1/*
2 *  linux/net/sunrpc/clnt.c
3 *
4 *  This file contains the high-level RPC interface.
5 *  It is modeled as a finite state machine to support both synchronous
6 *  and asynchronous requests.
7 *
8 *  -	RPC header generation and argument serialization.
9 *  -	Credential refresh.
10 *  -	TCP connect handling.
11 *  -	Retry of operation when it is suspected the operation failed because
12 *	of uid squashing on the server, or when the credentials were stale
13 *	and need to be refreshed, or when a packet was damaged in transit.
14 *	This may be have to be moved to the VFS layer.
15 *
16 *  Copyright (C) 1992,1993 Rick Sladkey <jrs@world.std.com>
17 *  Copyright (C) 1995,1996 Olaf Kirch <okir@monad.swb.de>
18 */
19
20
21#include <linux/module.h>
22#include <linux/types.h>
23#include <linux/kallsyms.h>
24#include <linux/mm.h>
25#include <linux/namei.h>
26#include <linux/mount.h>
27#include <linux/slab.h>
28#include <linux/rcupdate.h>
29#include <linux/utsname.h>
30#include <linux/workqueue.h>
31#include <linux/in.h>
32#include <linux/in6.h>
33#include <linux/un.h>
34
35#include <linux/sunrpc/clnt.h>
36#include <linux/sunrpc/addr.h>
37#include <linux/sunrpc/rpc_pipe_fs.h>
38#include <linux/sunrpc/metrics.h>
39#include <linux/sunrpc/bc_xprt.h>
40#include <trace/events/sunrpc.h>
41
42#include "sunrpc.h"
43#include "netns.h"
44
45#ifdef RPC_DEBUG
46# define RPCDBG_FACILITY	RPCDBG_CALL
47#endif
48
49#define dprint_status(t)					\
50	dprintk("RPC: %5u %s (status %d)\n", t->tk_pid,		\
51			__func__, t->tk_status)
52
53/*
54 * All RPC clients are linked into this list
55 */
56
57static DECLARE_WAIT_QUEUE_HEAD(destroy_wait);
58
59
60static void	call_start(struct rpc_task *task);
61static void	call_reserve(struct rpc_task *task);
62static void	call_reserveresult(struct rpc_task *task);
63static void	call_allocate(struct rpc_task *task);
64static void	call_decode(struct rpc_task *task);
65static void	call_bind(struct rpc_task *task);
66static void	call_bind_status(struct rpc_task *task);
67static void	call_transmit(struct rpc_task *task);
68#if defined(CONFIG_SUNRPC_BACKCHANNEL)
69static void	call_bc_transmit(struct rpc_task *task);
70#endif /* CONFIG_SUNRPC_BACKCHANNEL */
71static void	call_status(struct rpc_task *task);
72static void	call_transmit_status(struct rpc_task *task);
73static void	call_refresh(struct rpc_task *task);
74static void	call_refreshresult(struct rpc_task *task);
75static void	call_timeout(struct rpc_task *task);
76static void	call_connect(struct rpc_task *task);
77static void	call_connect_status(struct rpc_task *task);
78
79static __be32	*rpc_encode_header(struct rpc_task *task);
80static __be32	*rpc_verify_header(struct rpc_task *task);
81static int	rpc_ping(struct rpc_clnt *clnt);
82
83static void rpc_register_client(struct rpc_clnt *clnt)
84{
85	struct net *net = rpc_net_ns(clnt);
86	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
87
88	spin_lock(&sn->rpc_client_lock);
89	list_add(&clnt->cl_clients, &sn->all_clients);
90	spin_unlock(&sn->rpc_client_lock);
91}
92
93static void rpc_unregister_client(struct rpc_clnt *clnt)
94{
95	struct net *net = rpc_net_ns(clnt);
96	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
97
98	spin_lock(&sn->rpc_client_lock);
99	list_del(&clnt->cl_clients);
100	spin_unlock(&sn->rpc_client_lock);
