associola.c revision d808ad9ab8b1109239027c248c4652503b9d3029
1/* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel reference Implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * The SCTP reference implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * The SCTP reference implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 *                 ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING.  If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 *    http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 *    La Monte H.P. Yarroll <piggy@acm.org>
38 *    Karl Knutson          <karl@athena.chicago.il.us>
39 *    Jon Grimm             <jgrimm@us.ibm.com>
40 *    Xingang Guo           <xingang.guo@intel.com>
41 *    Hui Huang             <hui.huang@nokia.com>
42 *    Sridhar Samudrala	    <sri@us.ibm.com>
43 *    Daisy Chang	    <daisyc@us.ibm.com>
44 *    Ryan Layer	    <rmlayer@us.ibm.com>
45 *    Kevin Gao             <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51#include <linux/types.h>
52#include <linux/fcntl.h>
53#include <linux/poll.h>
54#include <linux/init.h>
55#include <linux/sched.h>
56
57#include <linux/slab.h>
58#include <linux/in.h>
59#include <net/ipv6.h>
60#include <net/sctp/sctp.h>
61#include <net/sctp/sm.h>
62
63/* Forward declarations for internal functions. */
64static void sctp_assoc_bh_rcv(struct work_struct *work);
65
66
67/* 1st Level Abstractions. */
68
69/* Initialize a new association from provided memory. */
70static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
71					  const struct sctp_endpoint *ep,
72					  const struct sock *sk,
73					  sctp_scope_t scope,
74					  gfp_t gfp)
75{
76	struct sctp_sock *sp;
77	int i;
78
79	/* Retrieve the SCTP per socket area.  */
80	sp = sctp_sk((struct sock *)sk);
81
82	/* Init all variables to a known value.  */
83	memset(asoc, 0, sizeof(struct sctp_association));
84
85	/* Discarding const is appropriate here.  */
86	asoc->ep = (struct sctp_endpoint *)ep;
87	sctp_endpoint_hold(asoc->ep);
88
89	/* Hold the sock.  */
90	asoc->base.sk = (struct sock *)sk;
91	sock_hold(asoc->base.sk);
92
93	/* Initialize the common base substructure.  */
94	asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
95
96	/* Initialize the object handling fields.  */
97	atomic_set(&asoc->base.refcnt, 1);
98	asoc->base.dead = 0;
99	asoc->base.malloced = 0;
100
101	/* Initialize the bind addr area.  */
102	sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
103	rwlock_init(&asoc->base.addr_lock);
104
105	asoc->state = SCTP_STATE_CLOSED;
106
107	/* Set these values from the socket values, a conversion between
108	 * millsecons to seconds/microseconds must also be done.
109	 */
110	asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
111	asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
112					* 1000;
113	asoc->frag_point = 0;
114
115	/* Set the association max_retrans and RTO values from the
116	 * socket values.
117	 */
118	asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
119	asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
120	asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
121	asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
122
123	asoc->overall_error_count = 0;
124
125	/* Initialize the association's heartbeat interval based on the
126	 * sock configured value.
127	 */
128	asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
129
130	/* Initialize path max retrans value. */
131	asoc->pathmaxrxt = sp->pathmaxrxt;
132
133	/* Initialize default path MTU. */
134	asoc->pathmtu = sp->pathmtu;
135
136	/* Set association default SACK delay */
137	asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
138
139	/* Set the association default flags controlling
140	 * Heartbeat, SACK delay, and Path MTU Discovery.
141	 */
142	asoc->param_flags = sp->param_flags;
143
144	/* Initialize the maximum mumber of new data packets that can be sent
145	 * in a burst.
146	 */
147	asoc->max_burst = sctp_max_burst;
148
149	/* initialize association timers */
150	asoc->timeouts[SCTP_EVENT_TIMEOUT_NONE] = 0;
151	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
152	asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
153	asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
154	asoc->timeouts[SCTP_EVENT_TIMEOUT_T3_RTX] = 0;
155	asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = 0;
156
157	/* sctpimpguide Section 2.12.2
158	 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
159	 * recommended value of 5 times 'RTO.Max'.
160	 */
161	asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
162		= 5 * asoc->rto_max;
163
164	asoc->timeouts[SCTP_EVENT_TIMEOUT_HEARTBEAT] = 0;
165	asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
166	asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] =
167		sp->autoclose * HZ;
168
169	/* Initilizes the timers */
170	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
171		init_timer(&asoc->timers[i]);
172		asoc->timers[i].function = sctp_timer_events[i];
173		asoc->timers[i].data = (unsigned long) asoc;
174	}
175
176	/* Pull default initialization values from the sock options.
177	 * Note: This assumes that the values have already been
178	 * validated in the sock.
179	 */
180	asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
181	asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams;
182	asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts;
183
184	asoc->max_init_timeo =
185		 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
186
187	/* Allocate storage for the ssnmap after the inbound and outbound
188	 * streams have been negotiated during Init.
189	 */
190	asoc->ssnmap = NULL;
191
192	/* Set the local window size for receive.
193	 * This is also the rcvbuf space per association.
194	 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
195	 * 1500 bytes in one SCTP packet.
