associola.c revision 8da645e101a8c20c6073efda3c7cc74eec01b87f
1/* SCTP kernel implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001 Intel Corp. 6 * Copyright (c) 2001 La Monte H.P. Yarroll 7 * 8 * This file is part of the SCTP kernel implementation 9 * 10 * This module provides the abstraction for an SCTP association. 11 * 12 * This SCTP implementation is free software; 13 * you can redistribute it and/or modify it under the terms of 14 * the GNU General Public License as published by 15 * the Free Software Foundation; either version 2, or (at your option) 16 * any later version. 17 * 18 * This SCTP implementation is distributed in the hope that it 19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 20 * ************************ 21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 22 * See the GNU General Public License for more details. 23 * 24 * You should have received a copy of the GNU General Public License 25 * along with GNU CC; see the file COPYING. If not, write to 26 * the Free Software Foundation, 59 Temple Place - Suite 330, 27 * Boston, MA 02111-1307, USA. 28 * 29 * Please send any bug reports or fixes you make to the 30 * email address(es): 31 * lksctp developers <lksctp-developers@lists.sourceforge.net> 32 * 33 * Or submit a bug report through the following website: 34 * http://www.sf.net/projects/lksctp 35 * 36 * Written or modified by: 37 * La Monte H.P. Yarroll <piggy@acm.org> 38 * Karl Knutson <karl@athena.chicago.il.us> 39 * Jon Grimm <jgrimm@us.ibm.com> 40 * Xingang Guo <xingang.guo@intel.com> 41 * Hui Huang <hui.huang@nokia.com> 42 * Sridhar Samudrala <sri@us.ibm.com> 43 * Daisy Chang <daisyc@us.ibm.com> 44 * Ryan Layer <rmlayer@us.ibm.com> 45 * Kevin Gao <kevin.gao@intel.com> 46 * 47 * Any bugs reported given to us we will try to fix... any fixes shared will 48 * be incorporated into the next SCTP release. 49 */ 50 51#include <linux/types.h> 52#include <linux/fcntl.h> 53#include <linux/poll.h> 54#include <linux/init.h> 55 56#include <linux/slab.h> 57#include <linux/in.h> 58#include <net/ipv6.h> 59#include <net/sctp/sctp.h> 60#include <net/sctp/sm.h> 61 62/* Forward declarations for internal functions. */ 63static void sctp_assoc_bh_rcv(struct work_struct *work); 64static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); 65 66 67/* 1st Level Abstractions. */ 68 69/* Initialize a new association from provided memory. */ 70static struct sctp_association *sctp_association_init(struct sctp_association *asoc, 71 const struct sctp_endpoint *ep, 72 const struct sock *sk, 73 sctp_scope_t scope, 74 gfp_t gfp) 75{ 76 struct sctp_sock *sp; 77 int i; 78 sctp_paramhdr_t *p; 79 int err; 80 81 /* Retrieve the SCTP per socket area. */ 82 sp = sctp_sk((struct sock *)sk); 83 84 /* Init all variables to a known value. */ 85 memset(asoc, 0, sizeof(struct sctp_association)); 86 87 /* Discarding const is appropriate here. */ 88 asoc->ep = (struct sctp_endpoint *)ep; 89 sctp_endpoint_hold(asoc->ep); 90 91 /* Hold the sock. */ 92 asoc->base.sk = (struct sock *)sk; 93 sock_hold(asoc->base.sk); 94 95 /* Initialize the common base substructure. */ 96 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; 97 98 /* Initialize the object handling fields. */ 99 atomic_set(&asoc->base.refcnt, 1); 100 asoc->base.dead = 0; 101 asoc->base.malloced = 0; 102 103 /* Initialize the bind addr area. */ 104 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); 105 106 asoc->state = SCTP_STATE_CLOSED; 107 108 /* Set these values from the socket values, a conversion between 109 * millsecons to seconds/microseconds must also be done. 110 */ 111 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000; 112 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000) 113 * 1000; 114 asoc->frag_point = 0; 115 asoc->user_frag = sp->user_frag; 116 117 /* Set the association max_retrans and RTO values from the 118 * socket values. 119 */ 120 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; 121 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); 122 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); 123 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); 124 125 asoc->overall_error_count = 0; 126 127 /* Initialize the association's heartbeat interval based on the 128 * sock configured value. 129 */ 130 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); 131 132 /* Initialize path max retrans value. */ 133 asoc->pathmaxrxt = sp->pathmaxrxt; 134 135 /* Initialize default path MTU. */ 136 asoc->pathmtu = sp->pathmtu; 137 138 /* Set association default SACK delay */ 139 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); 140 asoc->sackfreq = sp->sackfreq; 141 142 /* Set the association default flags controlling 143 * Heartbeat, SACK delay, and Path MTU Discovery. 144 */ 145 asoc->param_flags = sp->param_flags; 146 147 /* Initialize the maximum mumber of new data packets that can be sent 148 * in a burst. 149 */ 150 asoc->max_burst = sp->max_burst; 151 152 /* initialize association timers */ 153 asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0; 154 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; 155 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; 156 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; 157 asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0; 158 asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0; 159 160 /* sctpimpguide Section 2.12.2 161 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the 162 * recommended value of 5 times 'RTO.Max'. 163 */ 164 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] 165 = 5 * asoc->rto_max; 166 167 asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0; 168 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; 169 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = 170 sp->autoclose * HZ; 171 172 /* Initilizes the timers */ 173 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) 174 setup_timer(&asoc->timers[i], sctp_timer_events[i], 175 (unsigned long)asoc); 176 177 /* Pull default initialization values from the sock options. 