1/*
2 * NET		An implementation of the SOCKET network access protocol.
3 *
4 * Version:	@(#)socket.c	1.1.93	18/02/95
5 *
6 * Authors:	Orest Zborowski, <obz@Kodak.COM>
7 *		Ross Biro
8 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12 *					shutdown()
13 *		Alan Cox	:	verify_area() fixes
14 *		Alan Cox	:	Removed DDI
15 *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16 *		Alan Cox	:	Moved a load of checks to the very
17 *					top level.
18 *		Alan Cox	:	Move address structures to/from user
19 *					mode above the protocol layers.
20 *		Rob Janssen	:	Allow 0 length sends.
21 *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22 *					tty drivers).
23 *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24 *		Jeff Uphoff	:	Made max number of sockets command-line
25 *					configurable.
26 *		Matti Aarnio	:	Made the number of sockets dynamic,
27 *					to be allocated when needed, and mr.
28 *					Uphoff's max is used as max to be
29 *					allowed to allocate.
30 *		Linus		:	Argh. removed all the socket allocation
31 *					altogether: it's in the inode now.
32 *		Alan Cox	:	Made sock_alloc()/sock_release() public
33 *					for NetROM and future kernel nfsd type
34 *					stuff.
35 *		Alan Cox	:	sendmsg/recvmsg basics.
36 *		Tom Dyas	:	Export net symbols.
37 *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38 *		Alan Cox	:	Added thread locking to sys_* calls
39 *					for sockets. May have errors at the
40 *					moment.
41 *		Kevin Buhr	:	Fixed the dumb errors in the above.
42 *		Andi Kleen	:	Some small cleanups, optimizations,
43 *					and fixed a copy_from_user() bug.
44 *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45 *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46 *					protocol-independent
47 *
48 *
49 *		This program is free software; you can redistribute it and/or
50 *		modify it under the terms of the GNU General Public License
51 *		as published by the Free Software Foundation; either version
52 *		2 of the License, or (at your option) any later version.
53 *
54 *
55 *	This module is effectively the top level interface to the BSD socket
56 *	paradigm.
57 *
58 *	Based upon Swansea University Computer Society NET3.039
59 */
60
61#include <linux/mm.h>
62#include <linux/socket.h>
63#include <linux/file.h>
64#include <linux/net.h>
65#include <linux/interrupt.h>
66#include <linux/thread_info.h>
67#include <linux/rcupdate.h>
68#include <linux/netdevice.h>
69#include <linux/proc_fs.h>
70#include <linux/seq_file.h>
71#include <linux/mutex.h>
72#include <linux/if_bridge.h>
73#include <linux/if_frad.h>
74#include <linux/if_vlan.h>
75#include <linux/ptp_classify.h>
76#include <linux/init.h>
77#include <linux/poll.h>
78#include <linux/cache.h>
79#include <linux/module.h>
80#include <linux/highmem.h>
81#include <linux/mount.h>
82#include <linux/security.h>
83#include <linux/syscalls.h>
84#include <linux/compat.h>
85#include <linux/kmod.h>
86#include <linux/audit.h>
87#include <linux/wireless.h>
88#include <linux/nsproxy.h>
89#include <linux/magic.h>
90#include <linux/slab.h>
91#include <linux/xattr.h>
92
93#include <asm/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/sockios.h>
107#include <linux/atalk.h>
108#include <net/busy_poll.h>
109#include <linux/errqueue.h>
110
111#ifdef CONFIG_NET_RX_BUSY_POLL
112unsigned int sysctl_net_busy_read __read_mostly;
113unsigned int sysctl_net_busy_poll __read_mostly;
114#endif
115
116static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118			 unsigned long nr_segs, loff_t pos);
119static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120			  unsigned long nr_segs, loff_t pos);
121static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122
123static int sock_close(struct inode *inode, struct file *file);
124static unsigned int sock_poll(struct file *file,
125			      struct poll_table_struct *wait);
126static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127#ifdef CONFIG_COMPAT
128static long compat_sock_ioctl(struct file *file,
129			      unsigned int cmd, unsigned long arg);
130#endif
131static int sock_fasync(int fd, struct file *filp, int on);
132static ssize_t sock_sendpage(struct file *file, struct page *page,
133			     int offset, size_t size, loff_t *ppos, int more);
134static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135				struct pipe_inode_info *pipe, size_t len,
136				unsigned int flags);
137
138/*
139 *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140 *	in the operation structures but are done directly via the socketcall() multiplexor.
141 */
142
143static const struct file_operations socket_file_ops = {
144	.owner =	THIS_MODULE,
145	.llseek =	no_llseek,
146	.aio_read =	sock_aio_read,
147	.aio_write =	sock_aio_write,
148	.poll =		sock_poll,
149	.unlocked_ioctl = sock_ioctl,
150#ifdef CONFIG_COMPAT
151	.compat_ioctl = compat_sock_ioctl,
152#endif
153	.mmap =		sock_mmap,
154	.open =		sock_no_open,	/* special open code to disallow open via /proc */
155	.release =	sock_close,
156	.fasync =	sock_fasync,
157	.sendpage =	sock_sendpage,
158	.splice_write = generic_splice_sendpage,
159	.splice_read =	sock_splice_read,
160};
161
162/*
163 *	The protocol list. Each protocol is registered in here.
164 */
165
166static DEFINE_SPINLOCK(net_family_lock);
167static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168
169/*
170 *	Statistics counters of the socket lists
171 */
172
173static DEFINE_PER_CPU(int, sockets_in_use);
174
175/*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181/**
182 *	move_addr_to_kernel	-	copy a socket address into kernel space
183 *	@uaddr: Address in user space
184 *	@kaddr: Address in kernel space
185 *	@ulen: Length in user space
186 *
187 *	The address is copied into kernel space. If the provided address is
188 *	too long an error code of -EINVAL is returned. If the copy gives
189 *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193{
194	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195		return -EINVAL;
196	if (ulen == 0)
197		return 0;
198	if (copy_from_user(kaddr, uaddr, ulen))
199		return -EFAULT;
200	return audit_sockaddr(ulen, kaddr);
201}
202
203/**
204 *	move_addr_to_user	-	copy an address to user space
205 *	@kaddr: kernel space address
206 *	@klen: length of address in kernel
207 *	@uaddr: user space address
208 *	@ulen: pointer to user length field
209 *
210 *	The value pointed to by ulen on entry is the buffer length available.
211 *	This is overwritten with the buffer space used. -EINVAL is returned
212 *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213 *	is returned if either the buffer or the length field are not
214 *	accessible.
215 *	After copying the data up to the limit the user specifies, the true
216 *	length of the data is written over the length limit the user
217 *	specified. Zero is returned for a success.
218 */
219
220static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221			     void __user *uaddr, int __user *ulen)
222{
223	int err;
224	int len;
225
226	BUG_ON(klen > sizeof(struct sockaddr_storage));
227	err = get_user(len, ulen);
228	if (err)
229		return err;
230	if (len > klen)
231		len = klen;
232	if (len < 0)
233		return -EINVAL;
234	if (len) {
235		if (audit_sockaddr(klen, kaddr))
236			return -ENOMEM;
237		if (copy_to_user(uaddr, kaddr, len))
238			return -EFAULT;
239	}
240	/*
241	 *      "fromlen shall refer to the value before truncation.."
242	 *                      1003.1g
243	 */
244	return __put_user(klen, ulen);
245}
246
247static struct kmem_cache *sock_inode_cachep __read_mostly;
248
249static struct inode *sock_alloc_inode(struct super_block *sb)
250{
251	struct socket_alloc *ei;
252	struct socket_wq *wq;
253
254	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255	if (!ei)
256		return NULL;
257	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258	if (!wq) {
259		kmem_cache_free(sock_inode_cachep, ei);
260		return NULL;
261	}
262	init_waitqueue_head(&wq->wait);
263	wq->fasync_list = NULL;
264	RCU_INIT_POINTER(ei->socket.wq, wq);
265
266	ei->socket.state = SS_UNCONNECTED;
267	ei->socket.flags = 0;
268	ei->socket.ops = NULL;
269	ei->socket.sk = NULL;
270	ei->socket.file = NULL;
271
272	return &ei->vfs_inode;
273}
274
275static void sock_destroy_inode(struct inode *inode)
276{
277	struct socket_alloc *ei;
278	struct socket_wq *wq;
279
280	ei = container_of(inode, struct socket_alloc, vfs_inode);
281	wq = rcu_dereference_protected(ei->socket.wq, 1);
282	kfree_rcu(wq, rcu);
283	kmem_cache_free(sock_inode_cachep, ei);
284}
285
286static void init_once(void *foo)
287{
288	struct socket_alloc *ei = (struct socket_alloc *)foo;
289
290	inode_init_once(&ei->vfs_inode);
291}
292
293static int init_inodecache(void)
294{
295	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296					      sizeof(struct socket_alloc),
297					      0,
298					      (SLAB_HWCACHE_ALIGN |
299					       SLAB_RECLAIM_ACCOUNT |
300					       SLAB_MEM_SPREAD),
301					      init_once);
302	if (sock_inode_cachep == NULL)
303		return -ENOMEM;
304	return 0;
305}
306
307static const struct super_operations sockfs_ops = {
308	.alloc_inode	= sock_alloc_inode,
309	.destroy_inode	= sock_destroy_inode,
310	.statfs		= simple_statfs,
311};
312
313/*
314 * sockfs_dname() is called from d_path().
315 */
316static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317{
318	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319				dentry->d_inode->i_ino);
320}
321
322static const struct dentry_operations sockfs_dentry_operations = {
323	.d_dname  = sockfs_dname,
324};
325
326static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327			 int flags, const char *dev_name, void *data)
328{
329	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330		&sockfs_dentry_operations, SOCKFS_MAGIC);
331}
332
333static struct vfsmount *sock_mnt __read_mostly;
334
335static struct file_system_type sock_fs_type = {
336	.name =		"sockfs",
337	.mount =	sockfs_mount,
338	.kill_sb =	kill_anon_super,
339};
340
341/*
342 *	Obtains the first available file descriptor and sets it up for use.
343 *
344 *	These functions create file structures and maps them to fd space
345 *	of the current process. On success it returns file descriptor
346 *	and file struct implicitly stored in sock->file.
347 *	Note that another thread may close file descriptor before we return
348 *	from this function. We use the fact that now we do not refer
349 *	to socket after mapping. If one day we will need it, this
350 *	function will increment ref. count on file by 1.
351 *
352 *	In any case returned fd MAY BE not valid!
353 *	This race condition is unavoidable
354 *	with shared fd spaces, we cannot solve it inside kernel,
355 *	but we take care of internal coherence yet.
356 */
357
358struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359{
360	struct qstr name = { .name = "" };
361	struct path path;
362	struct file *file;
363
364	if (dname) {
365		name.name = dname;
366		name.len = strlen(name.name);
367	} else if (sock->sk) {
368		name.name = sock->sk->sk_prot_creator->name;
369		name.len = strlen(name.name);
370	}
371	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372	if (unlikely(!path.dentry))
373		return ERR_PTR(-ENOMEM);
374	path.mnt = mntget(sock_mnt);
375
376	d_instantiate(path.dentry, SOCK_INODE(sock));
377	SOCK_INODE(sock)->i_fop = &socket_file_ops;
378
379	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380		  &socket_file_ops);
381	if (unlikely(IS_ERR(file))) {
382		/* drop dentry, keep inode */
383		ihold(path.dentry->d_inode);
384		path_put(&path);
385		return file;
386	}
387
388	sock->file = file;
389	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390	file->private_data = sock;
391	return file;
392}
393EXPORT_SYMBOL(sock_alloc_file);
394
395static int sock_map_fd(struct socket *sock, int flags)
396{
397	struct file *newfile;
398	int fd = get_unused_fd_flags(flags);
399	if (unlikely(fd < 0))
400		return fd;
401
402	newfile = sock_alloc_file(sock, flags, NULL);
403	if (likely(!IS_ERR(newfile))) {
404		fd_install(fd, newfile);
405		return fd;
406	}
407
408	put_unused_fd(fd);
409	return PTR_ERR(newfile);
410}
411
412struct socket *sock_from_file(struct file *file, int *err)
413{
414	if (file->f_op == &socket_file_ops)
415		return file->private_data;	/* set in sock_map_fd */
416
417	*err = -ENOTSOCK;
418	return NULL;
419}
420EXPORT_SYMBOL(sock_from_file);
421
422/**
423 *	sockfd_lookup - Go from a file number to its socket slot
424 *	@fd: file handle
425 *	@err: pointer to an error code return
426 *
427 *	The file handle passed in is locked and the socket it is bound
428 *	too is returned. If an error occurs the err pointer is overwritten
429 *	with a negative errno code and NULL is returned. The function checks
430 *	for both invalid handles and passing a handle which is not a socket.