101}
102
103static void __rpc_clnt_remove_pipedir(struct rpc_clnt *clnt)
104{
105	rpc_remove_client_dir(clnt);
106}
107
108static void rpc_clnt_remove_pipedir(struct rpc_clnt *clnt)
109{
110	struct net *net = rpc_net_ns(clnt);
111	struct super_block *pipefs_sb;
112
113	pipefs_sb = rpc_get_sb_net(net);
114	if (pipefs_sb) {
115		__rpc_clnt_remove_pipedir(clnt);
116		rpc_put_sb_net(net);
117	}
118}
119
120static struct dentry *rpc_setup_pipedir_sb(struct super_block *sb,
121				    struct rpc_clnt *clnt)
122{
123	static uint32_t clntid;
124	const char *dir_name = clnt->cl_program->pipe_dir_name;
125	char name[15];
126	struct dentry *dir, *dentry;
127
128	dir = rpc_d_lookup_sb(sb, dir_name);
129	if (dir == NULL) {
130		pr_info("RPC: pipefs directory doesn't exist: %s\n", dir_name);
131		return dir;
132	}
133	for (;;) {
134		snprintf(name, sizeof(name), "clnt%x", (unsigned int)clntid++);
135		name[sizeof(name) - 1] = '\0';
136		dentry = rpc_create_client_dir(dir, name, clnt);
137		if (!IS_ERR(dentry))
138			break;
139		if (dentry == ERR_PTR(-EEXIST))
140			continue;
141		printk(KERN_INFO "RPC: Couldn't create pipefs entry"
142				" %s/%s, error %ld\n",
143				dir_name, name, PTR_ERR(dentry));
144		break;
145	}
146	dput(dir);
147	return dentry;
148}
149
150static int
151rpc_setup_pipedir(struct super_block *pipefs_sb, struct rpc_clnt *clnt)
152{
153	struct dentry *dentry;
154
155	if (clnt->cl_program->pipe_dir_name != NULL) {
156		dentry = rpc_setup_pipedir_sb(pipefs_sb, clnt);
157		if (IS_ERR(dentry))
158			return PTR_ERR(dentry);
159	}
160	return 0;
161}
162
163static int rpc_clnt_skip_event(struct rpc_clnt *clnt, unsigned long event)
164{
165	if (clnt->cl_program->pipe_dir_name == NULL)
166		return 1;
167
168	switch (event) {
169	case RPC_PIPEFS_MOUNT:
170		if (clnt->cl_pipedir_objects.pdh_dentry != NULL)
171			return 1;
172		if (atomic_read(&clnt->cl_count) == 0)
173			return 1;
174		break;
175	case RPC_PIPEFS_UMOUNT:
176		if (clnt->cl_pipedir_objects.pdh_dentry == NULL)
177			return 1;
178		break;
179	}
180	return 0;
181}
182
183static int __rpc_clnt_handle_event(struct rpc_clnt *clnt, unsigned long event,
184				   struct super_block *sb)
185{
186	struct dentry *dentry;
187	int err = 0;
188
189	switch (event) {
190	case RPC_PIPEFS_MOUNT:
191		dentry = rpc_setup_pipedir_sb(sb, clnt);
192		if (!dentry)
193			return -ENOENT;
194		if (IS_ERR(dentry))
195			return PTR_ERR(dentry);
196		break;
197	case RPC_PIPEFS_UMOUNT:
198		__rpc_clnt_remove_pipedir(clnt);
199		break;
200	default:
201		printk(KERN_ERR "%s: unknown event: %ld\n", __func__, event);
202		return -ENOTSUPP;
203	}
204	return err;
205}
206
207static int __rpc_pipefs_event(struct rpc_clnt *clnt, unsigned long event,
208				struct super_block *sb)
209{
210	int error = 0;
211
212	for (;; clnt = clnt->cl_parent) {
213		if (!rpc_clnt_skip_event(clnt, event))
214			error = __rpc_clnt_handle_event(clnt, event, sb);
215		if (error || clnt == clnt->cl_parent)
216			break;
217	}
218	return error;
219}
220
221static struct rpc_clnt *rpc_get_client_for_event(struct net *net, int event)
222{
223	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
224	struct rpc_clnt *clnt;
225
226	spin_lock(&sn->rpc_client_lock);
227	list_for_each_entry(clnt, &sn->all_clients, cl_clients) {