178 * Note: This assumes that the values have already been 179 * validated in the sock. 180 */ 181 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; 182 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams; 183 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts; 184 185 asoc->max_init_timeo = 186 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); 187 188 /* Allocate storage for the ssnmap after the inbound and outbound 189 * streams have been negotiated during Init. 190 */ 191 asoc->ssnmap = NULL; 192 193 /* Set the local window size for receive. 194 * This is also the rcvbuf space per association. 195 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of 196 * 1500 bytes in one SCTP packet. 197 */ 198 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) 199 asoc->rwnd = SCTP_DEFAULT_MINWINDOW; 200 else 201 asoc->rwnd = sk->sk_rcvbuf/2; 202 203 asoc->a_rwnd = asoc->rwnd; 204 205 asoc->rwnd_over = 0; 206 asoc->rwnd_press = 0; 207 208 /* Use my own max window until I learn something better. */ 209 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; 210 211 /* Set the sndbuf size for transmit. */ 212 asoc->sndbuf_used = 0; 213 214 /* Initialize the receive memory counter */ 215 atomic_set(&asoc->rmem_alloc, 0); 216 217 init_waitqueue_head(&asoc->wait); 218 219 asoc->c.my_vtag = sctp_generate_tag(ep); 220 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */ 221 asoc->c.peer_vtag = 0; 222 asoc->c.my_ttag = 0; 223 asoc->c.peer_ttag = 0; 224 asoc->c.my_port = ep->base.bind_addr.port; 225 226 asoc->c.initial_tsn = sctp_generate_tsn(ep); 227 228 asoc->next_tsn = asoc->c.initial_tsn; 229 230 asoc->ctsn_ack_point = asoc->next_tsn - 1; 231 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 232 asoc->highest_sacked = asoc->ctsn_ack_point; 233 asoc->last_cwr_tsn = asoc->ctsn_ack_point; 234 asoc->unack_data = 0; 235 236 /* ADDIP Section 4.1 Asconf Chunk Procedures 237 * 238 * When an endpoint has an ASCONF signaled change to be sent to the 239 * remote endpoint it should do the following: 240 * ... 241 * A2) a serial number should be assigned to the chunk. The serial 242 * number SHOULD be a monotonically increasing number. The serial 243 * numbers SHOULD be initialized at the start of the 244 * association to the same value as the initial TSN. 245 */ 246 asoc->addip_serial = asoc->c.initial_tsn; 247 248 INIT_LIST_HEAD(&asoc->addip_chunk_list); 249 INIT_LIST_HEAD(&asoc->asconf_ack_list); 250 251 /* Make an empty list of remote transport addresses. */ 252 INIT_LIST_HEAD(&asoc->peer.transport_addr_list); 253 asoc->peer.transport_count = 0; 254 255 /* RFC 2960 5.1 Normal Establishment of an Association 256 * 257 * After the reception of the first data chunk in an 258 * association the endpoint must immediately respond with a 259 * sack to acknowledge the data chunk. Subsequent 260 * acknowledgements should be done as described in Section 261 * 6.2. 262 * 263 * [We implement this by telling a new association that it 264 * already received one packet.] 265 */ 266 asoc->peer.sack_needed = 1; 267 asoc->peer.sack_cnt = 0; 268 269 /* Assume that the peer will tell us if he recognizes ASCONF 270 * as part of INIT exchange. 271 * The sctp_addip_noauth option is there for backward compatibilty 272 * and will revert old behavior. 273 */ 274 asoc->peer.asconf_capable = 0; 275 if (sctp_addip_noauth) 276 asoc->peer.asconf_capable = 1; 277 278 /* Create an input queue. */ 279 sctp_inq_init(&asoc->base.inqueue); 280 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); 281 282 /* Create an output queue. */ 283 sctp_outq_init(asoc, &asoc->outqueue); 284 285 if (!sctp_ulpq_init(&asoc->ulpq, asoc)) 286 goto fail_init; 287 288 memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap)); 289 290 asoc->need_ecne = 0; 291 292 asoc->assoc_id = 0; 293 294 /* Assume that peer would support both address types unless we are 295 * told otherwise. 296 */ 297 asoc->peer.ipv4_address = 1; 298 if (asoc->base.sk->sk_family == PF_INET6) 299 asoc->peer.ipv6_address = 1; 300 INIT_LIST_HEAD(&asoc->asocs); 301 302 asoc->autoclose = sp->autoclose; 303 304 asoc->default_stream = sp->default_stream; 305 asoc->default_ppid = sp->default_ppid; 306 asoc->default_flags = sp->default_flags; 307 asoc->default_context = sp->default_context; 308 asoc->default_timetolive = sp->default_timetolive; 309 asoc->default_rcv_context = sp->default_rcv_context; 310 311 /* AUTH related initializations */ 312 INIT_LIST_HEAD(&asoc->endpoint_shared_keys); 313 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); 314 if (err) 315 goto fail_init; 316 317 asoc->active_key_id = ep->active_key_id; 318 asoc->asoc_shared_key = NULL; 319 320 asoc->default_hmac_id = 0; 321 /* Save the hmacs and chunks list into this association */ 322 if (ep->auth_hmacs_list) 323 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, 324 ntohs(ep->auth_hmacs_list->param_hdr.length)); 325 if (ep->auth_chunk_list) 326 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, 327 ntohs(ep->auth_chunk_list->param_hdr.length)); 328 329 /* Get the AUTH random number for this association */ 330 p = (sctp_paramhdr_t *)asoc->c.auth_random; 331 p->type = SCTP_PARAM_RANDOM; 332 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); 333 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); 334 335 return asoc; 336 337fail_init: 338 sctp_endpoint_put(asoc->ep); 339 sock_put(asoc->base.sk); 340 return NULL; 341} 342 343/* Allocate and initialize a new association */ 344struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, 345 const struct sock *sk, 346 sctp_scope_t scope, 347 gfp_t gfp) 348{ 349 struct sctp_association *asoc; 350 351 asoc = t_new(struct sctp_association, gfp); 352 if (!asoc) 353 goto fail; 354 355 if (!sctp_association_init(asoc, ep, sk, scope, gfp)) 356 goto fail_init; 357 358 asoc->base.malloced = 1; 359 SCTP_DBG_OBJCNT_INC(assoc); 360 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc); 361 362 return asoc; 363 364fail_init: 365 kfree(asoc); 366fail: 367 return NULL; 368} 369 370/* Free this association if possible. There may still be users, so 371 * the actual deallocation may be delayed. 372 */ 373void sctp_association_free(struct sctp_association *asoc) 374{ 375 struct sock *sk = asoc->base.sk; 376 struct sctp_transport *transport; 377 struct list_head *pos, *temp; 378 int i; 379 380 /* Only real associations count against the endpoint, so 381 * don't bother for if this is a temporary association. 