associola.c revision 4bdf4b5fe22c26750c39fdd2939a5f33df0cc341
1/* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel reference Implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * The SCTP reference implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * The SCTP reference implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51#include <linux/types.h> 52#include <linux/fcntl.h> 53#include <linux/poll.h> 54#include <linux/init.h> 55#include <linux/sched.h> 56 57#include <linux/slab.h> 58#include <linux/in.h> 59#include <net/ipv6.h> 60#include <net/sctp/sctp.h> 61#include <net/sctp/sm.h> 62 63/* Forward declarations for internal functions. */ 64static void sctp_assoc_bh_rcv(struct sctp_association *asoc); 65 66 67/* 1st Level Abstractions. */ 68 69/* Initialize a new association from provided memory. */ 70static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 71 const struct sctp_endpoint *ep, 72 const struct sock *sk, 73 sctp_scope_t scope, 74 gfp_t gfp) 75{ 76 struct sctp_sock *sp; 77 int i; 78 79 /* Retrieve the SCTP per socket area. */ 80 sp = sctp_sk((struct sock *)sk); 81 82 /* Init all variables to a known value. */ 83 memset(asoc, 0, sizeof(struct sctp_association)); 84 85 /* Discarding const is appropriate here. */ 86 asoc->ep = (struct sctp_endpoint *)ep; 87 sctp_endpoint_hold(asoc->ep); 88 89 /* Hold the sock. */ 90 asoc->base.sk = (struct sock *)sk; 91 sock_hold(asoc->base.sk); 92 93 /* Initialize the common base substructure. */ 94 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 95 96 /* Initialize the object handling fields. */ 97 atomic_set(&asoc->base.refcnt, 1); 98 asoc->base.dead = 0; 99 asoc->base.malloced = 0; 100 101 /* Initialize the bind addr area. */ 102 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 103 rwlock_init(&asoc->base.addr_lock); 104 105 asoc->state = SCTP_STATE_CLOSED; 106 107 /* Set these values from the socket values, a conversion between 108 * millsecons to seconds/microseconds must also be done. 109 */ 110 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 111 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 112 * 1000; 113 asoc->frag_point = 0; 114 115 /* Set the association max_retrans and RTO values from the 116 * socket values. 117 */ 118 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 119 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 120 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 121 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 122 123 asoc->overall_error_count = 0; 124 125 /* Initialize the association's heartbeat interval based on the 126 * sock configured value. 127 */ 128 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 129 130 /* Initialize path max retrans value. */ 131 asoc->pathmaxrxt = sp->pathmaxrxt; 132 133 /* Initialize default path MTU. */ 134 asoc->pathmtu = sp->pathmtu; 135 136 /* Set association default SACK delay */ 137 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 138 139 /* Set the association default flags controlling 140 * Heartbeat, SACK delay, and Path MTU Discovery. 141 */ 142 asoc->param_flags = sp->param_flags; 143 144 /* Initialize the maximum mumber of new data packets that can be sent 145 * in a burst. 146 */ 147 asoc->max_burst = sctp_max_burst; 148 149 /* initialize association timers */ 150 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 151 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 152 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 153 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 154 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 155 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 156 157 /* sctpimpguide Section 2.12.2 158 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 159 * recommended value of 5 times 'RTO.Max'. 160 */ 161 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 162 = 5 * asoc->rto_max; 163 164 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 165 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 166 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 167 sp->autoclose * HZ; 168 169 /* Initilizes the timers */ 170 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 171 init_timer(&asoc->timers[i]); 172 asoc->timers[i].function = sctp_timer_events[i]; 173 asoc->timers[i].data = (unsigned long) asoc; 174 } 175 176 /* Pull default initialization values from the sock options. 177 * Note: This assumes that the values have already been 178 * validated in the sock. 179 */ 180 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 181 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 182 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 183 184 asoc->max_init_timeo = 185 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 186 187 /* Allocate storage for the ssnmap after the inbound and outbound 188 * streams have been negotiated during Init. 189 */ 190 asoc->ssnmap = NULL; 191 192 /* Set the local window size for receive. 