associola.c revision 79af02c2538d54ff0dcd3f43646f506207f2ee62
1/* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel reference Implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * The SCTP reference implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * The SCTP reference implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 *                 ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING.  If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 *    http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 *    La Monte H.P. Yarroll <piggy@acm.org>
38 *    Karl Knutson          <karl@athena.chicago.il.us>
39 *    Jon Grimm             <jgrimm@us.ibm.com>
40 *    Xingang Guo           <xingang.guo@intel.com>
41 *    Hui Huang             <hui.huang@nokia.com>
42 *    Sridhar Samudrala	    <sri@us.ibm.com>
43 *    Daisy Chang	    <daisyc@us.ibm.com>
44 *    Ryan Layer	    <rmlayer@us.ibm.com>
45 *    Kevin Gao             <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51#include <linux/types.h>
52#include <linux/fcntl.h>
53#include <linux/poll.h>
54#include <linux/init.h>
55#include <linux/sched.h>
56
57#include <linux/slab.h>
58#include <linux/in.h>
59#include <net/ipv6.h>
60#include <net/sctp/sctp.h>
61#include <net/sctp/sm.h>
62
63/* Forward declarations for internal functions. */
64static void sctp_assoc_bh_rcv(struct sctp_association *asoc);
65
66
67/* 1st Level Abstractions. */
68
69/* Initialize a new association from provided memory. */
70static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
71					  const struct sctp_endpoint *ep,
72					  const struct sock *sk,
73					  sctp_scope_t scope,
74					  int gfp)
75{
76	struct sctp_sock *sp;
77	int i;
78
79	/* Retrieve the SCTP per socket area.  */
80	sp = sctp_sk((struct sock *)sk);
81
82	/* Init all variables to a known value.  */
83	memset(asoc, 0, sizeof(struct sctp_association));
84
85	/* Discarding const is appropriate here.  */
86	asoc->ep = (struct sctp_endpoint *)ep;
87	sctp_endpoint_hold(asoc->ep);
88
89	/* Hold the sock.  */
90	asoc->base.sk = (struct sock *)sk;
91	sock_hold(asoc->base.sk);
92
93	/* Initialize the common base substructure.  */
94	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
95
96	/* Initialize the object handling fields.  */
97	atomic_set(&asoc->base.refcnt, 1);
98	asoc->base.dead = 0;
99	asoc->base.malloced = 0;
100
101	/* Initialize the bind addr area.  */
102	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
103	rwlock_init(&asoc->base.addr_lock);
104
105	asoc->state = SCTP_STATE_CLOSED;
106
107	/* Set these values from the socket values, a conversion between
108	 * millsecons to seconds/microseconds must also be done.
109	 */
110	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
111	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
112					* 1000;
113	asoc->pmtu = 0;
114	asoc->frag_point = 0;
115
116	/* Set the association max_retrans and RTO values from the
117	 * socket values.
118	 */
119	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
120	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
121	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
122	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
123
124	asoc->overall_error_count = 0;
125
126	/* Initialize the maximum mumber of new data packets that can be sent
127	 * in a burst.
128	 */
129	asoc->max_burst = sctp_max_burst;
130
131	/* Copy things from the endpoint.  */
132	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
133		asoc->timeouts[i] = ep->timeouts[i];
134		init_timer(&asoc->timers[i]);
135		asoc->timers[i].function = sctp_timer_events[i];
136		asoc->timers[i].data = (unsigned long) asoc;
137	}
138
139	/* Pull default initialization values from the sock options.
140	 * Note: This assumes that the values have already been
141	 * validated in the sock.
142	 */
143	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
144	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
145	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
146
147	asoc->max_init_timeo =
148		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
149
150	/* Allocate storage for the ssnmap after the inbound and outbound
151	 * streams have been negotiated during Init.
152	 */
153	asoc->ssnmap = NULL;
154
155	/* Set the local window size for receive.
156	 * This is also the rcvbuf space per association.
157	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
158	 * 1500 bytes in one SCTP packet.
159	 */
160	if (sk->sk_rcvbuf < SCTP_DEFAULT_MINWINDOW)
161		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
162	else
163		asoc->rwnd = sk->sk_rcvbuf;
164
165	asoc->a_rwnd = asoc->rwnd;
166
167	asoc->rwnd_over = 0;
168
169	/* Use my own max window until I learn something better.  */
170	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
171
172	/* Set the sndbuf size for transmit.  */
173	asoc->sndbuf_used = 0;
174
175	init_waitqueue_head(&asoc->wait);
176
177	asoc->c.my_vtag = sctp_generate_tag(ep);
178	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
179	asoc->c.peer_vtag = 0;
180	asoc->c.my_ttag   = 0;
181	asoc->c.peer_ttag = 0;
182	asoc->c.my_port = ep->base.bind_addr.port;
183
184	asoc->c.initial_tsn = sctp_generate_tsn(ep);
185
186	asoc->next_tsn = asoc->c.initial_tsn;
187
188	asoc->ctsn_ack_point = asoc->next_tsn - 1;
189	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
190	asoc->highest_sacked = asoc->ctsn_ack_point;
191	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
192	asoc->unack_data = 0;
193
194	/* ADDIP Section 4.1 Asconf Chunk Procedures
195	 *
196	 * When an endpoint has an ASCONF signaled change to be sent to the
197	 * remote endpoint it should do the following:
198	 * ...