382 */ 383 if (!asoc->temp) { 384 list_del(&asoc->asocs); 385 386 /* Decrement the backlog value for a TCP-style listening 387 * socket. 388 */ 389 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 390 sk->sk_ack_backlog--; 391 } 392 393 /* Mark as dead, so other users can know this structure is 394 * going away. 395 */ 396 asoc->base.dead = 1; 397 398 /* Dispose of any data lying around in the outqueue. */ 399 sctp_outq_free(&asoc->outqueue); 400 401 /* Dispose of any pending messages for the upper layer. */ 402 sctp_ulpq_free(&asoc->ulpq); 403 404 /* Dispose of any pending chunks on the inqueue. */ 405 sctp_inq_free(&asoc->base.inqueue); 406 407 sctp_tsnmap_free(&asoc->peer.tsn_map); 408 409 /* Free ssnmap storage. */ 410 sctp_ssnmap_free(asoc->ssnmap); 411 412 /* Clean up the bound address list. */ 413 sctp_bind_addr_free(&asoc->base.bind_addr); 414 415 /* Do we need to go through all of our timers and 416 * delete them? To be safe we will try to delete all, but we 417 * should be able to go through and make a guess based 418 * on our state. 419 */ 420 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { 421 if (timer_pending(&asoc->timers[i]) && 422 del_timer(&asoc->timers[i])) 423 sctp_association_put(asoc); 424 } 425 426 /* Free peer's cached cookie. */ 427 kfree(asoc->peer.cookie); 428 kfree(asoc->peer.peer_random); 429 kfree(asoc->peer.peer_chunks); 430 kfree(asoc->peer.peer_hmacs); 431 432 /* Release the transport structures. */ 433 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 434 transport = list_entry(pos, struct sctp_transport, transports); 435 list_del(pos); 436 sctp_transport_free(transport); 437 } 438 439 asoc->peer.transport_count = 0; 440 441 /* Free any cached ASCONF_ACK chunk. */ 442 sctp_assoc_free_asconf_acks(asoc); 443 444 /* Free any cached ASCONF chunk. */ 445 if (asoc->addip_last_asconf) 446 sctp_chunk_free(asoc->addip_last_asconf); 447 448 /* AUTH - Free the endpoint shared keys */ 449 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); 450 451 /* AUTH - Free the association shared key */ 452 sctp_auth_key_put(asoc->asoc_shared_key); 453 454 sctp_association_put(asoc); 455} 456 457/* Cleanup and free up an association. */ 458static void sctp_association_destroy(struct sctp_association *asoc) 459{ 460 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return); 461 462 sctp_endpoint_put(asoc->ep); 463 sock_put(asoc->base.sk); 464 465 if (asoc->assoc_id != 0) { 466 spin_lock_bh(&sctp_assocs_id_lock); 467 idr_remove(&sctp_assocs_id, asoc->assoc_id); 468 spin_unlock_bh(&sctp_assocs_id_lock); 469 } 470 471 WARN_ON(atomic_read(&asoc->rmem_alloc)); 472 473 if (asoc->base.malloced) { 474 kfree(asoc); 475 SCTP_DBG_OBJCNT_DEC(assoc); 476 } 477} 478 479/* Change the primary destination address for the peer. */ 480void sctp_assoc_set_primary(struct sctp_association *asoc, 481 struct sctp_transport *transport) 482{ 483 int changeover = 0; 484 485 /* it's a changeover only if we already have a primary path 486 * that we are changing 487 */ 488 if (asoc->peer.primary_path != NULL && 489 asoc->peer.primary_path != transport) 490 changeover = 1 ; 491 492 asoc->peer.primary_path = transport; 493 494 /* Set a default msg_name for events. */ 495 memcpy(&asoc->peer.primary_addr, &transport->ipaddr, 496 sizeof(union sctp_addr)); 497 498 /* If the primary path is changing, assume that the 499 * user wants to use this new path. 500 */ 501 if ((transport->state == SCTP_ACTIVE) || 502 (transport->state == SCTP_UNKNOWN)) 503 asoc->peer.active_path = transport; 504 505 /* 506 * SFR-CACC algorithm: 507 * Upon the receipt of a request to change the primary 508 * destination address, on the data structure for the new 509 * primary destination, the sender MUST do the following: 510 * 511 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch 512 * to this destination address earlier. The sender MUST set 513 * CYCLING_CHANGEOVER to indicate that this switch is a 514 * double switch to the same destination address. 515 */ 516 if (transport->cacc.changeover_active) 517 transport->cacc.cycling_changeover = changeover; 518 519 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that 520 * a changeover has occurred. 521 */ 522 transport->cacc.changeover_active = changeover; 523 524 /* 3) The sender MUST store the next TSN to be sent in 525 * next_tsn_at_change. 526 */ 527 transport->cacc.next_tsn_at_change = asoc->next_tsn; 528} 529 530/* Remove a transport from an association. */ 531void sctp_assoc_rm_peer(struct sctp_association *asoc, 532 struct sctp_transport *peer) 533{ 534 struct list_head *pos; 535 struct sctp_transport *transport; 536 537 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ", 538 " port: %d\n", 539 asoc, 540 (&peer->ipaddr), 541 ntohs(peer->ipaddr.v4.sin_port)); 542 543 /* If we are to remove the current retran_path, update it 544 * to the next peer before removing this peer from the list. 545 */ 546 if (asoc->peer.retran_path == peer) 547 sctp_assoc_update_retran_path(asoc); 548 549 /* Remove this peer from the list. */ 550 list_del(&peer->transports); 551 552 /* Get the first transport of asoc. */ 553 pos = asoc->peer.transport_addr_list.next; 554 transport = list_entry(pos, struct sctp_transport, transports); 555 556 /* Update any entries that match the peer to be deleted. */ 557 if (asoc->peer.primary_path == peer) 558 sctp_assoc_set_primary(asoc, transport); 559 if (asoc->peer.active_path == peer) 560 asoc->peer.active_path = transport; 561 if (asoc->peer.last_data_from == peer) 562 asoc->peer.last_data_from = transport; 563 564 /* If we remove the transport an INIT was last sent to, set it to 565 * NULL. Combined with the update of the retran path above, this 566 * will cause the next INIT to be sent to the next available 567 * transport, maintaining the cycle. 568 */ 569 if (asoc->init_last_sent_to == peer) 570 asoc->init_last_sent_to = NULL; 571 572 /* If we remove the transport an SHUTDOWN was last sent to, set it 573 * to NULL. Combined with the update of the retran path above, this 574 * will cause the next SHUTDOWN to be sent to the next available 575 * transport, maintaining the cycle. 