associola.c revision 8da645e101a8c20c6073efda3c7cc74eec01b87f
1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 *                 ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING.  If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 *    http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 *    La Monte H.P. Yarroll <piggy@acm.org>
38 *    Karl Knutson          <karl@athena.chicago.il.us>
39 *    Jon Grimm             <jgrimm@us.ibm.com>
40 *    Xingang Guo           <xingang.guo@intel.com>
41 *    Hui Huang             <hui.huang@nokia.com>
42 *    Sridhar Samudrala	    <sri@us.ibm.com>
43 *    Daisy Chang	    <daisyc@us.ibm.com>
44 *    Ryan Layer	    <rmlayer@us.ibm.com>
45 *    Kevin Gao             <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51#include <linux/types.h>
52#include <linux/fcntl.h>
53#include <linux/poll.h>
54#include <linux/init.h>
55
56#include <linux/slab.h>
57#include <linux/in.h>
58#include <net/ipv6.h>
59#include <net/sctp/sctp.h>
60#include <net/sctp/sm.h>
61
62/* Forward declarations for internal functions. */
63static void sctp_assoc_bh_rcv(struct work_struct *work);
64static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
65
66
67/* 1st Level Abstractions. */
68
69/* Initialize a new association from provided memory. */
70static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
71					  const struct sctp_endpoint *ep,
72					  const struct sock *sk,
73					  sctp_scope_t scope,
74					  gfp_t gfp)
75{
76	struct sctp_sock *sp;
77	int i;
78	sctp_paramhdr_t *p;
79	int err;
80
81	/* Retrieve the SCTP per socket area.  */
82	sp = sctp_sk((struct sock *)sk);
83
84	/* Init all variables to a known value.  */
85	memset(asoc, 0, sizeof(struct sctp_association));
86
87	/* Discarding const is appropriate here.  */
88	asoc->ep = (struct sctp_endpoint *)ep;
89	sctp_endpoint_hold(asoc->ep);
90
91	/* Hold the sock.  */
92	asoc->base.sk = (struct sock *)sk;
93	sock_hold(asoc->base.sk);
94
95	/* Initialize the common base substructure.  */
96	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
97
98	/* Initialize the object handling fields.  */
99	atomic_set(&asoc->base.refcnt, 1);
100	asoc->base.dead = 0;
101	asoc->base.malloced = 0;
102
103	/* Initialize the bind addr area.  */
104	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
105
106	asoc->state = SCTP_STATE_CLOSED;
107
108	/* Set these values from the socket values, a conversion between
109	 * millsecons to seconds/microseconds must also be done.
110	 */
111	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
112	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
113					* 1000;
114	asoc->frag_point = 0;
115	asoc->user_frag = sp->user_frag;
116
117	/* Set the association max_retrans and RTO values from the
118	 * socket values.
119	 */
120	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
121	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
122	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
123	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
124
125	asoc->overall_error_count = 0;
126
127	/* Initialize the association's heartbeat interval based on the
128	 * sock configured value.
129	 */
130	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
131
132	/* Initialize path max retrans value. */
133	asoc->pathmaxrxt = sp->pathmaxrxt;
134
135	/* Initialize default path MTU. */
136	asoc->pathmtu = sp->pathmtu;
137
138	/* Set association default SACK delay */
139	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
140	asoc->sackfreq = sp->sackfreq;
141
142	/* Set the association default flags controlling
143	 * Heartbeat, SACK delay, and Path MTU Discovery.
144	 */
145	asoc->param_flags = sp->param_flags;
146
147	/* Initialize the maximum mumber of new data packets that can be sent
148	 * in a burst.
149	 */
150	asoc->max_burst = sp->max_burst;
151
152	/* initialize association timers */
153	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
154	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
155	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
156	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
157	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
158	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
159
160	/* sctpimpguide Section 2.12.2
161	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
162	 * recommended value of 5 times 'RTO.Max'.
163	 */
164	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
165		= 5 * asoc->rto_max;
166
167	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
168	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
169	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
170		sp->autoclose * HZ;
171
172	/* Initilizes the timers */
173	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
174		setup_timer(&asoc->timers[i], sctp_timer_events[i],
175				(unsigned long)asoc);
176
177	/* Pull default initialization values from the sock options.
178	 * Note: This assumes that the values have already been
179	 * validated in the sock.
180	 */
181	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
182	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
183	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
184
185	asoc->max_init_timeo =
186		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
187
188	/* Allocate storage for the ssnmap after the inbound and outbound
189	 * streams have been negotiated during Init.
190	 */
191	asoc->ssnmap = NULL;
192
193	/* Set the local window size for receive.
194	 * This is also the rcvbuf space per association.
195	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
196	 * 1500 bytes in one SCTP packet.
197	 */
198	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
199		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
200	else
201		asoc->rwnd = sk->sk_rcvbuf/2;
202
203	asoc->a_rwnd = asoc->rwnd;
204
205	asoc->rwnd_over = 0;
206	asoc->rwnd_press = 0;
207
208	/* Use my own max window until I learn something better.  */
209	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
210
211	/* Set the sndbuf size for transmit.  */
212	asoc->sndbuf_used = 0;
213
214	/* Initialize the receive memory counter */
215	atomic_set(&asoc->rmem_alloc, 0);
216
217	init_waitqueue_head(&asoc->wait);
218
219	asoc->c.my_vtag = sctp_generate_tag(ep);
220	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
221	asoc->c.peer_vtag = 0;
222	asoc->c.my_ttag   = 0;
223	asoc->c.peer_ttag = 0;
224	asoc->c.my_port = ep->base.bind_addr.port;
225
226	asoc->c.initial_tsn = sctp_generate_tsn(ep);
227
228	asoc->next_tsn = asoc->c.initial_tsn;
229
230	asoc->ctsn_ack_point = asoc->next_tsn - 1;
231	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
232	asoc->highest_sacked = asoc->ctsn_ack_point;
233	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
234	asoc->unack_data = 0;
235
236	/* ADDIP Section 4.1 Asconf Chunk Procedures
237	 *
238	 * When an endpoint has an ASCONF signaled change to be sent to the
239	 * remote endpoint it should do the following:
240	 * ...
