associola.c revision 8b7318d3edb9d961c41c5e7f7e59b563d74d507d
1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 *                 ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING.  If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 *    lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 *    La Monte H.P. Yarroll <piggy@acm.org>
34 *    Karl Knutson          <karl@athena.chicago.il.us>
35 *    Jon Grimm             <jgrimm@us.ibm.com>
36 *    Xingang Guo           <xingang.guo@intel.com>
37 *    Hui Huang             <hui.huang@nokia.com>
38 *    Sridhar Samudrala	    <sri@us.ibm.com>
39 *    Daisy Chang	    <daisyc@us.ibm.com>
40 *    Ryan Layer	    <rmlayer@us.ibm.com>
41 *    Kevin Gao             <kevin.gao@intel.com>
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/types.h>
47#include <linux/fcntl.h>
48#include <linux/poll.h>
49#include <linux/init.h>
50
51#include <linux/slab.h>
52#include <linux/in.h>
53#include <net/ipv6.h>
54#include <net/sctp/sctp.h>
55#include <net/sctp/sm.h>
56
57/* Forward declarations for internal functions. */
58static void sctp_assoc_bh_rcv(struct work_struct *work);
59static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
60static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
61
62/* 1st Level Abstractions. */
63
64/* Initialize a new association from provided memory. */
65static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
66					  const struct sctp_endpoint *ep,
67					  const struct sock *sk,
68					  sctp_scope_t scope,
69					  gfp_t gfp)
70{
71	struct net *net = sock_net(sk);
72	struct sctp_sock *sp;
73	int i;
74	sctp_paramhdr_t *p;
75	int err;
76
77	/* Retrieve the SCTP per socket area.  */
78	sp = sctp_sk((struct sock *)sk);
79
80	/* Discarding const is appropriate here.  */
81	asoc->ep = (struct sctp_endpoint *)ep;
82	asoc->base.sk = (struct sock *)sk;
83
84	sctp_endpoint_hold(asoc->ep);
85	sock_hold(asoc->base.sk);
86
87	/* Initialize the common base substructure.  */
88	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
89
90	/* Initialize the object handling fields.  */
91	atomic_set(&asoc->base.refcnt, 1);
92
93	/* Initialize the bind addr area.  */
94	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
95
96	asoc->state = SCTP_STATE_CLOSED;
97	asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98	asoc->user_frag = sp->user_frag;
99
100	/* Set the association max_retrans and RTO values from the
101	 * socket values.
102	 */
103	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104	asoc->pf_retrans  = net->sctp.pf_retrans;
105
106	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
109
110	/* Initialize the association's heartbeat interval based on the
111	 * sock configured value.
112	 */
113	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
114
115	/* Initialize path max retrans value. */
116	asoc->pathmaxrxt = sp->pathmaxrxt;
117
118	/* Initialize default path MTU. */
119	asoc->pathmtu = sp->pathmtu;
120
121	/* Set association default SACK delay */
122	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
123	asoc->sackfreq = sp->sackfreq;
124
125	/* Set the association default flags controlling
126	 * Heartbeat, SACK delay, and Path MTU Discovery.
127	 */
128	asoc->param_flags = sp->param_flags;
129
130	/* Initialize the maximum mumber of new data packets that can be sent
131	 * in a burst.
132	 */
133	asoc->max_burst = sp->max_burst;
134
135	/* initialize association timers */
136	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
137	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
138	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
139
140	/* sctpimpguide Section 2.12.2
141	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
142	 * recommended value of 5 times 'RTO.Max'.
143	 */
144	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
145		= 5 * asoc->rto_max;
146
147	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
148	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
149		min_t(unsigned long, sp->autoclose, net->sctp.max_autoclose) * HZ;
150
151	/* Initializes the timers */
152	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153		setup_timer(&asoc->timers[i], sctp_timer_events[i],
154				(unsigned long)asoc);
155
156	/* Pull default initialization values from the sock options.
157	 * Note: This assumes that the values have already been
158	 * validated in the sock.
159	 */
160	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
162	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
163
164	asoc->max_init_timeo =
165		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166
167	/* Set the local window size for receive.
168	 * This is also the rcvbuf space per association.
169	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170	 * 1500 bytes in one SCTP packet.
171	 */
172	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174	else
175		asoc->rwnd = sk->sk_rcvbuf/2;
176
177	asoc->a_rwnd = asoc->rwnd;
178
179	/* Use my own max window until I learn something better.  */
180	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181
182	/* Initialize the receive memory counter */
183	atomic_set(&asoc->rmem_alloc, 0);
184
185	init_waitqueue_head(&asoc->wait);
186
187	asoc->c.my_vtag = sctp_generate_tag(ep);
188	asoc->c.my_port = ep->base.bind_addr.port;
189
190	asoc->c.initial_tsn = sctp_generate_tsn(ep);
191
192	asoc->next_tsn = asoc->c.initial_tsn;
193
194	asoc->ctsn_ack_point = asoc->next_tsn - 1;
195	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196	asoc->highest_sacked = asoc->ctsn_ack_point;
197	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198
199	/* ADDIP Section 4.1 Asconf Chunk Procedures
200	 *
201	 * When an endpoint has an ASCONF signaled change to be sent to the
202	 * remote endpoint it should do the following:
203	 * ...
204	 * A2) a serial number should be assigned to the chunk. The serial
205	 * number SHOULD be a monotonically increasing number. The serial
206	 * numbers SHOULD be initialized at the start of the
207	 * association to the same value as the initial TSN.
208	 */
209	asoc->addip_serial = asoc->c.initial_tsn;
210
211	INIT_LIST_HEAD(&asoc->addip_chunk_list);
212	INIT_LIST_HEAD(&asoc->asconf_ack_list);
213
214	/* Make an empty list of remote transport addresses.  */
215	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216
217	/* RFC 2960 5.1 Normal Establishment of an Association
218	 *
219	 * After the reception of the first data chunk in an
220	 * association the endpoint must immediately respond with a
221	 * sack to acknowledge the data chunk.  Subsequent
222	 * acknowledgements should be done as described in Section
223	 * 6.2.
224	 *
225	 * [We implement this by telling a new association that it
226	 * already received one packet.]