431 *
432 *	On a success the socket object pointer is returned.
433 */
434
435struct socket *sockfd_lookup(int fd, int *err)
436{
437	struct file *file;
438	struct socket *sock;
439
440	file = fget(fd);
441	if (!file) {
442		*err = -EBADF;
443		return NULL;
444	}
445
446	sock = sock_from_file(file, err);
447	if (!sock)
448		fput(file);
449	return sock;
450}
451EXPORT_SYMBOL(sockfd_lookup);
452
453static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454{
455	struct fd f = fdget(fd);
456	struct socket *sock;
457
458	*err = -EBADF;
459	if (f.file) {
460		sock = sock_from_file(f.file, err);
461		if (likely(sock)) {
462			*fput_needed = f.flags;
463			return sock;
464		}
465		fdput(f);
466	}
467	return NULL;
468}
469
470#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473static ssize_t sockfs_getxattr(struct dentry *dentry,
474			       const char *name, void *value, size_t size)
475{
476	const char *proto_name;
477	size_t proto_size;
478	int error;
479
480	error = -ENODATA;
481	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482		proto_name = dentry->d_name.name;
483		proto_size = strlen(proto_name);
484
485		if (value) {
486			error = -ERANGE;
487			if (proto_size + 1 > size)
488				goto out;
489
490			strncpy(value, proto_name, proto_size + 1);
491		}
492		error = proto_size + 1;
493	}
494
495out:
496	return error;
497}
498
499static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500				size_t size)
501{
502	ssize_t len;
503	ssize_t used = 0;
504
505	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506	if (len < 0)
507		return len;
508	used += len;
509	if (buffer) {
510		if (size < used)
511			return -ERANGE;
512		buffer += len;
513	}
514
515	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516	used += len;
517	if (buffer) {
518		if (size < used)
519			return -ERANGE;
520		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521		buffer += len;
522	}
523
524	return used;
525}
526
527static const struct inode_operations sockfs_inode_ops = {
528	.getxattr = sockfs_getxattr,
529	.listxattr = sockfs_listxattr,
530};
531
532/**
533 *	sock_alloc	-	allocate a socket
534 *
535 *	Allocate a new inode and socket object. The two are bound together
536 *	and initialised. The socket is then returned. If we are out of inodes
537 *	NULL is returned.
538 */
539
540static struct socket *sock_alloc(void)
541{
542	struct inode *inode;
543	struct socket *sock;
544
545	inode = new_inode_pseudo(sock_mnt->mnt_sb);
546	if (!inode)
547		return NULL;
548
549	sock = SOCKET_I(inode);
550
551	kmemcheck_annotate_bitfield(sock, type);
552	inode->i_ino = get_next_ino();
553	inode->i_mode = S_IFSOCK | S_IRWXUGO;
554	inode->i_uid = current_fsuid();
555	inode->i_gid = current_fsgid();
556	inode->i_op = &sockfs_inode_ops;
557
558	this_cpu_add(sockets_in_use, 1);
559	return sock;
560}
561
562/*
563 *	In theory you can't get an open on this inode, but /proc provides
564 *	a back door. Remember to keep it shut otherwise you'll let the
565 *	creepy crawlies in.
566 */
567
568static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569{
570	return -ENXIO;
571}
572
573const struct file_operations bad_sock_fops = {
574	.owner = THIS_MODULE,
575	.open = sock_no_open,
576	.llseek = noop_llseek,
577};
578
579/**
580 *	sock_release	-	close a socket
581 *	@sock: socket to close
582 *
583 *	The socket is released from the protocol stack if it has a release
584 *	callback, and the inode is then released if the socket is bound to
585 *	an inode not a file.
586 */
587
588void sock_release(struct socket *sock)
589{
590	if (sock->ops) {
591		struct module *owner = sock->ops->owner;
592
593		sock->ops->release(sock);
594		sock->ops = NULL;
595		module_put(owner);
596	}
597
598	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599		pr_err("%s: fasync list not empty!\n", __func__);
600
601	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602		return;
603
604	this_cpu_sub(sockets_in_use, 1);
605	if (!sock->file) {
606		iput(SOCK_INODE(sock));
607		return;
608	}
609	sock->file = NULL;
610}
611EXPORT_SYMBOL(sock_release);
612
613void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
614{
615	u8 flags = *tx_flags;
616
617	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618		flags |= SKBTX_HW_TSTAMP;
619
620	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621		flags |= SKBTX_SW_TSTAMP;
622
623	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624		flags |= SKBTX_SCHED_TSTAMP;
625
626	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627		flags |= SKBTX_ACK_TSTAMP;
628
629	*tx_flags = flags;
630}
631EXPORT_SYMBOL(__sock_tx_timestamp);
632
633static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
634				       struct msghdr *msg, size_t size)
635{
636	struct sock_iocb *si = kiocb_to_siocb(iocb);
637
638	si->sock = sock;
639	si->scm = NULL;
640	si->msg = msg;
641	si->size = size;
642
643	return sock->ops->sendmsg(iocb, sock, msg, size);
644}
645
646static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
647				 struct msghdr *msg, size_t size)
648{
649	int err = security_socket_sendmsg(sock, msg, size);
650
651	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
652}
653
654int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
655{
656	struct kiocb iocb;
657	struct sock_iocb siocb;
658	int ret;
659
660	init_sync_kiocb(&iocb, NULL);
661	iocb.private = &siocb;
662	ret = __sock_sendmsg(&iocb, sock, msg, size);
663	if (-EIOCBQUEUED == ret)
664		ret = wait_on_sync_kiocb(&iocb);
665	return ret;
666}
667EXPORT_SYMBOL(sock_sendmsg);
668
669static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
670{
671	struct kiocb iocb;
672	struct sock_iocb siocb;
673	int ret;
674
675	init_sync_kiocb(&iocb, NULL);
676	iocb.private = &siocb;
677	ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
678	if (-EIOCBQUEUED == ret)
679		ret = wait_on_sync_kiocb(&iocb);
680	return ret;
681}
682
683int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
684		   struct kvec *vec, size_t num, size_t size)
685{
686	mm_segment_t oldfs = get_fs();
687	int result;
688
689	set_fs(KERNEL_DS);
690	/*
691	 * the following is safe, since for compiler definitions of kvec and
692	 * iovec are identical, yielding the same in-core layout and alignment
693	 */
694	msg->msg_iov = (struct iovec *)vec;
695	msg->msg_iovlen = num;
696	result = sock_sendmsg(sock, msg, size);
697	set_fs(oldfs);
698	return result;
699}
700EXPORT_SYMBOL(kernel_sendmsg);
701
702/*
703 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
704 */
705void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
706	struct sk_buff *skb)
707{
708	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
709	struct scm_timestamping tss;
710	int empty = 1;
711	struct skb_shared_hwtstamps *shhwtstamps =
712		skb_hwtstamps(skb);
713
714	/* Race occurred between timestamp enabling and packet
715	   receiving.  Fill in the current time for now. */
716	if (need_software_tstamp && skb->tstamp.tv64 == 0)
717		__net_timestamp(skb);
718
719	if (need_software_tstamp) {
720		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
721			struct timeval tv;
722			skb_get_timestamp(skb, &tv);
723			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
724				 sizeof(tv), &tv);
725		} else {
726			struct timespec ts;
727			skb_get_timestampns(skb, &ts);
728			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
729				 sizeof(ts), &ts);
730		}
731	}
732
733	memset(&tss, 0, sizeof(tss));
734	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
735	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
736		empty = 0;
737	if (shhwtstamps &&
738	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
739	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
740		empty = 0;
741	if (!empty)
742		put_cmsg(msg, SOL_SOCKET,
743			 SCM_TIMESTAMPING, sizeof(tss), &tss);
744}
745EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
746
747void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
748	struct sk_buff *skb)
749{
750	int ack;
751
752	if (!sock_flag(sk, SOCK_WIFI_STATUS))
753		return;
754	if (!skb->wifi_acked_valid)
755		return;
756
757	ack = skb->wifi_acked;
758
759	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
760}
761EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
762
763static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
764				   struct sk_buff *skb)
765{
766	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
767		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
768			sizeof(__u32), &skb->dropcount);
769}
770
771void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
772	struct sk_buff *skb)
773{
774	sock_recv_timestamp(msg, sk, skb);
775	sock_recv_drops(msg, sk, skb);
776}
777EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
778
779static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
780				       struct msghdr *msg, size_t size, int flags)
781{
782	struct sock_iocb *si = kiocb_to_siocb(iocb);
783
784	si->sock = sock;
785	si->scm = NULL;
786	si->msg = msg;
787	si->size = size;
788	si->flags = flags;
789
790	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
791}
792
793static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
794				 struct msghdr *msg, size_t size, int flags)
795{
796	int err = security_socket_recvmsg(sock, msg, size, flags);
797
798	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
799}
800
801int sock_recvmsg(struct socket *sock, struct msghdr *msg,
802		 size_t size, int flags)
803{
804	struct kiocb iocb;
805	struct sock_iocb siocb;
806	int ret;
807
808	init_sync_kiocb(&iocb, NULL);
809	iocb.private = &siocb;
810	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
811	if (-EIOCBQUEUED == ret)
812		ret = wait_on_sync_kiocb(&iocb);
813	return ret;
814}
815EXPORT_SYMBOL(sock_recvmsg);
816
817static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
818			      size_t size, int flags)
819{
820	struct kiocb iocb;
821	struct sock_iocb siocb;
822	int ret;
823
824	init_sync_kiocb(&iocb, NULL);
825	iocb.private = &siocb;
826	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
827	if (-EIOCBQUEUED == ret)
828		ret = wait_on_sync_kiocb(&iocb);
829	return ret;
830}
831
832/**
833 * kernel_recvmsg - Receive a message from a socket (kernel space)
834 * @sock:       The socket to receive the message from
835 * @msg:        Received message
836 * @vec:        Input s/g array for message data
837 * @num:        Size of input s/g array
838 * @size:       Number of bytes to read
839 * @flags:      Message flags (MSG_DONTWAIT, etc...)
840 *
841 * On return the msg structure contains the scatter/gather array passed in the
842 * vec argument. The array is modified so that it consists of the unfilled
843 * portion of the original array.
844 *
845 * The returned value is the total number of bytes received, or an error.