196	 */
197	if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
198		asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
199	else
200		asoc->rwnd = sk->sk_rcvbuf/2;
201
202	asoc->a_rwnd = asoc->rwnd;
203
204	asoc->rwnd_over = 0;
205
206	/* Use my own max window until I learn something better.  */
207	asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
208
209	/* Set the sndbuf size for transmit.  */
210	asoc->sndbuf_used = 0;
211
212	/* Initialize the receive memory counter */
213	atomic_set(&asoc->rmem_alloc, 0);
214
215	init_waitqueue_head(&asoc->wait);
216
217	asoc->c.my_vtag = sctp_generate_tag(ep);
218	asoc->peer.i.init_tag = 0;     /* INIT needs a vtag of 0. */
219	asoc->c.peer_vtag = 0;
220	asoc->c.my_ttag   = 0;
221	asoc->c.peer_ttag = 0;
222	asoc->c.my_port = ep->base.bind_addr.port;
223
224	asoc->c.initial_tsn = sctp_generate_tsn(ep);
225
226	asoc->next_tsn = asoc->c.initial_tsn;
227
228	asoc->ctsn_ack_point = asoc->next_tsn - 1;
229	asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
230	asoc->highest_sacked = asoc->ctsn_ack_point;
231	asoc->last_cwr_tsn = asoc->ctsn_ack_point;
232	asoc->unack_data = 0;
233
234	/* ADDIP Section 4.1 Asconf Chunk Procedures
235	 *
236	 * When an endpoint has an ASCONF signaled change to be sent to the
237	 * remote endpoint it should do the following:
238	 * ...
239	 * A2) a serial number should be assigned to the chunk. The serial
240	 * number SHOULD be a monotonically increasing number. The serial
241	 * numbers SHOULD be initialized at the start of the
242	 * association to the same value as the initial TSN.
243	 */
244	asoc->addip_serial = asoc->c.initial_tsn;
245
246	INIT_LIST_HEAD(&asoc->addip_chunk_list);
247
248	/* Make an empty list of remote transport addresses.  */
249	INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
250	asoc->peer.transport_count = 0;
251
252	/* RFC 2960 5.1 Normal Establishment of an Association
253	 *
254	 * After the reception of the first data chunk in an
255	 * association the endpoint must immediately respond with a
256	 * sack to acknowledge the data chunk.  Subsequent
257	 * acknowledgements should be done as described in Section
258	 * 6.2.
259	 *
260	 * [We implement this by telling a new association that it
261	 * already received one packet.]
262	 */
263	asoc->peer.sack_needed = 1;
264
265	/* Assume that the peer recongizes ASCONF until reported otherwise
266	 * via an ERROR chunk.
267	 */
268	asoc->peer.asconf_capable = 1;
269
270	/* Create an input queue.  */
271	sctp_inq_init(&asoc->base.inqueue);
272	sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
273
274	/* Create an output queue.  */
275	sctp_outq_init(asoc, &asoc->outqueue);
276
277	if (!sctp_ulpq_init(&asoc->ulpq, asoc))
278		goto fail_init;
279
280	/* Set up the tsn tracking. */
281	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0);
282
283	asoc->need_ecne = 0;
284
285	asoc->assoc_id = 0;
286
287	/* Assume that peer would support both address types unless we are
288	 * told otherwise.
289	 */
290	asoc->peer.ipv4_address = 1;
291	asoc->peer.ipv6_address = 1;
292	INIT_LIST_HEAD(&asoc->asocs);
293
294	asoc->autoclose = sp->autoclose;
295
296	asoc->default_stream = sp->default_stream;
297	asoc->default_ppid = sp->default_ppid;
298	asoc->default_flags = sp->default_flags;
299	asoc->default_context = sp->default_context;
300	asoc->default_timetolive = sp->default_timetolive;
301	asoc->default_rcv_context = sp->default_rcv_context;
302
303	return asoc;
304
305fail_init:
306	sctp_endpoint_put(asoc->ep);
307	sock_put(asoc->base.sk);
308	return NULL;
309}
310
311/* Allocate and initialize a new association */
312struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
313					 const struct sock *sk,
314					 sctp_scope_t scope,
315					 gfp_t gfp)
316{
317	struct sctp_association *asoc;
318
319	asoc = t_new(struct sctp_association, gfp);
320	if (!asoc)
321		goto fail;
322
323	if (!sctp_association_init(asoc, ep, sk, scope, gfp))
324		goto fail_init;
325
326	asoc->base.malloced = 1;
327	SCTP_DBG_OBJCNT_INC(assoc);
328	SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
329
330	return asoc;
331
332fail_init:
333	kfree(asoc);
334fail:
335	return NULL;
336}
337
338/* Free this association if possible.  There may still be users, so
339 * the actual deallocation may be delayed.
340 */
341void sctp_association_free(struct sctp_association *asoc)
342{
343	struct sock *sk = asoc->base.sk;
344	struct sctp_transport *transport;
345	struct list_head *pos, *temp;
346	int i;
347
348	/* Only real associations count against the endpoint, so
349	 * don't bother for if this is a temporary association.
350	 */
351	if (!asoc->temp) {
352		list_del(&asoc->asocs);
353
354		/* Decrement the backlog value for a TCP-style listening
355		 * socket.
356		 */
357		if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
358			sk->sk_ack_backlog--;
359	}
360
361	/* Mark as dead, so other users can know this structure is
362	 * going away.