576 */ 577 if (asoc->shutdown_last_sent_to == peer) 578 asoc->shutdown_last_sent_to = NULL; 579 580 /* If we remove the transport an ASCONF was last sent to, set it to 581 * NULL. 582 */ 583 if (asoc->addip_last_asconf && 584 asoc->addip_last_asconf->transport == peer) 585 asoc->addip_last_asconf->transport = NULL; 586 587 /* If we have something on the transmitted list, we have to 588 * save it off. The best place is the active path. 589 */ 590 if (!list_empty(&peer->transmitted)) { 591 struct sctp_transport *active = asoc->peer.active_path; 592 struct sctp_chunk *ch; 593 594 /* Reset the transport of each chunk on this list */ 595 list_for_each_entry(ch, &peer->transmitted, 596 transmitted_list) { 597 ch->transport = NULL; 598 ch->rtt_in_progress = 0; 599 } 600 601 list_splice_tail_init(&peer->transmitted, 602 &active->transmitted); 603 604 /* Start a T3 timer here in case it wasn't running so 605 * that these migrated packets have a chance to get 606 * retrnasmitted. 607 */ 608 if (!timer_pending(&active->T3_rtx_timer)) 609 if (!mod_timer(&active->T3_rtx_timer, 610 jiffies + active->rto)) 611 sctp_transport_hold(active); 612 } 613 614 asoc->peer.transport_count--; 615 616 sctp_transport_free(peer); 617} 618 619/* Add a transport address to an association. */ 620struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, 621 const union sctp_addr *addr, 622 const gfp_t gfp, 623 const int peer_state) 624{ 625 struct sctp_transport *peer; 626 struct sctp_sock *sp; 627 unsigned short port; 628 629 sp = sctp_sk(asoc->base.sk); 630 631 /* AF_INET and AF_INET6 share common port field. */ 632 port = ntohs(addr->v4.sin_port); 633 634 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ", 635 " port: %d state:%d\n", 636 asoc, 637 addr, 638 port, 639 peer_state); 640 641 /* Set the port if it has not been set yet. */ 642 if (0 == asoc->peer.port) 643 asoc->peer.port = port; 644 645 /* Check to see if this is a duplicate. */ 646 peer = sctp_assoc_lookup_paddr(asoc, addr); 647 if (peer) { 648 /* An UNKNOWN state is only set on transports added by 649 * user in sctp_connectx() call. Such transports should be 650 * considered CONFIRMED per RFC 4960, Section 5.4. 651 */ 652 if (peer->state == SCTP_UNKNOWN) { 653 peer->state = SCTP_ACTIVE; 654 } 655 return peer; 656 } 657 658 peer = sctp_transport_new(addr, gfp); 659 if (!peer) 660 return NULL; 661 662 sctp_transport_set_owner(peer, asoc); 663 664 /* Initialize the peer's heartbeat interval based on the 665 * association configured value. 666 */ 667 peer->hbinterval = asoc->hbinterval; 668 669 /* Set the path max_retrans. */ 670 peer->pathmaxrxt = asoc->pathmaxrxt; 671 672 /* Initialize the peer's SACK delay timeout based on the 673 * association configured value. 674 */ 675 peer->sackdelay = asoc->sackdelay; 676 peer->sackfreq = asoc->sackfreq; 677 678 /* Enable/disable heartbeat, SACK delay, and path MTU discovery 679 * based on association setting. 680 */ 681 peer->param_flags = asoc->param_flags; 682 683 sctp_transport_route(peer, NULL, sp); 684 685 /* Initialize the pmtu of the transport. */ 686 if (peer->param_flags & SPP_PMTUD_DISABLE) { 687 if (asoc->pathmtu) 688 peer->pathmtu = asoc->pathmtu; 689 else 690 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; 691 } 692 693 /* If this is the first transport addr on this association, 694 * initialize the association PMTU to the peer's PMTU. 695 * If not and the current association PMTU is higher than the new 696 * peer's PMTU, reset the association PMTU to the new peer's PMTU. 697 */ 698 if (asoc->pathmtu) 699 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); 700 else 701 asoc->pathmtu = peer->pathmtu; 702 703 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to " 704 "%d\n", asoc, asoc->pathmtu); 705 peer->pmtu_pending = 0; 706 707 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); 708 709 /* The asoc->peer.port might not be meaningful yet, but 710 * initialize the packet structure anyway. 711 */ 712 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, 713 asoc->peer.port); 714 715 /* 7.2.1 Slow-Start 716 * 717 * o The initial cwnd before DATA transmission or after a sufficiently 718 * long idle period MUST be set to 719 * min(4*MTU, max(2*MTU, 4380 bytes)) 720 * 721 * o The initial value of ssthresh MAY be arbitrarily high 722 * (for example, implementations MAY use the size of the 723 * receiver advertised window). 724 */ 725 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); 726 727 /* At this point, we may not have the receiver's advertised window, 728 * so initialize ssthresh to the default value and it will be set 729 * later when we process the INIT. 730 */ 731 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; 732 733 peer->partial_bytes_acked = 0; 734 peer->flight_size = 0; 735 736 /* Set the transport's RTO.initial value */ 737 peer->rto = asoc->rto_initial; 738 739 /* Set the peer's active state. */ 740 peer->state = peer_state; 741 742 /* Attach the remote transport to our asoc. */ 743 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list); 744 asoc->peer.transport_count++; 745 746 /* If we do not yet have a primary path, set one. */ 747 if (!asoc->peer.primary_path) { 748 sctp_assoc_set_primary(asoc, peer); 749 asoc->peer.retran_path = peer; 750 } 751 752 if (asoc->peer.active_path == asoc->peer.retran_path) { 753 asoc->peer.retran_path = peer; 754 } 755 756 return peer; 757} 758 759/* Delete a transport address from an association. */ 760void sctp_assoc_del_peer(struct sctp_association *asoc, 761 const union sctp_addr *addr) 762{ 763 struct list_head *pos; 764 struct list_head *temp; 765 struct sctp_transport *transport; 766 767 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 768 transport = list_entry(pos, struct sctp_transport, transports); 769 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { 770 /* Do book keeping for removing the peer and free it. */ 771 sctp_assoc_rm_peer(asoc, transport); 772 break; 773 } 774 } 775} 776 777/* Lookup a transport by address. */ 778struct sctp_transport *sctp_assoc_lookup_paddr( 779 const struct sctp_association *asoc, 780 const union sctp_addr *address) 781{ 782 struct sctp_transport *t; 783 784 /* Cycle through all transports searching for a peer address. */ 785 786 list_for_each_entry(t, &asoc->peer.transport_addr_list, 787 transports) { 788 if (sctp_cmp_addr_exact(address, &t->ipaddr)) 789 return t; 790 } 791 792 return NULL; 793} 794 795/* Remove all transports except a give one */ 796void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, 797 struct sctp_transport *primary) 798{ 799 struct sctp_transport *temp; 800 struct sctp_transport *t; 801 802 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, 803 transports) { 804 /* if the current transport is not the primary one, delete it */ 805 if (t != primary) 806 sctp_assoc_rm_peer(asoc, t); 807 } 808 809 return; 810} 811 812/* Engage in transport control operations. 