846 */
847int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
848		   struct kvec *vec, size_t num, size_t size, int flags)
849{
850	mm_segment_t oldfs = get_fs();
851	int result;
852
853	set_fs(KERNEL_DS);
854	/*
855	 * the following is safe, since for compiler definitions of kvec and
856	 * iovec are identical, yielding the same in-core layout and alignment
857	 */
858	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
859	result = sock_recvmsg(sock, msg, size, flags);
860	set_fs(oldfs);
861	return result;
862}
863EXPORT_SYMBOL(kernel_recvmsg);
864
865static ssize_t sock_sendpage(struct file *file, struct page *page,
866			     int offset, size_t size, loff_t *ppos, int more)
867{
868	struct socket *sock;
869	int flags;
870
871	sock = file->private_data;
872
873	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
874	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
875	flags |= more;
876
877	return kernel_sendpage(sock, page, offset, size, flags);
878}
879
880static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
881				struct pipe_inode_info *pipe, size_t len,
882				unsigned int flags)
883{
884	struct socket *sock = file->private_data;
885
886	if (unlikely(!sock->ops->splice_read))
887		return -EINVAL;
888
889	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
890}
891
892static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
893					 struct sock_iocb *siocb)
894{
895	if (!is_sync_kiocb(iocb))
896		BUG();
897
898	siocb->kiocb = iocb;
899	iocb->private = siocb;
900	return siocb;
901}
902
903static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
904		struct file *file, const struct iovec *iov,
905		unsigned long nr_segs)
906{
907	struct socket *sock = file->private_data;
908	size_t size = 0;
909	int i;
910
911	for (i = 0; i < nr_segs; i++)
912		size += iov[i].iov_len;
913
914	msg->msg_name = NULL;
915	msg->msg_namelen = 0;
916	msg->msg_control = NULL;
917	msg->msg_controllen = 0;
918	msg->msg_iov = (struct iovec *)iov;
919	msg->msg_iovlen = nr_segs;
920	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
921
922	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
923}
924
925static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
926				unsigned long nr_segs, loff_t pos)
927{
928	struct sock_iocb siocb, *x;
929
930	if (pos != 0)
931		return -ESPIPE;
932
933	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
934		return 0;
935
936
937	x = alloc_sock_iocb(iocb, &siocb);
938	if (!x)
939		return -ENOMEM;
940	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
941}
942
943static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
944			struct file *file, const struct iovec *iov,
945			unsigned long nr_segs)
946{
947	struct socket *sock = file->private_data;
948	size_t size = 0;
949	int i;
950
951	for (i = 0; i < nr_segs; i++)
952		size += iov[i].iov_len;
953
954	msg->msg_name = NULL;
955	msg->msg_namelen = 0;
956	msg->msg_control = NULL;
957	msg->msg_controllen = 0;
958	msg->msg_iov = (struct iovec *)iov;
959	msg->msg_iovlen = nr_segs;
960	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
961	if (sock->type == SOCK_SEQPACKET)
962		msg->msg_flags |= MSG_EOR;
963
964	return __sock_sendmsg(iocb, sock, msg, size);
965}
966
967static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
968			  unsigned long nr_segs, loff_t pos)
969{
970	struct sock_iocb siocb, *x;
971
972	if (pos != 0)
973		return -ESPIPE;
974
975	x = alloc_sock_iocb(iocb, &siocb);
976	if (!x)
977		return -ENOMEM;
978
979	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
980}
981
982/*
983 * Atomic setting of ioctl hooks to avoid race
984 * with module unload.
985 */
986
987static DEFINE_MUTEX(br_ioctl_mutex);
988static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
989
990void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
991{
992	mutex_lock(&br_ioctl_mutex);
993	br_ioctl_hook = hook;
994	mutex_unlock(&br_ioctl_mutex);
995}
996EXPORT_SYMBOL(brioctl_set);
997
998static DEFINE_MUTEX(vlan_ioctl_mutex);
999static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1000
1001void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1002{
1003	mutex_lock(&vlan_ioctl_mutex);
1004	vlan_ioctl_hook = hook;
1005	mutex_unlock(&vlan_ioctl_mutex);
1006}
1007EXPORT_SYMBOL(vlan_ioctl_set);
1008
1009static DEFINE_MUTEX(dlci_ioctl_mutex);
1010static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1011
1012void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1013{
1014	mutex_lock(&dlci_ioctl_mutex);
1015	dlci_ioctl_hook = hook;
1016	mutex_unlock(&dlci_ioctl_mutex);
1017}
1018EXPORT_SYMBOL(dlci_ioctl_set);
1019
1020static long sock_do_ioctl(struct net *net, struct socket *sock,
1021				 unsigned int cmd, unsigned long arg)
1022{
1023	int err;
1024	void __user *argp = (void __user *)arg;
1025
1026	err = sock->ops->ioctl(sock, cmd, arg);
1027
1028	/*
1029	 * If this ioctl is unknown try to hand it down
1030	 * to the NIC driver.
1031	 */
1032	if (err == -ENOIOCTLCMD)
1033		err = dev_ioctl(net, cmd, argp);
1034
1035	return err;
1036}
1037
1038/*
1039 *	With an ioctl, arg may well be a user mode pointer, but we don't know
1040 *	what to do with it - that's up to the protocol still.
1041 */
1042
1043static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1044{
1045	struct socket *sock;
1046	struct sock *sk;
1047	void __user *argp = (void __user *)arg;
1048	int pid, err;
1049	struct net *net;
1050
1051	sock = file->private_data;
1052	sk = sock->sk;
1053	net = sock_net(sk);
1054	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1055		err = dev_ioctl(net, cmd, argp);
1056	} else
1057#ifdef CONFIG_WEXT_CORE
1058	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1059		err = dev_ioctl(net, cmd, argp);
1060	} else
1061#endif
1062		switch (cmd) {
1063		case FIOSETOWN:
1064		case SIOCSPGRP:
1065			err = -EFAULT;
1066			if (get_user(pid, (int __user *)argp))
1067				break;
1068			f_setown(sock->file, pid, 1);
1069			err = 0;
1070			break;
1071		case FIOGETOWN:
1072		case SIOCGPGRP:
1073			err = put_user(f_getown(sock->file),
1074				       (int __user *)argp);
1075			break;
1076		case SIOCGIFBR:
1077		case SIOCSIFBR:
1078		case SIOCBRADDBR:
1079		case SIOCBRDELBR:
1080			err = -ENOPKG;
1081			if (!br_ioctl_hook)
1082				request_module("bridge");
1083
1084			mutex_lock(&br_ioctl_mutex);
1085			if (br_ioctl_hook)
1086				err = br_ioctl_hook(net, cmd, argp);
1087			mutex_unlock(&br_ioctl_mutex);
1088			break;
1089		case SIOCGIFVLAN:
1090		case SIOCSIFVLAN:
1091			err = -ENOPKG;
1092			if (!vlan_ioctl_hook)
1093				request_module("8021q");
1094
1095			mutex_lock(&vlan_ioctl_mutex);
1096			if (vlan_ioctl_hook)
1097				err = vlan_ioctl_hook(net, argp);
1098			mutex_unlock(&vlan_ioctl_mutex);
1099			break;
1100		case SIOCADDDLCI:
1101		case SIOCDELDLCI:
1102			err = -ENOPKG;
1103			if (!dlci_ioctl_hook)
1104				request_module("dlci");
1105
1106			mutex_lock(&dlci_ioctl_mutex);
1107			if (dlci_ioctl_hook)
1108				err = dlci_ioctl_hook(cmd, argp);
1109			mutex_unlock(&dlci_ioctl_mutex);
1110			break;
1111		default:
1112			err = sock_do_ioctl(net, sock, cmd, arg);
1113			break;
1114		}
1115	return err;
1116}
1117
1118int sock_create_lite(int family, int type, int protocol, struct socket **res)
1119{
1120	int err;
1121	struct socket *sock = NULL;
1122
1123	err = security_socket_create(family, type, protocol, 1);
1124	if (err)
1125		goto out;
1126
1127	sock = sock_alloc();
1128	if (!sock) {
1129		err = -ENOMEM;
1130		goto out;
1131	}
1132
1133	sock->type = type;
1134	err = security_socket_post_create(sock, family, type, protocol, 1);
1135	if (err)
1136		goto out_release;
1137
1138out:
1139	*res = sock;
1140	return err;
1141out_release:
1142	sock_release(sock);
1143	sock = NULL;
1144	goto out;
1145}
1146EXPORT_SYMBOL(sock_create_lite);
1147
1148/* No kernel lock held - perfect */
1149static unsigned int sock_poll(struct file *file, poll_table *wait)
1150{
1151	unsigned int busy_flag = 0;
1152	struct socket *sock;
1153
1154	/*
1155	 *      We can't return errors to poll, so it's either yes or no.
1156	 */
1157	sock = file->private_data;
1158
1159	if (sk_can_busy_loop(sock->sk)) {
1160		/* this socket can poll_ll so tell the system call */
1161		busy_flag = POLL_BUSY_LOOP;
1162
1163		/* once, only if requested by syscall */
1164		if (wait && (wait->_key & POLL_BUSY_LOOP))
1165			sk_busy_loop(sock->sk, 1);
1166	}
1167
1168	return busy_flag | sock->ops->poll(file, sock, wait);
1169}
1170
1171static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1172{
1173	struct socket *sock = file->private_data;
1174
1175	return sock->ops->mmap(file, sock, vma);
1176}
1177
1178static int sock_close(struct inode *inode, struct file *filp)
1179{
1180	sock_release(SOCKET_I(inode));
1181	return 0;
1182}
1183
1184/*
1185 *	Update the socket async list
1186 *
1187 *	Fasync_list locking strategy.
1188 *
1189 *	1. fasync_list is modified only under process context socket lock
1190 *	   i.e. under semaphore.
1191 *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1192 *	   or under socket lock
1193 */
1194
1195static int sock_fasync(int fd, struct file *filp, int on)
1196{
1197	struct socket *sock = filp->private_data;
1198	struct sock *sk = sock->sk;
1199	struct socket_wq *wq;
1200
1201	if (sk == NULL)
1202		return -EINVAL;
1203
1204	lock_sock(sk);
1205	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1206	fasync_helper(fd, filp, on, &wq->fasync_list);
1207
1208	if (!wq->fasync_list)
1209		sock_reset_flag(sk, SOCK_FASYNC);
1210	else
1211		sock_set_flag(sk, SOCK_FASYNC);
1212
1213	release_sock(sk);
1214	return 0;
1215}
1216
1217/* This function may be called only under socket lock or callback_lock or rcu_lock */
1218
1219int sock_wake_async(struct socket *sock, int how, int band)
1220{
1221	struct socket_wq *wq;
1222
1223	if (!sock)
1224		return -1;
1225	rcu_read_lock();
1226	wq = rcu_dereference(sock->wq);
1227	if (!wq || !wq->fasync_list) {
1228		rcu_read_unlock();
1229		return -1;
1230	}
1231	switch (how) {
1232	case SOCK_WAKE_WAITD:
1233		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1234			break;
1235		goto call_kill;
1236	case SOCK_WAKE_SPACE:
1237		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1238			break;
1239		/* fall through */
1240	case SOCK_WAKE_IO:
1241call_kill:
1242		kill_fasync(&wq->fasync_list, SIGIO, band);
1243		break;
1244	case SOCK_WAKE_URG:
1245		kill_fasync(&wq->fasync_list, SIGURG, band);
1246	}
1247	rcu_read_unlock();
1248	return 0;
1249}
1250EXPORT_SYMBOL(sock_wake_async);
1251
1252int __sock_create(struct net *net, int family, int type, int protocol,
1253			 struct socket **res, int kern)
1254{
1255	int err;
1256	struct socket *sock;
1257	const struct net_proto_family *pf;
1258
1259	/*
1260	 *      Check protocol is in range
1261	 */
1262	if (family < 0 || family >= NPROTO)
1263		return -EAFNOSUPPORT;
1264	if (type < 0 || type >= SOCK_MAX)
1265		return -EINVAL;
1266
1267	/* Compatibility.
1268
1269	   This uglymoron is moved from INET layer to here to avoid
1270	   deadlock in module load.
1271	 */
1272	if (family == PF_INET && type == SOCK_PACKET) {
1273		static int warned;
1274		if (!warned) {
1275			warned = 1;
1276			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1277				current->comm);
1278		}
1279		family = PF_PACKET;
1280	}
1281
1282	err = security_socket_create(family, type, protocol, kern);
1283	if (err)
1284		return err;
1285
1286	/*
1287	 *	Allocate the socket and allow the family to set things up. if
1288	 *	the protocol is 0, the family is instructed to select an appropriate
1289	 *	default.
1290	 */
1291	sock = sock_alloc();
1292	if (!sock) {
1293		net_warn_ratelimited("socket: no more sockets\n");
1294		return -ENFILE;	/* Not exactly a match, but its the
1295				   closest posix thing */
1296	}
1297
1298	sock->type = type;
1299
1300#ifdef CONFIG_MODULES
1301	/* Attempt to load a protocol module if the find failed.