199	 * A2) a serial number should be assigned to the chunk. The serial
200	 * number SHOULD be a monotonically increasing number. The serial
201	 * numbers SHOULD be initialized at the start of the
202	 * association to the same value as the initial TSN.
203	 */
204	asoc->addip_serial = asoc->c.initial_tsn;
205
206	INIT_LIST_HEAD(&asoc->addip_chunk_list);
207
208	/* Make an empty list of remote transport addresses.  */
209	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
210	asoc->peer.transport_count = 0;
211
212	/* RFC 2960 5.1 Normal Establishment of an Association
213	 *
214	 * After the reception of the first data chunk in an
215	 * association the endpoint must immediately respond with a
216	 * sack to acknowledge the data chunk.  Subsequent
217	 * acknowledgements should be done as described in Section
218	 * 6.2.
219	 *
220	 * [We implement this by telling a new association that it
221	 * already received one packet.]
222	 */
223	asoc->peer.sack_needed = 1;
224
225	/* Assume that the peer recongizes ASCONF until reported otherwise
226	 * via an ERROR chunk.
227	 */
228	asoc->peer.asconf_capable = 1;
229
230	/* Create an input queue.  */
231	sctp_inq_init(&asoc->base.inqueue);
232	sctp_inq_set_th_handler(&asoc->base.inqueue,
233				    (void (*)(void *))sctp_assoc_bh_rcv,
234				    asoc);
235
236	/* Create an output queue.  */
237	sctp_outq_init(asoc, &asoc->outqueue);
238
239	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
240		goto fail_init;
241
242	/* Set up the tsn tracking. */
243	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0);
244
245	asoc->need_ecne = 0;
246
247	asoc->assoc_id = 0;
248
249	/* Assume that peer would support both address types unless we are
250	 * told otherwise.
251	 */
252	asoc->peer.ipv4_address = 1;
253	asoc->peer.ipv6_address = 1;
254	INIT_LIST_HEAD(&asoc->asocs);
255
256	asoc->autoclose = sp->autoclose;
257
258	asoc->default_stream = sp->default_stream;
259	asoc->default_ppid = sp->default_ppid;
260	asoc->default_flags = sp->default_flags;
261	asoc->default_context = sp->default_context;
262	asoc->default_timetolive = sp->default_timetolive;
263
264	return asoc;
265
266fail_init:
267	sctp_endpoint_put(asoc->ep);
268	sock_put(asoc->base.sk);
269	return NULL;
270}
271
272/* Allocate and initialize a new association */
273struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
274					 const struct sock *sk,
275					 sctp_scope_t scope, int gfp)
276{
277	struct sctp_association *asoc;
278
279	asoc = t_new(struct sctp_association, gfp);
280	if (!asoc)
281		goto fail;
282
283	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
284		goto fail_init;
285
286	asoc->base.malloced = 1;
287	SCTP_DBG_OBJCNT_INC(assoc);
288	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
289
290	return asoc;
291
292fail_init:
293	kfree(asoc);
294fail:
295	return NULL;
296}
297
298/* Free this association if possible.  There may still be users, so
299 * the actual deallocation may be delayed.
300 */
301void sctp_association_free(struct sctp_association *asoc)
302{
303	struct sock *sk = asoc->base.sk;
304	struct sctp_transport *transport;
305	struct list_head *pos, *temp;
306	int i;
307
308	list_del(&asoc->asocs);
309
310	/* Decrement the backlog value for a TCP-style listening socket. */
311	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
312		sk->sk_ack_backlog--;
313
314	/* Mark as dead, so other users can know this structure is
315	 * going away.
316	 */
317	asoc->base.dead = 1;
318
319	/* Dispose of any data lying around in the outqueue. */
320	sctp_outq_free(&asoc->outqueue);
321
322	/* Dispose of any pending messages for the upper layer. */
323	sctp_ulpq_free(&asoc->ulpq);
324
325	/* Dispose of any pending chunks on the inqueue. */
326	sctp_inq_free(&asoc->base.inqueue);
327
328	/* Free ssnmap storage. */
329	sctp_ssnmap_free(asoc->ssnmap);
330
331	/* Clean up the bound address list. */
332	sctp_bind_addr_free(&asoc->base.bind_addr);
333
334	/* Do we need to go through all of our timers and
335	 * delete them?   To be safe we will try to delete all, but we
336	 * should be able to go through and make a guess based
337	 * on our state.