363	 */
364	asoc->base.dead = 1;
365
366	/* Dispose of any data lying around in the outqueue. */
367	sctp_outq_free(&asoc->outqueue);
368
369	/* Dispose of any pending messages for the upper layer. */
370	sctp_ulpq_free(&asoc->ulpq);
371
372	/* Dispose of any pending chunks on the inqueue. */
373	sctp_inq_free(&asoc->base.inqueue);
374
375	/* Free ssnmap storage. */
376	sctp_ssnmap_free(asoc->ssnmap);
377
378	/* Clean up the bound address list. */
379	sctp_bind_addr_free(&asoc->base.bind_addr);
380
381	/* Do we need to go through all of our timers and
382	 * delete them?   To be safe we will try to delete all, but we
383	 * should be able to go through and make a guess based
384	 * on our state.
385	 */
386	for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
387		if (timer_pending(&asoc->timers[i]) &&
388		    del_timer(&asoc->timers[i]))
389			sctp_association_put(asoc);
390	}
391
392	/* Free peer's cached cookie. */
393	kfree(asoc->peer.cookie);
394
395	/* Release the transport structures. */
396	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
397		transport = list_entry(pos, struct sctp_transport, transports);
398		list_del(pos);
399		sctp_transport_free(transport);
400	}
401
402	asoc->peer.transport_count = 0;
403
404	/* Free any cached ASCONF_ACK chunk. */
405	if (asoc->addip_last_asconf_ack)
406		sctp_chunk_free(asoc->addip_last_asconf_ack);
407
408	/* Free any cached ASCONF chunk. */
409	if (asoc->addip_last_asconf)
410		sctp_chunk_free(asoc->addip_last_asconf);
411
412	sctp_association_put(asoc);
413}
414
415/* Cleanup and free up an association. */
416static void sctp_association_destroy(struct sctp_association *asoc)
417{
418	SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
419
420	sctp_endpoint_put(asoc->ep);
421	sock_put(asoc->base.sk);
422
423	if (asoc->assoc_id != 0) {
424		spin_lock_bh(&sctp_assocs_id_lock);
425		idr_remove(&sctp_assocs_id, asoc->assoc_id);
426		spin_unlock_bh(&sctp_assocs_id_lock);
427	}
428
429	BUG_TRAP(!atomic_read(&asoc->rmem_alloc));
430
431	if (asoc->base.malloced) {
432		kfree(asoc);
433		SCTP_DBG_OBJCNT_DEC(assoc);
434	}
435}
436
437/* Change the primary destination address for the peer. */
438void sctp_assoc_set_primary(struct sctp_association *asoc,
439			    struct sctp_transport *transport)
440{
441	asoc->peer.primary_path = transport;
442
443	/* Set a default msg_name for events. */
444	memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
445	       sizeof(union sctp_addr));
446
447	/* If the primary path is changing, assume that the
448	 * user wants to use this new path.
449	 */
450	if ((transport->state == SCTP_ACTIVE) ||
451	    (transport->state == SCTP_UNKNOWN))
452		asoc->peer.active_path = transport;
453
454	/*
455	 * SFR-CACC algorithm:
456	 * Upon the receipt of a request to change the primary
457	 * destination address, on the data structure for the new
458	 * primary destination, the sender MUST do the following:
459	 *
460	 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
461	 * to this destination address earlier. The sender MUST set
462	 * CYCLING_CHANGEOVER to indicate that this switch is a
463	 * double switch to the same destination address.
464	 */
465	if (transport->cacc.changeover_active)
466		transport->cacc.cycling_changeover = 1;
467
468	/* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
469	 * a changeover has occurred.
470	 */
471	transport->cacc.changeover_active = 1;
472
473	/* 3) The sender MUST store the next TSN to be sent in
474	 * next_tsn_at_change.
475	 */
476	transport->cacc.next_tsn_at_change = asoc->next_tsn;
477}
478
479/* Remove a transport from an association.  */
480void sctp_assoc_rm_peer(struct sctp_association *asoc,
481			struct sctp_transport *peer)
482{
483	struct list_head	*pos;
484	struct sctp_transport	*transport;
485
486	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
487				 " port: %d\n",
488				 asoc,
489				 (&peer->ipaddr),
490				 ntohs(peer->ipaddr.v4.sin_port));
491
492	/* If we are to remove the current retran_path, update it
493	 * to the next peer before removing this peer from the list.
494	 */
495	if (asoc->peer.retran_path == peer)
496		sctp_assoc_update_retran_path(asoc);
497
498	/* Remove this peer from the list. */
499	list_del(&peer->transports);
500
501	/* Get the first transport of asoc. */
502	pos = asoc->peer.transport_addr_list.next;
503	transport = list_entry(pos, struct sctp_transport, transports);
504
505	/* Update any entries that match the peer to be deleted. */
506	if (asoc->peer.primary_path == peer)
507		sctp_assoc_set_primary(asoc, transport);
508	if (asoc->peer.active_path == peer)
509		asoc->peer.active_path = transport;
510	if (asoc->peer.last_data_from == peer)
511		asoc->peer.last_data_from = transport;
512
513	/* If we remove the transport an INIT was last sent to, set it to
514	 * NULL. Combined with the update of the retran path above, this
515	 * will cause the next INIT to be sent to the next available
516	 * transport, maintaining the cycle.