227	 */
228	asoc->peer.sack_needed = 1;
229	asoc->peer.sack_generation = 1;
230
231	/* Assume that the peer will tell us if he recognizes ASCONF
232	 * as part of INIT exchange.
233	 * The sctp_addip_noauth option is there for backward compatibilty
234	 * and will revert old behavior.
235	 */
236	if (net->sctp.addip_noauth)
237		asoc->peer.asconf_capable = 1;
238
239	/* Create an input queue.  */
240	sctp_inq_init(&asoc->base.inqueue);
241	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242
243	/* Create an output queue.  */
244	sctp_outq_init(asoc, &asoc->outqueue);
245
246	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247		goto fail_init;
248
249	/* Assume that peer would support both address types unless we are
250	 * told otherwise.
251	 */
252	asoc->peer.ipv4_address = 1;
253	if (asoc->base.sk->sk_family == PF_INET6)
254		asoc->peer.ipv6_address = 1;
255	INIT_LIST_HEAD(&asoc->asocs);
256
257	asoc->autoclose = sp->autoclose;
258
259	asoc->default_stream = sp->default_stream;
260	asoc->default_ppid = sp->default_ppid;
261	asoc->default_flags = sp->default_flags;
262	asoc->default_context = sp->default_context;
263	asoc->default_timetolive = sp->default_timetolive;
264	asoc->default_rcv_context = sp->default_rcv_context;
265
266	/* AUTH related initializations */
267	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
268	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
269	if (err)
270		goto fail_init;
271
272	asoc->active_key_id = ep->active_key_id;
273
274	/* Save the hmacs and chunks list into this association */
275	if (ep->auth_hmacs_list)
276		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
277			ntohs(ep->auth_hmacs_list->param_hdr.length));
278	if (ep->auth_chunk_list)
279		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
280			ntohs(ep->auth_chunk_list->param_hdr.length));
281
282	/* Get the AUTH random number for this association */
283	p = (sctp_paramhdr_t *)asoc->c.auth_random;
284	p->type = SCTP_PARAM_RANDOM;
285	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
286	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
287
288	return asoc;
289
290fail_init:
291	sock_put(asoc->base.sk);
292	sctp_endpoint_put(asoc->ep);
293	return NULL;
294}
295
296/* Allocate and initialize a new association */
297struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
298					 const struct sock *sk,
299					 sctp_scope_t scope,
300					 gfp_t gfp)
301{
302	struct sctp_association *asoc;
303
304	asoc = kzalloc(sizeof(*asoc), gfp);
305	if (!asoc)
306		goto fail;
307
308	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
309		goto fail_init;
310
311	SCTP_DBG_OBJCNT_INC(assoc);
312
313	pr_debug("Created asoc %p\n", asoc);
314
315	return asoc;
316
317fail_init:
318	kfree(asoc);
319fail:
320	return NULL;
321}
322
323/* Free this association if possible.  There may still be users, so
324 * the actual deallocation may be delayed.
325 */
326void sctp_association_free(struct sctp_association *asoc)
327{
328	struct sock *sk = asoc->base.sk;
329	struct sctp_transport *transport;
330	struct list_head *pos, *temp;
331	int i;
332
333	/* Only real associations count against the endpoint, so
334	 * don't bother for if this is a temporary association.
335	 */
336	if (!asoc->temp) {
337		list_del(&asoc->asocs);
338
339		/* Decrement the backlog value for a TCP-style listening
340		 * socket.
341		 */
342		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
343			sk->sk_ack_backlog--;
344	}
345
346	/* Mark as dead, so other users can know this structure is
347	 * going away.
348	 */
349	asoc->base.dead = true;
350
351	/* Dispose of any data lying around in the outqueue. */
352	sctp_outq_free(&asoc->outqueue);
353
354	/* Dispose of any pending messages for the upper layer. */
355	sctp_ulpq_free(&asoc->ulpq);
356
357	/* Dispose of any pending chunks on the inqueue. */
358	sctp_inq_free(&asoc->base.inqueue);
359
360	sctp_tsnmap_free(&asoc->peer.tsn_map);
361
362	/* Free ssnmap storage. */
363	sctp_ssnmap_free(asoc->ssnmap);
364
365	/* Clean up the bound address list. */
366	sctp_bind_addr_free(&asoc->base.bind_addr);
367
368	/* Do we need to go through all of our timers and
369	 * delete them?   To be safe we will try to delete all, but we
370	 * should be able to go through and make a guess based
371	 * on our state.
372	 */
373	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
374		if (del_timer(&asoc->timers[i]))
375			sctp_association_put(asoc);
376	}
377
378	/* Free peer's cached cookie. */
379	kfree(asoc->peer.cookie);
380	kfree(asoc->peer.peer_random);
381	kfree(asoc->peer.peer_chunks);
382	kfree(asoc->peer.peer_hmacs);
383
384	/* Release the transport structures. */
385	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
386		transport = list_entry(pos, struct sctp_transport, transports);
387		list_del_rcu(pos);
388		sctp_transport_free(transport);
389	}
390
391	asoc->peer.transport_count = 0;
392
393	sctp_asconf_queue_teardown(asoc);
394
395	/* Free pending address space being deleted */
396	if (asoc->asconf_addr_del_pending != NULL)
397		kfree(asoc->asconf_addr_del_pending);
398
399	/* AUTH - Free the endpoint shared keys */
400	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
401
402	/* AUTH - Free the association shared key */
403	sctp_auth_key_put(asoc->asoc_shared_key);
404
405	sctp_association_put(asoc);
406}
407
408/* Cleanup and free up an association. */
409static void sctp_association_destroy(struct sctp_association *asoc)
410{
411	if (unlikely(!asoc->base.dead)) {
412		WARN(1, "Attempt to destroy undead association %p!\n", asoc);
413		return;
414	}
415
416	sctp_endpoint_put(asoc->ep);
417	sock_put(asoc->base.sk);
418
419	if (asoc->assoc_id != 0) {
420		spin_lock_bh(&sctp_assocs_id_lock);
421		idr_remove(&sctp_assocs_id, asoc->assoc_id);
422		spin_unlock_bh(&sctp_assocs_id_lock);
423	}
424
425	WARN_ON(atomic_read(&asoc->rmem_alloc));
426
427	kfree(asoc);
428	SCTP_DBG_OBJCNT_DEC(assoc);
429}
430
431/* Change the primary destination address for the peer. */
432void sctp_assoc_set_primary(struct sctp_association *asoc,
433			    struct sctp_transport *transport)
434{
435	int changeover = 0;
436
437	/* it's a changeover only if we already have a primary path
438	 * that we are changing
439	 */
440	if (asoc->peer.primary_path != NULL &&
441	    asoc->peer.primary_path != transport)
442		changeover = 1 ;
443
444	asoc->peer.primary_path = transport;
445
446	/* Set a default msg_name for events. */
447	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
448	       sizeof(union sctp_addr));
449
450	/* If the primary path is changing, assume that the
451	 * user wants to use this new path.