813 * Mark the transport up or down and send a notification to the user. 814 * Select and update the new active and retran paths. 815 */ 816void sctp_assoc_control_transport(struct sctp_association *asoc, 817 struct sctp_transport *transport, 818 sctp_transport_cmd_t command, 819 sctp_sn_error_t error) 820{ 821 struct sctp_transport *t = NULL; 822 struct sctp_transport *first; 823 struct sctp_transport *second; 824 struct sctp_ulpevent *event; 825 struct sockaddr_storage addr; 826 int spc_state = 0; 827 828 /* Record the transition on the transport. */ 829 switch (command) { 830 case SCTP_TRANSPORT_UP: 831 /* If we are moving from UNCONFIRMED state due 832 * to heartbeat success, report the SCTP_ADDR_CONFIRMED 833 * state to the user, otherwise report SCTP_ADDR_AVAILABLE. 834 */ 835 if (SCTP_UNCONFIRMED == transport->state && 836 SCTP_HEARTBEAT_SUCCESS == error) 837 spc_state = SCTP_ADDR_CONFIRMED; 838 else 839 spc_state = SCTP_ADDR_AVAILABLE; 840 transport->state = SCTP_ACTIVE; 841 break; 842 843 case SCTP_TRANSPORT_DOWN: 844 /* If the transport was never confirmed, do not transition it 845 * to inactive state. Also, release the cached route since 846 * there may be a better route next time. 847 */ 848 if (transport->state != SCTP_UNCONFIRMED) 849 transport->state = SCTP_INACTIVE; 850 else { 851 dst_release(transport->dst); 852 transport->dst = NULL; 853 } 854 855 spc_state = SCTP_ADDR_UNREACHABLE; 856 break; 857 858 default: 859 return; 860 } 861 862 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the 863 * user. 864 */ 865 memset(&addr, 0, sizeof(struct sockaddr_storage)); 866 memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len); 867 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, 868 0, spc_state, error, GFP_ATOMIC); 869 if (event) 870 sctp_ulpq_tail_event(&asoc->ulpq, event); 871 872 /* Select new active and retran paths. */ 873 874 /* Look for the two most recently used active transports. 875 * 876 * This code produces the wrong ordering whenever jiffies 877 * rolls over, but we still get usable transports, so we don't 878 * worry about it. 879 */ 880 first = NULL; second = NULL; 881 882 list_for_each_entry(t, &asoc->peer.transport_addr_list, 883 transports) { 884 885 if ((t->state == SCTP_INACTIVE) || 886 (t->state == SCTP_UNCONFIRMED)) 887 continue; 888 if (!first || t->last_time_heard > first->last_time_heard) { 889 second = first; 890 first = t; 891 } 892 if (!second || t->last_time_heard > second->last_time_heard) 893 second = t; 894 } 895 896 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints 897 * 898 * By default, an endpoint should always transmit to the 899 * primary path, unless the SCTP user explicitly specifies the 900 * destination transport address (and possibly source 901 * transport address) to use. 902 * 903 * [If the primary is active but not most recent, bump the most 904 * recently used transport.] 905 */ 906 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) || 907 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) && 908 first != asoc->peer.primary_path) { 909 second = first; 910 first = asoc->peer.primary_path; 911 } 912 913 /* If we failed to find a usable transport, just camp on the 914 * primary, even if it is inactive. 915 */ 916 if (!first) { 917 first = asoc->peer.primary_path; 918 second = asoc->peer.primary_path; 919 } 920 921 /* Set the active and retran transports. */ 922 asoc->peer.active_path = first; 923 asoc->peer.retran_path = second; 924} 925 926/* Hold a reference to an association. */ 927void sctp_association_hold(struct sctp_association *asoc) 928{ 929 atomic_inc(&asoc->base.refcnt); 930} 931 932/* Release a reference to an association and cleanup 933 * if there are no more references. 934 */ 935void sctp_association_put(struct sctp_association *asoc) 936{ 937 if (atomic_dec_and_test(&asoc->base.refcnt)) 938 sctp_association_destroy(asoc); 939} 940 941/* Allocate the next TSN, Transmission Sequence Number, for the given 942 * association. 943 */ 944__u32 sctp_association_get_next_tsn(struct sctp_association *asoc) 945{ 946 /* From Section 1.6 Serial Number Arithmetic: 947 * Transmission Sequence Numbers wrap around when they reach 948 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use 949 * after transmitting TSN = 2*32 - 1 is TSN = 0. 950 */ 951 __u32 retval = asoc->next_tsn; 952 asoc->next_tsn++; 953 asoc->unack_data++; 954 955 return retval; 956} 957 958/* Compare two addresses to see if they match. Wildcard addresses 959 * only match themselves. 960 */ 961int sctp_cmp_addr_exact(const union sctp_addr *ss1, 962 const union sctp_addr *ss2) 963{ 964 struct sctp_af *af; 965 966 af = sctp_get_af_specific(ss1->sa.sa_family); 967 if (unlikely(!af)) 968 return 0; 969 970 return af->cmp_addr(ss1, ss2); 971} 972 973/* Return an ecne chunk to get prepended to a packet. 974 * Note: We are sly and return a shared, prealloced chunk. FIXME: 975 * No we don't, but we could/should. 976 */ 977struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) 978{ 979 struct sctp_chunk *chunk; 980 981 /* Send ECNE if needed. 982 * Not being able to allocate a chunk here is not deadly. 