1302	 *
1303	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1304	 * requested real, full-featured networking support upon configuration.
1305	 * Otherwise module support will break!
1306	 */
1307	if (rcu_access_pointer(net_families[family]) == NULL)
1308		request_module("net-pf-%d", family);
1309#endif
1310
1311	rcu_read_lock();
1312	pf = rcu_dereference(net_families[family]);
1313	err = -EAFNOSUPPORT;
1314	if (!pf)
1315		goto out_release;
1316
1317	/*
1318	 * We will call the ->create function, that possibly is in a loadable
1319	 * module, so we have to bump that loadable module refcnt first.
1320	 */
1321	if (!try_module_get(pf->owner))
1322		goto out_release;
1323
1324	/* Now protected by module ref count */
1325	rcu_read_unlock();
1326
1327	err = pf->create(net, sock, protocol, kern);
1328	if (err < 0)
1329		goto out_module_put;
1330
1331	/*
1332	 * Now to bump the refcnt of the [loadable] module that owns this
1333	 * socket at sock_release time we decrement its refcnt.
1334	 */
1335	if (!try_module_get(sock->ops->owner))
1336		goto out_module_busy;
1337
1338	/*
1339	 * Now that we're done with the ->create function, the [loadable]
1340	 * module can have its refcnt decremented
1341	 */
1342	module_put(pf->owner);
1343	err = security_socket_post_create(sock, family, type, protocol, kern);
1344	if (err)
1345		goto out_sock_release;
1346	*res = sock;
1347
1348	return 0;
1349
1350out_module_busy:
1351	err = -EAFNOSUPPORT;
1352out_module_put:
1353	sock->ops = NULL;
1354	module_put(pf->owner);
1355out_sock_release:
1356	sock_release(sock);
1357	return err;
1358
1359out_release:
1360	rcu_read_unlock();
1361	goto out_sock_release;
1362}
1363EXPORT_SYMBOL(__sock_create);
1364
1365int sock_create(int family, int type, int protocol, struct socket **res)
1366{
1367	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1368}
1369EXPORT_SYMBOL(sock_create);
1370
1371int sock_create_kern(int family, int type, int protocol, struct socket **res)
1372{
1373	return __sock_create(&init_net, family, type, protocol, res, 1);
1374}
1375EXPORT_SYMBOL(sock_create_kern);
1376
1377SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1378{
1379	int retval;
1380	struct socket *sock;
1381	int flags;
1382
1383	/* Check the SOCK_* constants for consistency.  */
1384	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1385	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1386	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1387	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1388
1389	flags = type & ~SOCK_TYPE_MASK;
1390	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1391		return -EINVAL;
1392	type &= SOCK_TYPE_MASK;
1393
1394	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1395		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1396
1397	retval = sock_create(family, type, protocol, &sock);
1398	if (retval < 0)
1399		goto out;
1400
1401	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1402	if (retval < 0)
1403		goto out_release;
1404
1405out:
1406	/* It may be already another descriptor 8) Not kernel problem. */
1407	return retval;
1408
1409out_release:
1410	sock_release(sock);
1411	return retval;
1412}
1413
1414/*
1415 *	Create a pair of connected sockets.
1416 */
1417
1418SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1419		int __user *, usockvec)
1420{
1421	struct socket *sock1, *sock2;
1422	int fd1, fd2, err;
1423	struct file *newfile1, *newfile2;
1424	int flags;
1425
1426	flags = type & ~SOCK_TYPE_MASK;
1427	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1428		return -EINVAL;
1429	type &= SOCK_TYPE_MASK;
1430
1431	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1432		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1433
1434	/*
1435	 * Obtain the first socket and check if the underlying protocol
1436	 * supports the socketpair call.
1437	 */
1438
1439	err = sock_create(family, type, protocol, &sock1);
1440	if (err < 0)
1441		goto out;
1442
1443	err = sock_create(family, type, protocol, &sock2);
1444	if (err < 0)
1445		goto out_release_1;
1446
1447	err = sock1->ops->socketpair(sock1, sock2);
1448	if (err < 0)
1449		goto out_release_both;
1450
1451	fd1 = get_unused_fd_flags(flags);
1452	if (unlikely(fd1 < 0)) {
1453		err = fd1;
1454		goto out_release_both;
1455	}
1456
1457	fd2 = get_unused_fd_flags(flags);
1458	if (unlikely(fd2 < 0)) {
1459		err = fd2;
1460		goto out_put_unused_1;
1461	}
1462
1463	newfile1 = sock_alloc_file(sock1, flags, NULL);
1464	if (unlikely(IS_ERR(newfile1))) {
1465		err = PTR_ERR(newfile1);
1466		goto out_put_unused_both;
1467	}
1468
1469	newfile2 = sock_alloc_file(sock2, flags, NULL);
1470	if (IS_ERR(newfile2)) {
1471		err = PTR_ERR(newfile2);
1472		goto out_fput_1;
1473	}
1474
1475	err = put_user(fd1, &usockvec[0]);
1476	if (err)
1477		goto out_fput_both;
1478
1479	err = put_user(fd2, &usockvec[1]);
1480	if (err)
1481		goto out_fput_both;
1482
1483	audit_fd_pair(fd1, fd2);
1484
1485	fd_install(fd1, newfile1);
1486	fd_install(fd2, newfile2);
1487	/* fd1 and fd2 may be already another descriptors.
1488	 * Not kernel problem.
1489	 */
1490
1491	return 0;
1492
1493out_fput_both:
1494	fput(newfile2);
1495	fput(newfile1);
1496	put_unused_fd(fd2);
1497	put_unused_fd(fd1);
1498	goto out;
1499
1500out_fput_1:
1501	fput(newfile1);
1502	put_unused_fd(fd2);
1503	put_unused_fd(fd1);
1504	sock_release(sock2);
1505	goto out;
1506
1507out_put_unused_both:
1508	put_unused_fd(fd2);
1509out_put_unused_1:
1510	put_unused_fd(fd1);
1511out_release_both:
1512	sock_release(sock2);
1513out_release_1:
1514	sock_release(sock1);
1515out:
1516	return err;
1517}
1518
1519/*
1520 *	Bind a name to a socket. Nothing much to do here since it's
1521 *	the protocol's responsibility to handle the local address.
1522 *
1523 *	We move the socket address to kernel space before we call
1524 *	the protocol layer (having also checked the address is ok).
1525 */
1526
1527SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1528{
1529	struct socket *sock;
1530	struct sockaddr_storage address;
1531	int err, fput_needed;
1532
1533	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1534	if (sock) {
1535		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1536		if (err >= 0) {
1537			err = security_socket_bind(sock,
1538						   (struct sockaddr *)&address,
1539						   addrlen);
1540			if (!err)
1541				err = sock->ops->bind(sock,
1542						      (struct sockaddr *)
1543						      &address, addrlen);
1544		}
1545		fput_light(sock->file, fput_needed);
1546	}
1547	return err;
1548}
1549
1550/*
1551 *	Perform a listen. Basically, we allow the protocol to do anything
1552 *	necessary for a listen, and if that works, we mark the socket as
1553 *	ready for listening.
1554 */
1555
1556SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1557{
1558	struct socket *sock;
1559	int err, fput_needed;
1560	int somaxconn;
1561
1562	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1563	if (sock) {
1564		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1565		if ((unsigned int)backlog > somaxconn)
1566			backlog = somaxconn;
1567
1568		err = security_socket_listen(sock, backlog);
1569		if (!err)
1570			err = sock->ops->listen(sock, backlog);
1571
1572		fput_light(sock->file, fput_needed);
1573	}
1574	return err;
1575}
1576
1577/*
1578 *	For accept, we attempt to create a new socket, set up the link
1579 *	with the client, wake up the client, then return the new
1580 *	connected fd. We collect the address of the connector in kernel
1581 *	space and move it to user at the very end. This is unclean because
1582 *	we open the socket then return an error.
1583 *
1584 *	1003.1g adds the ability to recvmsg() to query connection pending
1585 *	status to recvmsg. We need to add that support in a way thats
1586 *	clean when we restucture accept also.
1587 */
1588
1589SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1590		int __user *, upeer_addrlen, int, flags)
1591{
1592	struct socket *sock, *newsock;
1593	struct file *newfile;
1594	int err, len, newfd, fput_needed;
1595	struct sockaddr_storage address;
1596
1597	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1598		return -EINVAL;
1599
1600	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1601		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1602
1603	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1604	if (!sock)
1605		goto out;
1606
1607	err = -ENFILE;
1608	newsock = sock_alloc();
1609	if (!newsock)
1610		goto out_put;
1611
1612	newsock->type = sock->type;
1613	newsock->ops = sock->ops;
1614
1615	/*
1616	 * We don't need try_module_get here, as the listening socket (sock)
1617	 * has the protocol module (sock->ops->owner) held.
1618	 */
1619	__module_get(newsock->ops->owner);
1620
1621	newfd = get_unused_fd_flags(flags);
1622	if (unlikely(newfd < 0)) {
1623		err = newfd;
1624		sock_release(newsock);
1625		goto out_put;
1626	}
1627	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1628	if (unlikely(IS_ERR(newfile))) {
1629		err = PTR_ERR(newfile);
1630		put_unused_fd(newfd);
1631		sock_release(newsock);
1632		goto out_put;
1633	}
1634
1635	err = security_socket_accept(sock, newsock);
1636	if (err)
1637		goto out_fd;
1638
1639	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1640	if (err < 0)
1641		goto out_fd;
1642
1643	if (upeer_sockaddr) {
1644		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1645					  &len, 2) < 0) {
1646			err = -ECONNABORTED;
1647			goto out_fd;
1648		}
1649		err = move_addr_to_user(&address,
1650					len, upeer_sockaddr, upeer_addrlen);
1651		if (err < 0)
1652			goto out_fd;
1653	}
1654
1655	/* File flags are not inherited via accept() unlike another OSes. */
1656
1657	fd_install(newfd, newfile);
1658	err = newfd;
1659
1660out_put:
1661	fput_light(sock->file, fput_needed);
1662out:
1663	return err;
1664out_fd:
1665	fput(newfile);
1666	put_unused_fd(newfd);
1667	goto out_put;
1668}
1669
1670SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1671		int __user *, upeer_addrlen)
1672{
1673	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1674}
1675
1676/*
1677 *	Attempt to connect to a socket with the server address.  The address
1678 *	is in user space so we verify it is OK and move it to kernel space.
1679 *
1680 *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1681 *	break bindings
1682 *
1683 *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1684 *	other SEQPACKET protocols that take time to connect() as it doesn't
1685 *	include the -EINPROGRESS status for such sockets.
1686 */
1687
1688SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1689		int, addrlen)
1690{
1691	struct socket *sock;
1692	struct sockaddr_storage address;
1693	int err, fput_needed;
1694
1695	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696	if (!sock)
1697		goto out;
1698	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1699	if (err < 0)
1700		goto out_put;
1701
1702	err =
1703	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1704	if (err)
1705		goto out_put;
1706
1707	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1708				 sock->file->f_flags);
1709out_put:
1710	fput_light(sock->file, fput_needed);
1711out:
1712	return err;
1713}
1714
1715/*
1716 *	Get the local address ('name') of a socket object. Move the obtained
1717 *	name to user space.
1718 */
1719
1720SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1721		int __user *, usockaddr_len)
1722{
1723	struct socket *sock;
1724	struct sockaddr_storage address;
1725	int len, err, fput_needed;
1726
1727	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1728	if (!sock)
1729		goto out;
1730
1731	err = security_socket_getsockname(sock);
1732	if (err)
1733		goto out_put;
1734
1735	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1736	if (err)
1737		goto out_put;
1738	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1739
1740out_put:
1741	fput_light(sock->file, fput_needed);
1742out:
1743	return err;
1744}
1745
1746/*
1747 *	Get the remote address ('name') of a socket object. Move the obtained
1748 *	name to user space.