228		if (rpc_clnt_skip_event(clnt, event))
229			continue;
230		spin_unlock(&sn->rpc_client_lock);
231		return clnt;
232	}
233	spin_unlock(&sn->rpc_client_lock);
234	return NULL;
235}
236
237static int rpc_pipefs_event(struct notifier_block *nb, unsigned long event,
238			    void *ptr)
239{
240	struct super_block *sb = ptr;
241	struct rpc_clnt *clnt;
242	int error = 0;
243
244	while ((clnt = rpc_get_client_for_event(sb->s_fs_info, event))) {
245		error = __rpc_pipefs_event(clnt, event, sb);
246		if (error)
247			break;
248	}
249	return error;
250}
251
252static struct notifier_block rpc_clients_block = {
253	.notifier_call	= rpc_pipefs_event,
254	.priority	= SUNRPC_PIPEFS_RPC_PRIO,
255};
256
257int rpc_clients_notifier_register(void)
258{
259	return rpc_pipefs_notifier_register(&rpc_clients_block);
260}
261
262void rpc_clients_notifier_unregister(void)
263{
264	return rpc_pipefs_notifier_unregister(&rpc_clients_block);
265}
266
267static struct rpc_xprt *rpc_clnt_set_transport(struct rpc_clnt *clnt,
268		struct rpc_xprt *xprt,
269		const struct rpc_timeout *timeout)
270{
271	struct rpc_xprt *old;
272
273	spin_lock(&clnt->cl_lock);
274	old = rcu_dereference_protected(clnt->cl_xprt,
275			lockdep_is_held(&clnt->cl_lock));
276
277	if (!xprt_bound(xprt))
278		clnt->cl_autobind = 1;
279
280	clnt->cl_timeout = timeout;
281	rcu_assign_pointer(clnt->cl_xprt, xprt);
282	spin_unlock(&clnt->cl_lock);
283
284	return old;
285}
286
287static void rpc_clnt_set_nodename(struct rpc_clnt *clnt, const char *nodename)
288{
289	clnt->cl_nodelen = strlen(nodename);
290	if (clnt->cl_nodelen > UNX_MAXNODENAME)
291		clnt->cl_nodelen = UNX_MAXNODENAME;
292	memcpy(clnt->cl_nodename, nodename, clnt->cl_nodelen);
293}
294
295static int rpc_client_register(struct rpc_clnt *clnt,
296			       rpc_authflavor_t pseudoflavor,
297			       const char *client_name)
298{
299	struct rpc_auth_create_args auth_args = {
300		.pseudoflavor = pseudoflavor,
301		.target_name = client_name,
302	};
303	struct rpc_auth *auth;
304	struct net *net = rpc_net_ns(clnt);
305	struct super_block *pipefs_sb;
306	int err;
307
308	pipefs_sb = rpc_get_sb_net(net);
309	if (pipefs_sb) {
310		err = rpc_setup_pipedir(pipefs_sb, clnt);
311		if (err)
312			goto out;
313	}
314
315	rpc_register_client(clnt);
316	if (pipefs_sb)
317		rpc_put_sb_net(net);
318
319	auth = rpcauth_create(&auth_args, clnt);
320	if (IS_ERR(auth)) {
321		dprintk("RPC:       Couldn't create auth handle (flavor %u)\n",
322				pseudoflavor);
323		err = PTR_ERR(auth);
324		goto err_auth;
325	}
326	return 0;
327err_auth:
328	pipefs_sb = rpc_get_sb_net(net);
329	rpc_unregister_client(clnt);
330	__rpc_clnt_remove_pipedir(clnt);
331out:
332	if (pipefs_sb)
333		rpc_put_sb_net(net);
334	return err;
335}
336
337static DEFINE_IDA(rpc_clids);
338
339static int rpc_alloc_clid(struct rpc_clnt *clnt)
340{
341	int clid;
342
343	clid = ida_simple_get(&rpc_clids, 0, 0, GFP_KERNEL);
344	if (clid < 0)
345		return clid;
346	clnt->cl_clid = clid;
347	return 0;
348}
349
350static void rpc_free_clid(struct rpc_clnt *clnt)
351{
352	ida_simple_remove(&rpc_clids, clnt->cl_clid);
353}
354
355static struct rpc_clnt * rpc_new_client(const struct rpc_create_args *args,
356		struct rpc_xprt *xprt,
357		struct rpc_clnt *parent)
358{
359	const struct rpc_program *program = args->program;