241	 * A2) a serial number should be assigned to the chunk. The serial
242	 * number SHOULD be a monotonically increasing number. The serial
243	 * numbers SHOULD be initialized at the start of the
244	 * association to the same value as the initial TSN.
245	 */
246	asoc->addip_serial = asoc->c.initial_tsn;
247
248	INIT_LIST_HEAD(&asoc->addip_chunk_list);
249	INIT_LIST_HEAD(&asoc->asconf_ack_list);
250
251	/* Make an empty list of remote transport addresses.  */
252	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
253	asoc->peer.transport_count = 0;
254
255	/* RFC 2960 5.1 Normal Establishment of an Association
256	 *
257	 * After the reception of the first data chunk in an
258	 * association the endpoint must immediately respond with a
259	 * sack to acknowledge the data chunk.  Subsequent
260	 * acknowledgements should be done as described in Section
261	 * 6.2.
262	 *
263	 * [We implement this by telling a new association that it
264	 * already received one packet.]
265	 */
266	asoc->peer.sack_needed = 1;
267	asoc->peer.sack_cnt = 0;
268
269	/* Assume that the peer will tell us if he recognizes ASCONF
270	 * as part of INIT exchange.
271	 * The sctp_addip_noauth option is there for backward compatibilty
272	 * and will revert old behavior.
273	 */
274	asoc->peer.asconf_capable = 0;
275	if (sctp_addip_noauth)
276		asoc->peer.asconf_capable = 1;
277
278	/* Create an input queue.  */
279	sctp_inq_init(&asoc->base.inqueue);
280	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
281
282	/* Create an output queue.  */
283	sctp_outq_init(asoc, &asoc->outqueue);
284
285	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
286		goto fail_init;
287
288	memset(&asoc->peer.tsn_map, 0, sizeof(struct sctp_tsnmap));
289
290	asoc->need_ecne = 0;
291
292	asoc->assoc_id = 0;
293
294	/* Assume that peer would support both address types unless we are
295	 * told otherwise.
296	 */
297	asoc->peer.ipv4_address = 1;
298	if (asoc->base.sk->sk_family == PF_INET6)
299		asoc->peer.ipv6_address = 1;
300	INIT_LIST_HEAD(&asoc->asocs);
301
302	asoc->autoclose = sp->autoclose;
303
304	asoc->default_stream = sp->default_stream;
305	asoc->default_ppid = sp->default_ppid;
306	asoc->default_flags = sp->default_flags;
307	asoc->default_context = sp->default_context;
308	asoc->default_timetolive = sp->default_timetolive;
309	asoc->default_rcv_context = sp->default_rcv_context;
310
311	/* AUTH related initializations */
312	INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
313	err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
314	if (err)
315		goto fail_init;
316
317	asoc->active_key_id = ep->active_key_id;
318	asoc->asoc_shared_key = NULL;
319
320	asoc->default_hmac_id = 0;
321	/* Save the hmacs and chunks list into this association */
322	if (ep->auth_hmacs_list)
323		memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
324			ntohs(ep->auth_hmacs_list->param_hdr.length));
325	if (ep->auth_chunk_list)
326		memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
327			ntohs(ep->auth_chunk_list->param_hdr.length));
328
329	/* Get the AUTH random number for this association */
330	p = (sctp_paramhdr_t *)asoc->c.auth_random;
331	p->type = SCTP_PARAM_RANDOM;
332	p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
333	get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
334
335	return asoc;
336
337fail_init:
338	sctp_endpoint_put(asoc->ep);
339	sock_put(asoc->base.sk);
340	return NULL;
341}
342
343/* Allocate and initialize a new association */
344struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
345					 const struct sock *sk,
346					 sctp_scope_t scope,
347					 gfp_t gfp)
348{
349	struct sctp_association *asoc;
350
351	asoc = t_new(struct sctp_association, gfp);
352	if (!asoc)
353		goto fail;
354
355	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
356		goto fail_init;
357
358	asoc->base.malloced = 1;
359	SCTP_DBG_OBJCNT_INC(assoc);
360	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
361
362	return asoc;
363
364fail_init:
365	kfree(asoc);
366fail:
367	return NULL;
368}
369
370/* Free this association if possible.  There may still be users, so
371 * the actual deallocation may be delayed.
372 */
373void sctp_association_free(struct sctp_association *asoc)
374{
375	struct sock *sk = asoc->base.sk;
376	struct sctp_transport *transport;
377	struct list_head *pos, *temp;
378	int i;
379
380	/* Only real associations count against the endpoint, so
381	 * don't bother for if this is a temporary association.
382	 */
383	if (!asoc->temp) {
384		list_del(&asoc->asocs);
385
386		/* Decrement the backlog value for a TCP-style listening
387		 * socket.
388		 */
389		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
390			sk->sk_ack_backlog--;
391	}
392
393	/* Mark as dead, so other users can know this structure is
394	 * going away.
395	 */
396	asoc->base.dead = 1;
397
398	/* Dispose of any data lying around in the outqueue. */
399	sctp_outq_free(&asoc->outqueue);
400
401	/* Dispose of any pending messages for the upper layer. */
402	sctp_ulpq_free(&asoc->ulpq);
403
404	/* Dispose of any pending chunks on the inqueue. */
405	sctp_inq_free(&asoc->base.inqueue);
406
407	sctp_tsnmap_free(&asoc->peer.tsn_map);
408
409	/* Free ssnmap storage. */
410	sctp_ssnmap_free(asoc->ssnmap);
411
412	/* Clean up the bound address list. */
413	sctp_bind_addr_free(&asoc->base.bind_addr);
414
415	/* Do we need to go through all of our timers and
416	 * delete them?   To be safe we will try to delete all, but we
417	 * should be able to go through and make a guess based
418	 * on our state.