1749 */
1750
1751SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1752		int __user *, usockaddr_len)
1753{
1754	struct socket *sock;
1755	struct sockaddr_storage address;
1756	int len, err, fput_needed;
1757
1758	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1759	if (sock != NULL) {
1760		err = security_socket_getpeername(sock);
1761		if (err) {
1762			fput_light(sock->file, fput_needed);
1763			return err;
1764		}
1765
1766		err =
1767		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1768				       1);
1769		if (!err)
1770			err = move_addr_to_user(&address, len, usockaddr,
1771						usockaddr_len);
1772		fput_light(sock->file, fput_needed);
1773	}
1774	return err;
1775}
1776
1777/*
1778 *	Send a datagram to a given address. We move the address into kernel
1779 *	space and check the user space data area is readable before invoking
1780 *	the protocol.
1781 */
1782
1783SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1784		unsigned int, flags, struct sockaddr __user *, addr,
1785		int, addr_len)
1786{
1787	struct socket *sock;
1788	struct sockaddr_storage address;
1789	int err;
1790	struct msghdr msg;
1791	struct iovec iov;
1792	int fput_needed;
1793
1794	if (len > INT_MAX)
1795		len = INT_MAX;
1796	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1797	if (!sock)
1798		goto out;
1799
1800	iov.iov_base = buff;
1801	iov.iov_len = len;
1802	msg.msg_name = NULL;
1803	msg.msg_iov = &iov;
1804	msg.msg_iovlen = 1;
1805	msg.msg_control = NULL;
1806	msg.msg_controllen = 0;
1807	msg.msg_namelen = 0;
1808	if (addr) {
1809		err = move_addr_to_kernel(addr, addr_len, &address);
1810		if (err < 0)
1811			goto out_put;
1812		msg.msg_name = (struct sockaddr *)&address;
1813		msg.msg_namelen = addr_len;
1814	}
1815	if (sock->file->f_flags & O_NONBLOCK)
1816		flags |= MSG_DONTWAIT;
1817	msg.msg_flags = flags;
1818	err = sock_sendmsg(sock, &msg, len);
1819
1820out_put:
1821	fput_light(sock->file, fput_needed);
1822out:
1823	return err;
1824}
1825
1826/*
1827 *	Send a datagram down a socket.
1828 */
1829
1830SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1831		unsigned int, flags)
1832{
1833	return sys_sendto(fd, buff, len, flags, NULL, 0);
1834}
1835
1836/*
1837 *	Receive a frame from the socket and optionally record the address of the
1838 *	sender. We verify the buffers are writable and if needed move the
1839 *	sender address from kernel to user space.
1840 */
1841
1842SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1843		unsigned int, flags, struct sockaddr __user *, addr,
1844		int __user *, addr_len)
1845{
1846	struct socket *sock;
1847	struct iovec iov;
1848	struct msghdr msg;
1849	struct sockaddr_storage address;
1850	int err, err2;
1851	int fput_needed;
1852
1853	if (size > INT_MAX)
1854		size = INT_MAX;
1855	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1856	if (!sock)
1857		goto out;
1858
1859	msg.msg_control = NULL;
1860	msg.msg_controllen = 0;
1861	msg.msg_iovlen = 1;
1862	msg.msg_iov = &iov;
1863	iov.iov_len = size;
1864	iov.iov_base = ubuf;
1865	/* Save some cycles and don't copy the address if not needed */
1866	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1867	/* We assume all kernel code knows the size of sockaddr_storage */
1868	msg.msg_namelen = 0;
1869	if (sock->file->f_flags & O_NONBLOCK)
1870		flags |= MSG_DONTWAIT;
1871	err = sock_recvmsg(sock, &msg, size, flags);
1872
1873	if (err >= 0 && addr != NULL) {
1874		err2 = move_addr_to_user(&address,
1875					 msg.msg_namelen, addr, addr_len);
1876		if (err2 < 0)
1877			err = err2;
1878	}
1879
1880	fput_light(sock->file, fput_needed);
1881out:
1882	return err;
1883}
1884
1885/*
1886 *	Receive a datagram from a socket.
1887 */
1888
1889SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1890		unsigned int, flags)
1891{
1892	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1893}
1894
1895/*
1896 *	Set a socket option. Because we don't know the option lengths we have
1897 *	to pass the user mode parameter for the protocols to sort out.
1898 */
1899
1900SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1901		char __user *, optval, int, optlen)
1902{
1903	int err, fput_needed;
1904	struct socket *sock;
1905
1906	if (optlen < 0)
1907		return -EINVAL;
1908
1909	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1910	if (sock != NULL) {
1911		err = security_socket_setsockopt(sock, level, optname);
1912		if (err)
1913			goto out_put;
1914
1915		if (level == SOL_SOCKET)
1916			err =
1917			    sock_setsockopt(sock, level, optname, optval,
1918					    optlen);
1919		else
1920			err =
1921			    sock->ops->setsockopt(sock, level, optname, optval,
1922						  optlen);
1923out_put:
1924		fput_light(sock->file, fput_needed);
1925	}
1926	return err;
1927}
1928
1929/*
1930 *	Get a socket option. Because we don't know the option lengths we have
1931 *	to pass a user mode parameter for the protocols to sort out.
1932 */
1933
1934SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1935		char __user *, optval, int __user *, optlen)
1936{
1937	int err, fput_needed;
1938	struct socket *sock;
1939
1940	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1941	if (sock != NULL) {
1942		err = security_socket_getsockopt(sock, level, optname);
1943		if (err)
1944			goto out_put;
1945
1946		if (level == SOL_SOCKET)
1947			err =
1948			    sock_getsockopt(sock, level, optname, optval,
1949					    optlen);
1950		else
1951			err =
1952			    sock->ops->getsockopt(sock, level, optname, optval,
1953						  optlen);
1954out_put:
1955		fput_light(sock->file, fput_needed);
1956	}
1957	return err;
1958}
1959
1960/*
1961 *	Shutdown a socket.
1962 */
1963
1964SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1965{
1966	int err, fput_needed;
1967	struct socket *sock;
1968
1969	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1970	if (sock != NULL) {
1971		err = security_socket_shutdown(sock, how);
1972		if (!err)
1973			err = sock->ops->shutdown(sock, how);
1974		fput_light(sock->file, fput_needed);
1975	}
1976	return err;
1977}
1978
1979/* A couple of helpful macros for getting the address of the 32/64 bit
1980 * fields which are the same type (int / unsigned) on our platforms.
1981 */
1982#define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1983#define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1984#define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1985
1986struct used_address {
1987	struct sockaddr_storage name;
1988	unsigned int name_len;
1989};
1990
1991static int copy_msghdr_from_user(struct msghdr *kmsg,
1992				 struct msghdr __user *umsg)
1993{
1994	if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1995		return -EFAULT;
1996
1997	if (kmsg->msg_name == NULL)
1998		kmsg->msg_namelen = 0;
1999
2000	if (kmsg->msg_namelen < 0)
2001		return -EINVAL;
2002
2003	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2004		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2005	return 0;
2006}
2007
2008static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2009			 struct msghdr *msg_sys, unsigned int flags,
2010			 struct used_address *used_address)
2011{
2012	struct compat_msghdr __user *msg_compat =
2013	    (struct compat_msghdr __user *)msg;
2014	struct sockaddr_storage address;
2015	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2016	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2017	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2018	/* 20 is size of ipv6_pktinfo */
2019	unsigned char *ctl_buf = ctl;
2020	int err, ctl_len, total_len;
2021
2022	err = -EFAULT;
2023	if (MSG_CMSG_COMPAT & flags) {
2024		if (get_compat_msghdr(msg_sys, msg_compat))
2025			return -EFAULT;
2026	} else {
2027		err = copy_msghdr_from_user(msg_sys, msg);
2028		if (err)
2029			return err;
2030	}
2031
2032	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2033		err = -EMSGSIZE;
2034		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2035			goto out;
2036		err = -ENOMEM;
2037		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2038			      GFP_KERNEL);
2039		if (!iov)
2040			goto out;
2041	}
2042
2043	/* This will also move the address data into kernel space */
2044	if (MSG_CMSG_COMPAT & flags) {
2045		err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2046	} else
2047		err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2048	if (err < 0)
2049		goto out_freeiov;
2050	total_len = err;
2051
2052	err = -ENOBUFS;
2053
2054	if (msg_sys->msg_controllen > INT_MAX)
2055		goto out_freeiov;
2056	ctl_len = msg_sys->msg_controllen;
2057	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2058		err =
2059		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2060						     sizeof(ctl));
2061		if (err)
2062			goto out_freeiov;
2063		ctl_buf = msg_sys->msg_control;
2064		ctl_len = msg_sys->msg_controllen;
2065	} else if (ctl_len) {
2066		if (ctl_len > sizeof(ctl)) {
2067			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2068			if (ctl_buf == NULL)
2069				goto out_freeiov;
2070		}
2071		err = -EFAULT;
2072		/*
2073		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2074		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2075		 * checking falls down on this.
2076		 */
2077		if (copy_from_user(ctl_buf,
2078				   (void __user __force *)msg_sys->msg_control,
2079				   ctl_len))
2080			goto out_freectl;
2081		msg_sys->msg_control = ctl_buf;
2082	}
2083	msg_sys->msg_flags = flags;
2084
2085	if (sock->file->f_flags & O_NONBLOCK)
2086		msg_sys->msg_flags |= MSG_DONTWAIT;
2087	/*
2088	 * If this is sendmmsg() and current destination address is same as
2089	 * previously succeeded address, omit asking LSM's decision.
2090	 * used_address->name_len is initialized to UINT_MAX so that the first
2091	 * destination address never matches.
2092	 */
2093	if (used_address && msg_sys->msg_name &&
2094	    used_address->name_len == msg_sys->msg_namelen &&
2095	    !memcmp(&used_address->name, msg_sys->msg_name,
2096		    used_address->name_len)) {
2097		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2098		goto out_freectl;
2099	}
2100	err = sock_sendmsg(sock, msg_sys, total_len);
2101	/*
2102	 * If this is sendmmsg() and sending to current destination address was
2103	 * successful, remember it.