360	const struct rpc_version *version;
361	struct rpc_clnt *clnt = NULL;
362	const struct rpc_timeout *timeout;
363	int err;
364
365	/* sanity check the name before trying to print it */
366	dprintk("RPC:       creating %s client for %s (xprt %p)\n",
367			program->name, args->servername, xprt);
368
369	err = rpciod_up();
370	if (err)
371		goto out_no_rpciod;
372
373	err = -EINVAL;
374	if (args->version >= program->nrvers)
375		goto out_err;
376	version = program->version[args->version];
377	if (version == NULL)
378		goto out_err;
379
380	err = -ENOMEM;
381	clnt = kzalloc(sizeof(*clnt), GFP_KERNEL);
382	if (!clnt)
383		goto out_err;
384	clnt->cl_parent = parent ? : clnt;
385
386	err = rpc_alloc_clid(clnt);
387	if (err)
388		goto out_no_clid;
389
390	clnt->cl_procinfo = version->procs;
391	clnt->cl_maxproc  = version->nrprocs;
392	clnt->cl_prog     = args->prognumber ? : program->number;
393	clnt->cl_vers     = version->number;
394	clnt->cl_stats    = program->stats;
395	clnt->cl_metrics  = rpc_alloc_iostats(clnt);
396	rpc_init_pipe_dir_head(&clnt->cl_pipedir_objects);
397	err = -ENOMEM;
398	if (clnt->cl_metrics == NULL)
399		goto out_no_stats;
400	clnt->cl_program  = program;
401	INIT_LIST_HEAD(&clnt->cl_tasks);
402	spin_lock_init(&clnt->cl_lock);
403
404	timeout = xprt->timeout;
405	if (args->timeout != NULL) {
406		memcpy(&clnt->cl_timeout_default, args->timeout,
407				sizeof(clnt->cl_timeout_default));
408		timeout = &clnt->cl_timeout_default;
409	}
410
411	rpc_clnt_set_transport(clnt, xprt, timeout);
412
413	clnt->cl_rtt = &clnt->cl_rtt_default;
414	rpc_init_rtt(&clnt->cl_rtt_default, clnt->cl_timeout->to_initval);
415
416	atomic_set(&clnt->cl_count, 1);
417
418	/* save the nodename */
419	rpc_clnt_set_nodename(clnt, utsname()->nodename);
420
421	err = rpc_client_register(clnt, args->authflavor, args->client_name);
422	if (err)
423		goto out_no_path;
424	if (parent)
425		atomic_inc(&parent->cl_count);
426	return clnt;
427
428out_no_path:
429	rpc_free_iostats(clnt->cl_metrics);
430out_no_stats:
431	rpc_free_clid(clnt);
432out_no_clid:
433	kfree(clnt);
434out_err:
435	rpciod_down();
436out_no_rpciod:
437	xprt_put(xprt);
438	return ERR_PTR(err);
439}
440
441struct rpc_clnt *rpc_create_xprt(struct rpc_create_args *args,
442					struct rpc_xprt *xprt)
443{
444	struct rpc_clnt *clnt = NULL;
445
446	clnt = rpc_new_client(args, xprt, NULL);
447	if (IS_ERR(clnt))
448		return clnt;
449
450	if (!(args->flags & RPC_CLNT_CREATE_NOPING)) {
451		int err = rpc_ping(clnt);
452		if (err != 0) {
453			rpc_shutdown_client(clnt);
454			return ERR_PTR(err);
455		}
456	}
457
458	clnt->cl_softrtry = 1;
459	if (args->flags & RPC_CLNT_CREATE_HARDRTRY)
460		clnt->cl_softrtry = 0;
461
462	if (args->flags & RPC_CLNT_CREATE_AUTOBIND)
463		clnt->cl_autobind = 1;
464	if (args->flags & RPC_CLNT_CREATE_NO_RETRANS_TIMEOUT)
465		clnt->cl_noretranstimeo = 1;
466	if (args->flags & RPC_CLNT_CREATE_DISCRTRY)
467		clnt->cl_discrtry = 1;
468	if (!(args->flags & RPC_CLNT_CREATE_QUIET))
469		clnt->cl_chatty = 1;
470
471	return clnt;
472}
473EXPORT_SYMBOL_GPL(rpc_create_xprt);
474
475/**
476 * rpc_create - create an RPC client and transport with one call
477 * @args: rpc_clnt create argument structure
478 *
479 * Creates and initializes an RPC transport and an RPC client.