193 * This is also the rcvbuf space per association. 194 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 195 * 1500 bytes in one SCTP packet. 196 */ 197 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 198 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 199 else 200 asoc->rwnd = sk->sk_rcvbuf/2; 201 202 asoc->a_rwnd = asoc->rwnd; 203 204 asoc->rwnd_over = 0; 205 206 /* Use my own max window until I learn something better. */ 207 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 208 209 /* Set the sndbuf size for transmit. */ 210 asoc->sndbuf_used = 0; 211 212 /* Initialize the receive memory counter */ 213 atomic_set(&asoc->rmem_alloc, 0); 214 215 init_waitqueue_head(&asoc->wait); 216 217 asoc->c.my_vtag = sctp_generate_tag(ep); 218 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 219 asoc->c.peer_vtag = 0; 220 asoc->c.my_ttag = 0; 221 asoc->c.peer_ttag = 0; 222 asoc->c.my_port = ep->base.bind_addr.port; 223 224 asoc->c.initial_tsn = sctp_generate_tsn(ep); 225 226 asoc->next_tsn = asoc->c.initial_tsn; 227 228 asoc->ctsn_ack_point = asoc->next_tsn - 1; 229 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 230 asoc->highest_sacked = asoc->ctsn_ack_point; 231 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 232 asoc->unack_data = 0; 233 234 /* ADDIP Section 4.1 Asconf Chunk Procedures 235 * 236 * When an endpoint has an ASCONF signaled change to be sent to the 237 * remote endpoint it should do the following: 238 * ... 239 * A2) a serial number should be assigned to the chunk. The serial 240 * number SHOULD be a monotonically increasing number. The serial 241 * numbers SHOULD be initialized at the start of the 242 * association to the same value as the initial TSN. 243 */ 244 asoc->addip_serial = asoc->c.initial_tsn; 245 246 INIT_LIST_HEAD(&asoc->addip_chunk_list); 247 248 /* Make an empty list of remote transport addresses. */ 249 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 250 asoc->peer.transport_count = 0; 251 252 /* RFC 2960 5.1 Normal Establishment of an Association 253 * 254 * After the reception of the first data chunk in an 255 * association the endpoint must immediately respond with a 256 * sack to acknowledge the data chunk. Subsequent 257 * acknowledgements should be done as described in Section 258 * 6.2. 259 * 260 * [We implement this by telling a new association that it 261 * already received one packet.] 262 */ 263 asoc->peer.sack_needed = 1; 264 265 /* Assume that the peer recongizes ASCONF until reported otherwise 266 * via an ERROR chunk. 267 */ 268 asoc->peer.asconf_capable = 1; 269 270 /* Create an input queue. */ 271 sctp_inq_init(&asoc->base.inqueue); 272 sctp_inq_set_th_handler(&asoc->base.inqueue, 273 (void (*)(void *))sctp_assoc_bh_rcv, 274 asoc); 275 276 /* Create an output queue. */ 277 sctp_outq_init(asoc, &asoc->outqueue); 278 279 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 280 goto fail_init; 281 282 /* Set up the tsn tracking. */ 283 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0); 284 285 asoc->need_ecne = 0; 286 287 asoc->assoc_id = 0; 288 289 /* Assume that peer would support both address types unless we are 290 * told otherwise. 291 */ 292 asoc->peer.ipv4_address = 1; 293 asoc->peer.ipv6_address = 1; 294 INIT_LIST_HEAD(&asoc->asocs); 295 296 asoc->autoclose = sp->autoclose; 297 298 asoc->default_stream = sp->default_stream; 299 asoc->default_ppid = sp->default_ppid; 300 asoc->default_flags = sp->default_flags; 301 asoc->default_context = sp->default_context; 302 asoc->default_timetolive = sp->default_timetolive; 303 304 return asoc; 305 306fail_init: 307 sctp_endpoint_put(asoc->ep); 308 sock_put(asoc->base.sk); 309 return NULL; 310} 311 312/* Allocate and initialize a new association */ 313struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 314 const struct sock *sk, 315 sctp_scope_t scope, 316 gfp_t gfp) 317{ 318 struct sctp_association *asoc; 319 320 asoc = t_new(struct sctp_association, gfp); 321 if (!asoc) 322 goto fail; 323 324 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 325 goto fail_init; 326 327 asoc->base.malloced = 1; 328 SCTP_DBG_OBJCNT_INC(assoc); 329 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 330 331 return asoc; 332 333fail_init: 334 kfree(asoc); 335fail: 336 return NULL; 337} 338 339/* Free this association if possible. There may still be users, so 340 * the actual deallocation may be delayed. 341 */ 342void sctp_association_free(struct sctp_association *asoc) 343{ 344 struct sock *sk = asoc->base.sk; 345 struct sctp_transport *transport; 346 struct list_head *pos, *temp; 347 int i; 348 349 /* Only real associations count against the endpoint, so 350 * don't bother for if this is a temporary association. 351 */ 352 if (!asoc->temp) { 353 list_del(&asoc->asocs); 354 355 /* Decrement the backlog value for a TCP-style listening 356 * socket. 