419	 */
420	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
421		if (timer_pending(&asoc->timers[i]) &&
422		    del_timer(&asoc->timers[i]))
423			sctp_association_put(asoc);
424	}
425
426	/* Free peer's cached cookie. */
427	kfree(asoc->peer.cookie);
428	kfree(asoc->peer.peer_random);
429	kfree(asoc->peer.peer_chunks);
430	kfree(asoc->peer.peer_hmacs);
431
432	/* Release the transport structures. */
433	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
434		transport = list_entry(pos, struct sctp_transport, transports);
435		list_del(pos);
436		sctp_transport_free(transport);
437	}
438
439	asoc->peer.transport_count = 0;
440
441	/* Free any cached ASCONF_ACK chunk. */
442	sctp_assoc_free_asconf_acks(asoc);
443
444	/* Free any cached ASCONF chunk. */
445	if (asoc->addip_last_asconf)
446		sctp_chunk_free(asoc->addip_last_asconf);
447
448	/* AUTH - Free the endpoint shared keys */
449	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
450
451	/* AUTH - Free the association shared key */
452	sctp_auth_key_put(asoc->asoc_shared_key);
453
454	sctp_association_put(asoc);
455}
456
457/* Cleanup and free up an association. */
458static void sctp_association_destroy(struct sctp_association *asoc)
459{
460	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
461
462	sctp_endpoint_put(asoc->ep);
463	sock_put(asoc->base.sk);
464
465	if (asoc->assoc_id != 0) {
466		spin_lock_bh(&sctp_assocs_id_lock);
467		idr_remove(&sctp_assocs_id, asoc->assoc_id);
468		spin_unlock_bh(&sctp_assocs_id_lock);
469	}
470
471	WARN_ON(atomic_read(&asoc->rmem_alloc));
472
473	if (asoc->base.malloced) {
474		kfree(asoc);
475		SCTP_DBG_OBJCNT_DEC(assoc);
476	}
477}
478
479/* Change the primary destination address for the peer. */
480void sctp_assoc_set_primary(struct sctp_association *asoc,
481			    struct sctp_transport *transport)
482{
483	int changeover = 0;
484
485	/* it's a changeover only if we already have a primary path
486	 * that we are changing
487	 */
488	if (asoc->peer.primary_path != NULL &&
489	    asoc->peer.primary_path != transport)
490		changeover = 1 ;
491
492	asoc->peer.primary_path = transport;
493
494	/* Set a default msg_name for events. */
495	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
496	       sizeof(union sctp_addr));
497
498	/* If the primary path is changing, assume that the
499	 * user wants to use this new path.
500	 */
501	if ((transport->state == SCTP_ACTIVE) ||
502	    (transport->state == SCTP_UNKNOWN))
503		asoc->peer.active_path = transport;
504
505	/*
506	 * SFR-CACC algorithm:
507	 * Upon the receipt of a request to change the primary
508	 * destination address, on the data structure for the new
509	 * primary destination, the sender MUST do the following:
510	 *
511	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
512	 * to this destination address earlier. The sender MUST set
513	 * CYCLING_CHANGEOVER to indicate that this switch is a
514	 * double switch to the same destination address.
515	 */
516	if (transport->cacc.changeover_active)
517		transport->cacc.cycling_changeover = changeover;
518
519	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
520	 * a changeover has occurred.
521	 */
522	transport->cacc.changeover_active = changeover;
523
524	/* 3) The sender MUST store the next TSN to be sent in
525	 * next_tsn_at_change.
526	 */
527	transport->cacc.next_tsn_at_change = asoc->next_tsn;
528}
529
530/* Remove a transport from an association.  */
531void sctp_assoc_rm_peer(struct sctp_association *asoc,
532			struct sctp_transport *peer)
533{
534	struct list_head	*pos;
535	struct sctp_transport	*transport;
536
537	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
538				 " port: %d\n",
539				 asoc,
540				 (&peer->ipaddr),
541				 ntohs(peer->ipaddr.v4.sin_port));
542
543	/* If we are to remove the current retran_path, update it
544	 * to the next peer before removing this peer from the list.
545	 */
546	if (asoc->peer.retran_path == peer)
547		sctp_assoc_update_retran_path(asoc);
548
549	/* Remove this peer from the list. */
550	list_del(&peer->transports);
551
552	/* Get the first transport of asoc. */
553	pos = asoc->peer.transport_addr_list.next;
554	transport = list_entry(pos, struct sctp_transport, transports);
555
556	/* Update any entries that match the peer to be deleted. */
557	if (asoc->peer.primary_path == peer)
558		sctp_assoc_set_primary(asoc, transport);
559	if (asoc->peer.active_path == peer)
560		asoc->peer.active_path = transport;
561	if (asoc->peer.last_data_from == peer)
562		asoc->peer.last_data_from = transport;
563
564	/* If we remove the transport an INIT was last sent to, set it to
565	 * NULL. Combined with the update of the retran path above, this
566	 * will cause the next INIT to be sent to the next available
567	 * transport, maintaining the cycle.
568	 */
569	if (asoc->init_last_sent_to == peer)
570		asoc->init_last_sent_to = NULL;
571
572	/* If we remove the transport an SHUTDOWN was last sent to, set it
573	 * to NULL. Combined with the update of the retran path above, this
574	 * will cause the next SHUTDOWN to be sent to the next available
575	 * transport, maintaining the cycle.
576	 */
577	if (asoc->shutdown_last_sent_to == peer)
578		asoc->shutdown_last_sent_to = NULL;
579
580	/* If we remove the transport an ASCONF was last sent to, set it to
581	 * NULL.
582	 */
583	if (asoc->addip_last_asconf &&
584	    asoc->addip_last_asconf->transport == peer)
585		asoc->addip_last_asconf->transport = NULL;
586
587	/* If we have something on the transmitted list, we have to
588	 * save it off.  The best place is the active path.
589	 */
590	if (!list_empty(&peer->transmitted)) {
591		struct sctp_transport *active = asoc->peer.active_path;
592		struct sctp_chunk *ch;
593
594		/* Reset the transport of each chunk on this list */
595		list_for_each_entry(ch, &peer->transmitted,
596					transmitted_list) {
597			ch->transport = NULL;
598			ch->rtt_in_progress = 0;
599		}
600
601		list_splice_tail_init(&peer->transmitted,
602					&active->transmitted);
603
604		/* Start a T3 timer here in case it wasn't running so
605		 * that these migrated packets have a chance to get
606		 * retrnasmitted.