452	 */
453	if ((transport->state == SCTP_ACTIVE) ||
454	    (transport->state == SCTP_UNKNOWN))
455		asoc->peer.active_path = transport;
456
457	/*
458	 * SFR-CACC algorithm:
459	 * Upon the receipt of a request to change the primary
460	 * destination address, on the data structure for the new
461	 * primary destination, the sender MUST do the following:
462	 *
463	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
464	 * to this destination address earlier. The sender MUST set
465	 * CYCLING_CHANGEOVER to indicate that this switch is a
466	 * double switch to the same destination address.
467	 *
468	 * Really, only bother is we have data queued or outstanding on
469	 * the association.
470	 */
471	if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
472		return;
473
474	if (transport->cacc.changeover_active)
475		transport->cacc.cycling_changeover = changeover;
476
477	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
478	 * a changeover has occurred.
479	 */
480	transport->cacc.changeover_active = changeover;
481
482	/* 3) The sender MUST store the next TSN to be sent in
483	 * next_tsn_at_change.
484	 */
485	transport->cacc.next_tsn_at_change = asoc->next_tsn;
486}
487
488/* Remove a transport from an association.  */
489void sctp_assoc_rm_peer(struct sctp_association *asoc,
490			struct sctp_transport *peer)
491{
492	struct list_head	*pos;
493	struct sctp_transport	*transport;
494
495	pr_debug("%s: association:%p addr:%pISpc\n",
496		 __func__, asoc, &peer->ipaddr.sa);
497
498	/* If we are to remove the current retran_path, update it
499	 * to the next peer before removing this peer from the list.
500	 */
501	if (asoc->peer.retran_path == peer)
502		sctp_assoc_update_retran_path(asoc);
503
504	/* Remove this peer from the list. */
505	list_del_rcu(&peer->transports);
506
507	/* Get the first transport of asoc. */
508	pos = asoc->peer.transport_addr_list.next;
509	transport = list_entry(pos, struct sctp_transport, transports);
510
511	/* Update any entries that match the peer to be deleted. */
512	if (asoc->peer.primary_path == peer)
513		sctp_assoc_set_primary(asoc, transport);
514	if (asoc->peer.active_path == peer)
515		asoc->peer.active_path = transport;
516	if (asoc->peer.retran_path == peer)
517		asoc->peer.retran_path = transport;
518	if (asoc->peer.last_data_from == peer)
519		asoc->peer.last_data_from = transport;
520
521	/* If we remove the transport an INIT was last sent to, set it to
522	 * NULL. Combined with the update of the retran path above, this
523	 * will cause the next INIT to be sent to the next available
524	 * transport, maintaining the cycle.
525	 */
526	if (asoc->init_last_sent_to == peer)
527		asoc->init_last_sent_to = NULL;
528
529	/* If we remove the transport an SHUTDOWN was last sent to, set it
530	 * to NULL. Combined with the update of the retran path above, this
531	 * will cause the next SHUTDOWN to be sent to the next available
532	 * transport, maintaining the cycle.
533	 */
534	if (asoc->shutdown_last_sent_to == peer)
535		asoc->shutdown_last_sent_to = NULL;
536
537	/* If we remove the transport an ASCONF was last sent to, set it to
538	 * NULL.
539	 */
540	if (asoc->addip_last_asconf &&
541	    asoc->addip_last_asconf->transport == peer)
542		asoc->addip_last_asconf->transport = NULL;
543
544	/* If we have something on the transmitted list, we have to
545	 * save it off.  The best place is the active path.
546	 */
547	if (!list_empty(&peer->transmitted)) {
548		struct sctp_transport *active = asoc->peer.active_path;
549		struct sctp_chunk *ch;
550
551		/* Reset the transport of each chunk on this list */
552		list_for_each_entry(ch, &peer->transmitted,
553					transmitted_list) {
554			ch->transport = NULL;
555			ch->rtt_in_progress = 0;
556		}
557
558		list_splice_tail_init(&peer->transmitted,
559					&active->transmitted);
560
561		/* Start a T3 timer here in case it wasn't running so
562		 * that these migrated packets have a chance to get
563		 * retransmitted.
564		 */
565		if (!timer_pending(&active->T3_rtx_timer))
566			if (!mod_timer(&active->T3_rtx_timer,
567					jiffies + active->rto))
568				sctp_transport_hold(active);
569	}
570
571	asoc->peer.transport_count--;
572
573	sctp_transport_free(peer);
574}
575
576/* Add a transport address to an association.  */
577struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
578					   const union sctp_addr *addr,
579					   const gfp_t gfp,
580					   const int peer_state)
581{
582	struct net *net = sock_net(asoc->base.sk);
583	struct sctp_transport *peer;
584	struct sctp_sock *sp;
585	unsigned short port;
586
587	sp = sctp_sk(asoc->base.sk);
588
589	/* AF_INET and AF_INET6 share common port field. */
590	port = ntohs(addr->v4.sin_port);
591
592	pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
593		 asoc, &addr->sa, peer_state);
594
595	/* Set the port if it has not been set yet.  */
596	if (0 == asoc->peer.port)
597		asoc->peer.port = port;
598
599	/* Check to see if this is a duplicate. */
600	peer = sctp_assoc_lookup_paddr(asoc, addr);
601	if (peer) {
602		/* An UNKNOWN state is only set on transports added by
603		 * user in sctp_connectx() call.  Such transports should be
604		 * considered CONFIRMED per RFC 4960, Section 5.4.