357 */ 358 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 359 sk->sk_ack_backlog--; 360 } 361 362 /* Mark as dead, so other users can know this structure is 363 * going away. 364 */ 365 asoc->base.dead = 1; 366 367 /* Dispose of any data lying around in the outqueue. */ 368 sctp_outq_free(&asoc->outqueue); 369 370 /* Dispose of any pending messages for the upper layer. */ 371 sctp_ulpq_free(&asoc->ulpq); 372 373 /* Dispose of any pending chunks on the inqueue. */ 374 sctp_inq_free(&asoc->base.inqueue); 375 376 /* Free ssnmap storage. */ 377 sctp_ssnmap_free(asoc->ssnmap); 378 379 /* Clean up the bound address list. */ 380 sctp_bind_addr_free(&asoc->base.bind_addr); 381 382 /* Do we need to go through all of our timers and 383 * delete them? To be safe we will try to delete all, but we 384 * should be able to go through and make a guess based 385 * on our state. 386 */ 387 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 388 if (timer_pending(&asoc->timers[i]) && 389 del_timer(&asoc->timers[i])) 390 sctp_association_put(asoc); 391 } 392 393 /* Free peer's cached cookie. */ 394 kfree(asoc->peer.cookie); 395 396 /* Release the transport structures. */ 397 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 398 transport = list_entry(pos, struct sctp_transport, transports); 399 list_del(pos); 400 sctp_transport_free(transport); 401 } 402 403 asoc->peer.transport_count = 0; 404 405 /* Free any cached ASCONF_ACK chunk. */ 406 if (asoc->addip_last_asconf_ack) 407 sctp_chunk_free(asoc->addip_last_asconf_ack); 408 409 /* Free any cached ASCONF chunk. */ 410 if (asoc->addip_last_asconf) 411 sctp_chunk_free(asoc->addip_last_asconf); 412 413 sctp_association_put(asoc); 414} 415 416/* Cleanup and free up an association. */ 417static void sctp_association_destroy(struct sctp_association *asoc) 418{ 419 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 420 421 sctp_endpoint_put(asoc->ep); 422 sock_put(asoc->base.sk); 423 424 if (asoc->assoc_id != 0) { 425 spin_lock_bh(&sctp_assocs_id_lock); 426 idr_remove(&sctp_assocs_id, asoc->assoc_id); 427 spin_unlock_bh(&sctp_assocs_id_lock); 428 } 429 430 BUG_TRAP(!atomic_read(&asoc->rmem_alloc)); 431 432 if (asoc->base.malloced) { 433 kfree(asoc); 434 SCTP_DBG_OBJCNT_DEC(assoc); 435 } 436} 437 438/* Change the primary destination address for the peer. */ 439void sctp_assoc_set_primary(struct sctp_association *asoc, 440 struct sctp_transport *transport) 441{ 442 asoc->peer.primary_path = transport; 443 444 /* Set a default msg_name for events. */ 445 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 446 sizeof(union sctp_addr)); 447 448 /* If the primary path is changing, assume that the 449 * user wants to use this new path. 450 */ 451 if ((transport->state == SCTP_ACTIVE) || 452 (transport->state == SCTP_UNKNOWN)) 453 asoc->peer.active_path = transport; 454 455 /* 456 * SFR-CACC algorithm: 457 * Upon the receipt of a request to change the primary 458 * destination address, on the data structure for the new 459 * primary destination, the sender MUST do the following: 460 * 461 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 462 * to this destination address earlier. The sender MUST set 463 * CYCLING_CHANGEOVER to indicate that this switch is a 464 * double switch to the same destination address. 465 */ 466 if (transport->cacc.changeover_active) 467 transport->cacc.cycling_changeover = 1; 468 469 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 470 * a changeover has occurred. 471 */ 472 transport->cacc.changeover_active = 1; 473 474 /* 3) The sender MUST store the next TSN to be sent in 475 * next_tsn_at_change. 476 */ 477 transport->cacc.next_tsn_at_change = asoc->next_tsn; 478} 479 480/* Remove a transport from an association. */ 481void sctp_assoc_rm_peer(struct sctp_association *asoc, 482 struct sctp_transport *peer) 483{ 484 struct list_head *pos; 485 struct sctp_transport *transport; 486 487 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 488 " port: %d\n", 489 asoc, 490 (&peer->ipaddr_h), 491 peer->ipaddr_h.v4.sin_port); 492 493 /* If we are to remove the current retran_path, update it 494 * to the next peer before removing this peer from the list. 495 */ 496 if (asoc->peer.retran_path == peer) 497 sctp_assoc_update_retran_path(asoc); 498 499 /* Remove this peer from the list. */ 500 list_del(&peer->transports); 501 502 /* Get the first transport of asoc. */ 503 pos = asoc->peer.transport_addr_list.next; 504 transport = list_entry(pos, struct sctp_transport, transports); 505 506 /* Update any entries that match the peer to be deleted. */ 507 if (asoc->peer.primary_path == peer) 508 sctp_assoc_set_primary(asoc, transport); 509 if (asoc->peer.active_path == peer) 510 asoc->peer.active_path = transport; 511 if (asoc->peer.last_data_from == peer) 512 asoc->peer.last_data_from = transport; 513 514 /* If we remove the transport an INIT was last sent to, set it to 515 * NULL. Combined with the update of the retran path above, this 516 * will cause the next INIT to be sent to the next available 517 * transport, maintaining the cycle. 