607		 */
608		if (!timer_pending(&active->T3_rtx_timer))
609			if (!mod_timer(&active->T3_rtx_timer,
610					jiffies + active->rto))
611				sctp_transport_hold(active);
612	}
613
614	asoc->peer.transport_count--;
615
616	sctp_transport_free(peer);
617}
618
619/* Add a transport address to an association.  */
620struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
621					   const union sctp_addr *addr,
622					   const gfp_t gfp,
623					   const int peer_state)
624{
625	struct sctp_transport *peer;
626	struct sctp_sock *sp;
627	unsigned short port;
628
629	sp = sctp_sk(asoc->base.sk);
630
631	/* AF_INET and AF_INET6 share common port field. */
632	port = ntohs(addr->v4.sin_port);
633
634	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
635				 " port: %d state:%d\n",
636				 asoc,
637				 addr,
638				 port,
639				 peer_state);
640
641	/* Set the port if it has not been set yet.  */
642	if (0 == asoc->peer.port)
643		asoc->peer.port = port;
644
645	/* Check to see if this is a duplicate. */
646	peer = sctp_assoc_lookup_paddr(asoc, addr);
647	if (peer) {
648		/* An UNKNOWN state is only set on transports added by
649		 * user in sctp_connectx() call.  Such transports should be
650		 * considered CONFIRMED per RFC 4960, Section 5.4.
651		 */
652		if (peer->state == SCTP_UNKNOWN) {
653			peer->state = SCTP_ACTIVE;
654		}
655		return peer;
656	}
657
658	peer = sctp_transport_new(addr, gfp);
659	if (!peer)
660		return NULL;
661
662	sctp_transport_set_owner(peer, asoc);
663
664	/* Initialize the peer's heartbeat interval based on the
665	 * association configured value.
666	 */
667	peer->hbinterval = asoc->hbinterval;
668
669	/* Set the path max_retrans.  */
670	peer->pathmaxrxt = asoc->pathmaxrxt;
671
672	/* Initialize the peer's SACK delay timeout based on the
673	 * association configured value.
674	 */
675	peer->sackdelay = asoc->sackdelay;
676	peer->sackfreq = asoc->sackfreq;
677
678	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
679	 * based on association setting.
680	 */
681	peer->param_flags = asoc->param_flags;
682
683	sctp_transport_route(peer, NULL, sp);
684
685	/* Initialize the pmtu of the transport. */
686	if (peer->param_flags & SPP_PMTUD_DISABLE) {
687		if (asoc->pathmtu)
688			peer->pathmtu = asoc->pathmtu;
689		else
690			peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
691	}
692
693	/* If this is the first transport addr on this association,
694	 * initialize the association PMTU to the peer's PMTU.
695	 * If not and the current association PMTU is higher than the new
696	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
697	 */
698	if (asoc->pathmtu)
699		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
700	else
701		asoc->pathmtu = peer->pathmtu;
702
703	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
704			  "%d\n", asoc, asoc->pathmtu);
705	peer->pmtu_pending = 0;
706
707	asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
708
709	/* The asoc->peer.port might not be meaningful yet, but
710	 * initialize the packet structure anyway.
711	 */
712	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
713			 asoc->peer.port);
714
715	/* 7.2.1 Slow-Start
716	 *
717	 * o The initial cwnd before DATA transmission or after a sufficiently
718	 *   long idle period MUST be set to
719	 *      min(4*MTU, max(2*MTU, 4380 bytes))
720	 *
721	 * o The initial value of ssthresh MAY be arbitrarily high
722	 *   (for example, implementations MAY use the size of the
723	 *   receiver advertised window).
724	 */
725	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
726
727	/* At this point, we may not have the receiver's advertised window,
728	 * so initialize ssthresh to the default value and it will be set
729	 * later when we process the INIT.
730	 */
731	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
732
733	peer->partial_bytes_acked = 0;
734	peer->flight_size = 0;
735
736	/* Set the transport's RTO.initial value */
737	peer->rto = asoc->rto_initial;
738
739	/* Set the peer's active state. */
740	peer->state = peer_state;
741
742	/* Attach the remote transport to our asoc.  */
743	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
744	asoc->peer.transport_count++;
745
746	/* If we do not yet have a primary path, set one.  */
747	if (!asoc->peer.primary_path) {
748		sctp_assoc_set_primary(asoc, peer);
749		asoc->peer.retran_path = peer;
750	}
751
752	if (asoc->peer.active_path == asoc->peer.retran_path) {
753		asoc->peer.retran_path = peer;
754	}
755
756	return peer;
757}
758
759/* Delete a transport address from an association.  */
760void sctp_assoc_del_peer(struct sctp_association *asoc,
761			 const union sctp_addr *addr)
762{
763	struct list_head	*pos;
764	struct list_head	*temp;
765	struct sctp_transport	*transport;
766
767	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
768		transport = list_entry(pos, struct sctp_transport, transports);
769		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
770			/* Do book keeping for removing the peer and free it. */
771			sctp_assoc_rm_peer(asoc, transport);
772			break;
773		}
774	}
775}
776
777/* Lookup a transport by address. */
778struct sctp_transport *sctp_assoc_lookup_paddr(
779					const struct sctp_association *asoc,
780					const union sctp_addr *address)
781{
782	struct sctp_transport *t;
783
784	/* Cycle through all transports searching for a peer address. */
785
786	list_for_each_entry(t, &asoc->peer.transport_addr_list,
787			transports) {
788		if (sctp_cmp_addr_exact(address, &t->ipaddr))
789			return t;
790	}
791
792	return NULL;
793}
794
795/* Remove all transports except a give one */
796void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
797				     struct sctp_transport *primary)
798{
799	struct sctp_transport	*temp;
800	struct sctp_transport	*t;
801
802	list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
803				 transports) {
804		/* if the current transport is not the primary one, delete it */
805		if (t != primary)
806			sctp_assoc_rm_peer(asoc, t);
807	}
808
809	return;
810}
811
812/* Engage in transport control operations.
813 * Mark the transport up or down and send a notification to the user.
814 * Select and update the new active and retran paths.