2104	 */
2105	if (used_address && err >= 0) {
2106		used_address->name_len = msg_sys->msg_namelen;
2107		if (msg_sys->msg_name)
2108			memcpy(&used_address->name, msg_sys->msg_name,
2109			       used_address->name_len);
2110	}
2111
2112out_freectl:
2113	if (ctl_buf != ctl)
2114		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2115out_freeiov:
2116	if (iov != iovstack)
2117		kfree(iov);
2118out:
2119	return err;
2120}
2121
2122/*
2123 *	BSD sendmsg interface
2124 */
2125
2126long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2127{
2128	int fput_needed, err;
2129	struct msghdr msg_sys;
2130	struct socket *sock;
2131
2132	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2133	if (!sock)
2134		goto out;
2135
2136	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2137
2138	fput_light(sock->file, fput_needed);
2139out:
2140	return err;
2141}
2142
2143SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2144{
2145	if (flags & MSG_CMSG_COMPAT)
2146		return -EINVAL;
2147	return __sys_sendmsg(fd, msg, flags);
2148}
2149
2150/*
2151 *	Linux sendmmsg interface
2152 */
2153
2154int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2155		   unsigned int flags)
2156{
2157	int fput_needed, err, datagrams;
2158	struct socket *sock;
2159	struct mmsghdr __user *entry;
2160	struct compat_mmsghdr __user *compat_entry;
2161	struct msghdr msg_sys;
2162	struct used_address used_address;
2163
2164	if (vlen > UIO_MAXIOV)
2165		vlen = UIO_MAXIOV;
2166
2167	datagrams = 0;
2168
2169	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2170	if (!sock)
2171		return err;
2172
2173	used_address.name_len = UINT_MAX;
2174	entry = mmsg;
2175	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2176	err = 0;
2177
2178	while (datagrams < vlen) {
2179		if (MSG_CMSG_COMPAT & flags) {
2180			err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2181					     &msg_sys, flags, &used_address);
2182			if (err < 0)
2183				break;
2184			err = __put_user(err, &compat_entry->msg_len);
2185			++compat_entry;
2186		} else {
2187			err = ___sys_sendmsg(sock,
2188					     (struct msghdr __user *)entry,
2189					     &msg_sys, flags, &used_address);
2190			if (err < 0)
2191				break;
2192			err = put_user(err, &entry->msg_len);
2193			++entry;
2194		}
2195
2196		if (err)
2197			break;
2198		++datagrams;
2199	}
2200
2201	fput_light(sock->file, fput_needed);
2202
2203	/* We only return an error if no datagrams were able to be sent */
2204	if (datagrams != 0)
2205		return datagrams;
2206
2207	return err;
2208}
2209
2210SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2211		unsigned int, vlen, unsigned int, flags)
2212{
2213	if (flags & MSG_CMSG_COMPAT)
2214		return -EINVAL;
2215	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2216}
2217
2218static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2219			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2220{
2221	struct compat_msghdr __user *msg_compat =
2222	    (struct compat_msghdr __user *)msg;
2223	struct iovec iovstack[UIO_FASTIOV];
2224	struct iovec *iov = iovstack;
2225	unsigned long cmsg_ptr;
2226	int err, total_len, len;
2227
2228	/* kernel mode address */
2229	struct sockaddr_storage addr;
2230
2231	/* user mode address pointers */
2232	struct sockaddr __user *uaddr;
2233	int __user *uaddr_len;
2234
2235	if (MSG_CMSG_COMPAT & flags) {
2236		if (get_compat_msghdr(msg_sys, msg_compat))
2237			return -EFAULT;
2238	} else {
2239		err = copy_msghdr_from_user(msg_sys, msg);
2240		if (err)
2241			return err;
2242	}
2243
2244	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2245		err = -EMSGSIZE;
2246		if (msg_sys->msg_iovlen > UIO_MAXIOV)
2247			goto out;
2248		err = -ENOMEM;
2249		iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2250			      GFP_KERNEL);
2251		if (!iov)
2252			goto out;
2253	}
2254
2255	/* Save the user-mode address (verify_iovec will change the
2256	 * kernel msghdr to use the kernel address space)
2257	 */
2258	uaddr = (__force void __user *)msg_sys->msg_name;
2259	uaddr_len = COMPAT_NAMELEN(msg);
2260	if (MSG_CMSG_COMPAT & flags)
2261		err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2262	else
2263		err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2264	if (err < 0)
2265		goto out_freeiov;
2266	total_len = err;
2267
2268	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2269	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2270
2271	/* We assume all kernel code knows the size of sockaddr_storage */
2272	msg_sys->msg_namelen = 0;
2273
2274	if (sock->file->f_flags & O_NONBLOCK)
2275		flags |= MSG_DONTWAIT;
2276	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2277							  total_len, flags);
2278	if (err < 0)
2279		goto out_freeiov;
2280	len = err;
2281
2282	if (uaddr != NULL) {
2283		err = move_addr_to_user(&addr,
2284					msg_sys->msg_namelen, uaddr,
2285					uaddr_len);
2286		if (err < 0)
2287			goto out_freeiov;
2288	}
2289	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2290			 COMPAT_FLAGS(msg));
2291	if (err)
2292		goto out_freeiov;
2293	if (MSG_CMSG_COMPAT & flags)
2294		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2295				 &msg_compat->msg_controllen);
2296	else
2297		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2298				 &msg->msg_controllen);
2299	if (err)
2300		goto out_freeiov;
2301	err = len;
2302
2303out_freeiov:
2304	if (iov != iovstack)
2305		kfree(iov);
2306out:
2307	return err;
2308}
2309
2310/*
2311 *	BSD recvmsg interface
2312 */
2313
2314long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2315{
2316	int fput_needed, err;
2317	struct msghdr msg_sys;
2318	struct socket *sock;
2319
2320	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2321	if (!sock)
2322		goto out;
2323
2324	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2325
2326	fput_light(sock->file, fput_needed);
2327out:
2328	return err;
2329}
2330
2331SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2332		unsigned int, flags)
2333{
2334	if (flags & MSG_CMSG_COMPAT)
2335		return -EINVAL;
2336	return __sys_recvmsg(fd, msg, flags);
2337}
2338
2339/*
2340 *     Linux recvmmsg interface
2341 */
2342
2343int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2344		   unsigned int flags, struct timespec *timeout)
2345{
2346	int fput_needed, err, datagrams;
2347	struct socket *sock;
2348	struct mmsghdr __user *entry;
2349	struct compat_mmsghdr __user *compat_entry;
2350	struct msghdr msg_sys;
2351	struct timespec end_time;
2352
2353	if (timeout &&
2354	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2355				    timeout->tv_nsec))
2356		return -EINVAL;
2357
2358	datagrams = 0;
2359
2360	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2361	if (!sock)
2362		return err;
2363
2364	err = sock_error(sock->sk);
2365	if (err)
2366		goto out_put;
2367
2368	entry = mmsg;
2369	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2370
2371	while (datagrams < vlen) {
2372		/*
2373		 * No need to ask LSM for more than the first datagram.
2374		 */
2375		if (MSG_CMSG_COMPAT & flags) {
2376			err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2377					     &msg_sys, flags & ~MSG_WAITFORONE,
2378					     datagrams);
2379			if (err < 0)
2380				break;
2381			err = __put_user(err, &compat_entry->msg_len);
2382			++compat_entry;
2383		} else {
2384			err = ___sys_recvmsg(sock,
2385					     (struct msghdr __user *)entry,
2386					     &msg_sys, flags & ~MSG_WAITFORONE,
2387					     datagrams);
2388			if (err < 0)
2389				break;
2390			err = put_user(err, &entry->msg_len);
2391			++entry;
2392		}
2393
2394		if (err)
2395			break;
2396		++datagrams;
2397
2398		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2399		if (flags & MSG_WAITFORONE)
2400			flags |= MSG_DONTWAIT;
2401
2402		if (timeout) {
2403			ktime_get_ts(timeout);
2404			*timeout = timespec_sub(end_time, *timeout);
2405			if (timeout->tv_sec < 0) {
2406				timeout->tv_sec = timeout->tv_nsec = 0;
2407				break;
2408			}
2409
2410			/* Timeout, return less than vlen datagrams */
2411			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2412				break;
2413		}
2414
2415		/* Out of band data, return right away */
2416		if (msg_sys.msg_flags & MSG_OOB)
2417			break;
2418	}
2419
2420out_put:
2421	fput_light(sock->file, fput_needed);
2422
2423	if (err == 0)
2424		return datagrams;
2425
2426	if (datagrams != 0) {
2427		/*
2428		 * We may return less entries than requested (vlen) if the
2429		 * sock is non block and there aren't enough datagrams...
2430		 */
2431		if (err != -EAGAIN) {
2432			/*
2433			 * ... or  if recvmsg returns an error after we
2434			 * received some datagrams, where we record the
2435			 * error to return on the next call or if the
2436			 * app asks about it using getsockopt(SO_ERROR).
2437			 */
2438			sock->sk->sk_err = -err;
2439		}
2440
2441		return datagrams;
2442	}
2443
2444	return err;
2445}
2446
2447SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2448		unsigned int, vlen, unsigned int, flags,
2449		struct timespec __user *, timeout)
2450{
2451	int datagrams;
2452	struct timespec timeout_sys;
2453
2454	if (flags & MSG_CMSG_COMPAT)
2455		return -EINVAL;
2456
2457	if (!timeout)
2458		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2459
2460	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2461		return -EFAULT;
2462
2463	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2464
2465	if (datagrams > 0 &&
2466	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2467		datagrams = -EFAULT;
2468
2469	return datagrams;
2470}
2471
2472#ifdef __ARCH_WANT_SYS_SOCKETCALL
2473/* Argument list sizes for sys_socketcall */
2474#define AL(x) ((x) * sizeof(unsigned long))
2475static const unsigned char nargs[21] = {
2476	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2477	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2478	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2479	AL(4), AL(5), AL(4)
2480};
2481
2482#undef AL
2483
2484/*
2485 *	System call vectors.
2486 *
2487 *	Argument checking cleaned up. Saved 20% in size.
2488 *  This function doesn't need to set the kernel lock because
2489 *  it is set by the callees.
2490 */
2491
2492SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2493{
2494	unsigned long a[AUDITSC_ARGS];
2495	unsigned long a0, a1;
2496	int err;
2497	unsigned int len;
2498
2499	if (call < 1 || call > SYS_SENDMMSG)
2500		return -EINVAL;
2501
2502	len = nargs[call];
2503	if (len > sizeof(a))
2504		return -EINVAL;
2505
2506	/* copy_from_user should be SMP safe. */
2507	if (copy_from_user(a, args, len))
2508		return -EFAULT;
2509
2510	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2511	if (err)
2512		return err;
2513
2514	a0 = a[0];
2515	a1 = a[1];
2516
2517	switch (call) {
2518	case SYS_SOCKET:
2519		err = sys_socket(a0, a1, a[2]);
2520		break;
2521	case SYS_BIND:
2522		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2523		break;
2524	case SYS_CONNECT:
2525		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2526		break;
2527	case SYS_LISTEN:
2528		err = sys_listen(a0, a1);
2529		break;
2530	case SYS_ACCEPT:
2531		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2532				  (int __user *)a[2], 0);
2533		break;
2534	case SYS_GETSOCKNAME:
2535		err =
2536		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2537				    (int __user *)a[2]);
2538		break;
2539	case SYS_GETPEERNAME:
2540		err =
2541		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2542				    (int __user *)a[2]);
2543		break;
2544	case SYS_SOCKETPAIR:
2545		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2546		break;
2547	case SYS_SEND:
2548		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2549		break;
2550	case SYS_SENDTO:
2551		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2552				 (struct sockaddr __user *)a[4], a[5]);
2553		break;
2554	case SYS_RECV:
2555		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2556		break;
2557	case SYS_RECVFROM:
2558		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2559				   (struct sockaddr __user *)a[4],
2560				   (int __user *)a[5]);
2561		break;
2562	case SYS_SHUTDOWN:
2563		err = sys_shutdown(a0, a1);
2564		break;
2565	case SYS_SETSOCKOPT:
2566		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2567		break;
2568	case SYS_GETSOCKOPT:
2569		err =
2570		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2571				   (int __user *)a[4]);
2572		break;
2573	case SYS_SENDMSG:
2574		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2575		break;
2576	case SYS_SENDMMSG:
2577		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2578		break;
2579	case SYS_RECVMSG:
2580		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2581		break;
2582	case SYS_RECVMMSG:
2583		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2584				   (struct timespec __user *)a[4]);
2585		break;
2586	case SYS_ACCEPT4:
2587		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2588				  (int __user *)a[2], a[3]);
2589		break;
2590	default:
2591		err = -EINVAL;
2592		break;
2593	}
2594	return err;
2595}
2596
2597#endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2598
2599/**
2600 *	sock_register - add a socket protocol handler
2601 *	@ops: description of protocol
2602 *
2603 *	This function is called by a protocol handler that wants to
2604 *	advertise its address family, and have it linked into the
2605 *	socket interface. The value ops->family corresponds to the
2606 *	socket system call protocol family.
2607 */
2608int sock_register(const struct net_proto_family *ops)
2609{
2610	int err;
2611
2612	if (ops->family >= NPROTO) {
2613		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2614		return -ENOBUFS;
2615	}
2616
2617	spin_lock(&net_family_lock);
2618	if (rcu_dereference_protected(net_families[ops->family],
2619				      lockdep_is_held(&net_family_lock)))
2620		err = -EEXIST;
2621	else {
2622		rcu_assign_pointer(net_families[ops->family], ops);
2623		err = 0;
2624	}
2625	spin_unlock(&net_family_lock);
2626
2627	pr_info("NET: Registered protocol family %d\n", ops->family);
2628	return err;
2629}
2630EXPORT_SYMBOL(sock_register);
2631
2632/**
2633 *	sock_unregister - remove a protocol handler
2634 *	@family: protocol family to remove
2635 *
2636 *	This function is called by a protocol handler that wants to
2637 *	remove its address family, and have it unlinked from the
2638 *	new socket creation.
2639 *
2640 *	If protocol handler is a module, then it can use module reference
2641 *	counts to protect against new references. If protocol handler is not
2642 *	a module then it needs to provide its own protection in
2643 *	the ops->create routine.