518 */ 519 if (asoc->init_last_sent_to == peer) 520 asoc->init_last_sent_to = NULL; 521 522 asoc->peer.transport_count--; 523 524 sctp_transport_free(peer); 525} 526 527/* Add a transport address to an association. */ 528struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 529 const union sctp_addr *addr, 530 const gfp_t gfp, 531 const int peer_state) 532{ 533 struct sctp_transport *peer; 534 struct sctp_sock *sp; 535 unsigned short port; 536 537 sp = sctp_sk(asoc->base.sk); 538 539 /* AF_INET and AF_INET6 share common port field. */ 540 port = ntohs(addr->v4.sin_port); 541 542 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 543 " port: %d state:%d\n", 544 asoc, 545 addr, 546 port, 547 peer_state); 548 549 /* Set the port if it has not been set yet. */ 550 if (0 == asoc->peer.port) 551 asoc->peer.port = port; 552 553 /* Check to see if this is a duplicate. */ 554 peer = sctp_assoc_lookup_paddr(asoc, addr); 555 if (peer) { 556 if (peer->state == SCTP_UNKNOWN) { 557 if (peer_state == SCTP_ACTIVE) 558 peer->state = SCTP_ACTIVE; 559 if (peer_state == SCTP_UNCONFIRMED) 560 peer->state = SCTP_UNCONFIRMED; 561 } 562 return peer; 563 } 564 565 peer = sctp_transport_new(addr, gfp); 566 if (!peer) 567 return NULL; 568 569 sctp_transport_set_owner(peer, asoc); 570 571 /* Initialize the peer's heartbeat interval based on the 572 * association configured value. 573 */ 574 peer->hbinterval = asoc->hbinterval; 575 576 /* Set the path max_retrans. */ 577 peer->pathmaxrxt = asoc->pathmaxrxt; 578 579 /* Initialize the peer's SACK delay timeout based on the 580 * association configured value. 581 */ 582 peer->sackdelay = asoc->sackdelay; 583 584 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 585 * based on association setting. 586 */ 587 peer->param_flags = asoc->param_flags; 588 589 /* Initialize the pmtu of the transport. */ 590 if (peer->param_flags & SPP_PMTUD_ENABLE) 591 sctp_transport_pmtu(peer); 592 else if (asoc->pathmtu) 593 peer->pathmtu = asoc->pathmtu; 594 else 595 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 596 597 /* If this is the first transport addr on this association, 598 * initialize the association PMTU to the peer's PMTU. 599 * If not and the current association PMTU is higher than the new 600 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 601 */ 602 if (asoc->pathmtu) 603 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 604 else 605 asoc->pathmtu = peer->pathmtu; 606 607 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 608 "%d\n", asoc, asoc->pathmtu); 609 610 asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu); 611 612 /* The asoc->peer.port might not be meaningful yet, but 613 * initialize the packet structure anyway. 614 */ 615 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 616 asoc->peer.port); 617 618 /* 7.2.1 Slow-Start 619 * 620 * o The initial cwnd before DATA transmission or after a sufficiently 621 * long idle period MUST be set to 622 * min(4*MTU, max(2*MTU, 4380 bytes)) 623 * 624 * o The initial value of ssthresh MAY be arbitrarily high 625 * (for example, implementations MAY use the size of the 626 * receiver advertised window). 627 */ 628 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 629 630 /* At this point, we may not have the receiver's advertised window, 631 * so initialize ssthresh to the default value and it will be set 632 * later when we process the INIT. 633 */ 634 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 635 636 peer->partial_bytes_acked = 0; 637 peer->flight_size = 0; 638 639 /* Set the transport's RTO.initial value */ 640 peer->rto = asoc->rto_initial; 641 642 /* Set the peer's active state. */ 643 peer->state = peer_state; 644 645 /* Attach the remote transport to our asoc. */ 646 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 647 asoc->peer.transport_count++; 648 649 /* If we do not yet have a primary path, set one. */ 650 if (!asoc->peer.primary_path) { 651 sctp_assoc_set_primary(asoc, peer); 652 asoc->peer.retran_path = peer; 653 } 654 655 if (asoc->peer.active_path == asoc->peer.retran_path) { 656 asoc->peer.retran_path = peer; 657 } 658 659 return peer; 660} 661 662/* Delete a transport address from an association. */ 663void sctp_assoc_del_peer(struct sctp_association *asoc, 664 const union sctp_addr *addr) 665{ 666 struct list_head *pos; 667 struct list_head *temp; 668 struct sctp_transport *transport; 669 670 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 671 transport = list_entry(pos, struct sctp_transport, transports); 672 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 673 /* Do book keeping for removing the peer and free it. */ 674 sctp_assoc_rm_peer(asoc, transport); 675 break; 676 } 677 } 678} 679 680/* Lookup a transport by address. */ 681struct sctp_transport *sctp_assoc_lookup_paddr( 682 const struct sctp_association *asoc, 683 const union sctp_addr *address) 684{ 685 struct sctp_transport *t; 686 struct list_head *pos; 687 688 /* Cycle through all transports searching for a peer address. */ 689 690 list_for_each(pos, &asoc->peer.transport_addr_list) { 691 t = list_entry(pos, struct sctp_transport, transports); 692 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 693 return t; 694 } 695 696 return NULL; 697} 698 699/* Engage in transport control operations. 