517	 */
518	if (asoc->init_last_sent_to == peer)
519		asoc->init_last_sent_to = NULL;
520
521	asoc->peer.transport_count--;
522
523	sctp_transport_free(peer);
524}
525
526/* Add a transport address to an association.  */
527struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
528					   const union sctp_addr *addr,
529					   const gfp_t gfp,
530					   const int peer_state)
531{
532	struct sctp_transport *peer;
533	struct sctp_sock *sp;
534	unsigned short port;
535
536	sp = sctp_sk(asoc->base.sk);
537
538	/* AF_INET and AF_INET6 share common port field. */
539	port = ntohs(addr->v4.sin_port);
540
541	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
542				 " port: %d state:%d\n",
543				 asoc,
544				 addr,
545				 port,
546				 peer_state);
547
548	/* Set the port if it has not been set yet.  */
549	if (0 == asoc->peer.port)
550		asoc->peer.port = port;
551
552	/* Check to see if this is a duplicate. */
553	peer = sctp_assoc_lookup_paddr(asoc, addr);
554	if (peer) {
555		if (peer->state == SCTP_UNKNOWN) {
556			if (peer_state == SCTP_ACTIVE)
557				peer->state = SCTP_ACTIVE;
558			if (peer_state == SCTP_UNCONFIRMED)
559				peer->state = SCTP_UNCONFIRMED;
560		}
561		return peer;
562	}
563
564	peer = sctp_transport_new(addr, gfp);
565	if (!peer)
566		return NULL;
567
568	sctp_transport_set_owner(peer, asoc);
569
570	/* Initialize the peer's heartbeat interval based on the
571	 * association configured value.
572	 */
573	peer->hbinterval = asoc->hbinterval;
574
575	/* Set the path max_retrans.  */
576	peer->pathmaxrxt = asoc->pathmaxrxt;
577
578	/* Initialize the peer's SACK delay timeout based on the
579	 * association configured value.
580	 */
581	peer->sackdelay = asoc->sackdelay;
582
583	/* Enable/disable heartbeat, SACK delay, and path MTU discovery
584	 * based on association setting.
585	 */
586	peer->param_flags = asoc->param_flags;
587
588	/* Initialize the pmtu of the transport. */
589	if (peer->param_flags & SPP_PMTUD_ENABLE)
590		sctp_transport_pmtu(peer);
591	else if (asoc->pathmtu)
592		peer->pathmtu = asoc->pathmtu;
593	else
594		peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
595
596	/* If this is the first transport addr on this association,
597	 * initialize the association PMTU to the peer's PMTU.
598	 * If not and the current association PMTU is higher than the new
599	 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
600	 */
601	if (asoc->pathmtu)
602		asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
603	else
604		asoc->pathmtu = peer->pathmtu;
605
606	SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
607			  "%d\n", asoc, asoc->pathmtu);
608
609	asoc->frag_point = sctp_frag_point(sp, asoc->pathmtu);
610
611	/* The asoc->peer.port might not be meaningful yet, but
612	 * initialize the packet structure anyway.
613	 */
614	sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
615			 asoc->peer.port);
616
617	/* 7.2.1 Slow-Start
618	 *
619	 * o The initial cwnd before DATA transmission or after a sufficiently
620	 *   long idle period MUST be set to
621	 *      min(4*MTU, max(2*MTU, 4380 bytes))
622	 *
623	 * o The initial value of ssthresh MAY be arbitrarily high
624	 *   (for example, implementations MAY use the size of the
625	 *   receiver advertised window).
626	 */
627	peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
628
629	/* At this point, we may not have the receiver's advertised window,
630	 * so initialize ssthresh to the default value and it will be set
631	 * later when we process the INIT.
632	 */
633	peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
634
635	peer->partial_bytes_acked = 0;
636	peer->flight_size = 0;
637
638	/* Set the transport's RTO.initial value */
639	peer->rto = asoc->rto_initial;
640
641	/* Set the peer's active state. */
642	peer->state = peer_state;
643
644	/* Attach the remote transport to our asoc.  */
645	list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
646	asoc->peer.transport_count++;
647
648	/* If we do not yet have a primary path, set one.  */
649	if (!asoc->peer.primary_path) {
650		sctp_assoc_set_primary(asoc, peer);
651		asoc->peer.retran_path = peer;
652	}
653
654	if (asoc->peer.active_path == asoc->peer.retran_path) {
655		asoc->peer.retran_path = peer;
656	}
657
658	return peer;
659}
660
661/* Delete a transport address from an association.  */
662void sctp_assoc_del_peer(struct sctp_association *asoc,
663			 const union sctp_addr *addr)
664{
665	struct list_head	*pos;
666	struct list_head	*temp;
667	struct sctp_transport	*transport;
668
669	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
670		transport = list_entry(pos, struct sctp_transport, transports);
671		if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
672			/* Do book keeping for removing the peer and free it. */
673			sctp_assoc_rm_peer(asoc, transport);
674			break;
675		}
676	}
677}
678
679/* Lookup a transport by address. */
680struct sctp_transport *sctp_assoc_lookup_paddr(
681					const struct sctp_association *asoc,
682					const union sctp_addr *address)
683{
684	struct sctp_transport *t;
685	struct list_head *pos;
686
687	/* Cycle through all transports searching for a peer address. */
688
689	list_for_each(pos, &asoc->peer.transport_addr_list) {
690		t = list_entry(pos, struct sctp_transport, transports);
691		if (sctp_cmp_addr_exact(address, &t->ipaddr))
692			return t;
693	}
694
695	return NULL;
696}
697
698/* Engage in transport control operations.