338	 */
339	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
340		if (timer_pending(&asoc->timers[i]) &&
341		    del_timer(&asoc->timers[i]))
342			sctp_association_put(asoc);
343	}
344
345	/* Free peer's cached cookie. */
346	if (asoc->peer.cookie) {
347		kfree(asoc->peer.cookie);
348	}
349
350	/* Release the transport structures. */
351	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
352		transport = list_entry(pos, struct sctp_transport, transports);
353		list_del(pos);
354		sctp_transport_free(transport);
355	}
356
357	asoc->peer.transport_count = 0;
358
359	/* Free any cached ASCONF_ACK chunk. */
360	if (asoc->addip_last_asconf_ack)
361		sctp_chunk_free(asoc->addip_last_asconf_ack);
362
363	/* Free any cached ASCONF chunk. */
364	if (asoc->addip_last_asconf)
365		sctp_chunk_free(asoc->addip_last_asconf);
366
367	sctp_association_put(asoc);
368}
369
370/* Cleanup and free up an association. */
371static void sctp_association_destroy(struct sctp_association *asoc)
372{
373	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
374
375	sctp_endpoint_put(asoc->ep);
376	sock_put(asoc->base.sk);
377
378	if (asoc->assoc_id != 0) {
379		spin_lock_bh(&sctp_assocs_id_lock);
380		idr_remove(&sctp_assocs_id, asoc->assoc_id);
381		spin_unlock_bh(&sctp_assocs_id_lock);
382	}
383
384	if (asoc->base.malloced) {
385		kfree(asoc);
386		SCTP_DBG_OBJCNT_DEC(assoc);
387	}
388}
389
390/* Change the primary destination address for the peer. */
391void sctp_assoc_set_primary(struct sctp_association *asoc,
392			    struct sctp_transport *transport)
393{
394	asoc->peer.primary_path = transport;
395
396	/* Set a default msg_name for events. */
397	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
398	       sizeof(union sctp_addr));
399
400	/* If the primary path is changing, assume that the
401	 * user wants to use this new path.
402	 */
403	if (transport->state != SCTP_INACTIVE)
404		asoc->peer.active_path = transport;
405
406	/*
407	 * SFR-CACC algorithm:
408	 * Upon the receipt of a request to change the primary
409	 * destination address, on the data structure for the new
410	 * primary destination, the sender MUST do the following:
411	 *
412	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
413	 * to this destination address earlier. The sender MUST set
414	 * CYCLING_CHANGEOVER to indicate that this switch is a
415	 * double switch to the same destination address.
416	 */
417	if (transport->cacc.changeover_active)
418		transport->cacc.cycling_changeover = 1;
419
420	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
421	 * a changeover has occurred.
422	 */
423	transport->cacc.changeover_active = 1;
424
425	/* 3) The sender MUST store the next TSN to be sent in
426	 * next_tsn_at_change.
427	 */
428	transport->cacc.next_tsn_at_change = asoc->next_tsn;
429}
430
431/* Remove a transport from an association.  */
432void sctp_assoc_rm_peer(struct sctp_association *asoc,
433			struct sctp_transport *peer)
434{
435	struct list_head	*pos;
436	struct sctp_transport	*transport;
437
438	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
439				 " port: %d\n",
440				 asoc,
441				 (&peer->ipaddr),
442				 peer->ipaddr.v4.sin_port);
443
444	/* If we are to remove the current retran_path, update it
445	 * to the next peer before removing this peer from the list.
446	 */
447	if (asoc->peer.retran_path == peer)
448		sctp_assoc_update_retran_path(asoc);
449
450	/* Remove this peer from the list. */
451	list_del(&peer->transports);
452
453	/* Get the first transport of asoc. */
454	pos = asoc->peer.transport_addr_list.next;
455	transport = list_entry(pos, struct sctp_transport, transports);
456
457	/* Update any entries that match the peer to be deleted. */
458	if (asoc->peer.primary_path == peer)
459		sctp_assoc_set_primary(asoc, transport);
460	if (asoc->peer.active_path == peer)
461		asoc->peer.active_path = transport;
462	if (asoc->peer.last_data_from == peer)
463		asoc->peer.last_data_from = transport;
464
465	/* If we remove the transport an INIT was last sent to, set it to
466	 * NULL. Combined with the update of the retran path above, this
467	 * will cause the next INIT to be sent to the next available
468	 * transport, maintaining the cycle.