2644 */
2645void sock_unregister(int family)
2646{
2647	BUG_ON(family < 0 || family >= NPROTO);
2648
2649	spin_lock(&net_family_lock);
2650	RCU_INIT_POINTER(net_families[family], NULL);
2651	spin_unlock(&net_family_lock);
2652
2653	synchronize_rcu();
2654
2655	pr_info("NET: Unregistered protocol family %d\n", family);
2656}
2657EXPORT_SYMBOL(sock_unregister);
2658
2659static int __init sock_init(void)
2660{
2661	int err;
2662	/*
2663	 *      Initialize the network sysctl infrastructure.
2664	 */
2665	err = net_sysctl_init();
2666	if (err)
2667		goto out;
2668
2669	/*
2670	 *      Initialize skbuff SLAB cache
2671	 */
2672	skb_init();
2673
2674	/*
2675	 *      Initialize the protocols module.
2676	 */
2677
2678	init_inodecache();
2679
2680	err = register_filesystem(&sock_fs_type);
2681	if (err)
2682		goto out_fs;
2683	sock_mnt = kern_mount(&sock_fs_type);
2684	if (IS_ERR(sock_mnt)) {
2685		err = PTR_ERR(sock_mnt);
2686		goto out_mount;
2687	}
2688
2689	/* The real protocol initialization is performed in later initcalls.
2690	 */
2691
2692#ifdef CONFIG_NETFILTER
2693	err = netfilter_init();
2694	if (err)
2695		goto out;
2696#endif
2697
2698	ptp_classifier_init();
2699
2700out:
2701	return err;
2702
2703out_mount:
2704	unregister_filesystem(&sock_fs_type);
2705out_fs:
2706	goto out;
2707}
2708
2709core_initcall(sock_init);	/* early initcall */
2710
2711#ifdef CONFIG_PROC_FS
2712void socket_seq_show(struct seq_file *seq)
2713{
2714	int cpu;
2715	int counter = 0;
2716
2717	for_each_possible_cpu(cpu)
2718	    counter += per_cpu(sockets_in_use, cpu);
2719
2720	/* It can be negative, by the way. 8) */
2721	if (counter < 0)
2722		counter = 0;
2723
2724	seq_printf(seq, "sockets: used %d\n", counter);
2725}
2726#endif				/* CONFIG_PROC_FS */
2727
2728#ifdef CONFIG_COMPAT
2729static int do_siocgstamp(struct net *net, struct socket *sock,
2730			 unsigned int cmd, void __user *up)
2731{
2732	mm_segment_t old_fs = get_fs();
2733	struct timeval ktv;
2734	int err;
2735
2736	set_fs(KERNEL_DS);
2737	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2738	set_fs(old_fs);
2739	if (!err)
2740		err = compat_put_timeval(&ktv, up);
2741
2742	return err;
2743}
2744
2745static int do_siocgstampns(struct net *net, struct socket *sock,
2746			   unsigned int cmd, void __user *up)
2747{
2748	mm_segment_t old_fs = get_fs();
2749	struct timespec kts;
2750	int err;
2751
2752	set_fs(KERNEL_DS);
2753	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2754	set_fs(old_fs);
2755	if (!err)
2756		err = compat_put_timespec(&kts, up);
2757
2758	return err;
2759}
2760
2761static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2762{
2763	struct ifreq __user *uifr;
2764	int err;
2765
2766	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2767	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2768		return -EFAULT;
2769
2770	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2771	if (err)
2772		return err;
2773
2774	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2775		return -EFAULT;
2776
2777	return 0;
2778}
2779
2780static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2781{
2782	struct compat_ifconf ifc32;
2783	struct ifconf ifc;
2784	struct ifconf __user *uifc;
2785	struct compat_ifreq __user *ifr32;
2786	struct ifreq __user *ifr;
2787	unsigned int i, j;
2788	int err;
2789
2790	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2791		return -EFAULT;
2792
2793	memset(&ifc, 0, sizeof(ifc));
2794	if (ifc32.ifcbuf == 0) {
2795		ifc32.ifc_len = 0;
2796		ifc.ifc_len = 0;
2797		ifc.ifc_req = NULL;
2798		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2799	} else {
2800		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2801			sizeof(struct ifreq);
2802		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2803		ifc.ifc_len = len;
2804		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2805		ifr32 = compat_ptr(ifc32.ifcbuf);
2806		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2807			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2808				return -EFAULT;
2809			ifr++;
2810			ifr32++;
2811		}
2812	}
2813	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2814		return -EFAULT;
2815
2816	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2817	if (err)
2818		return err;
2819
2820	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2821		return -EFAULT;
2822
2823	ifr = ifc.ifc_req;
2824	ifr32 = compat_ptr(ifc32.ifcbuf);
2825	for (i = 0, j = 0;
2826	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2827	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2828		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2829			return -EFAULT;
2830		ifr32++;
2831		ifr++;
2832	}
2833
2834	if (ifc32.ifcbuf == 0) {
2835		/* Translate from 64-bit structure multiple to
2836		 * a 32-bit one.
2837		 */
2838		i = ifc.ifc_len;
2839		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2840		ifc32.ifc_len = i;
2841	} else {
2842		ifc32.ifc_len = i;
2843	}
2844	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2845		return -EFAULT;
2846
2847	return 0;
2848}
2849
2850static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2851{
2852	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2853	bool convert_in = false, convert_out = false;
2854	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2855	struct ethtool_rxnfc __user *rxnfc;
2856	struct ifreq __user *ifr;
2857	u32 rule_cnt = 0, actual_rule_cnt;
2858	u32 ethcmd;
2859	u32 data;
2860	int ret;
2861
2862	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2863		return -EFAULT;
2864
2865	compat_rxnfc = compat_ptr(data);
2866
2867	if (get_user(ethcmd, &compat_rxnfc->cmd))
2868		return -EFAULT;
2869
2870	/* Most ethtool structures are defined without padding.
2871	 * Unfortunately struct ethtool_rxnfc is an exception.
2872	 */
2873	switch (ethcmd) {
2874	default:
2875		break;
2876	case ETHTOOL_GRXCLSRLALL:
2877		/* Buffer size is variable */
2878		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2879			return -EFAULT;
2880		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2881			return -ENOMEM;
2882		buf_size += rule_cnt * sizeof(u32);
2883		/* fall through */
2884	case ETHTOOL_GRXRINGS:
2885	case ETHTOOL_GRXCLSRLCNT:
2886	case ETHTOOL_GRXCLSRULE:
2887	case ETHTOOL_SRXCLSRLINS:
2888		convert_out = true;
2889		/* fall through */
2890	case ETHTOOL_SRXCLSRLDEL:
2891		buf_size += sizeof(struct ethtool_rxnfc);
2892		convert_in = true;
2893		break;
2894	}
2895
2896	ifr = compat_alloc_user_space(buf_size);
2897	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2898
2899	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2900		return -EFAULT;
2901
2902	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2903		     &ifr->ifr_ifru.ifru_data))
2904		return -EFAULT;
2905
2906	if (convert_in) {
2907		/* We expect there to be holes between fs.m_ext and
2908		 * fs.ring_cookie and at the end of fs, but nowhere else.
2909		 */
2910		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2911			     sizeof(compat_rxnfc->fs.m_ext) !=
2912			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2913			     sizeof(rxnfc->fs.m_ext));
2914		BUILD_BUG_ON(
2915			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2916			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2917			offsetof(struct ethtool_rxnfc, fs.location) -
2918			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2919
2920		if (copy_in_user(rxnfc, compat_rxnfc,
2921				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2922				 (void __user *)rxnfc) ||
2923		    copy_in_user(&rxnfc->fs.ring_cookie,
2924				 &compat_rxnfc->fs.ring_cookie,
2925				 (void __user *)(&rxnfc->fs.location + 1) -
2926				 (void __user *)&rxnfc->fs.ring_cookie) ||
2927		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2928				 sizeof(rxnfc->rule_cnt)))
2929			return -EFAULT;
2930	}
2931
2932	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2933	if (ret)
2934		return ret;
2935
2936	if (convert_out) {
2937		if (copy_in_user(compat_rxnfc, rxnfc,
2938				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2939				 (const void __user *)rxnfc) ||
2940		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2941				 &rxnfc->fs.ring_cookie,
2942				 (const void __user *)(&rxnfc->fs.location + 1) -
2943				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2944		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2945				 sizeof(rxnfc->rule_cnt)))
2946			return -EFAULT;
2947
2948		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2949			/* As an optimisation, we only copy the actual
2950			 * number of rules that the underlying
2951			 * function returned.  Since Mallory might
2952			 * change the rule count in user memory, we
2953			 * check that it is less than the rule count
2954			 * originally given (as the user buffer size),
2955			 * which has been range-checked.