699 * Mark the transport up or down and send a notification to the user.
700 * Select and update the new active and retran paths.
701 */
702void sctp_assoc_control_transport(struct sctp_association *asoc,
703				  struct sctp_transport *transport,
704				  sctp_transport_cmd_t command,
705				  sctp_sn_error_t error)
706{
707	struct sctp_transport *t = NULL;
708	struct sctp_transport *first;
709	struct sctp_transport *second;
710	struct sctp_ulpevent *event;
711	struct sockaddr_storage addr;
712	struct list_head *pos;
713	int spc_state = 0;
714
715	/* Record the transition on the transport.  */
716	switch (command) {
717	case SCTP_TRANSPORT_UP:
718		transport->state = SCTP_ACTIVE;
719		spc_state = SCTP_ADDR_AVAILABLE;
720		break;
721
722	case SCTP_TRANSPORT_DOWN:
723		transport->state = SCTP_INACTIVE;
724		spc_state = SCTP_ADDR_UNREACHABLE;
725		break;
726
727	default:
728		return;
729	};
730
731	/* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
732	 * user.
733	 */
734	memset(&addr, 0, sizeof(struct sockaddr_storage));
735	memcpy(&addr, &transport->ipaddr, transport->af_specific->sockaddr_len);
736	event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
737				0, spc_state, error, GFP_ATOMIC);
738	if (event)
739		sctp_ulpq_tail_event(&asoc->ulpq, event);
740
741	/* Select new active and retran paths. */
742
743	/* Look for the two most recently used active transports.
744	 *
745	 * This code produces the wrong ordering whenever jiffies
746	 * rolls over, but we still get usable transports, so we don't
747	 * worry about it.
748	 */
749	first = NULL; second = NULL;
750
751	list_for_each(pos, &asoc->peer.transport_addr_list) {
752		t = list_entry(pos, struct sctp_transport, transports);
753
754		if ((t->state == SCTP_INACTIVE) ||
755		    (t->state == SCTP_UNCONFIRMED))
756			continue;
757		if (!first || t->last_time_heard > first->last_time_heard) {
758			second = first;
759			first = t;
760		}
761		if (!second || t->last_time_heard > second->last_time_heard)
762			second = t;
763	}
764
765	/* RFC 2960 6.4 Multi-Homed SCTP Endpoints
766	 *
767	 * By default, an endpoint should always transmit to the
768	 * primary path, unless the SCTP user explicitly specifies the
769	 * destination transport address (and possibly source
770	 * transport address) to use.
771	 *
772	 * [If the primary is active but not most recent, bump the most
773	 * recently used transport.]
774	 */
775	if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
776	     (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
777	    first != asoc->peer.primary_path) {
778		second = first;
779		first = asoc->peer.primary_path;
780	}
781
782	/* If we failed to find a usable transport, just camp on the
783	 * primary, even if it is inactive.
784	 */
785	if (!first) {
786		first = asoc->peer.primary_path;
787		second = asoc->peer.primary_path;
788	}
789
790	/* Set the active and retran transports.  */
791	asoc->peer.active_path = first;
792	asoc->peer.retran_path = second;
793}
794
795/* Hold a reference to an association. */
796void sctp_association_hold(struct sctp_association *asoc)
797{
798	atomic_inc(&asoc->base.refcnt);
799}
800
801/* Release a reference to an association and cleanup
802 * if there are no more references.
803 */
804void sctp_association_put(struct sctp_association *asoc)
805{
806	if (atomic_dec_and_test(&asoc->base.refcnt))
807		sctp_association_destroy(asoc);
808}
809
810/* Allocate the next TSN, Transmission Sequence Number, for the given
811 * association.
812 */
813__u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
814{
815	/* From Section 1.6 Serial Number Arithmetic:
816	 * Transmission Sequence Numbers wrap around when they reach
817	 * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use
818	 * after transmitting TSN = 2*32 - 1 is TSN = 0.
819	 */
820	__u32 retval = asoc->next_tsn;
821	asoc->next_tsn++;
822	asoc->unack_data++;
823
824	return retval;
825}
826
827/* Compare two addresses to see if they match.  Wildcard addresses
828 * only match themselves.
829 */
830int sctp_cmp_addr_exact(const union sctp_addr *ss1,
831			const union sctp_addr *ss2)
832{
833	struct sctp_af *af;
834
835	af = sctp_get_af_specific(ss1->sa.sa_family);
836	if (unlikely(!af))
837		return 0;
838
839	return af->cmp_addr(ss1, ss2);
840}
841
842/* Return an ecne chunk to get prepended to a packet.
843 * Note:  We are sly and return a shared, prealloced chunk.  FIXME:
844 * No we don't, but we could/should.
845 */
846struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
847{
848	struct sctp_chunk *chunk;
849
850	/* Send ECNE if needed.
851	 * Not being able to allocate a chunk here is not deadly.
852	 */
853	if (asoc->need_ecne)
854		chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
855	else
856		chunk = NULL;
857
858	return chunk;
859}
860
861/*
862 * Find which transport this TSN was sent on.