469	 */
470	if (asoc->init_last_sent_to == peer)
471		asoc->init_last_sent_to = NULL;
472
473	asoc->peer.transport_count--;
474
475	sctp_transport_free(peer);
476}
477
478/* Add a transport address to an association.  */
479struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
480					   const union sctp_addr *addr,
481					   const int gfp,
482					   const int peer_state)
483{
484	struct sctp_transport *peer;
485	struct sctp_sock *sp;
486	unsigned short port;
487
488	sp = sctp_sk(asoc->base.sk);
489
490	/* AF_INET and AF_INET6 share common port field. */
491	port = addr->v4.sin_port;
492
493	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
494				 " port: %d state:%s\n",
495				 asoc,
496				 addr,
497				 addr->v4.sin_port,
498				 peer_state == SCTP_UNKNOWN?"UNKNOWN":"ACTIVE");
499
500	/* Set the port if it has not been set yet.  */
501	if (0 == asoc->peer.port)
502		asoc->peer.port = port;
503
504	/* Check to see if this is a duplicate. */
505	peer = sctp_assoc_lookup_paddr(asoc, addr);
506	if (peer) {
507		if (peer_state == SCTP_ACTIVE &&
508		    peer->state == SCTP_UNKNOWN)
509		     peer->state = SCTP_ACTIVE;
510		return peer;
511	}
512
513	peer = sctp_transport_new(addr, gfp);
514	if (!peer)
515		return NULL;
516
517	sctp_transport_set_owner(peer, asoc);
518
519	/* Initialize the pmtu of the transport. */
520	sctp_transport_pmtu(peer);
521
522	/* If this is the first transport addr on this association,
523	 * initialize the association PMTU to the peer's PMTU.
524	 * If not and the current association PMTU is higher than the new
525	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
526	 */
527	if (asoc->pmtu)
528		asoc->pmtu = min_t(int, peer->pmtu, asoc->pmtu);
529	else
530		asoc->pmtu = peer->pmtu;
531
532	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
533			  "%d\n", asoc, asoc->pmtu);
534
535	asoc->frag_point = sctp_frag_point(sp, asoc->pmtu);
536
537	/* The asoc->peer.port might not be meaningful yet, but
538	 * initialize the packet structure anyway.
539	 */
540	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
541			 asoc->peer.port);
542
543	/* 7.2.1 Slow-Start
544	 *
545	 * o The initial cwnd before DATA transmission or after a sufficiently
546	 *   long idle period MUST be set to
547	 *      min(4*MTU, max(2*MTU, 4380 bytes))
548	 *
549	 * o The initial value of ssthresh MAY be arbitrarily high
550	 *   (for example, implementations MAY use the size of the
551	 *   receiver advertised window).
552	 */
553	peer->cwnd = min(4*asoc->pmtu, max_t(__u32, 2*asoc->pmtu, 4380));
554
555	/* At this point, we may not have the receiver's advertised window,
556	 * so initialize ssthresh to the default value and it will be set
557	 * later when we process the INIT.
558	 */
559	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
560
561	peer->partial_bytes_acked = 0;
562	peer->flight_size = 0;
563
564	/* By default, enable heartbeat for peer address. */
565	peer->hb_allowed = 1;
566
567	/* Initialize the peer's heartbeat interval based on the
568	 * sock configured value.
569	 */
570	peer->hb_interval = msecs_to_jiffies(sp->paddrparam.spp_hbinterval);
571
572	/* Set the path max_retrans.  */
573	peer->max_retrans = sp->paddrparam.spp_pathmaxrxt;
574
575	/* Set the transport's RTO.initial value */
576	peer->rto = asoc->rto_initial;
577
578	/* Set the peer's active state. */
579	peer->state = peer_state;
580
581	/* Attach the remote transport to our asoc.  */
582	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
583	asoc->peer.transport_count++;
584
585	/* If we do not yet have a primary path, set one.  */
586	if (!asoc->peer.primary_path) {
587		sctp_assoc_set_primary(asoc, peer);
588		asoc->peer.retran_path = peer;
589	}
590
591	if (asoc->peer.active_path == asoc->peer.retran_path) {
592		asoc->peer.retran_path = peer;
593	}
594
595	return peer;
596}
597
598/* Delete a transport address from an association.  */
599void sctp_assoc_del_peer(struct sctp_association *asoc,
600			 const union sctp_addr *addr)
601{
602	struct list_head	*pos;
603	struct list_head	*temp;
604	struct sctp_transport	*transport;
605
606	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
607		transport = list_entry(pos, struct sctp_transport, transports);
608		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
609			/* Do book keeping for removing the peer and free it. */
610			sctp_assoc_rm_peer(asoc, transport);
611			break;
612		}
613	}
614}
615
616/* Lookup a transport by address. */
617struct sctp_transport *sctp_assoc_lookup_paddr(
618					const struct sctp_association *asoc,
619					const union sctp_addr *address)
620{
621	struct sctp_transport *t;
622	struct list_head *pos;
623
624	/* Cycle through all transports searching for a peer address. */
625
626	list_for_each(pos, &asoc->peer.transport_addr_list) {
627		t = list_entry(pos, struct sctp_transport, transports);
628		if (sctp_cmp_addr_exact(address, &t->ipaddr))
629			return t;
630	}
631
632	return NULL;
633}
634
635/* Engage in transport control operations.
636 * Mark the transport up or down and send a notification to the user.
637 * Select and update the new active and retran paths.