700 * Mark the transport up or down and send a notification to the user. 701 * Select and update the new active and retran paths. 702 */ 703void sctp_assoc_control_transport(struct sctp_association *asoc, 704 struct sctp_transport *transport, 705 sctp_transport_cmd_t command, 706 sctp_sn_error_t error) 707{ 708 struct sctp_transport *t = NULL; 709 struct sctp_transport *first; 710 struct sctp_transport *second; 711 struct sctp_ulpevent *event; 712 struct sockaddr_storage addr; 713 struct list_head *pos; 714 int spc_state = 0; 715 716 /* Record the transition on the transport. */ 717 switch (command) { 718 case SCTP_TRANSPORT_UP: 719 transport->state = SCTP_ACTIVE; 720 spc_state = SCTP_ADDR_AVAILABLE; 721 break; 722 723 case SCTP_TRANSPORT_DOWN: 724 transport->state = SCTP_INACTIVE; 725 spc_state = SCTP_ADDR_UNREACHABLE; 726 break; 727 728 default: 729 return; 730 }; 731 732 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 733 * user. 734 */ 735 memset(&addr, 0, sizeof(struct sockaddr_storage)); 736 flip_to_n((union sctp_addr *)&addr, &transport->ipaddr_h); 737 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 738 0, spc_state, error, GFP_ATOMIC); 739 if (event) 740 sctp_ulpq_tail_event(&asoc->ulpq, event); 741 742 /* Select new active and retran paths. */ 743 744 /* Look for the two most recently used active transports. 745 * 746 * This code produces the wrong ordering whenever jiffies 747 * rolls over, but we still get usable transports, so we don't 748 * worry about it. 749 */ 750 first = NULL; second = NULL; 751 752 list_for_each(pos, &asoc->peer.transport_addr_list) { 753 t = list_entry(pos, struct sctp_transport, transports); 754 755 if ((t->state == SCTP_INACTIVE) || 756 (t->state == SCTP_UNCONFIRMED)) 757 continue; 758 if (!first || t->last_time_heard > first->last_time_heard) { 759 second = first; 760 first = t; 761 } 762 if (!second || t->last_time_heard > second->last_time_heard) 763 second = t; 764 } 765 766 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 767 * 768 * By default, an endpoint should always transmit to the 769 * primary path, unless the SCTP user explicitly specifies the 770 * destination transport address (and possibly source 771 * transport address) to use. 772 * 773 * [If the primary is active but not most recent, bump the most 774 * recently used transport.] 775 */ 776 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 777 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 778 first != asoc->peer.primary_path) { 779 second = first; 780 first = asoc->peer.primary_path; 781 } 782 783 /* If we failed to find a usable transport, just camp on the 784 * primary, even if it is inactive. 785 */ 786 if (!first) { 787 first = asoc->peer.primary_path; 788 second = asoc->peer.primary_path; 789 } 790 791 /* Set the active and retran transports. */ 792 asoc->peer.active_path = first; 793 asoc->peer.retran_path = second; 794} 795 796/* Hold a reference to an association. */ 797void sctp_association_hold(struct sctp_association *asoc) 798{ 799 atomic_inc(&asoc->base.refcnt); 800} 801 802/* Release a reference to an association and cleanup 803 * if there are no more references. 804 */ 805void sctp_association_put(struct sctp_association *asoc) 806{ 807 if (atomic_dec_and_test(&asoc->base.refcnt)) 808 sctp_association_destroy(asoc); 809} 810 811/* Allocate the next TSN, Transmission Sequence Number, for the given 812 * association. 813 */ 814__u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 815{ 816 /* From Section 1.6 Serial Number Arithmetic: 817 * Transmission Sequence Numbers wrap around when they reach 818 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 819 * after transmitting TSN = 2*32 - 1 is TSN = 0. 820 */ 821 __u32 retval = asoc->next_tsn; 822 asoc->next_tsn++; 823 asoc->unack_data++; 824 825 return retval; 826} 827 828/* Compare two addresses to see if they match. Wildcard addresses 829 * only match themselves. 830 */ 831int sctp_cmp_addr_exact(const union sctp_addr *ss1, 832 const union sctp_addr *ss2) 833{ 834 struct sctp_af *af; 835 836 af = sctp_get_af_specific(ss1->sa.sa_family); 837 if (unlikely(!af)) 838 return 0; 839 840 return af->cmp_addr(ss1, ss2); 841} 842 843/* Return an ecne chunk to get prepended to a packet. 844 * Note: We are sly and return a shared, prealloced chunk. FIXME: 845 * No we don't, but we could/should. 846 */ 847struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 848{ 849 struct sctp_chunk *chunk; 850 851 /* Send ECNE if needed. 