983 */ 984 if (asoc->need_ecne) 985 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn); 986 else 987 chunk = NULL; 988 989 return chunk; 990} 991 992/* 993 * Find which transport this TSN was sent on. 994 */ 995struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, 996 __u32 tsn) 997{ 998 struct sctp_transport *active; 999 struct sctp_transport *match; 1000 struct sctp_transport *transport; 1001 struct sctp_chunk *chunk; 1002 __be32 key = htonl(tsn); 1003 1004 match = NULL; 1005 1006 /* 1007 * FIXME: In general, find a more efficient data structure for 1008 * searching. 1009 */ 1010 1011 /* 1012 * The general strategy is to search each transport's transmitted 1013 * list. Return which transport this TSN lives on. 1014 * 1015 * Let's be hopeful and check the active_path first. 1016 * Another optimization would be to know if there is only one 1017 * outbound path and not have to look for the TSN at all. 1018 * 1019 */ 1020 1021 active = asoc->peer.active_path; 1022 1023 list_for_each_entry(chunk, &active->transmitted, 1024 transmitted_list) { 1025 1026 if (key == chunk->subh.data_hdr->tsn) { 1027 match = active; 1028 goto out; 1029 } 1030 } 1031 1032 /* If not found, go search all the other transports. */ 1033 list_for_each_entry(transport, &asoc->peer.transport_addr_list, 1034 transports) { 1035 1036 if (transport == active) 1037 break; 1038 list_for_each_entry(chunk, &transport->transmitted, 1039 transmitted_list) { 1040 if (key == chunk->subh.data_hdr->tsn) { 1041 match = transport; 1042 goto out; 1043 } 1044 } 1045 } 1046out: 1047 return match; 1048} 1049 1050/* Is this the association we are looking for? */ 1051struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, 1052 const union sctp_addr *laddr, 1053 const union sctp_addr *paddr) 1054{ 1055 struct sctp_transport *transport; 1056 1057 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && 1058 (htons(asoc->peer.port) == paddr->v4.sin_port)) { 1059 transport = sctp_assoc_lookup_paddr(asoc, paddr); 1060 if (!transport) 1061 goto out; 1062 1063 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1064 sctp_sk(asoc->base.sk))) 1065 goto out; 1066 } 1067 transport = NULL; 1068 1069out: 1070 return transport; 1071} 1072 1073/* Do delayed input processing. This is scheduled by sctp_rcv(). */ 1074static void sctp_assoc_bh_rcv(struct work_struct *work) 1075{ 1076 struct sctp_association *asoc = 1077 container_of(work, struct sctp_association, 1078 base.inqueue.immediate); 1079 struct sctp_endpoint *ep; 1080 struct sctp_chunk *chunk; 1081 struct sock *sk; 1082 struct sctp_inq *inqueue; 1083 int state; 1084 sctp_subtype_t subtype; 1085 int error = 0; 1086 1087 /* The association should be held so we should be safe. */ 1088 ep = asoc->ep; 1089 sk = asoc->base.sk; 1090 1091 inqueue = &asoc->base.inqueue; 1092 sctp_association_hold(asoc); 1093 while (NULL != (chunk = sctp_inq_pop(inqueue))) { 1094 state = asoc->state; 1095 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); 1096 1097 /* SCTP-AUTH, Section 6.3: 1098 * The receiver has a list of chunk types which it expects 1099 * to be received only after an AUTH-chunk. This list has 1100 * been sent to the peer during the association setup. It 1101 * MUST silently discard these chunks if they are not placed 1102 * after an AUTH chunk in the packet. 1103 */ 1104 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) 1105 continue; 1106 1107 /* Remember where the last DATA chunk came from so we 1108 * know where to send the SACK. 1109 */ 1110 if (sctp_chunk_is_data(chunk)) 1111 asoc->peer.last_data_from = chunk->transport; 1112 else 1113 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS); 1114 1115 if (chunk->transport) 1116 chunk->transport->last_time_heard = jiffies; 1117 1118 /* Run through the state machine. */ 1119 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype, 1120 state, ep, asoc, chunk, GFP_ATOMIC); 1121 1122 /* Check to see if the association is freed in response to 1123 * the incoming chunk. If so, get out of the while loop. 1124 */ 1125 if (asoc->base.dead) 1126 break; 1127 1128 /* If there is an error on chunk, discard this packet. */ 1129 if (error && chunk) 1130 chunk->pdiscard = 1; 1131 } 1132 sctp_association_put(asoc); 1133} 1134 1135/* This routine moves an association from its old sk to a new sk. */ 1136void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) 1137{ 1138 struct sctp_sock *newsp = sctp_sk(newsk); 1139 struct sock *oldsk = assoc->base.sk; 1140 1141 /* Delete the association from the old endpoint's list of 1142 * associations. 1143 */ 1144 list_del_init(&assoc->asocs); 1145 1146 /* Decrement the backlog value for a TCP-style socket. */ 1147 if (sctp_style(oldsk, TCP)) 1148 oldsk->sk_ack_backlog--; 1149 1150 /* Release references to the old endpoint and the sock. */ 1151 sctp_endpoint_put(assoc->ep); 1152 sock_put(assoc->base.sk); 1153 1154 /* Get a reference to the new endpoint. */ 1155 assoc->ep = newsp->ep; 1156 sctp_endpoint_hold(assoc->ep); 1157 1158 /* Get a reference to the new sock. */ 1159 assoc->base.sk = newsk; 1160 sock_hold(assoc->base.sk); 1161 1162 /* Add the association to the new endpoint's list of associations. */ 1163 sctp_endpoint_add_asoc(newsp->ep, assoc); 1164} 1165 1166/* Update an association (possibly from unexpected COOKIE-ECHO processing). */ 1167void sctp_assoc_update(struct sctp_association *asoc, 1168 struct sctp_association *new) 1169{ 1170 struct sctp_transport *trans; 1171 struct list_head *pos, *temp; 1172 1173 /* Copy in new parameters of peer. */ 1174 asoc->c = new->c; 1175 asoc->peer.rwnd = new->peer.rwnd; 1176 asoc->peer.sack_needed = new->peer.sack_needed; 1177 asoc->peer.i = new->peer.i; 1178 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, 1179 asoc->peer.i.initial_tsn, GFP_ATOMIC); 1180 1181 /* Remove any peer addresses not present in the new association. */ 1182 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { 1183 trans = list_entry(pos, struct sctp_transport, transports); 1184 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) 1185 sctp_assoc_del_peer(asoc, &trans->ipaddr); 1186 1187 if (asoc->state >= SCTP_STATE_ESTABLISHED) 1188 sctp_transport_reset(trans); 1189 } 1190 1191 /* If the case is A (association restart), use 1192 * initial_tsn as next_tsn. If the case is B, use 1193 * current next_tsn in case data sent to peer 1194 * has been discarded and needs retransmission. 