638 */
639void sctp_assoc_control_transport(struct sctp_association *asoc,
640				  struct sctp_transport *transport,
641				  sctp_transport_cmd_t command,
642				  sctp_sn_error_t error)
643{
644	struct sctp_transport *t = NULL;
645	struct sctp_transport *first;
646	struct sctp_transport *second;
647	struct sctp_ulpevent *event;
648	struct list_head *pos;
649	int spc_state = 0;
650
651	/* Record the transition on the transport.  */
652	switch (command) {
653	case SCTP_TRANSPORT_UP:
654		transport->state = SCTP_ACTIVE;
655		spc_state = SCTP_ADDR_AVAILABLE;
656		break;
657
658	case SCTP_TRANSPORT_DOWN:
659		transport->state = SCTP_INACTIVE;
660		spc_state = SCTP_ADDR_UNREACHABLE;
661		break;
662
663	default:
664		return;
665	};
666
667	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
668	 * user.
669	 */
670	event = sctp_ulpevent_make_peer_addr_change(asoc,
671				(struct sockaddr_storage *) &transport->ipaddr,
672				0, spc_state, error, GFP_ATOMIC);
673	if (event)
674		sctp_ulpq_tail_event(&asoc->ulpq, event);
675
676	/* Select new active and retran paths. */
677
678	/* Look for the two most recently used active transports.
679	 *
680	 * This code produces the wrong ordering whenever jiffies
681	 * rolls over, but we still get usable transports, so we don't
682	 * worry about it.
683	 */
684	first = NULL; second = NULL;
685
686	list_for_each(pos, &asoc->peer.transport_addr_list) {
687		t = list_entry(pos, struct sctp_transport, transports);
688
689		if (t->state == SCTP_INACTIVE)
690			continue;
691		if (!first || t->last_time_heard > first->last_time_heard) {
692			second = first;
693			first = t;
694		}
695		if (!second || t->last_time_heard > second->last_time_heard)
696			second = t;
697	}
698
699	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
700	 *
701	 * By default, an endpoint should always transmit to the
702	 * primary path, unless the SCTP user explicitly specifies the
703	 * destination transport address (and possibly source
704	 * transport address) to use.
705	 *
706	 * [If the primary is active but not most recent, bump the most
707	 * recently used transport.]
708	 */
709	if (asoc->peer.primary_path->state != SCTP_INACTIVE &&
710	    first != asoc->peer.primary_path) {
711		second = first;
712		first = asoc->peer.primary_path;
713	}
714
715	/* If we failed to find a usable transport, just camp on the
716	 * primary, even if it is inactive.
717	 */
718	if (!first) {
719		first = asoc->peer.primary_path;
720		second = asoc->peer.primary_path;
721	}
722
723	/* Set the active and retran transports.  */
724	asoc->peer.active_path = first;
725	asoc->peer.retran_path = second;
726}
727
728/* Hold a reference to an association. */
729void sctp_association_hold(struct sctp_association *asoc)
730{
731	atomic_inc(&asoc->base.refcnt);
732}
733
734/* Release a reference to an association and cleanup
735 * if there are no more references.
736 */
737void sctp_association_put(struct sctp_association *asoc)
738{
739	if (atomic_dec_and_test(&asoc->base.refcnt))
740		sctp_association_destroy(asoc);
741}
742
743/* Allocate the next TSN, Transmission Sequence Number, for the given
744 * association.
745 */
746__u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
747{
748	/* From Section 1.6 Serial Number Arithmetic:
749	 * Transmission Sequence Numbers wrap around when they reach
750	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
751	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
752	 */
753	__u32 retval = asoc->next_tsn;
754	asoc->next_tsn++;
755	asoc->unack_data++;
756
757	return retval;
758}
759
760/* Compare two addresses to see if they match.  Wildcard addresses
761 * only match themselves.
762 */
763int sctp_cmp_addr_exact(const union sctp_addr *ss1,
764			const union sctp_addr *ss2)
765{
766	struct sctp_af *af;
767
768	af = sctp_get_af_specific(ss1->sa.sa_family);
769	if (unlikely(!af))
770		return 0;
771
772	return af->cmp_addr(ss1, ss2);
773}
774
775/* Return an ecne chunk to get prepended to a packet.
776 * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
777 * No we don't, but we could/should.
778 */
779struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
780{
781	struct sctp_chunk *chunk;
782
783	/* Send ECNE if needed.
784	 * Not being able to allocate a chunk here is not deadly.
785	 */
786	if (asoc->need_ecne)
787		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
788	else
789		chunk = NULL;
790
791	return chunk;
792}
793
794/*
795 * Find which transport this TSN was sent on.
796 */
797struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
798					     __u32 tsn)
799{
800	struct sctp_transport *active;
801	struct sctp_transport *match;
802	struct list_head *entry, *pos;
803	struct sctp_transport *transport;
804	struct sctp_chunk *chunk;
805	__u32 key = htonl(tsn);
806
807	match = NULL;
808
809	/*
810	 * FIXME: In general, find a more efficient data structure for
811	 * searching.
812	 */
813
814	/*
815	 * The general strategy is to search each transport's transmitted
816	 * list.   Return which transport this TSN lives on.