2956			 */
2957			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2958				return -EFAULT;
2959			if (actual_rule_cnt < rule_cnt)
2960				rule_cnt = actual_rule_cnt;
2961			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2962					 &rxnfc->rule_locs[0],
2963					 rule_cnt * sizeof(u32)))
2964				return -EFAULT;
2965		}
2966	}
2967
2968	return 0;
2969}
2970
2971static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2972{
2973	void __user *uptr;
2974	compat_uptr_t uptr32;
2975	struct ifreq __user *uifr;
2976
2977	uifr = compat_alloc_user_space(sizeof(*uifr));
2978	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2979		return -EFAULT;
2980
2981	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2982		return -EFAULT;
2983
2984	uptr = compat_ptr(uptr32);
2985
2986	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2987		return -EFAULT;
2988
2989	return dev_ioctl(net, SIOCWANDEV, uifr);
2990}
2991
2992static int bond_ioctl(struct net *net, unsigned int cmd,
2993			 struct compat_ifreq __user *ifr32)
2994{
2995	struct ifreq kifr;
2996	mm_segment_t old_fs;
2997	int err;
2998
2999	switch (cmd) {
3000	case SIOCBONDENSLAVE:
3001	case SIOCBONDRELEASE:
3002	case SIOCBONDSETHWADDR:
3003	case SIOCBONDCHANGEACTIVE:
3004		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
3005			return -EFAULT;
3006
3007		old_fs = get_fs();
3008		set_fs(KERNEL_DS);
3009		err = dev_ioctl(net, cmd,
3010				(struct ifreq __user __force *) &kifr);
3011		set_fs(old_fs);
3012
3013		return err;
3014	default:
3015		return -ENOIOCTLCMD;
3016	}
3017}
3018
3019/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3020static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3021				 struct compat_ifreq __user *u_ifreq32)
3022{
3023	struct ifreq __user *u_ifreq64;
3024	char tmp_buf[IFNAMSIZ];
3025	void __user *data64;
3026	u32 data32;
3027
3028	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3029			   IFNAMSIZ))
3030		return -EFAULT;
3031	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3032		return -EFAULT;
3033	data64 = compat_ptr(data32);
3034
3035	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3036
3037	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3038			 IFNAMSIZ))
3039		return -EFAULT;
3040	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3041		return -EFAULT;
3042
3043	return dev_ioctl(net, cmd, u_ifreq64);
3044}
3045
3046static int dev_ifsioc(struct net *net, struct socket *sock,
3047			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3048{
3049	struct ifreq __user *uifr;
3050	int err;
3051
3052	uifr = compat_alloc_user_space(sizeof(*uifr));
3053	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3054		return -EFAULT;
3055
3056	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3057
3058	if (!err) {
3059		switch (cmd) {
3060		case SIOCGIFFLAGS:
3061		case SIOCGIFMETRIC:
3062		case SIOCGIFMTU:
3063		case SIOCGIFMEM:
3064		case SIOCGIFHWADDR:
3065		case SIOCGIFINDEX:
3066		case SIOCGIFADDR:
3067		case SIOCGIFBRDADDR:
3068		case SIOCGIFDSTADDR:
3069		case SIOCGIFNETMASK:
3070		case SIOCGIFPFLAGS:
3071		case SIOCGIFTXQLEN:
3072		case SIOCGMIIPHY:
3073		case SIOCGMIIREG:
3074			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3075				err = -EFAULT;
3076			break;
3077		}
3078	}
3079	return err;
3080}
3081
3082static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3083			struct compat_ifreq __user *uifr32)
3084{
3085	struct ifreq ifr;
3086	struct compat_ifmap __user *uifmap32;
3087	mm_segment_t old_fs;
3088	int err;
3089
3090	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3091	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3092	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3093	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3094	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3095	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3096	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3097	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3098	if (err)
3099		return -EFAULT;
3100
3101	old_fs = get_fs();
3102	set_fs(KERNEL_DS);
3103	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3104	set_fs(old_fs);
3105
3106	if (cmd == SIOCGIFMAP && !err) {
3107		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3108		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3109		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3110		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3111		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3112		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3113		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3114		if (err)
3115			err = -EFAULT;
3116	}
3117	return err;
3118}
3119
3120struct rtentry32 {
3121	u32		rt_pad1;
3122	struct sockaddr rt_dst;         /* target address               */
3123	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3124	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3125	unsigned short	rt_flags;
3126	short		rt_pad2;
3127	u32		rt_pad3;
3128	unsigned char	rt_tos;
3129	unsigned char	rt_class;
3130	short		rt_pad4;
3131	short		rt_metric;      /* +1 for binary compatibility! */
3132	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3133	u32		rt_mtu;         /* per route MTU/Window         */
3134	u32		rt_window;      /* Window clamping              */
3135	unsigned short  rt_irtt;        /* Initial RTT                  */
3136};
3137
3138struct in6_rtmsg32 {
3139	struct in6_addr		rtmsg_dst;
3140	struct in6_addr		rtmsg_src;
3141	struct in6_addr		rtmsg_gateway;
3142	u32			rtmsg_type;
3143	u16			rtmsg_dst_len;
3144	u16			rtmsg_src_len;
3145	u32			rtmsg_metric;
3146	u32			rtmsg_info;
3147	u32			rtmsg_flags;
3148	s32			rtmsg_ifindex;
3149};
3150
3151static int routing_ioctl(struct net *net, struct socket *sock,
3152			 unsigned int cmd, void __user *argp)
3153{
3154	int ret;
3155	void *r = NULL;
3156	struct in6_rtmsg r6;
3157	struct rtentry r4;
3158	char devname[16];
3159	u32 rtdev;
3160	mm_segment_t old_fs = get_fs();
3161
3162	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3163		struct in6_rtmsg32 __user *ur6 = argp;
3164		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3165			3 * sizeof(struct in6_addr));
3166		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3167		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3168		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3169		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3170		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3171		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3172		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3173
3174		r = (void *) &r6;
3175	} else { /* ipv4 */
3176		struct rtentry32 __user *ur4 = argp;
3177		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3178					3 * sizeof(struct sockaddr));
3179		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3180		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3181		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3182		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3183		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3184		ret |= get_user(rtdev, &(ur4->rt_dev));
3185		if (rtdev) {
3186			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3187			r4.rt_dev = (char __user __force *)devname;
3188			devname[15] = 0;
3189		} else
3190			r4.rt_dev = NULL;
3191
3192		r = (void *) &r4;
3193	}
3194
3195	if (ret) {
3196		ret = -EFAULT;
3197		goto out;
3198	}
3199
3200	set_fs(KERNEL_DS);
3201	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3202	set_fs(old_fs);
3203
3204out:
3205	return ret;
3206}
3207
3208/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3209 * for some operations; this forces use of the newer bridge-utils that
3210 * use compatible ioctls
3211 */
3212static int old_bridge_ioctl(compat_ulong_t __user *argp)
3213{
3214	compat_ulong_t tmp;
3215
3216	if (get_user(tmp, argp))
3217		return -EFAULT;
3218	if (tmp == BRCTL_GET_VERSION)
3219		return BRCTL_VERSION + 1;
3220	return -EINVAL;
3221}
3222
3223static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3224			 unsigned int cmd, unsigned long arg)
3225{
3226	void __user *argp = compat_ptr(arg);
3227	struct sock *sk = sock->sk;
3228	struct net *net = sock_net(sk);
3229
3230	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3231		return compat_ifr_data_ioctl(net, cmd, argp);
3232
3233	switch (cmd) {
3234	case SIOCSIFBR:
3235	case SIOCGIFBR:
3236		return old_bridge_ioctl(argp);
3237	case SIOCGIFNAME:
3238		return dev_ifname32(net, argp);
3239	case SIOCGIFCONF:
3240		return dev_ifconf(net, argp);
3241	case SIOCETHTOOL:
3242		return ethtool_ioctl(net, argp);
3243	case SIOCWANDEV:
3244		return compat_siocwandev(net, argp);
3245	case SIOCGIFMAP:
3246	case SIOCSIFMAP:
3247		return compat_sioc_ifmap(net, cmd, argp);
3248	case SIOCBONDENSLAVE:
3249	case SIOCBONDRELEASE:
3250	case SIOCBONDSETHWADDR:
3251	case SIOCBONDCHANGEACTIVE:
3252		return bond_ioctl(net, cmd, argp);
3253	case SIOCADDRT:
3254	case SIOCDELRT:
3255		return routing_ioctl(net, sock, cmd, argp);
3256	case SIOCGSTAMP:
3257		return do_siocgstamp(net, sock, cmd, argp);
3258	case SIOCGSTAMPNS:
3259		return do_siocgstampns(net, sock, cmd, argp);
3260	case SIOCBONDSLAVEINFOQUERY:
3261	case SIOCBONDINFOQUERY:
3262	case SIOCSHWTSTAMP:
3263	case SIOCGHWTSTAMP:
3264		return compat_ifr_data_ioctl(net, cmd, argp);
3265
3266	case FIOSETOWN:
3267	case SIOCSPGRP:
3268	case FIOGETOWN:
3269	case SIOCGPGRP:
3270	case SIOCBRADDBR:
3271	case SIOCBRDELBR:
3272	case SIOCGIFVLAN:
3273	case SIOCSIFVLAN:
3274	case SIOCADDDLCI:
3275	case SIOCDELDLCI:
3276		return sock_ioctl(file, cmd, arg);
3277
3278	case SIOCGIFFLAGS:
3279	case SIOCSIFFLAGS:
3280	case SIOCGIFMETRIC:
3281	case SIOCSIFMETRIC:
3282	case SIOCGIFMTU:
3283	case SIOCSIFMTU:
3284	case SIOCGIFMEM:
3285	case SIOCSIFMEM:
3286	case SIOCGIFHWADDR:
3287	case SIOCSIFHWADDR:
3288	case SIOCADDMULTI:
3289	case SIOCDELMULTI:
3290	case SIOCGIFINDEX:
3291	case SIOCGIFADDR:
3292	case SIOCSIFADDR:
3293	case SIOCSIFHWBROADCAST:
3294	case SIOCDIFADDR:
3295	case SIOCGIFBRDADDR:
3296	case SIOCSIFBRDADDR:
3297	case SIOCGIFDSTADDR:
3298	case SIOCSIFDSTADDR:
3299	case SIOCGIFNETMASK:
3300	case SIOCSIFNETMASK:
3301	case SIOCSIFPFLAGS:
3302	case SIOCGIFPFLAGS:
3303	case SIOCGIFTXQLEN:
3304	case SIOCSIFTXQLEN:
3305	case SIOCBRADDIF:
3306	case SIOCBRDELIF:
3307	case SIOCSIFNAME:
3308	case SIOCGMIIPHY:
3309	case SIOCGMIIREG:
3310	case SIOCSMIIREG:
3311		return dev_ifsioc(net, sock, cmd, argp);
3312
3313	case SIOCSARP:
3314	case SIOCGARP:
3315	case SIOCDARP:
3316	case SIOCATMARK:
3317		return sock_do_ioctl(net, sock, cmd, arg);
3318	}
3319
3320	return -ENOIOCTLCMD;
3321}
3322
3323static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3324			      unsigned long arg)
3325{
3326	struct socket *sock = file->private_data;
3327	int ret = -ENOIOCTLCMD;
3328	struct sock *sk;
3329	struct net *net;
3330
3331	sk = sock->sk;
3332	net = sock_net(sk);
3333
3334	if (sock->ops->compat_ioctl)
3335		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3336
3337	if (ret == -ENOIOCTLCMD &&
3338	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3339		ret = compat_wext_handle_ioctl(net, cmd, arg);
3340
3341	if (ret == -ENOIOCTLCMD)
3342		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3343
3344	return ret;
3345}
3346#endif
3347
3348int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3349{
3350	return sock->ops->bind(sock, addr, addrlen);
3351}
3352EXPORT_SYMBOL(kernel_bind);
3353
3354int kernel_listen(struct socket *sock, int backlog)
3355{
3356	return sock->ops->listen(sock, backlog);
3357}
3358EXPORT_SYMBOL(kernel_listen);
3359
3360int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3361{
3362	struct sock *sk = sock->sk;
3363	int err;
3364
3365	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3366			       newsock);
3367	if (err < 0)
3368		goto done;
3369
3370	err = sock->ops->accept(sock, *newsock, flags);
3371	if (err < 0) {
3372		sock_release(*newsock);
3373		*newsock = NULL;
3374		goto done;
3375	}
3376
3377	(*newsock)->ops = sock->ops;
3378	__module_get((*newsock)->ops->owner);
3379
3380done:
3381	return err;
3382}
3383EXPORT_SYMBOL(kernel_accept);
3384
3385int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3386		   int flags)
3387{
3388	return sock->ops->connect(sock, addr, addrlen, flags);
3389}
3390EXPORT_SYMBOL(kernel_connect);
3391
3392int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3393			 int *addrlen)
3394{
3395	return sock->ops->getname(sock, addr, addrlen, 0);
3396}
3397EXPORT_SYMBOL(kernel_getsockname);
3398
3399int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3400			 int *addrlen)
3401{
3402	return sock->ops->getname(sock, addr, addrlen, 1);
3403}
3404EXPORT_SYMBOL(kernel_getpeername);
3405
3406int kernel_getsockopt(struct socket *sock, int level, int optname,
3407			char *optval, int *optlen)
3408{
3409	mm_segment_t oldfs = get_fs();
3410	char __user *uoptval;
3411	int __user *uoptlen;
3412	int err;
3413
3414	uoptval = (char __user __force *) optval;
3415	uoptlen = (int __user __force *) optlen;
3416
3417	set_fs(KERNEL_DS);
3418	if (level == SOL_SOCKET)
3419		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3420	else
3421		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3422					    uoptlen);
3423	set_fs(oldfs);
3424	return err;
3425}
3426EXPORT_SYMBOL(kernel_getsockopt);
3427
3428int kernel_setsockopt(struct socket *sock, int level, int optname,
3429			char *optval, unsigned int optlen)
3430{
3431	mm_segment_t oldfs = get_fs();
3432	char __user *uoptval;
3433	int err;
3434
3435	uoptval = (char __user __force *) optval;
3436
3437	set_fs(KERNEL_DS);
3438	if (level == SOL_SOCKET)
3439		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3440	else
3441		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3442					    optlen);
3443	set_fs(oldfs);
3444	return err;
3445}
3446EXPORT_SYMBOL(kernel_setsockopt);
3447
3448int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3449		    size_t size, int flags)
3450{
3451	if (sock->ops->sendpage)
3452		return sock->ops->sendpage(sock, page, offset, size, flags);
3453
3454	return sock_no_sendpage(sock, page, offset, size, flags);
3455}
3456EXPORT_SYMBOL(kernel_sendpage);
3457
3458int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3459{
3460	mm_segment_t oldfs = get_fs();
3461	int err;
3462
3463	set_fs(KERNEL_DS);
3464	err = sock->ops->ioctl(sock, cmd, arg);
3465	set_fs(oldfs);
3466
3467	return err;
3468}
3469EXPORT_SYMBOL(kernel_sock_ioctl);
3470
3471int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3472{
3473	return sock->ops->shutdown(sock, how);
3474}
3475EXPORT_SYMBOL(kernel_sock_shutdown);
3476