1195 */ 1196 if (asoc->state >= SCTP_STATE_ESTABLISHED) { 1197 asoc->next_tsn = new->next_tsn; 1198 asoc->ctsn_ack_point = new->ctsn_ack_point; 1199 asoc->adv_peer_ack_point = new->adv_peer_ack_point; 1200 1201 /* Reinitialize SSN for both local streams 1202 * and peer's streams. 1203 */ 1204 sctp_ssnmap_clear(asoc->ssnmap); 1205 1206 /* Flush the ULP reassembly and ordered queue. 1207 * Any data there will now be stale and will 1208 * cause problems. 1209 */ 1210 sctp_ulpq_flush(&asoc->ulpq); 1211 1212 /* reset the overall association error count so 1213 * that the restarted association doesn't get torn 1214 * down on the next retransmission timer. 1215 */ 1216 asoc->overall_error_count = 0; 1217 1218 } else { 1219 /* Add any peer addresses from the new association. */ 1220 list_for_each_entry(trans, &new->peer.transport_addr_list, 1221 transports) { 1222 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) 1223 sctp_assoc_add_peer(asoc, &trans->ipaddr, 1224 GFP_ATOMIC, trans->state); 1225 } 1226 1227 asoc->ctsn_ack_point = asoc->next_tsn - 1; 1228 asoc->adv_peer_ack_point = asoc->ctsn_ack_point; 1229 if (!asoc->ssnmap) { 1230 /* Move the ssnmap. */ 1231 asoc->ssnmap = new->ssnmap; 1232 new->ssnmap = NULL; 1233 } 1234 1235 if (!asoc->assoc_id) { 1236 /* get a new association id since we don't have one 1237 * yet. 1238 */ 1239 sctp_assoc_set_id(asoc, GFP_ATOMIC); 1240 } 1241 } 1242 1243 /* SCTP-AUTH: Save the peer parameters from the new assocaitions 1244 * and also move the association shared keys over 1245 */ 1246 kfree(asoc->peer.peer_random); 1247 asoc->peer.peer_random = new->peer.peer_random; 1248 new->peer.peer_random = NULL; 1249 1250 kfree(asoc->peer.peer_chunks); 1251 asoc->peer.peer_chunks = new->peer.peer_chunks; 1252 new->peer.peer_chunks = NULL; 1253 1254 kfree(asoc->peer.peer_hmacs); 1255 asoc->peer.peer_hmacs = new->peer.peer_hmacs; 1256 new->peer.peer_hmacs = NULL; 1257 1258 sctp_auth_key_put(asoc->asoc_shared_key); 1259 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); 1260} 1261 1262/* Update the retran path for sending a retransmitted packet. 1263 * Round-robin through the active transports, else round-robin 1264 * through the inactive transports as this is the next best thing 1265 * we can try. 1266 */ 1267void sctp_assoc_update_retran_path(struct sctp_association *asoc) 1268{ 1269 struct sctp_transport *t, *next; 1270 struct list_head *head = &asoc->peer.transport_addr_list; 1271 struct list_head *pos; 1272 1273 if (asoc->peer.transport_count == 1) 1274 return; 1275 1276 /* Find the next transport in a round-robin fashion. */ 1277 t = asoc->peer.retran_path; 1278 pos = &t->transports; 1279 next = NULL; 1280 1281 while (1) { 1282 /* Skip the head. */ 1283 if (pos->next == head) 1284 pos = head->next; 1285 else 1286 pos = pos->next; 1287 1288 t = list_entry(pos, struct sctp_transport, transports); 1289 1290 /* We have exhausted the list, but didn't find any 1291 * other active transports. If so, use the next 1292 * transport. 1293 */ 1294 if (t == asoc->peer.retran_path) { 1295 t = next; 1296 break; 1297 } 1298 1299 /* Try to find an active transport. */ 1300 1301 if ((t->state == SCTP_ACTIVE) || 1302 (t->state == SCTP_UNKNOWN)) { 1303 break; 1304 } else { 1305 /* Keep track of the next transport in case 1306 * we don't find any active transport. 1307 */ 1308 if (!next) 1309 next = t; 1310 } 1311 } 1312 1313 asoc->peer.retran_path = t; 1314 1315 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association" 1316 " %p addr: ", 1317 " port: %d\n", 1318 asoc, 1319 (&t->ipaddr), 1320 ntohs(t->ipaddr.v4.sin_port)); 1321} 1322 1323/* Choose the transport for sending retransmit packet. */ 1324struct sctp_transport *sctp_assoc_choose_alter_transport( 1325 struct sctp_association *asoc, struct sctp_transport *last_sent_to) 1326{ 1327 /* If this is the first time packet is sent, use the active path, 1328 * else use the retran path. If the last packet was sent over the 1329 * retran path, update the retran path and use it. 1330 */ 1331 if (!last_sent_to) 1332 return asoc->peer.active_path; 1333 else { 1334 if (last_sent_to == asoc->peer.retran_path) 1335 sctp_assoc_update_retran_path(asoc); 1336 return asoc->peer.retran_path; 1337 } 1338} 1339 1340/* Update the association's pmtu and frag_point by going through all the 1341 * transports. This routine is called when a transport's PMTU has changed. 1342 */ 1343void sctp_assoc_sync_pmtu(struct sctp_association *asoc) 1344{ 1345 struct sctp_transport *t; 1346 __u32 pmtu = 0; 1347 1348 if (!asoc) 1349 return; 1350 1351 /* Get the lowest pmtu of all the transports. */ 1352 list_for_each_entry(t, &asoc->peer.transport_addr_list, 1353 transports) { 1354 if (t->pmtu_pending && t->dst) { 1355 sctp_transport_update_pmtu(t, dst_mtu(t->dst)); 1356 t->pmtu_pending = 0; 1357 } 1358 if (!pmtu || (t->pathmtu < pmtu)) 1359 pmtu = t->pathmtu; 1360 } 1361 1362 if (pmtu) { 1363 asoc->pathmtu = pmtu; 1364 asoc->frag_point = sctp_frag_point(asoc, pmtu); 1365 } 1366 1367 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n", 1368 __func__, asoc, asoc->pathmtu, asoc->frag_point); 1369} 1370 1371/* Should we send a SACK to update our peer? */ 1372static inline int sctp_peer_needs_update(struct sctp_association *asoc) 1373{ 1374 switch (asoc->state) { 1375 case SCTP_STATE_ESTABLISHED: 1376 case SCTP_STATE_SHUTDOWN_PENDING: 1377 case SCTP_STATE_SHUTDOWN_RECEIVED: 1378 case SCTP_STATE_SHUTDOWN_SENT: 1379 if ((asoc->rwnd > asoc->a_rwnd) && 1380 ((asoc->rwnd - asoc->a_rwnd) >= 1381 min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu))) 1382 return 1; 1383 break; 1384 default: 1385 break; 1386 } 1387 return 0; 1388} 1389 1390/* Increase asoc's rwnd by len and send any window update SACK if needed. */ 1391void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len) 1392{ 1393 struct sctp_chunk *sack; 1394 struct timer_list *timer; 1395 1396 if (asoc->rwnd_over) { 1397 if (asoc->rwnd_over >= len) { 1398 asoc->rwnd_over -= len; 1399 } else { 1400 asoc->rwnd += (len - asoc->rwnd_over); 1401 asoc->rwnd_over = 0; 1402 } 1403 } else { 1404 asoc->rwnd += len; 1405 } 1406 1407 /* If we had window pressure, start recovering it 1408 * once our rwnd had reached the accumulated pressure 1409 * threshold. The idea is to recover slowly, but up 1410 * to the initial advertised window. 