817	 *
818	 * Let's be hopeful and check the active_path first.
819	 * Another optimization would be to know if there is only one
820	 * outbound path and not have to look for the TSN at all.
821	 *
822	 */
823
824	active = asoc->peer.active_path;
825
826	list_for_each(entry, &active->transmitted) {
827		chunk = list_entry(entry, struct sctp_chunk, transmitted_list);
828
829		if (key == chunk->subh.data_hdr->tsn) {
830			match = active;
831			goto out;
832		}
833	}
834
835	/* If not found, go search all the other transports. */
836	list_for_each(pos, &asoc->peer.transport_addr_list) {
837		transport = list_entry(pos, struct sctp_transport, transports);
838
839		if (transport == active)
840			break;
841		list_for_each(entry, &transport->transmitted) {
842			chunk = list_entry(entry, struct sctp_chunk,
843					   transmitted_list);
844			if (key == chunk->subh.data_hdr->tsn) {
845				match = transport;
846				goto out;
847			}
848		}
849	}
850out:
851	return match;
852}
853
854/* Is this the association we are looking for? */
855struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
856					   const union sctp_addr *laddr,
857					   const union sctp_addr *paddr)
858{
859	struct sctp_transport *transport;
860
861	sctp_read_lock(&asoc->base.addr_lock);
862
863	if ((asoc->base.bind_addr.port == laddr->v4.sin_port) &&
864	    (asoc->peer.port == paddr->v4.sin_port)) {
865		transport = sctp_assoc_lookup_paddr(asoc, paddr);
866		if (!transport)
867			goto out;
868
869		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
870					 sctp_sk(asoc->base.sk)))
871			goto out;
872	}
873	transport = NULL;
874
875out:
876	sctp_read_unlock(&asoc->base.addr_lock);
877	return transport;
878}
879
880/* Do delayed input processing.  This is scheduled by sctp_rcv(). */
881static void sctp_assoc_bh_rcv(struct sctp_association *asoc)
882{
883	struct sctp_endpoint *ep;
884	struct sctp_chunk *chunk;
885	struct sock *sk;
886	struct sctp_inq *inqueue;
887	int state;
888	sctp_subtype_t subtype;
889	int error = 0;
890
891	/* The association should be held so we should be safe. */
892	ep = asoc->ep;
893	sk = asoc->base.sk;
894
895	inqueue = &asoc->base.inqueue;
896	sctp_association_hold(asoc);
897	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
898		state = asoc->state;
899		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
900
901		/* Remember where the last DATA chunk came from so we
902		 * know where to send the SACK.
903		 */
904		if (sctp_chunk_is_data(chunk))
905			asoc->peer.last_data_from = chunk->transport;
906		else
907			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
908
909		if (chunk->transport)
910			chunk->transport->last_time_heard = jiffies;
911
912		/* Run through the state machine. */
913		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
914				   state, ep, asoc, chunk, GFP_ATOMIC);
915
916		/* Check to see if the association is freed in response to
917		 * the incoming chunk.  If so, get out of the while loop.
918		 */
919		if (asoc->base.dead)
920			break;
921
922		/* If there is an error on chunk, discard this packet. */
923		if (error && chunk)
924			chunk->pdiscard = 1;
925	}
926	sctp_association_put(asoc);
927}
928
929/* This routine moves an association from its old sk to a new sk.  */
930void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
931{
932	struct sctp_sock *newsp = sctp_sk(newsk);
933	struct sock *oldsk = assoc->base.sk;
934
935	/* Delete the association from the old endpoint's list of
936	 * associations.
937	 */
938	list_del_init(&assoc->asocs);
939
940	/* Decrement the backlog value for a TCP-style socket. */
941	if (sctp_style(oldsk, TCP))
942		oldsk->sk_ack_backlog--;
943
944	/* Release references to the old endpoint and the sock.  */
945	sctp_endpoint_put(assoc->ep);
946	sock_put(assoc->base.sk);
947
948	/* Get a reference to the new endpoint.  */
949	assoc->ep = newsp->ep;
950	sctp_endpoint_hold(assoc->ep);
951
952	/* Get a reference to the new sock.  */
953	assoc->base.sk = newsk;
954	sock_hold(assoc->base.sk);
955
956	/* Add the association to the new endpoint's list of associations.  */
957	sctp_endpoint_add_asoc(newsp->ep, assoc);
958}
959
960/* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
961void sctp_assoc_update(struct sctp_association *asoc,
962		       struct sctp_association *new)
963{
964	struct sctp_transport *trans;
965	struct list_head *pos, *temp;
966
967	/* Copy in new parameters of peer. */
968	asoc->c = new->c;
969	asoc->peer.rwnd = new->peer.rwnd;
970	asoc->peer.sack_needed = new->peer.sack_needed;
971	asoc->peer.i = new->peer.i;
972	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE,
973			 asoc->peer.i.initial_tsn);
974
975	/* Remove any peer addresses not present in the new association. */
976	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
977		trans = list_entry(pos, struct sctp_transport, transports);
978		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
979			sctp_assoc_del_peer(asoc, &trans->ipaddr);
980	}
981
982	/* If the case is A (association restart), use
983	 * initial_tsn as next_tsn. If the case is B, use
984	 * current next_tsn in case data sent to peer
985	 * has been discarded and needs retransmission.
