 scope, gfp, flags); 1518} 1519 1520/* Build the association's bind address list from the cookie. */ 1521int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1522 struct sctp_cookie *cookie, 1523 gfp_t gfp) 1524{ 1525 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1526 int var_size3 = cookie->raw_addr_list_len; 1527 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1528 1529 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1530 asoc->ep->base.bind_addr.port, gfp); 1531} 1532 1533/* Lookup laddr in the bind address list of an association. */ 1534int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1535 const union sctp_addr *laddr) 1536{ 1537 int found = 0; 1538 1539 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1540 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1541 sctp_sk(asoc->base.sk))) 1542 found = 1; 1543 1544 return found; 1545} 1546 1547/* Set an association id for a given association */ 1548int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1549{ 1550 int assoc_id; 1551 int error = 0; 1552 1553 /* If the id is already assigned, keep it. */ 1554 if (asoc->assoc_id) 1555 return error; 1556retry: 1557 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp))) 1558 return -ENOMEM; 1559 1560 spin_lock_bh(&sctp_assocs_id_lock); 1561 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc, 1562 idr_low, &assoc_id); 1563 if (!error) { 1564 idr_low = assoc_id + 1; 1565 if (idr_low == INT_MAX) 1566 idr_low = 1; 1567 } 1568 spin_unlock_bh(&sctp_assocs_id_lock); 1569 if (error == -EAGAIN) 1570 goto retry; 1571 else if (error) 1572 return error; 1573 1574 asoc->assoc_id = (sctp_assoc_t) assoc_id; 1575 return error; 1576} 1577 1578/* Free asconf_ack cache */ 1579static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1580{ 1581 struct sctp_chunk *ack; 1582 struct sctp_chunk *tmp; 1583 1584 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1585 transmitted_list) { 1586 list_del_init(&ack->transmitted_list); 1587 sctp_chunk_free(ack); 1588 } 1589} 1590 1591/* Clean up the ASCONF_ACK queue */ 1592void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1593{ 1594 struct sctp_chunk *ack; 1595 struct sctp_chunk *tmp; 1596 1597 /* We can remove all the entries from the queue upto 1598 * the "Peer-Sequence-Number". 1599 */ 1600 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1601 transmitted_list) { 1602 if (ack->subh.addip_hdr->serial == 1603 htonl(asoc->peer.addip_serial)) 1604 break; 1605 1606 list_del_init(&ack->transmitted_list); 1607 sctp_chunk_free(ack); 1608 } 1609} 1610 1611/* Find the ASCONF_ACK whose serial number matches ASCONF */ 1612struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1613 const struct sctp_association *asoc, 1614 __be32 serial) 1615{ 1616 struct sctp_chunk *ack; 1617 1618 /* Walk through the list of cached ASCONF-ACKs and find the 1619 * ack chunk whose serial number matches that of the request. 1620 */ 1621 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1622 if (ack->subh.addip_hdr->serial == serial) { 1623 sctp_chunk_hold(ack); 1624 return ack; 1625 } 1626 } 1627 1628 return NULL; 1629} 1630