815 */
816void sctp_assoc_control_transport(struct sctp_association *asoc,
817				  struct sctp_transport *transport,
818				  sctp_transport_cmd_t command,
819				  sctp_sn_error_t error)
820{
821	struct sctp_transport *t = NULL;
822	struct sctp_transport *first;
823	struct sctp_transport *second;
824	struct sctp_ulpevent *event;
825	struct sockaddr_storage addr;
826	int spc_state = 0;
827
828	/* Record the transition on the transport.  */
829	switch (command) {
830	case SCTP_TRANSPORT_UP:
831		/* If we are moving from UNCONFIRMED state due
832		 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
833		 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
834		 */
835		if (SCTP_UNCONFIRMED == transport->state &&
836		    SCTP_HEARTBEAT_SUCCESS == error)
837			spc_state = SCTP_ADDR_CONFIRMED;
838		else
839			spc_state = SCTP_ADDR_AVAILABLE;
840		transport->state = SCTP_ACTIVE;
841		break;
842
843	case SCTP_TRANSPORT_DOWN:
844		/* If the transport was never confirmed, do not transition it
845		 * to inactive state.  Also, release the cached route since
846		 * there may be a better route next time.
847		 */
848		if (transport->state != SCTP_UNCONFIRMED)
849			transport->state = SCTP_INACTIVE;
850		else {
851			dst_release(transport->dst);
852			transport->dst = NULL;
853		}
854
855		spc_state = SCTP_ADDR_UNREACHABLE;
856		break;
857
858	default:
859		return;
860	}
861
862	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
863	 * user.
864	 */
865	memset(&addr, 0, sizeof(struct sockaddr_storage));
866	memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
867	event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
868				0, spc_state, error, GFP_ATOMIC);
869	if (event)
870		sctp_ulpq_tail_event(&asoc->ulpq, event);
871
872	/* Select new active and retran paths. */
873
874	/* Look for the two most recently used active transports.
875	 *
876	 * This code produces the wrong ordering whenever jiffies
877	 * rolls over, but we still get usable transports, so we don't
878	 * worry about it.
879	 */
880	first = NULL; second = NULL;
881
882	list_for_each_entry(t, &asoc->peer.transport_addr_list,
883			transports) {
884
885		if ((t->state == SCTP_INACTIVE) ||
886		    (t->state == SCTP_UNCONFIRMED))
887			continue;
888		if (!first || t->last_time_heard > first->last_time_heard) {
889			second = first;
890			first = t;
891		}
892		if (!second || t->last_time_heard > second->last_time_heard)
893			second = t;
894	}
895
896	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
897	 *
898	 * By default, an endpoint should always transmit to the
899	 * primary path, unless the SCTP user explicitly specifies the
900	 * destination transport address (and possibly source
901	 * transport address) to use.
902	 *
903	 * [If the primary is active but not most recent, bump the most
904	 * recently used transport.]
905	 */
906	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
907	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
908	    first != asoc->peer.primary_path) {
909		second = first;
910		first = asoc->peer.primary_path;
911	}
912
913	/* If we failed to find a usable transport, just camp on the
914	 * primary, even if it is inactive.
915	 */
916	if (!first) {
917		first = asoc->peer.primary_path;
918		second = asoc->peer.primary_path;
919	}
920
921	/* Set the active and retran transports.  */
922	asoc->peer.active_path = first;
923	asoc->peer.retran_path = second;
924}
925
926/* Hold a reference to an association. */
927void sctp_association_hold(struct sctp_association *asoc)
928{
929	atomic_inc(&asoc->base.refcnt);
930}
931
932/* Release a reference to an association and cleanup
933 * if there are no more references.
934 */
935void sctp_association_put(struct sctp_association *asoc)
936{
937	if (atomic_dec_and_test(&asoc->base.refcnt))
938		sctp_association_destroy(asoc);
939}
940
941/* Allocate the next TSN, Transmission Sequence Number, for the given
942 * association.
943 */
944__u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
945{
946	/* From Section 1.6 Serial Number Arithmetic:
947	 * Transmission Sequence Numbers wrap around when they reach
948	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
949	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
950	 */
951	__u32 retval = asoc->next_tsn;
952	asoc->next_tsn++;
953	asoc->unack_data++;
954
955	return retval;
956}
957
958/* Compare two addresses to see if they match.  Wildcard addresses
959 * only match themselves.
960 */
961int sctp_cmp_addr_exact(const union sctp_addr *ss1,
962			const union sctp_addr *ss2)
963{
964	struct sctp_af *af;
965
966	af = sctp_get_af_specific(ss1->sa.sa_family);
967	if (unlikely(!af))
968		return 0;
969
970	return af->cmp_addr(ss1, ss2);
971}
972
973/* Return an ecne chunk to get prepended to a packet.
974 * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
975 * No we don't, but we could/should.
976 */
977struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
978{
979	struct sctp_chunk *chunk;
980
981	/* Send ECNE if needed.
982	 * Not being able to allocate a chunk here is not deadly.
983	 */
984	if (asoc->need_ecne)
985		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
986	else
987		chunk = NULL;
988
989	return chunk;
990}
991
992/*
993 * Find which transport this TSN was sent on.
994 */
995struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
996					     __u32 tsn)
997{
998	struct sctp_transport *active;
999	struct sctp_transport *match;
1000	struct sctp_transport *transport;
1001	struct sctp_chunk *chunk;
1002	__be32 key = htonl(tsn);
1003
1004	match = NULL;
1005
1006	/*
1007	 * FIXME: In general, find a more efficient data structure for
1008	 * searching.
1009	 */
1010
1011	/*
1012	 * The general strategy is to search each transport's transmitted
1013	 * list.   Return which transport this TSN lives on.
1014	 *
1015	 * Let's be hopeful and check the active_path first.
1016	 * Another optimization would be to know if there is only one
1017	 * outbound path and not have to look for the TSN at all.