852 * Not being able to allocate a chunk here is not deadly. 853 */ 854 if (asoc->need_ecne) 855 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 856 else 857 chunk = NULL; 858 859 return chunk; 860} 861 862/* 863 * Find which transport this TSN was sent on. 864 */ 865struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 866 __u32 tsn) 867{ 868 struct sctp_transport *active; 869 struct sctp_transport *match; 870 struct list_head *entry, *pos; 871 struct sctp_transport *transport; 872 struct sctp_chunk *chunk; 873 __be32 key = htonl(tsn); 874 875 match = NULL; 876 877 /* 878 * FIXME: In general, find a more efficient data structure for 879 * searching. 880 */ 881 882 /* 883 * The general strategy is to search each transport's transmitted 884 * list. Return which transport this TSN lives on. 885 * 886 * Let's be hopeful and check the active_path first. 887 * Another optimization would be to know if there is only one 888 * outbound path and not have to look for the TSN at all. 889 * 890 */ 891 892 active = asoc->peer.active_path; 893 894 list_for_each(entry, &active->transmitted) { 895 chunk = list_entry(entry, struct sctp_chunk, transmitted_list); 896 897 if (key == chunk->subh.data_hdr->tsn) { 898 match = active; 899 goto out; 900 } 901 } 902 903 /* If not found, go search all the other transports. */ 904 list_for_each(pos, &asoc->peer.transport_addr_list) { 905 transport = list_entry(pos, struct sctp_transport, transports); 906 907 if (transport == active) 908 break; 909 list_for_each(entry, &transport->transmitted) { 910 chunk = list_entry(entry, struct sctp_chunk, 911 transmitted_list); 912 if (key == chunk->subh.data_hdr->tsn) { 913 match = transport; 914 goto out; 915 } 916 } 917 } 918out: 919 return match; 920} 921 922/* Is this the association we are looking for? */ 923struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 924 const union sctp_addr *laddr, 925 const union sctp_addr *paddr) 926{ 927 struct sctp_transport *transport; 928 929 sctp_read_lock(&asoc->base.addr_lock); 930 931 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 932 (htons(asoc->peer.port) == paddr->v4.sin_port)) { 933 transport = sctp_assoc_lookup_paddr(asoc, paddr); 934 if (!transport) 935 goto out; 936 937 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 938 sctp_sk(asoc->base.sk))) 939 goto out; 940 } 941 transport = NULL; 942 943out: 944 sctp_read_unlock(&asoc->base.addr_lock); 945 return transport; 946} 947 948/* Do delayed input processing. This is scheduled by sctp_rcv(). */ 949static void sctp_assoc_bh_rcv(struct sctp_association *asoc) 950{ 951 struct sctp_endpoint *ep; 952 struct sctp_chunk *chunk; 953 struct sock *sk; 954 struct sctp_inq *inqueue; 955 int state; 956 sctp_subtype_t subtype; 957 int error = 0; 958 959 /* The association should be held so we should be safe. */ 960 ep = asoc->ep; 961 sk = asoc->base.sk; 962 963 inqueue = &asoc->base.inqueue; 964 sctp_association_hold(asoc); 965 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 966 state = asoc->state; 967 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 968 969 /* Remember where the last DATA chunk came from so we 970 * know where to send the SACK. 971 */ 972 if (sctp_chunk_is_data(chunk)) 973 asoc->peer.last_data_from = chunk->transport; 974 else 975 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 976 977 if (chunk->transport) 978 chunk->transport->last_time_heard = jiffies; 979 980 /* Run through the state machine. */ 981 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 982 state, ep, asoc, chunk, GFP_ATOMIC); 983 984 /* Check to see if the association is freed in response to 985 * the incoming chunk. If so, get out of the while loop. 986 */ 987 if (asoc->base.dead) 988 break; 989 990 /* If there is an error on chunk, discard this packet. */ 991 if (error && chunk) 992 chunk->pdiscard = 1; 993 } 994 sctp_association_put(asoc); 995} 996 997/* This routine moves an association from its old sk to a new sk. */ 998void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 999{ 1000 struct sctp_sock *newsp = sctp_sk(newsk); 1001 struct sock *oldsk = assoc->base.sk; 1002 1003 /* Delete the association from the old endpoint's list of 1004 * associations. 