605		 */
606		if (peer->state == SCTP_UNKNOWN) {
607			peer->state = SCTP_ACTIVE;
608		}
609		return peer;
610	}
611
612	peer = sctp_transport_new(net, addr, gfp);
613	if (!peer)
614		return NULL;
615
616	sctp_transport_set_owner(peer, asoc);
617
618	/* Initialize the peer's heartbeat interval based on the
619	 * association configured value.
620	 */
621	peer->hbinterval = asoc->hbinterval;
622
623	/* Set the path max_retrans.  */
624	peer->pathmaxrxt = asoc->pathmaxrxt;
625
626	/* And the partial failure retrans threshold */
627	peer->pf_retrans = asoc->pf_retrans;
628
629	/* Initialize the peer's SACK delay timeout based on the
630	 * association configured value.
631	 */
632	peer->sackdelay = asoc->sackdelay;
633	peer->sackfreq = asoc->sackfreq;
634
635	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
636	 * based on association setting.
637	 */
638	peer->param_flags = asoc->param_flags;
639
640	sctp_transport_route(peer, NULL, sp);
641
642	/* Initialize the pmtu of the transport. */
643	if (peer->param_flags & SPP_PMTUD_DISABLE) {
644		if (asoc->pathmtu)
645			peer->pathmtu = asoc->pathmtu;
646		else
647			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
648	}
649
650	/* If this is the first transport addr on this association,
651	 * initialize the association PMTU to the peer's PMTU.
652	 * If not and the current association PMTU is higher than the new
653	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
654	 */
655	if (asoc->pathmtu)
656		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
657	else
658		asoc->pathmtu = peer->pathmtu;
659
660	pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
661		 asoc->pathmtu);
662
663	peer->pmtu_pending = 0;
664
665	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
666
667	/* The asoc->peer.port might not be meaningful yet, but
668	 * initialize the packet structure anyway.
669	 */
670	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
671			 asoc->peer.port);
672
673	/* 7.2.1 Slow-Start
674	 *
675	 * o The initial cwnd before DATA transmission or after a sufficiently
676	 *   long idle period MUST be set to
677	 *      min(4*MTU, max(2*MTU, 4380 bytes))
678	 *
679	 * o The initial value of ssthresh MAY be arbitrarily high
680	 *   (for example, implementations MAY use the size of the
681	 *   receiver advertised window).
682	 */
683	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
684
685	/* At this point, we may not have the receiver's advertised window,
686	 * so initialize ssthresh to the default value and it will be set
687	 * later when we process the INIT.
688	 */
689	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
690
691	peer->partial_bytes_acked = 0;
692	peer->flight_size = 0;
693	peer->burst_limited = 0;
694
695	/* Set the transport's RTO.initial value */
696	peer->rto = asoc->rto_initial;
697	sctp_max_rto(asoc, peer);
698
699	/* Set the peer's active state. */
700	peer->state = peer_state;
701
702	/* Attach the remote transport to our asoc.  */
703	list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
704	asoc->peer.transport_count++;
705
706	/* If we do not yet have a primary path, set one.  */
707	if (!asoc->peer.primary_path) {
708		sctp_assoc_set_primary(asoc, peer);
709		asoc->peer.retran_path = peer;
710	}
711
712	if (asoc->peer.active_path == asoc->peer.retran_path &&
713	    peer->state != SCTP_UNCONFIRMED) {
714		asoc->peer.retran_path = peer;
715	}
716
717	return peer;
718}
719
720/* Delete a transport address from an association.  */
721void sctp_assoc_del_peer(struct sctp_association *asoc,
722			 const union sctp_addr *addr)
723{
724	struct list_head	*pos;
725	struct list_head	*temp;
726	struct sctp_transport	*transport;
727
728	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
729		transport = list_entry(pos, struct sctp_transport, transports);
730		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
731			/* Do book keeping for removing the peer and free it. */
732			sctp_assoc_rm_peer(asoc, transport);
733			break;
734		}
735	}
736}
737
738/* Lookup a transport by address. */
739struct sctp_transport *sctp_assoc_lookup_paddr(
740					const struct sctp_association *asoc,
741					const union sctp_addr *address)
742{
743	struct sctp_transport *t;
744
745	/* Cycle through all transports searching for a peer address. */
746
747	list_for_each_entry(t, &asoc->peer.transport_addr_list,
748			transports) {
749		if (sctp_cmp_addr_exact(address, &t->ipaddr))
750			return t;
751	}
752
753	return NULL;
754}
755
756/* Remove all transports except a give one */
757void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
758				     struct sctp_transport *primary)
759{
760	struct sctp_transport	*temp;
761	struct sctp_transport	*t;
762
763	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
764				 transports) {
765		/* if the current transport is not the primary one, delete it */
766		if (t != primary)
767			sctp_assoc_rm_peer(asoc, t);
768	}
769}
770
771/* Engage in transport control operations.
772 * Mark the transport up or down and send a notification to the user.
773 * Select and update the new active and retran paths.
774 */
775void sctp_assoc_control_transport(struct sctp_association *asoc,
776				  struct sctp_transport *transport,
777				  sctp_transport_cmd_t command,
778				  sctp_sn_error_t error)
779{
780	struct sctp_transport *t = NULL;
781	struct sctp_transport *first;
782	struct sctp_transport *second;
783	struct sctp_ulpevent *event;
784	struct sockaddr_storage addr;
785	int spc_state = 0;
786	bool ulp_notify = true;
787
788	/* Record the transition on the transport.  */
789	switch (command) {
790	case SCTP_TRANSPORT_UP:
791		/* If we are moving from UNCONFIRMED state due
792		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
793		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
794		 */
795		if (SCTP_UNCONFIRMED == transport->state &&
796		    SCTP_HEARTBEAT_SUCCESS == error)
797			spc_state = SCTP_ADDR_CONFIRMED;
798		else
799			spc_state = SCTP_ADDR_AVAILABLE;
800		/* Don't inform ULP about transition from PF to
801		 * active state and set cwnd to 1 MTU, see SCTP
802		 * Quick failover draft section 5.1, point 5
803		 */
804		if (transport->state == SCTP_PF) {
805			ulp_notify = false;
806			transport->cwnd = asoc->pathmtu;
807		}
808		transport->state = SCTP_ACTIVE;
809		break;
810
811	case SCTP_TRANSPORT_DOWN:
812		/* If the transport was never confirmed, do not transition it
813		 * to inactive state.  Also, release the cached route since
814		 * there may be a better route next time.