863 */
864struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
865					     __u32 tsn)
866{
867	struct sctp_transport *active;
868	struct sctp_transport *match;
869	struct list_head *entry, *pos;
870	struct sctp_transport *transport;
871	struct sctp_chunk *chunk;
872	__be32 key = htonl(tsn);
873
874	match = NULL;
875
876	/*
877	 * FIXME: In general, find a more efficient data structure for
878	 * searching.
879	 */
880
881	/*
882	 * The general strategy is to search each transport's transmitted
883	 * list.   Return which transport this TSN lives on.
884	 *
885	 * Let's be hopeful and check the active_path first.
886	 * Another optimization would be to know if there is only one
887	 * outbound path and not have to look for the TSN at all.
888	 *
889	 */
890
891	active = asoc->peer.active_path;
892
893	list_for_each(entry, &active->transmitted) {
894		chunk = list_entry(entry, struct sctp_chunk, transmitted_list);
895
896		if (key == chunk->subh.data_hdr->tsn) {
897			match = active;
898			goto out;
899		}
900	}
901
902	/* If not found, go search all the other transports. */
903	list_for_each(pos, &asoc->peer.transport_addr_list) {
904		transport = list_entry(pos, struct sctp_transport, transports);
905
906		if (transport == active)
907			break;
908		list_for_each(entry, &transport->transmitted) {
909			chunk = list_entry(entry, struct sctp_chunk,
910					   transmitted_list);
911			if (key == chunk->subh.data_hdr->tsn) {
912				match = transport;
913				goto out;
914			}
915		}
916	}
917out:
918	return match;
919}
920
921/* Is this the association we are looking for? */
922struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
923					   const union sctp_addr *laddr,
924					   const union sctp_addr *paddr)
925{
926	struct sctp_transport *transport;
927
928	sctp_read_lock(&asoc->base.addr_lock);
929
930	if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
931	    (htons(asoc->peer.port) == paddr->v4.sin_port)) {
932		transport = sctp_assoc_lookup_paddr(asoc, paddr);
933		if (!transport)
934			goto out;
935
936		if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
937					 sctp_sk(asoc->base.sk)))
938			goto out;
939	}
940	transport = NULL;
941
942out:
943	sctp_read_unlock(&asoc->base.addr_lock);
944	return transport;
945}
946
947/* Do delayed input processing.  This is scheduled by sctp_rcv(). */
948static void sctp_assoc_bh_rcv(struct work_struct *work)
949{
950	struct sctp_association *asoc =
951		container_of(work, struct sctp_association,
952			     base.inqueue.immediate);
953	struct sctp_endpoint *ep;
954	struct sctp_chunk *chunk;
955	struct sock *sk;
956	struct sctp_inq *inqueue;
957	int state;
958	sctp_subtype_t subtype;
959	int error = 0;
960
961	/* The association should be held so we should be safe. */
962	ep = asoc->ep;
963	sk = asoc->base.sk;
964
965	inqueue = &asoc->base.inqueue;
966	sctp_association_hold(asoc);
967	while (NULL != (chunk = sctp_inq_pop(inqueue))) {
968		state = asoc->state;
969		subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
970
971		/* Remember where the last DATA chunk came from so we
972		 * know where to send the SACK.
973		 */
974		if (sctp_chunk_is_data(chunk))
975			asoc->peer.last_data_from = chunk->transport;
976		else
977			SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
978
979		if (chunk->transport)
980			chunk->transport->last_time_heard = jiffies;
981
982		/* Run through the state machine. */
983		error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
984				   state, ep, asoc, chunk, GFP_ATOMIC);
985
986		/* Check to see if the association is freed in response to
987		 * the incoming chunk.  If so, get out of the while loop.
988		 */
989		if (asoc->base.dead)
990			break;
991
992		/* If there is an error on chunk, discard this packet. */
993		if (error && chunk)
994			chunk->pdiscard = 1;
995	}
996	sctp_association_put(asoc);
997}
998
999/* This routine moves an association from its old sk to a new sk.  */
1000void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1001{
1002	struct sctp_sock *newsp = sctp_sk(newsk);
1003	struct sock *oldsk = assoc->base.sk;
1004
1005	/* Delete the association from the old endpoint's list of
1006	 * associations.
1007	 */
1008	list_del_init(&assoc->asocs);
1009
1010	/* Decrement the backlog value for a TCP-style socket. */
1011	if (sctp_style(oldsk, TCP))
1012		oldsk->sk_ack_backlog--;
1013
1014	/* Release references to the old endpoint and the sock.  */
1015	sctp_endpoint_put(assoc->ep);
1016	sock_put(assoc->base.sk);
1017
1018	/* Get a reference to the new endpoint.  */
1019	assoc->ep = newsp->ep;
1020	sctp_endpoint_hold(assoc->ep);
1021
1022	/* Get a reference to the new sock.  */
1023	assoc->base.sk = newsk;
1024	sock_hold(assoc->base.sk);
1025
1026	/* Add the association to the new endpoint's list of associations.  */
1027	sctp_endpoint_add_asoc(newsp->ep, assoc);
1028}
1029
1030/* Update an association (possibly from unexpected COOKIE-ECHO processing).  */
1031void sctp_assoc_update(struct sctp_association *asoc,
1032		       struct sctp_association *new)
1033{
1034	struct sctp_transport *trans;
1035	struct list_head *pos, *temp;
1036
1037	/* Copy in new parameters of peer. */
1038	asoc->c = new->c;
1039	asoc->peer.rwnd = new->peer.rwnd;
1040	asoc->peer.sack_needed = new->peer.sack_needed;
1041	asoc->peer.i = new->peer.i;
1042	sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE,
1043			 asoc->peer.i.initial_tsn);
1044
1045	/* Remove any peer addresses not present in the new association. */
1046	list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1047		trans = list_entry(pos, struct sctp_transport, transports);
1048		if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
1049			sctp_assoc_del_peer(asoc, &trans->ipaddr);
1050	}
1051
1052	/* If the case is A (association restart), use
1053	 * initial_tsn as next_tsn. If the case is B, use
1054	 * current next_tsn in case data sent to peer
1055	 * has been discarded and needs retransmission.