1411 */ 1412 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { 1413 int change = min(asoc->pathmtu, asoc->rwnd_press); 1414 asoc->rwnd += change; 1415 asoc->rwnd_press -= change; 1416 } 1417 1418 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) " 1419 "- %u\n", __func__, asoc, len, asoc->rwnd, 1420 asoc->rwnd_over, asoc->a_rwnd); 1421 1422 /* Send a window update SACK if the rwnd has increased by at least the 1423 * minimum of the association's PMTU and half of the receive buffer. 1424 * The algorithm used is similar to the one described in 1425 * Section 4.2.3.3 of RFC 1122. 1426 */ 1427 if (sctp_peer_needs_update(asoc)) { 1428 asoc->a_rwnd = asoc->rwnd; 1429 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p " 1430 "rwnd: %u a_rwnd: %u\n", __func__, 1431 asoc, asoc->rwnd, asoc->a_rwnd); 1432 sack = sctp_make_sack(asoc); 1433 if (!sack) 1434 return; 1435 1436 asoc->peer.sack_needed = 0; 1437 1438 sctp_outq_tail(&asoc->outqueue, sack); 1439 1440 /* Stop the SACK timer. */ 1441 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; 1442 if (timer_pending(timer) && del_timer(timer)) 1443 sctp_association_put(asoc); 1444 } 1445} 1446 1447/* Decrease asoc's rwnd by len. */ 1448void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len) 1449{ 1450 int rx_count; 1451 int over = 0; 1452 1453 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return); 1454 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return); 1455 1456 if (asoc->ep->rcvbuf_policy) 1457 rx_count = atomic_read(&asoc->rmem_alloc); 1458 else 1459 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); 1460 1461 /* If we've reached or overflowed our receive buffer, announce 1462 * a 0 rwnd if rwnd would still be positive. Store the 1463 * the pottential pressure overflow so that the window can be restored 1464 * back to original value. 1465 */ 1466 if (rx_count >= asoc->base.sk->sk_rcvbuf) 1467 over = 1; 1468 1469 if (asoc->rwnd >= len) { 1470 asoc->rwnd -= len; 1471 if (over) { 1472 asoc->rwnd_press = asoc->rwnd; 1473 asoc->rwnd = 0; 1474 } 1475 } else { 1476 asoc->rwnd_over = len - asoc->rwnd; 1477 asoc->rwnd = 0; 1478 } 1479 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n", 1480 __func__, asoc, len, asoc->rwnd, 1481 asoc->rwnd_over, asoc->rwnd_press); 1482} 1483 1484/* Build the bind address list for the association based on info from the 1485 * local endpoint and the remote peer. 1486 */ 1487int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, 1488 gfp_t gfp) 1489{ 1490 sctp_scope_t scope; 1491 int flags; 1492 1493 /* Use scoping rules to determine the subset of addresses from 1494 * the endpoint. 1495 */ 1496 scope = sctp_scope(&asoc->peer.active_path->ipaddr); 1497 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; 1498 if (asoc->peer.ipv4_address) 1499 flags |= SCTP_ADDR4_PEERSUPP; 1500 if (asoc->peer.ipv6_address) 1501 flags |= SCTP_ADDR6_PEERSUPP; 1502 1503 return sctp_bind_addr_copy(&asoc->base.bind_addr, 1504 &asoc->ep->base.bind_addr, 1505 scope, gfp, flags); 1506} 1507 1508/* Build the association's bind address list from the cookie. */ 1509int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, 1510 struct sctp_cookie *cookie, 1511 gfp_t gfp) 1512{ 1513 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); 1514 int var_size3 = cookie->raw_addr_list_len; 1515 __u8 *raw = (__u8 *)cookie->peer_init + var_size2; 1516 1517 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, 1518 asoc->ep->base.bind_addr.port, gfp); 1519} 1520 1521/* Lookup laddr in the bind address list of an association. */ 1522int sctp_assoc_lookup_laddr(struct sctp_association *asoc, 1523 const union sctp_addr *laddr) 1524{ 1525 int found = 0; 1526 1527 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && 1528 sctp_bind_addr_match(&asoc->base.bind_addr, laddr, 1529 sctp_sk(asoc->base.sk))) 1530 found = 1; 1531 1532 return found; 1533} 1534 1535/* Set an association id for a given association */ 1536int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) 1537{ 1538 int assoc_id; 1539 int error = 0; 1540 1541 /* If the id is already assigned, keep it. */ 1542 if (asoc->assoc_id) 1543 return error; 1544retry: 1545 if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp))) 1546 return -ENOMEM; 1547 1548 spin_lock_bh(&sctp_assocs_id_lock); 1549 error = idr_get_new_above(&sctp_assocs_id, (void *)asoc, 1550 1, &assoc_id); 1551 spin_unlock_bh(&sctp_assocs_id_lock); 1552 if (error == -EAGAIN) 1553 goto retry; 1554 else if (error) 1555 return error; 1556 1557 asoc->assoc_id = (sctp_assoc_t) assoc_id; 1558 return error; 1559} 1560 1561/* Free asconf_ack cache */ 1562static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) 1563{ 1564 struct sctp_chunk *ack; 1565 struct sctp_chunk *tmp; 1566 1567 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1568 transmitted_list) { 1569 list_del_init(&ack->transmitted_list); 1570 sctp_chunk_free(ack); 1571 } 1572} 1573 1574/* Clean up the ASCONF_ACK queue */ 1575void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) 1576{ 1577 struct sctp_chunk *ack; 1578 struct sctp_chunk *tmp; 1579 1580 /* We can remove all the entries from the queue upto 1581 * the "Peer-Sequence-Number". 1582 */ 1583 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, 1584 transmitted_list) { 1585 if (ack->subh.addip_hdr->serial == 1586 htonl(asoc->peer.addip_serial)) 1587 break; 1588 1589 list_del_init(&ack->transmitted_list); 1590 sctp_chunk_free(ack); 1591 } 1592} 1593 1594/* Find the ASCONF_ACK whose serial number matches ASCONF */ 1595struct sctp_chunk *sctp_assoc_lookup_asconf_ack( 1596 const struct sctp_association *asoc, 1597 __be32 serial) 1598{ 1599 struct sctp_chunk *ack; 1600 1601 /* Walk through the list of cached ASCONF-ACKs and find the 1602 * ack chunk whose serial number matches that of the request. 1603 */ 1604 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { 1605 if (ack->subh.addip_hdr->serial == serial) { 1606 sctp_chunk_hold(ack); 1607 return ack; 1608 } 1609 } 1610 1611 return NULL; 1612} 1613