1018	 *
1019	 */
1020
1021	active = asoc->peer.active_path;
1022
1023	list_for_each_entry(chunk, &active->transmitted,
1024			transmitted_list) {
1025
1026		if (key == chunk->subh.data_hdr->tsn) {
1027			match = active;
1028			goto out;
1029		}
1030	}
1031
1032	/* If not found, go search all the other transports. */
1033	list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1034			transports) {
1035
1036		if (transport == active)
1037			break;
1038		list_for_each_entry(chunk, &transport->transmitted,
1039				transmitted_list) {
1040			if (key == chunk->subh.data_hdr->tsn) {
1041				match = transport;
1042				goto out;
1043			}
1044		}
1045	}
1046out:
1047	return match;
1048}
1049
1050/* Is this the association we are looking for? */
1051struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1052					   const union sctp_addr *laddr,
1053					   const union sctp_addr *paddr)
1054{
1055	struct sctp_transport *transport;
1056
1057	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1058	    (htons(asoc->peer.port) == paddr->v4.sin_port)) {
1059		transport = sctp_assoc_lookup_paddr(asoc, paddr);
1060		if (!transport)
1061			goto out;
1062
1063		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1064					 sctp_sk(asoc->base.sk)))
1065			goto out;
1066	}
1067	transport = NULL;
1068
1069out:
1070	return transport;
1071}
1072
1073/* Do delayed input processing.  This is scheduled by sctp_rcv(). */
1074static void sctp_assoc_bh_rcv(struct work_struct *work)
1075{
1076	struct sctp_association *asoc =
1077		container_of(work, struct sctp_association,
1078			     base.inqueue.immediate);
1079	struct sctp_endpoint *ep;
1080	struct sctp_chunk *chunk;
1081	struct sock *sk;
1082	struct sctp_inq *inqueue;
1083	int state;
1084	sctp_subtype_t subtype;
1085	int error = 0;
1086
1087	/* The association should be held so we should be safe. */
1088	ep = asoc->ep;
1089	sk = asoc->base.sk;
1090
1091	inqueue = &asoc->base.inqueue;
1092	sctp_association_hold(asoc);
1093	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1094		state = asoc->state;
1095		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1096
1097		/* SCTP-AUTH, Section 6.3:
1098		 *    The receiver has a list of chunk types which it expects
1099		 *    to be received only after an AUTH-chunk.  This list has
1100		 *    been sent to the peer during the association setup.  It
1101		 *    MUST silently discard these chunks if they are not placed
1102		 *    after an AUTH chunk in the packet.
1103		 */
1104		if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1105			continue;
1106
1107		/* Remember where the last DATA chunk came from so we
1108		 * know where to send the SACK.
1109		 */
1110		if (sctp_chunk_is_data(chunk))
1111			asoc->peer.last_data_from = chunk->transport;
1112		else
1113			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
1114
1115		if (chunk->transport)
1116			chunk->transport->last_time_heard = jiffies;
1117
1118		/* Run through the state machine. */
1119		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
1120				   state, ep, asoc, chunk, GFP_ATOMIC);
1121
1122		/* Check to see if the association is freed in response to
1123		 * the incoming chunk.  If so, get out of the while loop.
1124		 */
1125		if (asoc->base.dead)
1126			break;
1127
1128		/* If there is an error on chunk, discard this packet. */
1129		if (error && chunk)
1130			chunk->pdiscard = 1;
1131	}
1132	sctp_association_put(asoc);
1133}
1134
1135/* This routine moves an association from its old sk to a new sk.  */
1136void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1137{
1138	struct sctp_sock *newsp = sctp_sk(newsk);
1139	struct sock *oldsk = assoc->base.sk;
1140
1141	/* Delete the association from the old endpoint's list of
1142	 * associations.
1143	 */
1144	list_del_init(&assoc->asocs);
1145
1146	/* Decrement the backlog value for a TCP-style socket. */
1147	if (sctp_style(oldsk, TCP))
1148		oldsk->sk_ack_backlog--;
1149
1150	/* Release references to the old endpoint and the sock.  */
1151	sctp_endpoint_put(assoc->ep);
1152	sock_put(assoc->base.sk);
1153
1154	/* Get a reference to the new endpoint.  */
1155	assoc->ep = newsp->ep;
1156	sctp_endpoint_hold(assoc->ep);
1157
1158	/* Get a reference to the new sock.  */
1159	assoc->base.sk = newsk;
1160	sock_hold(assoc->base.sk);
1161
1162	/* Add the association to the new endpoint's list of associations.  */
1163	sctp_endpoint_add_asoc(newsp->ep, assoc);
1164}
1165
1166/* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1167void sctp_assoc_update(struct sctp_association *asoc,
1168		       struct sctp_association *new)
1169{
1170	struct sctp_transport *trans;
1171	struct list_head *pos, *temp;
1172
1173	/* Copy in new parameters of peer. */
1174	asoc->c = new->c;
1175	asoc->peer.rwnd = new->peer.rwnd;
1176	asoc->peer.sack_needed = new->peer.sack_needed;
1177	asoc->peer.i = new->peer.i;
1178	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1179			 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1180
1181	/* Remove any peer addresses not present in the new association. */
1182	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1183		trans = list_entry(pos, struct sctp_transport, transports);
1184		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
1185			sctp_assoc_del_peer(asoc, &trans->ipaddr);
1186
1187		if (asoc->state >= SCTP_STATE_ESTABLISHED)
1188			sctp_transport_reset(trans);
1189	}
1190
1191	/* If the case is A (association restart), use
1192	 * initial_tsn as next_tsn. If the case is B, use
1193	 * current next_tsn in case data sent to peer
1194	 * has been discarded and needs retransmission.
1195	 */
1196	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1197		asoc->next_tsn = new->next_tsn;
1198		asoc->ctsn_ack_point = new->ctsn_ack_point;
1199		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1200
1201		/* Reinitialize SSN for both local streams
1202		 * and peer's streams.
1203		 */
1204		sctp_ssnmap_clear(asoc->ssnmap);
1205
1206		/* Flush the ULP reassembly and ordered queue.
1207		 * Any data there will now be stale and will
1208		 * cause problems.
1209		 */
1210		sctp_ulpq_flush(&asoc->ulpq);
1211
1212		/* reset the overall association error count so
1213		 * that the restarted association doesn't get torn
1214		 * down on the next retransmission timer.