815		 */
816		if (transport->state != SCTP_UNCONFIRMED)
817			transport->state = SCTP_INACTIVE;
818		else {
819			dst_release(transport->dst);
820			transport->dst = NULL;
821		}
822
823		spc_state = SCTP_ADDR_UNREACHABLE;
824		break;
825
826	case SCTP_TRANSPORT_PF:
827		transport->state = SCTP_PF;
828		ulp_notify = false;
829		break;
830
831	default:
832		return;
833	}
834
835	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
836	 * user.
837	 */
838	if (ulp_notify) {
839		memset(&addr, 0, sizeof(struct sockaddr_storage));
840		memcpy(&addr, &transport->ipaddr,
841		       transport->af_specific->sockaddr_len);
842		event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
843					0, spc_state, error, GFP_ATOMIC);
844		if (event)
845			sctp_ulpq_tail_event(&asoc->ulpq, event);
846	}
847
848	/* Select new active and retran paths. */
849
850	/* Look for the two most recently used active transports.
851	 *
852	 * This code produces the wrong ordering whenever jiffies
853	 * rolls over, but we still get usable transports, so we don't
854	 * worry about it.
855	 */
856	first = NULL; second = NULL;
857
858	list_for_each_entry(t, &asoc->peer.transport_addr_list,
859			transports) {
860
861		if ((t->state == SCTP_INACTIVE) ||
862		    (t->state == SCTP_UNCONFIRMED) ||
863		    (t->state == SCTP_PF))
864			continue;
865		if (!first || t->last_time_heard > first->last_time_heard) {
866			second = first;
867			first = t;
868		} else if (!second ||
869			   t->last_time_heard > second->last_time_heard)
870			second = t;
871	}
872
873	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
874	 *
875	 * By default, an endpoint should always transmit to the
876	 * primary path, unless the SCTP user explicitly specifies the
877	 * destination transport address (and possibly source
878	 * transport address) to use.
879	 *
880	 * [If the primary is active but not most recent, bump the most
881	 * recently used transport.]
882	 */
883	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
884	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
885	    first != asoc->peer.primary_path) {
886		second = first;
887		first = asoc->peer.primary_path;
888	}
889
890	if (!second)
891		second = first;
892	/* If we failed to find a usable transport, just camp on the
893	 * primary, even if it is inactive.
894	 */
895	if (!first) {
896		first = asoc->peer.primary_path;
897		second = asoc->peer.primary_path;
898	}
899
900	/* Set the active and retran transports.  */
901	asoc->peer.active_path = first;
902	asoc->peer.retran_path = second;
903}
904
905/* Hold a reference to an association. */
906void sctp_association_hold(struct sctp_association *asoc)
907{
908	atomic_inc(&asoc->base.refcnt);
909}
910
911/* Release a reference to an association and cleanup
912 * if there are no more references.
913 */
914void sctp_association_put(struct sctp_association *asoc)
915{
916	if (atomic_dec_and_test(&asoc->base.refcnt))
917		sctp_association_destroy(asoc);
918}
919
920/* Allocate the next TSN, Transmission Sequence Number, for the given
921 * association.
922 */
923__u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
924{
925	/* From Section 1.6 Serial Number Arithmetic:
926	 * Transmission Sequence Numbers wrap around when they reach
927	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
928	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
929	 */
930	__u32 retval = asoc->next_tsn;
931	asoc->next_tsn++;
932	asoc->unack_data++;
933
934	return retval;
935}
936
937/* Compare two addresses to see if they match.  Wildcard addresses
938 * only match themselves.
939 */
940int sctp_cmp_addr_exact(const union sctp_addr *ss1,
941			const union sctp_addr *ss2)
942{
943	struct sctp_af *af;
944
945	af = sctp_get_af_specific(ss1->sa.sa_family);
946	if (unlikely(!af))
947		return 0;
948
949	return af->cmp_addr(ss1, ss2);
950}
951
952/* Return an ecne chunk to get prepended to a packet.
953 * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
954 * No we don't, but we could/should.
955 */
956struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
957{
958	if (!asoc->need_ecne)
959		return NULL;
960
961	/* Send ECNE if needed.
962	 * Not being able to allocate a chunk here is not deadly.
963	 */
964	return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
965}
966
967/*
968 * Find which transport this TSN was sent on.
969 */
970struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
971					     __u32 tsn)
972{
973	struct sctp_transport *active;
974	struct sctp_transport *match;
975	struct sctp_transport *transport;
976	struct sctp_chunk *chunk;
977	__be32 key = htonl(tsn);
978
979	match = NULL;
980
981	/*
982	 * FIXME: In general, find a more efficient data structure for
983	 * searching.
984	 */
985
986	/*
987	 * The general strategy is to search each transport's transmitted
988	 * list.   Return which transport this TSN lives on.
989	 *
990	 * Let's be hopeful and check the active_path first.
991	 * Another optimization would be to know if there is only one
992	 * outbound path and not have to look for the TSN at all.