986	 */
987	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
988		asoc->next_tsn = new->next_tsn;
989		asoc->ctsn_ack_point = new->ctsn_ack_point;
990		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
991
992		/* Reinitialize SSN for both local streams
993		 * and peer's streams.
994		 */
995		sctp_ssnmap_clear(asoc->ssnmap);
996
997	} else {
998		/* Add any peer addresses from the new association. */
999		list_for_each(pos, &new->peer.transport_addr_list) {
1000			trans = list_entry(pos, struct sctp_transport,
1001					   transports);
1002			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1003				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1004						    GFP_ATOMIC, SCTP_ACTIVE);
1005		}
1006
1007		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1008		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1009		if (!asoc->ssnmap) {
1010			/* Move the ssnmap. */
1011			asoc->ssnmap = new->ssnmap;
1012			new->ssnmap = NULL;
1013		}
1014	}
1015}
1016
1017/* Update the retran path for sending a retransmitted packet.
1018 * Round-robin through the active transports, else round-robin
1019 * through the inactive transports as this is the next best thing
1020 * we can try.
1021 */
1022void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1023{
1024	struct sctp_transport *t, *next;
1025	struct list_head *head = &asoc->peer.transport_addr_list;
1026	struct list_head *pos;
1027
1028	/* Find the next transport in a round-robin fashion. */
1029	t = asoc->peer.retran_path;
1030	pos = &t->transports;
1031	next = NULL;
1032
1033	while (1) {
1034		/* Skip the head. */
1035		if (pos->next == head)
1036			pos = head->next;
1037		else
1038			pos = pos->next;
1039
1040		t = list_entry(pos, struct sctp_transport, transports);
1041
1042		/* Try to find an active transport. */
1043
1044		if (t->state != SCTP_INACTIVE) {
1045			break;
1046		} else {
1047			/* Keep track of the next transport in case
1048			 * we don't find any active transport.
1049			 */
1050			if (!next)
1051				next = t;
1052		}
1053
1054		/* We have exhausted the list, but didn't find any
1055		 * other active transports.  If so, use the next
1056		 * transport.
1057		 */
1058		if (t == asoc->peer.retran_path) {
1059			t = next;
1060			break;
1061		}
1062	}
1063
1064	asoc->peer.retran_path = t;
1065
1066	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1067				 " %p addr: ",
1068				 " port: %d\n",
1069				 asoc,
1070				 (&t->ipaddr),
1071				 t->ipaddr.v4.sin_port);
1072}
1073
1074/* Choose the transport for sending a INIT packet.  */
1075struct sctp_transport *sctp_assoc_choose_init_transport(
1076	struct sctp_association *asoc)
1077{
1078	struct sctp_transport *t;
1079
1080	/* Use the retran path. If the last INIT was sent over the
1081	 * retran path, update the retran path and use it.
1082	 */
1083	if (!asoc->init_last_sent_to) {
1084		t = asoc->peer.active_path;
1085	} else {
1086		if (asoc->init_last_sent_to == asoc->peer.retran_path)
1087			sctp_assoc_update_retran_path(asoc);
1088		t = asoc->peer.retran_path;
1089	}
1090
1091	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1092				 " %p addr: ",
1093				 " port: %d\n",
1094				 asoc,
1095				 (&t->ipaddr),
1096				 t->ipaddr.v4.sin_port);
1097
1098	return t;
1099}
1100
1101/* Choose the transport for sending a SHUTDOWN packet.  */
1102struct sctp_transport *sctp_assoc_choose_shutdown_transport(
1103	struct sctp_association *asoc)
1104{
1105	/* If this is the first time SHUTDOWN is sent, use the active path,
1106	 * else use the retran path. If the last SHUTDOWN was sent over the
1107	 * retran path, update the retran path and use it.
1108	 */
1109	if (!asoc->shutdown_last_sent_to)
1110		return asoc->peer.active_path;
1111	else {
1112		if (asoc->shutdown_last_sent_to == asoc->peer.retran_path)
1113			sctp_assoc_update_retran_path(asoc);
1114		return asoc->peer.retran_path;
1115	}
1116
1117}
1118
1119/* Update the association's pmtu and frag_point by going through all the
1120 * transports. This routine is called when a transport's PMTU has changed.