1215		 */
1216		asoc->overall_error_count = 0;
1217
1218	} else {
1219		/* Add any peer addresses from the new association. */
1220		list_for_each_entry(trans, &new->peer.transport_addr_list,
1221				transports) {
1222			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1223				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1224						    GFP_ATOMIC, trans->state);
1225		}
1226
1227		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1228		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1229		if (!asoc->ssnmap) {
1230			/* Move the ssnmap. */
1231			asoc->ssnmap = new->ssnmap;
1232			new->ssnmap = NULL;
1233		}
1234
1235		if (!asoc->assoc_id) {
1236			/* get a new association id since we don't have one
1237			 * yet.
1238			 */
1239			sctp_assoc_set_id(asoc, GFP_ATOMIC);
1240		}
1241	}
1242
1243	/* SCTP-AUTH: Save the peer parameters from the new assocaitions
1244	 * and also move the association shared keys over
1245	 */
1246	kfree(asoc->peer.peer_random);
1247	asoc->peer.peer_random = new->peer.peer_random;
1248	new->peer.peer_random = NULL;
1249
1250	kfree(asoc->peer.peer_chunks);
1251	asoc->peer.peer_chunks = new->peer.peer_chunks;
1252	new->peer.peer_chunks = NULL;
1253
1254	kfree(asoc->peer.peer_hmacs);
1255	asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1256	new->peer.peer_hmacs = NULL;
1257
1258	sctp_auth_key_put(asoc->asoc_shared_key);
1259	sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1260}
1261
1262/* Update the retran path for sending a retransmitted packet.
1263 * Round-robin through the active transports, else round-robin
1264 * through the inactive transports as this is the next best thing
1265 * we can try.
1266 */
1267void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1268{
1269	struct sctp_transport *t, *next;
1270	struct list_head *head = &asoc->peer.transport_addr_list;
1271	struct list_head *pos;
1272
1273	if (asoc->peer.transport_count == 1)
1274		return;
1275
1276	/* Find the next transport in a round-robin fashion. */
1277	t = asoc->peer.retran_path;
1278	pos = &t->transports;
1279	next = NULL;
1280
1281	while (1) {
1282		/* Skip the head. */
1283		if (pos->next == head)
1284			pos = head->next;
1285		else
1286			pos = pos->next;
1287
1288		t = list_entry(pos, struct sctp_transport, transports);
1289
1290		/* We have exhausted the list, but didn't find any
1291		 * other active transports.  If so, use the next
1292		 * transport.
1293		 */
1294		if (t == asoc->peer.retran_path) {
1295			t = next;
1296			break;
1297		}
1298
1299		/* Try to find an active transport. */
1300
1301		if ((t->state == SCTP_ACTIVE) ||
1302		    (t->state == SCTP_UNKNOWN)) {
1303			break;
1304		} else {
1305			/* Keep track of the next transport in case
1306			 * we don't find any active transport.
1307			 */
1308			if (!next)
1309				next = t;
1310		}
1311	}
1312
1313	asoc->peer.retran_path = t;
1314
1315	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1316				 " %p addr: ",
1317				 " port: %d\n",
1318				 asoc,
1319				 (&t->ipaddr),
1320				 ntohs(t->ipaddr.v4.sin_port));
1321}
1322
1323/* Choose the transport for sending retransmit packet.  */
1324struct sctp_transport *sctp_assoc_choose_alter_transport(
1325	struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1326{
1327	/* If this is the first time packet is sent, use the active path,
1328	 * else use the retran path. If the last packet was sent over the
1329	 * retran path, update the retran path and use it.
1330	 */
1331	if (!last_sent_to)
1332		return asoc->peer.active_path;
1333	else {
1334		if (last_sent_to == asoc->peer.retran_path)
1335			sctp_assoc_update_retran_path(asoc);
1336		return asoc->peer.retran_path;
1337	}
1338}
1339
1340/* Update the association's pmtu and frag_point by going through all the
1341 * transports. This routine is called when a transport's PMTU has changed.
1342 */
1343void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1344{
1345	struct sctp_transport *t;
1346	__u32 pmtu = 0;
1347
1348	if (!asoc)
1349		return;
1350
1351	/* Get the lowest pmtu of all the transports. */
1352	list_for_each_entry(t, &asoc->peer.transport_addr_list,
1353				transports) {
1354		if (t->pmtu_pending && t->dst) {
1355			sctp_transport_update_pmtu(t, dst_mtu(t->dst));
1356			t->pmtu_pending = 0;
1357		}
1358		if (!pmtu || (t->pathmtu < pmtu))
1359			pmtu = t->pathmtu;
1360	}
1361
1362	if (pmtu) {
1363		asoc->pathmtu = pmtu;
1364		asoc->frag_point = sctp_frag_point(asoc, pmtu);
1365	}
1366
1367	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1368			  __func__, asoc, asoc->pathmtu, asoc->frag_point);
1369}
1370
1371/* Should we send a SACK to update our peer? */
1372static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1373{
1374	switch (asoc->state) {
1375	case SCTP_STATE_ESTABLISHED:
1376	case SCTP_STATE_SHUTDOWN_PENDING:
1377	case SCTP_STATE_SHUTDOWN_RECEIVED:
1378	case SCTP_STATE_SHUTDOWN_SENT:
1379		if ((asoc->rwnd > asoc->a_rwnd) &&
1380		    ((asoc->rwnd - asoc->a_rwnd) >=
1381		     min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu)))
1382			return 1;
1383		break;
1384	default:
1385		break;
1386	}
1387	return 0;
1388}
1389
1390/* Increase asoc's rwnd by len and send any window update SACK if needed. */
1391void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1392{
1393	struct sctp_chunk *sack;
1394	struct timer_list *timer;
1395
1396	if (asoc->rwnd_over) {
1397		if (asoc->rwnd_over >= len) {
1398			asoc->rwnd_over -= len;
1399		} else {
1400			asoc->rwnd += (len - asoc->rwnd_over);
1401			asoc->rwnd_over = 0;
1402		}
1403	} else {
1404		asoc->rwnd += len;
1405	}
1406
1407	/* If we had window pressure, start recovering it
1408	 * once our rwnd had reached the accumulated pressure
1409	 * threshold.  The idea is to recover slowly, but up
1410	 * to the initial advertised window.