993	 *
994	 */
995
996	active = asoc->peer.active_path;
997
998	list_for_each_entry(chunk, &active->transmitted,
999			transmitted_list) {
1000
1001		if (key == chunk->subh.data_hdr->tsn) {
1002			match = active;
1003			goto out;
1004		}
1005	}
1006
1007	/* If not found, go search all the other transports. */
1008	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1009			transports) {
1010
1011		if (transport == active)
1012			continue;
1013		list_for_each_entry(chunk, &transport->transmitted,
1014				transmitted_list) {
1015			if (key == chunk->subh.data_hdr->tsn) {
1016				match = transport;
1017				goto out;
1018			}
1019		}
1020	}
1021out:
1022	return match;
1023}
1024
1025/* Is this the association we are looking for? */
1026struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1027					   struct net *net,
1028					   const union sctp_addr *laddr,
1029					   const union sctp_addr *paddr)
1030{
1031	struct sctp_transport *transport;
1032
1033	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1034	    (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1035	    net_eq(sock_net(asoc->base.sk), net)) {
1036		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1037		if (!transport)
1038			goto out;
1039
1040		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1041					 sctp_sk(asoc->base.sk)))
1042			goto out;
1043	}
1044	transport = NULL;
1045
1046out:
1047	return transport;
1048}
1049
1050/* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1051static void sctp_assoc_bh_rcv(struct work_struct *work)
1052{
1053	struct sctp_association *asoc =
1054		container_of(work, struct sctp_association,
1055			     base.inqueue.immediate);
1056	struct net *net = sock_net(asoc->base.sk);
1057	struct sctp_endpoint *ep;
1058	struct sctp_chunk *chunk;
1059	struct sctp_inq *inqueue;
1060	int state;
1061	sctp_subtype_t subtype;
1062	int error = 0;
1063
1064	/* The association should be held so we should be safe. */
1065	ep = asoc->ep;
1066
1067	inqueue = &asoc->base.inqueue;
1068	sctp_association_hold(asoc);
1069	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1070		state = asoc->state;
1071		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1072
1073		/* SCTP-AUTH, Section 6.3:
1074		 *    The receiver has a list of chunk types which it expects
1075		 *    to be received only after an AUTH-chunk.  This list has
1076		 *    been sent to the peer during the association setup.  It
1077		 *    MUST silently discard these chunks if they are not placed
1078		 *    after an AUTH chunk in the packet.
1079		 */
1080		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1081			continue;
1082
1083		/* Remember where the last DATA chunk came from so we
1084		 * know where to send the SACK.
1085		 */
1086		if (sctp_chunk_is_data(chunk))
1087			asoc->peer.last_data_from = chunk->transport;
1088		else {
1089			SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1090			asoc->stats.ictrlchunks++;
1091			if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1092				asoc->stats.isacks++;
1093		}
1094
1095		if (chunk->transport)
1096			chunk->transport->last_time_heard = jiffies;
1097
1098		/* Run through the state machine. */
1099		error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1100				   state, ep, asoc, chunk, GFP_ATOMIC);
1101
1102		/* Check to see if the association is freed in response to
1103		 * the incoming chunk.  If so, get out of the while loop.
1104		 */
1105		if (asoc->base.dead)
1106			break;
1107
1108		/* If there is an error on chunk, discard this packet. */
1109		if (error && chunk)
1110			chunk->pdiscard = 1;
1111	}
1112	sctp_association_put(asoc);
1113}
1114
1115/* This routine moves an association from its old sk to a new sk.  */
1116void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1117{
1118	struct sctp_sock *newsp = sctp_sk(newsk);
1119	struct sock *oldsk = assoc->base.sk;
1120
1121	/* Delete the association from the old endpoint's list of
1122	 * associations.
1123	 */
1124	list_del_init(&assoc->asocs);
1125
1126	/* Decrement the backlog value for a TCP-style socket. */
1127	if (sctp_style(oldsk, TCP))
1128		oldsk->sk_ack_backlog--;
1129
1130	/* Release references to the old endpoint and the sock.  */
1131	sctp_endpoint_put(assoc->ep);
1132	sock_put(assoc->base.sk);
1133
1134	/* Get a reference to the new endpoint.  */
1135	assoc->ep = newsp->ep;
1136	sctp_endpoint_hold(assoc->ep);
1137
1138	/* Get a reference to the new sock.  */
1139	assoc->base.sk = newsk;
1140	sock_hold(assoc->base.sk);
1141
1142	/* Add the association to the new endpoint's list of associations.  */
1143	sctp_endpoint_add_asoc(newsp->ep, assoc);
1144}
1145
1146/* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1147void sctp_assoc_update(struct sctp_association *asoc,
1148		       struct sctp_association *new)
1149{
1150	struct sctp_transport *trans;
1151	struct list_head *pos, *temp;
1152
1153	/* Copy in new parameters of peer. */
1154	asoc->c = new->c;
1155	asoc->peer.rwnd = new->peer.rwnd;
1156	asoc->peer.sack_needed = new->peer.sack_needed;
1157	asoc->peer.i = new->peer.i;
1158	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1159			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1160
1161	/* Remove any peer addresses not present in the new association. */
1162	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1163		trans = list_entry(pos, struct sctp_transport, transports);
1164		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1165			sctp_assoc_rm_peer(asoc, trans);
1166			continue;
1167		}
1168
1169		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1170			sctp_transport_reset(trans);
1171	}
1172
1173	/* If the case is A (association restart), use
1174	 * initial_tsn as next_tsn. If the case is B, use
1175	 * current next_tsn in case data sent to peer
1176	 * has been discarded and needs retransmission.
1177	 */
1178	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1179		asoc->next_tsn = new->next_tsn;
1180		asoc->ctsn_ack_point = new->ctsn_ack_point;
1181		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1182
1183		/* Reinitialize SSN for both local streams
1184		 * and peer's streams.
1185		 */
1186		sctp_ssnmap_clear(asoc->ssnmap);
1187
1188		/* Flush the ULP reassembly and ordered queue.
1189		 * Any data there will now be stale and will
1190		 * cause problems.
1191		 */
1192		sctp_ulpq_flush(&asoc->ulpq);
1193
1194		/* reset the overall association error count so
1195		 * that the restarted association doesn't get torn
1196		 * down on the next retransmission timer.
1197		 */
1198		asoc->overall_error_count = 0;
1199
1200	} else {
1201		/* Add any peer addresses from the new association. */
1202		list_for_each_entry(trans, &new->peer.transport_addr_list,
1203				transports) {
1204			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1205				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1206						    GFP_ATOMIC, trans->state);
1207		}
1208
1209		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1210		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1211		if (!asoc->ssnmap) {
1212			/* Move the ssnmap. */
1213			asoc->ssnmap = new->ssnmap;
1214			new->ssnmap = NULL;
1215		}
1216
1217		if (!asoc->assoc_id) {
1218			/* get a new association id since we don't have one
1219			 * yet.