1121 */
1122void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1123{
1124	struct sctp_transport *t;
1125	struct list_head *pos;
1126	__u32 pmtu = 0;
1127
1128	if (!asoc)
1129		return;
1130
1131	/* Get the lowest pmtu of all the transports. */
1132	list_for_each(pos, &asoc->peer.transport_addr_list) {
1133		t = list_entry(pos, struct sctp_transport, transports);
1134		if (!pmtu || (t->pmtu < pmtu))
1135			pmtu = t->pmtu;
1136	}
1137
1138	if (pmtu) {
1139		struct sctp_sock *sp = sctp_sk(asoc->base.sk);
1140		asoc->pmtu = pmtu;
1141		asoc->frag_point = sctp_frag_point(sp, pmtu);
1142	}
1143
1144	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1145			  __FUNCTION__, asoc, asoc->pmtu, asoc->frag_point);
1146}
1147
1148/* Should we send a SACK to update our peer? */
1149static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1150{
1151	switch (asoc->state) {
1152	case SCTP_STATE_ESTABLISHED:
1153	case SCTP_STATE_SHUTDOWN_PENDING:
1154	case SCTP_STATE_SHUTDOWN_RECEIVED:
1155	case SCTP_STATE_SHUTDOWN_SENT:
1156		if ((asoc->rwnd > asoc->a_rwnd) &&
1157		    ((asoc->rwnd - asoc->a_rwnd) >=
1158		     min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pmtu)))
1159			return 1;
1160		break;
1161	default:
1162		break;
1163	}
1164	return 0;
1165}
1166
1167/* Increase asoc's rwnd by len and send any window update SACK if needed. */
1168void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1169{
1170	struct sctp_chunk *sack;
1171	struct timer_list *timer;
1172
1173	if (asoc->rwnd_over) {
1174		if (asoc->rwnd_over >= len) {
1175			asoc->rwnd_over -= len;
1176		} else {
1177			asoc->rwnd += (len - asoc->rwnd_over);
1178			asoc->rwnd_over = 0;
1179		}
1180	} else {
1181		asoc->rwnd += len;
1182	}
1183
1184	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1185			  "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd,
1186			  asoc->rwnd_over, asoc->a_rwnd);
1187
1188	/* Send a window update SACK if the rwnd has increased by at least the
1189	 * minimum of the association's PMTU and half of the receive buffer.
1190	 * The algorithm used is similar to the one described in
1191	 * Section 4.2.3.3 of RFC 1122.
1192	 */
1193	if (sctp_peer_needs_update(asoc)) {
1194		asoc->a_rwnd = asoc->rwnd;
1195		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1196				  "rwnd: %u a_rwnd: %u\n", __FUNCTION__,
1197				  asoc, asoc->rwnd, asoc->a_rwnd);
1198		sack = sctp_make_sack(asoc);
1199		if (!sack)
1200			return;
1201
1202		asoc->peer.sack_needed = 0;
1203
1204		sctp_outq_tail(&asoc->outqueue, sack);
1205
1206		/* Stop the SACK timer.  */
1207		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1208		if (timer_pending(timer) && del_timer(timer))
1209			sctp_association_put(asoc);
1210	}
1211}
1212
1213/* Decrease asoc's rwnd by len. */
1214void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1215{
1216	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1217	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1218	if (asoc->rwnd >= len) {
1219		asoc->rwnd -= len;
1220	} else {
1221		asoc->rwnd_over = len - asoc->rwnd;
1222		asoc->rwnd = 0;
1223	}
1224	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
1225			  __FUNCTION__, asoc, len, asoc->rwnd,
1226			  asoc->rwnd_over);
1227}
1228
1229/* Build the bind address list for the association based on info from the
1230 * local endpoint and the remote peer.
1231 */
1232int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, int gfp)
1233{
1234	sctp_scope_t scope;
1235	int flags;
1236
1237	/* Use scoping rules to determine the subset of addresses from
1238	 * the endpoint.
1239	 */
1240	scope = sctp_scope(&asoc->peer.active_path->ipaddr);
1241	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1242	if (asoc->peer.ipv4_address)
1243		flags |= SCTP_ADDR4_PEERSUPP;
1244	if (asoc->peer.ipv6_address)
1245		flags |= SCTP_ADDR6_PEERSUPP;
1246
1247	return sctp_bind_addr_copy(&asoc->base.bind_addr,
1248				   &asoc->ep->base.bind_addr,
1249				   scope, gfp, flags);
1250}
1251
1252/* Build the association's bind address list from the cookie.  */
1253int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1254					 struct sctp_cookie *cookie, int gfp)
1255{
1256	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1257	int var_size3 = cookie->raw_addr_list_len;
1258	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1259
1260	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1261				      asoc->ep->base.bind_addr.port, gfp);
1262}
1263
1264/* Lookup laddr in the bind address list of an association. */
1265int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1266			    const union sctp_addr *laddr)
1267{
1268	int found;
1269
1270	sctp_read_lock(&asoc->base.addr_lock);
1271	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1272	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1273			         sctp_sk(asoc->base.sk))) {
1274		found = 1;
1275		goto out;
1276	}
1277
1278	found = 0;
1279out:
1280	sctp_read_unlock(&asoc->base.addr_lock);
1281	return found;
1282}
1283