1411	 */
1412	if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1413		int change = min(asoc->pathmtu, asoc->rwnd_press);
1414		asoc->rwnd += change;
1415		asoc->rwnd_press -= change;
1416	}
1417
1418	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1419			  "- %u\n", __func__, asoc, len, asoc->rwnd,
1420			  asoc->rwnd_over, asoc->a_rwnd);
1421
1422	/* Send a window update SACK if the rwnd has increased by at least the
1423	 * minimum of the association's PMTU and half of the receive buffer.
1424	 * The algorithm used is similar to the one described in
1425	 * Section 4.2.3.3 of RFC 1122.
1426	 */
1427	if (sctp_peer_needs_update(asoc)) {
1428		asoc->a_rwnd = asoc->rwnd;
1429		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1430				  "rwnd: %u a_rwnd: %u\n", __func__,
1431				  asoc, asoc->rwnd, asoc->a_rwnd);
1432		sack = sctp_make_sack(asoc);
1433		if (!sack)
1434			return;
1435
1436		asoc->peer.sack_needed = 0;
1437
1438		sctp_outq_tail(&asoc->outqueue, sack);
1439
1440		/* Stop the SACK timer.  */
1441		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1442		if (timer_pending(timer) && del_timer(timer))
1443			sctp_association_put(asoc);
1444	}
1445}
1446
1447/* Decrease asoc's rwnd by len. */
1448void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1449{
1450	int rx_count;
1451	int over = 0;
1452
1453	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1454	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1455
1456	if (asoc->ep->rcvbuf_policy)
1457		rx_count = atomic_read(&asoc->rmem_alloc);
1458	else
1459		rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1460
1461	/* If we've reached or overflowed our receive buffer, announce
1462	 * a 0 rwnd if rwnd would still be positive.  Store the
1463	 * the pottential pressure overflow so that the window can be restored
1464	 * back to original value.
1465	 */
1466	if (rx_count >= asoc->base.sk->sk_rcvbuf)
1467		over = 1;
1468
1469	if (asoc->rwnd >= len) {
1470		asoc->rwnd -= len;
1471		if (over) {
1472			asoc->rwnd_press = asoc->rwnd;
1473			asoc->rwnd = 0;
1474		}
1475	} else {
1476		asoc->rwnd_over = len - asoc->rwnd;
1477		asoc->rwnd = 0;
1478	}
1479	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u, %u)\n",
1480			  __func__, asoc, len, asoc->rwnd,
1481			  asoc->rwnd_over, asoc->rwnd_press);
1482}
1483
1484/* Build the bind address list for the association based on info from the
1485 * local endpoint and the remote peer.
1486 */
1487int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1488				     gfp_t gfp)
1489{
1490	sctp_scope_t scope;
1491	int flags;
1492
1493	/* Use scoping rules to determine the subset of addresses from
1494	 * the endpoint.
1495	 */
1496	scope = sctp_scope(&asoc->peer.active_path->ipaddr);
1497	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1498	if (asoc->peer.ipv4_address)
1499		flags |= SCTP_ADDR4_PEERSUPP;
1500	if (asoc->peer.ipv6_address)
1501		flags |= SCTP_ADDR6_PEERSUPP;
1502
1503	return sctp_bind_addr_copy(&asoc->base.bind_addr,
1504				   &asoc->ep->base.bind_addr,
1505				   scope, gfp, flags);
1506}
1507
1508/* Build the association's bind address list from the cookie.  */
1509int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1510					 struct sctp_cookie *cookie,
1511					 gfp_t gfp)
1512{
1513	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1514	int var_size3 = cookie->raw_addr_list_len;
1515	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1516
1517	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1518				      asoc->ep->base.bind_addr.port, gfp);
1519}
1520
1521/* Lookup laddr in the bind address list of an association. */
1522int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1523			    const union sctp_addr *laddr)
1524{
1525	int found = 0;
1526
1527	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1528	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1529				 sctp_sk(asoc->base.sk)))
1530		found = 1;
1531
1532	return found;
1533}
1534
1535/* Set an association id for a given association */
1536int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1537{
1538	int assoc_id;
1539	int error = 0;
1540
1541	/* If the id is already assigned, keep it. */
1542	if (asoc->assoc_id)
1543		return error;
1544retry:
1545	if (unlikely(!idr_pre_get(&sctp_assocs_id, gfp)))
1546		return -ENOMEM;
1547
1548	spin_lock_bh(&sctp_assocs_id_lock);
1549	error = idr_get_new_above(&sctp_assocs_id, (void *)asoc,
1550				    1, &assoc_id);
1551	spin_unlock_bh(&sctp_assocs_id_lock);
1552	if (error == -EAGAIN)
1553		goto retry;
1554	else if (error)
1555		return error;
1556
1557	asoc->assoc_id = (sctp_assoc_t) assoc_id;
1558	return error;
1559}
1560
1561/* Free asconf_ack cache */
1562static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1563{
1564	struct sctp_chunk *ack;
1565	struct sctp_chunk *tmp;
1566
1567	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1568				transmitted_list) {
1569		list_del_init(&ack->transmitted_list);
1570		sctp_chunk_free(ack);
1571	}
1572}
1573
1574/* Clean up the ASCONF_ACK queue */
1575void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1576{
1577	struct sctp_chunk *ack;
1578	struct sctp_chunk *tmp;
1579
1580	/* We can remove all the entries from the queue upto
1581	 * the "Peer-Sequence-Number".
1582	 */
1583	list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1584				transmitted_list) {
1585		if (ack->subh.addip_hdr->serial ==
1586				htonl(asoc->peer.addip_serial))
1587			break;
1588
1589		list_del_init(&ack->transmitted_list);
1590		sctp_chunk_free(ack);
1591	}
1592}
1593
1594/* Find the ASCONF_ACK whose serial number matches ASCONF */
1595struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1596					const struct sctp_association *asoc,
1597					__be32 serial)
1598{
1599	struct sctp_chunk *ack;
1600
1601	/* Walk through the list of cached ASCONF-ACKs and find the
1602	 * ack chunk whose serial number matches that of the request.
1603	 */
1604	list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1605		if (ack->subh.addip_hdr->serial == serial) {
1606			sctp_chunk_hold(ack);
1607			return ack;
1608		}
1609	}
1610
1611	return NULL;
1612}
1613