1220			 */
1221			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1222		}
1223	}
1224
1225	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1226	 * and also move the association shared keys over
1227	 */
1228	kfree(asoc->peer.peer_random);
1229	asoc->peer.peer_random = new->peer.peer_random;
1230	new->peer.peer_random = NULL;
1231
1232	kfree(asoc->peer.peer_chunks);
1233	asoc->peer.peer_chunks = new->peer.peer_chunks;
1234	new->peer.peer_chunks = NULL;
1235
1236	kfree(asoc->peer.peer_hmacs);
1237	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1238	new->peer.peer_hmacs = NULL;
1239
1240	sctp_auth_key_put(asoc->asoc_shared_key);
1241	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1242}
1243
1244/* Update the retran path for sending a retransmitted packet.
1245 * Round-robin through the active transports, else round-robin
1246 * through the inactive transports as this is the next best thing
1247 * we can try.
1248 */
1249void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1250{
1251	struct sctp_transport *t, *next;
1252	struct list_head *head = &asoc->peer.transport_addr_list;
1253	struct list_head *pos;
1254
1255	if (asoc->peer.transport_count == 1)
1256		return;
1257
1258	/* Find the next transport in a round-robin fashion. */
1259	t = asoc->peer.retran_path;
1260	pos = &t->transports;
1261	next = NULL;
1262
1263	while (1) {
1264		/* Skip the head. */
1265		if (pos->next == head)
1266			pos = head->next;
1267		else
1268			pos = pos->next;
1269
1270		t = list_entry(pos, struct sctp_transport, transports);
1271
1272		/* We have exhausted the list, but didn't find any
1273		 * other active transports.  If so, use the next
1274		 * transport.
1275		 */
1276		if (t == asoc->peer.retran_path) {
1277			t = next;
1278			break;
1279		}
1280
1281		/* Try to find an active transport. */
1282
1283		if ((t->state == SCTP_ACTIVE) ||
1284		    (t->state == SCTP_UNKNOWN)) {
1285			break;
1286		} else {
1287			/* Keep track of the next transport in case
1288			 * we don't find any active transport.
1289			 */
1290			if (t->state != SCTP_UNCONFIRMED && !next)
1291				next = t;
1292		}
1293	}
1294
1295	if (t)
1296		asoc->peer.retran_path = t;
1297	else
1298		t = asoc->peer.retran_path;
1299
1300	pr_debug("%s: association:%p addr:%pISpc\n", __func__, asoc,
1301		 &t->ipaddr.sa);
1302}
1303
1304/* Choose the transport for sending retransmit packet.  */
1305struct sctp_transport *sctp_assoc_choose_alter_transport(
1306	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1307{
1308	/* If this is the first time packet is sent, use the active path,
1309	 * else use the retran path. If the last packet was sent over the
1310	 * retran path, update the retran path and use it.
1311	 */
1312	if (!last_sent_to)
1313		return asoc->peer.active_path;
1314	else {
1315		if (last_sent_to == asoc->peer.retran_path)
1316			sctp_assoc_update_retran_path(asoc);
1317		return asoc->peer.retran_path;
1318	}
1319}
1320
1321/* Update the association's pmtu and frag_point by going through all the
1322 * transports. This routine is called when a transport's PMTU has changed.
1323 */
1324void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1325{
1326	struct sctp_transport *t;
1327	__u32 pmtu = 0;
1328
1329	if (!asoc)
1330		return;
1331
1332	/* Get the lowest pmtu of all the transports. */
1333	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1334				transports) {
1335		if (t->pmtu_pending && t->dst) {
1336			sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1337			t->pmtu_pending = 0;
1338		}
1339		if (!pmtu || (t->pathmtu < pmtu))
1340			pmtu = t->pathmtu;
1341	}
1342
1343	if (pmtu) {
1344		asoc->pathmtu = pmtu;
1345		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1346	}
1347
1348	pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1349		 asoc->pathmtu, asoc->frag_point);
1350}
1351
1352/* Should we send a SACK to update our peer? */
1353static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1354{
1355	struct net *net = sock_net(asoc->base.sk);
1356	switch (asoc->state) {
1357	case SCTP_STATE_ESTABLISHED:
1358	case SCTP_STATE_SHUTDOWN_PENDING:
1359	case SCTP_STATE_SHUTDOWN_RECEIVED:
1360	case SCTP_STATE_SHUTDOWN_SENT:
1361		if ((asoc->rwnd > asoc->a_rwnd) &&
1362		    ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1363			   (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1364			   asoc->pathmtu)))
1365			return 1;
1366		break;
1367	default:
1368		break;
1369	}
1370	return 0;
1371}
1372
1373/* Increase asoc's rwnd by len and send any window update SACK if needed. */
1374void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1375{
1376	struct sctp_chunk *sack;
1377	struct timer_list *timer;
1378
1379	if (asoc->rwnd_over) {
1380		if (asoc->rwnd_over >= len) {
1381			asoc->rwnd_over -= len;
1382		} else {
1383			asoc->rwnd += (len - asoc->rwnd_over);
1384			asoc->rwnd_over = 0;
1385		}
1386	} else {
1387		asoc->rwnd += len;
1388	}
1389
1390	/* If we had window pressure, start recovering it
1391	 * once our rwnd had reached the accumulated pressure
1392	 * threshold.  The idea is to recover slowly, but up
1393	 * to the initial advertised window.
1394	 */
1395	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1396		int change = min(asoc->pathmtu, asoc->rwnd_press);
1397		asoc->rwnd += change;
1398		asoc->rwnd_press -= change;
1399	}
1400
1401	pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1402		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1403		 asoc->a_rwnd);
1404
1405	/* Send a window update SACK if the rwnd has increased by at least the
1406	 * minimum of the association's PMTU and half of the receive buffer.
1407	 * The algorithm used is similar to the one described in
1408	 * Section 4.2.3.3 of RFC 1122.