1056	 */
1057	if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1058		asoc->next_tsn = new->next_tsn;
1059		asoc->ctsn_ack_point = new->ctsn_ack_point;
1060		asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1061
1062		/* Reinitialize SSN for both local streams
1063		 * and peer's streams.
1064		 */
1065		sctp_ssnmap_clear(asoc->ssnmap);
1066
1067	} else {
1068		/* Add any peer addresses from the new association. */
1069		list_for_each(pos, &new->peer.transport_addr_list) {
1070			trans = list_entry(pos, struct sctp_transport,
1071					   transports);
1072			if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1073				sctp_assoc_add_peer(asoc, &trans->ipaddr,
1074						    GFP_ATOMIC, trans->state);
1075		}
1076
1077		asoc->ctsn_ack_point = asoc->next_tsn - 1;
1078		asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1079		if (!asoc->ssnmap) {
1080			/* Move the ssnmap. */
1081			asoc->ssnmap = new->ssnmap;
1082			new->ssnmap = NULL;
1083		}
1084	}
1085}
1086
1087/* Update the retran path for sending a retransmitted packet.
1088 * Round-robin through the active transports, else round-robin
1089 * through the inactive transports as this is the next best thing
1090 * we can try.
1091 */
1092void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1093{
1094	struct sctp_transport *t, *next;
1095	struct list_head *head = &asoc->peer.transport_addr_list;
1096	struct list_head *pos;
1097
1098	/* Find the next transport in a round-robin fashion. */
1099	t = asoc->peer.retran_path;
1100	pos = &t->transports;
1101	next = NULL;
1102
1103	while (1) {
1104		/* Skip the head. */
1105		if (pos->next == head)
1106			pos = head->next;
1107		else
1108			pos = pos->next;
1109
1110		t = list_entry(pos, struct sctp_transport, transports);
1111
1112		/* Try to find an active transport. */
1113
1114		if ((t->state == SCTP_ACTIVE) ||
1115		    (t->state == SCTP_UNKNOWN)) {
1116			break;
1117		} else {
1118			/* Keep track of the next transport in case
1119			 * we don't find any active transport.
1120			 */
1121			if (!next)
1122				next = t;
1123		}
1124
1125		/* We have exhausted the list, but didn't find any
1126		 * other active transports.  If so, use the next
1127		 * transport.
1128		 */
1129		if (t == asoc->peer.retran_path) {
1130			t = next;
1131			break;
1132		}
1133	}
1134
1135	asoc->peer.retran_path = t;
1136
1137	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1138				 " %p addr: ",
1139				 " port: %d\n",
1140				 asoc,
1141				 (&t->ipaddr),
1142				 ntohs(t->ipaddr.v4.sin_port));
1143}
1144
1145/* Choose the transport for sending a INIT packet.  */
1146struct sctp_transport *sctp_assoc_choose_init_transport(
1147	struct sctp_association *asoc)
1148{
1149	struct sctp_transport *t;
1150
1151	/* Use the retran path. If the last INIT was sent over the
1152	 * retran path, update the retran path and use it.
1153	 */
1154	if (!asoc->init_last_sent_to) {
1155		t = asoc->peer.active_path;
1156	} else {
1157		if (asoc->init_last_sent_to == asoc->peer.retran_path)
1158			sctp_assoc_update_retran_path(asoc);
1159		t = asoc->peer.retran_path;
1160	}
1161
1162	SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1163				 " %p addr: ",
1164				 " port: %d\n",
1165				 asoc,
1166				 (&t->ipaddr),
1167				 ntohs(t->ipaddr.v4.sin_port));
1168
1169	return t;
1170}
1171
1172/* Choose the transport for sending a SHUTDOWN packet.  */
1173struct sctp_transport *sctp_assoc_choose_shutdown_transport(
1174	struct sctp_association *asoc)
1175{
1176	/* If this is the first time SHUTDOWN is sent, use the active path,
1177	 * else use the retran path. If the last SHUTDOWN was sent over the
1178	 * retran path, update the retran path and use it.
1179	 */
1180	if (!asoc->shutdown_last_sent_to)
1181		return asoc->peer.active_path;
1182	else {
1183		if (asoc->shutdown_last_sent_to == asoc->peer.retran_path)
1184			sctp_assoc_update_retran_path(asoc);
1185		return asoc->peer.retran_path;
1186	}
1187
1188}
1189
1190/* Update the association's pmtu and frag_point by going through all the
1191 * transports. This routine is called when a transport's PMTU has changed.