1005 */ 1006 list_del_init(&assoc->asocs); 1007 1008 /* Decrement the backlog value for a TCP-style socket. */ 1009 if (sctp_style(oldsk, TCP)) 1010 oldsk->sk_ack_backlog--; 1011 1012 /* Release references to the old endpoint and the sock. */ 1013 sctp_endpoint_put(assoc->ep); 1014 sock_put(assoc->base.sk); 1015 1016 /* Get a reference to the new endpoint. */ 1017 assoc->ep = newsp->ep; 1018 sctp_endpoint_hold(assoc->ep); 1019 1020 /* Get a reference to the new sock. */ 1021 assoc->base.sk = newsk; 1022 sock_hold(assoc->base.sk); 1023 1024 /* Add the association to the new endpoint's list of associations. */ 1025 sctp_endpoint_add_asoc(newsp->ep, assoc); 1026} 1027 1028/* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1029void sctp_assoc_update(struct sctp_association *asoc, 1030 struct sctp_association *new) 1031{ 1032 struct sctp_transport *trans; 1033 struct list_head *pos, *temp; 1034 1035 /* Copy in new parameters of peer. */ 1036 asoc->c = new->c; 1037 asoc->peer.rwnd = new->peer.rwnd; 1038 asoc->peer.sack_needed = new->peer.sack_needed; 1039 asoc->peer.i = new->peer.i; 1040 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 1041 asoc->peer.i.initial_tsn); 1042 1043 /* Remove any peer addresses not present in the new association. */ 1044 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1045 trans = list_entry(pos, struct sctp_transport, transports); 1046 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) 1047 sctp_assoc_del_peer(asoc, &trans->ipaddr); 1048 } 1049 1050 /* If the case is A (association restart), use 1051 * initial_tsn as next_tsn. If the case is B, use 1052 * current next_tsn in case data sent to peer 1053 * has been discarded and needs retransmission. 1054 */ 1055 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1056 asoc->next_tsn = new->next_tsn; 1057 asoc->ctsn_ack_point = new->ctsn_ack_point; 1058 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1059 1060 /* Reinitialize SSN for both local streams 1061 * and peer's streams. 1062 */ 1063 sctp_ssnmap_clear(asoc->ssnmap); 1064 1065 } else { 1066 /* Add any peer addresses from the new association. */ 1067 list_for_each(pos, &new->peer.transport_addr_list) { 1068 trans = list_entry(pos, struct sctp_transport, 1069 transports); 1070 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1071 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1072 GFP_ATOMIC, trans->state); 1073 } 1074 1075 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1076 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1077 if (!asoc->ssnmap) { 1078 /* Move the ssnmap. */ 1079 asoc->ssnmap = new->ssnmap; 1080 new->ssnmap = NULL; 1081 } 1082 } 1083} 1084 1085/* Update the retran path for sending a retransmitted packet. 1086 * Round-robin through the active transports, else round-robin 1087 * through the inactive transports as this is the next best thing 1088 * we can try. 1089 */ 1090void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1091{ 1092 struct sctp_transport *t, *next; 1093 struct list_head *head = &asoc->peer.transport_addr_list; 1094 struct list_head *pos; 1095 1096 /* Find the next transport in a round-robin fashion. */ 1097 t = asoc->peer.retran_path; 1098 pos = &t->transports; 1099 next = NULL; 1100 1101 while (1) { 1102 /* Skip the head. */ 1103 if (pos->next == head) 1104 pos = head->next; 1105 else 1106 pos = pos->next; 1107 1108 t = list_entry(pos, struct sctp_transport, transports); 1109 1110 /* Try to find an active transport. */ 1111 1112 if ((t->state == SCTP_ACTIVE) || 1113 (t->state == SCTP_UNKNOWN)) { 1114 break; 1115 } else { 1116 /* Keep track of the next transport in case 1117 * we don't find any active transport. 1118 */ 1119 if (!next) 1120 next = t; 1121 } 1122 1123 /* We have exhausted the list, but didn't find any 1124 * other active transports. If so, use the next 1125 * transport. 1126 */ 1127 if (t == asoc->peer.retran_path) { 1128 t = next; 1129 break; 1130 } 1131 } 1132 1133 asoc->peer.retran_path = t; 1134 1135 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1136 " %p addr: ", 1137 " port: %d\n", 1138 asoc, 1139 (&t->ipaddr_h), 1140 t->ipaddr_h.v4.sin_port); 1141} 1142 1143/* Choose the transport for sending a INIT packet. */ 1144struct sctp_transport *sctp_assoc_choose_init_transport( 1145 struct sctp_association *asoc) 1146{ 1147 struct sctp_transport *t; 1148 1149 /* Use the retran path. If the last INIT was sent over the 1150 * retran path, update the retran path and use it. 1151 */ 1152 if (!asoc->init_last_sent_to) { 1153 t = asoc->peer.active_path; 1154 } else { 1155 if (asoc->init_last_sent_to == asoc->peer.retran_path) 1156 sctp_assoc_update_retran_path(asoc); 1157 t = asoc->peer.retran_path; 1158 } 1159 1160 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1161 " %p addr: ", 1162 " port: %d\n", 1163 asoc, 1164 (&t->ipaddr_h), 1165 t->ipaddr_h.v4.sin_port); 1166 1167 return t; 1168} 1169 1170/* Choose the transport for sending a SHUTDOWN packet. */ 1171struct sctp_transport *sctp_assoc_choose_shutdown_transport( 1172 struct sctp_association *asoc) 1173{ 1174 /* If this is the first time SHUTDOWN is sent, use the active path, 1175 * else use the retran path. If the last SHUTDOWN was sent over the 1176 * retran path, update the retran path and use it. 1177 */ 1178 if (!asoc->shutdown_last_sent_to) 1179 return asoc->peer.active_path; 1180 else { 1181 if (asoc->shutdown_last_sent_to == asoc->peer.retran_path) 1182 sctp_assoc_update_retran_path(asoc); 1183 return asoc->peer.retran_path; 1184 } 1185 1186} 1187 1188/* Update the association's pmtu and frag_point by going through all the 1189 * transports. This routine is called when a transport's PMTU has changed. 