1409	 */
1410	if (sctp_peer_needs_update(asoc)) {
1411		asoc->a_rwnd = asoc->rwnd;
1412
1413		pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1414			 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1415			 asoc->a_rwnd);
1416
1417		sack = sctp_make_sack(asoc);
1418		if (!sack)
1419			return;
1420
1421		asoc->peer.sack_needed = 0;
1422
1423		sctp_outq_tail(&asoc->outqueue, sack);
1424
1425		/* Stop the SACK timer.  */
1426		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1427		if (del_timer(timer))
1428			sctp_association_put(asoc);
1429	}
1430}
1431
1432/* Decrease asoc's rwnd by len. */
1433void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1434{
1435	int rx_count;
1436	int over = 0;
1437
1438	if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1439		pr_debug("%s: association:%p has asoc->rwnd:%u, "
1440			 "asoc->rwnd_over:%u!\n", __func__, asoc,
1441			 asoc->rwnd, asoc->rwnd_over);
1442
1443	if (asoc->ep->rcvbuf_policy)
1444		rx_count = atomic_read(&asoc->rmem_alloc);
1445	else
1446		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1447
1448	/* If we've reached or overflowed our receive buffer, announce
1449	 * a 0 rwnd if rwnd would still be positive.  Store the
1450	 * the pottential pressure overflow so that the window can be restored
1451	 * back to original value.
1452	 */
1453	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1454		over = 1;
1455
1456	if (asoc->rwnd >= len) {
1457		asoc->rwnd -= len;
1458		if (over) {
1459			asoc->rwnd_press += asoc->rwnd;
1460			asoc->rwnd = 0;
1461		}
1462	} else {
1463		asoc->rwnd_over = len - asoc->rwnd;
1464		asoc->rwnd = 0;
1465	}
1466
1467	pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1468		 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1469		 asoc->rwnd_press);
1470}
1471
1472/* Build the bind address list for the association based on info from the
1473 * local endpoint and the remote peer.
1474 */
1475int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1476				     sctp_scope_t scope, gfp_t gfp)
1477{
1478	int flags;
1479
1480	/* Use scoping rules to determine the subset of addresses from
1481	 * the endpoint.
1482	 */
1483	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1484	if (asoc->peer.ipv4_address)
1485		flags |= SCTP_ADDR4_PEERSUPP;
1486	if (asoc->peer.ipv6_address)
1487		flags |= SCTP_ADDR6_PEERSUPP;
1488
1489	return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1490				   &asoc->base.bind_addr,
1491				   &asoc->ep->base.bind_addr,
1492				   scope, gfp, flags);
1493}
1494
1495/* Build the association's bind address list from the cookie.  */
1496int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1497					 struct sctp_cookie *cookie,
1498					 gfp_t gfp)
1499{
1500	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1501	int var_size3 = cookie->raw_addr_list_len;
1502	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1503
1504	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1505				      asoc->ep->base.bind_addr.port, gfp);
1506}
1507
1508/* Lookup laddr in the bind address list of an association. */
1509int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1510			    const union sctp_addr *laddr)
1511{
1512	int found = 0;
1513
1514	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1515	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1516				 sctp_sk(asoc->base.sk)))
1517		found = 1;
1518
1519	return found;
1520}
1521
1522/* Set an association id for a given association */
1523int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1524{
1525	bool preload = gfp & __GFP_WAIT;
1526	int ret;
1527
1528	/* If the id is already assigned, keep it. */
1529	if (asoc->assoc_id)
1530		return 0;
1531
1532	if (preload)
1533		idr_preload(gfp);
1534	spin_lock_bh(&sctp_assocs_id_lock);
1535	/* 0 is not a valid assoc_id, must be >= 1 */
1536	ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1537	spin_unlock_bh(&sctp_assocs_id_lock);
1538	if (preload)
1539		idr_preload_end();
1540	if (ret < 0)
1541		return ret;
1542
1543	asoc->assoc_id = (sctp_assoc_t)ret;
1544	return 0;
1545}
1546
1547/* Free the ASCONF queue */
1548static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1549{
1550	struct sctp_chunk *asconf;
1551	struct sctp_chunk *tmp;
1552
1553	list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1554		list_del_init(&asconf->list);
1555		sctp_chunk_free(asconf);
1556	}
1557}
1558
1559/* Free asconf_ack cache */
1560static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1561{
1562	struct sctp_chunk *ack;
1563	struct sctp_chunk *tmp;
1564
1565	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1566				transmitted_list) {
1567		list_del_init(&ack->transmitted_list);
1568		sctp_chunk_free(ack);
1569	}
1570}
1571
1572/* Clean up the ASCONF_ACK queue */
1573void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1574{
1575	struct sctp_chunk *ack;
1576	struct sctp_chunk *tmp;
1577
1578	/* We can remove all the entries from the queue up to
1579	 * the "Peer-Sequence-Number".
1580	 */
1581	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1582				transmitted_list) {
1583		if (ack->subh.addip_hdr->serial ==
1584				htonl(asoc->peer.addip_serial))
1585			break;
1586
1587		list_del_init(&ack->transmitted_list);
1588		sctp_chunk_free(ack);
1589	}
1590}
1591
1592/* Find the ASCONF_ACK whose serial number matches ASCONF */
1593struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1594					const struct sctp_association *asoc,
1595					__be32 serial)
1596{
1597	struct sctp_chunk *ack;
1598
1599	/* Walk through the list of cached ASCONF-ACKs and find the
1600	 * ack chunk whose serial number matches that of the request.
1601	 */
1602	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1603		if (ack->subh.addip_hdr->serial == serial) {
1604			sctp_chunk_hold(ack);
1605			return ack;
1606		}
1607	}
1608
1609	return NULL;
1610}
1611
1612void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1613{
1614	/* Free any cached ASCONF_ACK chunk. */
1615	sctp_assoc_free_asconf_acks(asoc);
1616
1617	/* Free the ASCONF queue. */
1618	sctp_assoc_free_asconf_queue(asoc);
1619
1620	/* Free any cached ASCONF chunk. */
1621	if (asoc->addip_last_asconf)
1622		sctp_chunk_free(asoc->addip_last_asconf);
1623}
1624