1192 */
1193void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1194{
1195	struct sctp_transport *t;
1196	struct list_head *pos;
1197	__u32 pmtu = 0;
1198
1199	if (!asoc)
1200		return;
1201
1202	/* Get the lowest pmtu of all the transports. */
1203	list_for_each(pos, &asoc->peer.transport_addr_list) {
1204		t = list_entry(pos, struct sctp_transport, transports);
1205		if (!pmtu || (t->pathmtu < pmtu))
1206			pmtu = t->pathmtu;
1207	}
1208
1209	if (pmtu) {
1210		struct sctp_sock *sp = sctp_sk(asoc->base.sk);
1211		asoc->pathmtu = pmtu;
1212		asoc->frag_point = sctp_frag_point(sp, pmtu);
1213	}
1214
1215	SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1216			  __FUNCTION__, asoc, asoc->pathmtu, asoc->frag_point);
1217}
1218
1219/* Should we send a SACK to update our peer? */
1220static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1221{
1222	switch (asoc->state) {
1223	case SCTP_STATE_ESTABLISHED:
1224	case SCTP_STATE_SHUTDOWN_PENDING:
1225	case SCTP_STATE_SHUTDOWN_RECEIVED:
1226	case SCTP_STATE_SHUTDOWN_SENT:
1227		if ((asoc->rwnd > asoc->a_rwnd) &&
1228		    ((asoc->rwnd - asoc->a_rwnd) >=
1229		     min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pathmtu)))
1230			return 1;
1231		break;
1232	default:
1233		break;
1234	}
1235	return 0;
1236}
1237
1238/* Increase asoc's rwnd by len and send any window update SACK if needed. */
1239void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1240{
1241	struct sctp_chunk *sack;
1242	struct timer_list *timer;
1243
1244	if (asoc->rwnd_over) {
1245		if (asoc->rwnd_over >= len) {
1246			asoc->rwnd_over -= len;
1247		} else {
1248			asoc->rwnd += (len - asoc->rwnd_over);
1249			asoc->rwnd_over = 0;
1250		}
1251	} else {
1252		asoc->rwnd += len;
1253	}
1254
1255	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1256			  "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd,
1257			  asoc->rwnd_over, asoc->a_rwnd);
1258
1259	/* Send a window update SACK if the rwnd has increased by at least the
1260	 * minimum of the association's PMTU and half of the receive buffer.
1261	 * The algorithm used is similar to the one described in
1262	 * Section 4.2.3.3 of RFC 1122.
1263	 */
1264	if (sctp_peer_needs_update(asoc)) {
1265		asoc->a_rwnd = asoc->rwnd;
1266		SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1267				  "rwnd: %u a_rwnd: %u\n", __FUNCTION__,
1268				  asoc, asoc->rwnd, asoc->a_rwnd);
1269		sack = sctp_make_sack(asoc);
1270		if (!sack)
1271			return;
1272
1273		asoc->peer.sack_needed = 0;
1274
1275		sctp_outq_tail(&asoc->outqueue, sack);
1276
1277		/* Stop the SACK timer.  */
1278		timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1279		if (timer_pending(timer) && del_timer(timer))
1280			sctp_association_put(asoc);
1281	}
1282}
1283
1284/* Decrease asoc's rwnd by len. */
1285void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1286{
1287	SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1288	SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1289	if (asoc->rwnd >= len) {
1290		asoc->rwnd -= len;
1291	} else {
1292		asoc->rwnd_over = len - asoc->rwnd;
1293		asoc->rwnd = 0;
1294	}
1295	SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
1296			  __FUNCTION__, asoc, len, asoc->rwnd,
1297			  asoc->rwnd_over);
1298}
1299
1300/* Build the bind address list for the association based on info from the
1301 * local endpoint and the remote peer.
1302 */
1303int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1304				     gfp_t gfp)
1305{
1306	sctp_scope_t scope;
1307	int flags;
1308
1309	/* Use scoping rules to determine the subset of addresses from
1310	 * the endpoint.
1311	 */
1312	scope = sctp_scope(&asoc->peer.active_path->ipaddr);
1313	flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1314	if (asoc->peer.ipv4_address)
1315		flags |= SCTP_ADDR4_PEERSUPP;
1316	if (asoc->peer.ipv6_address)
1317		flags |= SCTP_ADDR6_PEERSUPP;
1318
1319	return sctp_bind_addr_copy(&asoc->base.bind_addr,
1320				   &asoc->ep->base.bind_addr,
1321				   scope, gfp, flags);
1322}
1323
1324/* Build the association's bind address list from the cookie.  */
1325int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1326					 struct sctp_cookie *cookie,
1327					 gfp_t gfp)
1328{
1329	int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1330	int var_size3 = cookie->raw_addr_list_len;
1331	__u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1332
1333	return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1334				      asoc->ep->base.bind_addr.port, gfp);
1335}
1336
1337/* Lookup laddr in the bind address list of an association. */
1338int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1339			    const union sctp_addr *laddr)
1340{
1341	int found;
1342
1343	sctp_read_lock(&asoc->base.addr_lock);
1344	if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1345	    sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1346				 sctp_sk(asoc->base.sk))) {
1347		found = 1;
1348		goto out;
1349	}
1350
1351	found = 0;
1352out:
1353	sctp_read_unlock(&asoc->base.addr_lock);
1354	return found;
1355}
1356