1190 */ 1191void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1192{ 1193 struct sctp_transport *t; 1194 struct list_head *pos; 1195 __u32 pmtu = 0; 1196 1197 if (!asoc) 1198 return; 1199 1200 /* Get the lowest pmtu of all the transports. */ 1201 list_for_each(pos, &asoc->peer.transport_addr_list) { 1202 t = list_entry(pos, struct sctp_transport, transports); 1203 if (!pmtu || (t->pathmtu < pmtu)) 1204 pmtu = t->pathmtu; 1205 } 1206 1207 if (pmtu) { 1208 struct sctp_sock *sp = sctp_sk(asoc->base.sk); 1209 asoc->pathmtu = pmtu; 1210 asoc->frag_point = sctp_frag_point(sp, pmtu); 1211 } 1212 1213 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1214 __FUNCTION__, asoc, asoc->pathmtu, asoc->frag_point); 1215} 1216 1217/* Should we send a SACK to update our peer? */ 1218static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1219{ 1220 switch (asoc->state) { 1221 case SCTP_STATE_ESTABLISHED: 1222 case SCTP_STATE_SHUTDOWN_PENDING: 1223 case SCTP_STATE_SHUTDOWN_RECEIVED: 1224 case SCTP_STATE_SHUTDOWN_SENT: 1225 if ((asoc->rwnd > asoc->a_rwnd) && 1226 ((asoc->rwnd - asoc->a_rwnd) >= 1227 min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu))) 1228 return 1; 1229 break; 1230 default: 1231 break; 1232 } 1233 return 0; 1234} 1235 1236/* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1237void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1238{ 1239 struct sctp_chunk *sack; 1240 struct timer_list *timer; 1241 1242 if (asoc->rwnd_over) { 1243 if (asoc->rwnd_over >= len) { 1244 asoc->rwnd_over -= len; 1245 } else { 1246 asoc->rwnd += (len - asoc->rwnd_over); 1247 asoc->rwnd_over = 0; 1248 } 1249 } else { 1250 asoc->rwnd += len; 1251 } 1252 1253 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1254 "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd, 1255 asoc->rwnd_over, asoc->a_rwnd); 1256 1257 /* Send a window update SACK if the rwnd has increased by at least the 1258 * minimum of the association's PMTU and half of the receive buffer. 1259 * The algorithm used is similar to the one described in 1260 * Section 4.2.3.3 of RFC 1122. 1261 */ 1262 if (sctp_peer_needs_update(asoc)) { 1263 asoc->a_rwnd = asoc->rwnd; 1264 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1265 "rwnd: %u a_rwnd: %u\n", __FUNCTION__, 1266 asoc, asoc->rwnd, asoc->a_rwnd); 1267 sack = sctp_make_sack(asoc); 1268 if (!sack) 1269 return; 1270 1271 asoc->peer.sack_needed = 0; 1272 1273 sctp_outq_tail(&asoc->outqueue, sack); 1274 1275 /* Stop the SACK timer. */ 1276 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1277 if (timer_pending(timer) && del_timer(timer)) 1278 sctp_association_put(asoc); 1279 } 1280} 1281 1282/* Decrease asoc's rwnd by len. */ 1283void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1284{ 1285 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1286 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1287 if (asoc->rwnd >= len) { 1288 asoc->rwnd -= len; 1289 } else { 1290 asoc->rwnd_over = len - asoc->rwnd; 1291 asoc->rwnd = 0; 1292 } 1293 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n", 1294 __FUNCTION__, asoc, len, asoc->rwnd, 1295 asoc->rwnd_over); 1296} 1297 1298/* Build the bind address list for the association based on info from the 1299 * local endpoint and the remote peer. 1300 */ 1301int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1302 gfp_t gfp) 1303{ 1304 sctp_scope_t scope; 1305 int flags; 1306 1307 /* Use scoping rules to determine the subset of addresses from 1308 * the endpoint. 1309 */ 1310 scope = sctp_scope(&asoc->peer.active_path->ipaddr_h); 1311 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1312 if (asoc->peer.ipv4_address) 1313 flags |= SCTP_ADDR4_PEERSUPP; 1314 if (asoc->peer.ipv6_address) 1315 flags |= SCTP_ADDR6_PEERSUPP; 1316 1317 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1318 &asoc->ep->base.bind_addr, 1319 scope, gfp, flags); 1320} 1321 1322/* Build the association's bind address list from the cookie. */ 1323int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1324 struct sctp_cookie *cookie, 1325 gfp_t gfp) 1326{ 1327 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1328 int var_size3 = cookie->raw_addr_list_len; 1329 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1330 1331 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1332 asoc->ep->base.bind_addr.port, gfp); 1333} 1334 1335/* Lookup laddr in the bind address list of an association. */ 1336int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1337 const union sctp_addr *laddr) 1338{ 1339 int found; 1340 1341 sctp_read_lock(&asoc->base.addr_lock); 1342 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1343 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1344 sctp_sk(asoc->base.sk))) { 1345 found = 1; 1346 goto out; 1347 } 1348 1349 found = 0; 1350out: 1351 sctp_read_unlock(&asoc->base.addr_lock); 1352 return found; 1353} 1354