480 *
481 * It can ping the server in order to determine if it is up, and to see if
482 * it supports this program and version.  RPC_CLNT_CREATE_NOPING disables
483 * this behavior so asynchronous tasks can also use rpc_create.
484 */
485struct rpc_clnt *rpc_create(struct rpc_create_args *args)
486{
487	struct rpc_xprt *xprt;
488	struct xprt_create xprtargs = {
489		.net = args->net,
490		.ident = args->protocol,
491		.srcaddr = args->saddress,
492		.dstaddr = args->address,
493		.addrlen = args->addrsize,
494		.servername = args->servername,
495		.bc_xprt = args->bc_xprt,
496	};
497	char servername[48];
498
499	if (args->flags & RPC_CLNT_CREATE_INFINITE_SLOTS)
500		xprtargs.flags |= XPRT_CREATE_INFINITE_SLOTS;
501	if (args->flags & RPC_CLNT_CREATE_NO_IDLE_TIMEOUT)
502		xprtargs.flags |= XPRT_CREATE_NO_IDLE_TIMEOUT;
503	/*
504	 * If the caller chooses not to specify a hostname, whip
505	 * up a string representation of the passed-in address.
506	 */
507	if (xprtargs.servername == NULL) {
508		struct sockaddr_un *sun =
509				(struct sockaddr_un *)args->address;
510		struct sockaddr_in *sin =
511				(struct sockaddr_in *)args->address;
512		struct sockaddr_in6 *sin6 =
513				(struct sockaddr_in6 *)args->address;
514
515		servername[0] = '\0';
516		switch (args->address->sa_family) {
517		case AF_LOCAL:
518			snprintf(servername, sizeof(servername), "%s",
519				 sun->sun_path);
520			break;
521		case AF_INET:
522			snprintf(servername, sizeof(servername), "%pI4",
523				 &sin->sin_addr.s_addr);
524			break;
525		case AF_INET6:
526			snprintf(servername, sizeof(servername), "%pI6",
527				 &sin6->sin6_addr);
528			break;
529		default:
530			/* caller wants default server name, but
531			 * address family isn't recognized. */
532			return ERR_PTR(-EINVAL);
533		}
534		xprtargs.servername = servername;
535	}
536
537	xprt = xprt_create_transport(&xprtargs);
538	if (IS_ERR(xprt))
539		return (struct rpc_clnt *)xprt;
540
541	/*
542	 * By default, kernel RPC client connects from a reserved port.
543	 * CAP_NET_BIND_SERVICE will not be set for unprivileged requesters,
544	 * but it is always enabled for rpciod, which handles the connect
545	 * operation.
546	 */
547	xprt->resvport = 1;
548	if (args->flags & RPC_CLNT_CREATE_NONPRIVPORT)
549		xprt->resvport = 0;
550
551	return rpc_create_xprt(args, xprt);
552}
553EXPORT_SYMBOL_GPL(rpc_create);
554
555/*
556 * This function clones the RPC client structure. It allows us to share the
557 * same transport while varying parameters such as the authentication
558 * flavour.
559 */
560static struct rpc_clnt *__rpc_clone_client(struct rpc_create_args *args,
561					   struct rpc_clnt *clnt)
562{
563	struct rpc_xprt *xprt;
564	struct rpc_clnt *new;
565	int err;
566
567	err = -ENOMEM;
568	rcu_read_lock();
569	xprt = xprt_get(rcu_dereference(clnt->cl_xprt));
570	rcu_read_unlock();
571	if (xprt == NULL)
572		goto out_err;
573	args->servername = xprt->servername;
574
575	new = rpc_new_client(args, xprt, clnt);
576	if (IS_ERR(new)) {
577		err = PTR_ERR(new);
578		goto out_err;
579	}
580
581	/* Turn off autobind on clones */
582	new->cl_autobind = 0;
583	new->cl_softrtry = clnt->cl_softrtry;
584	new->cl_noretranstimeo = clnt->cl_noretranstimeo;
585	new->cl_discrtry = clnt->cl_discrtry;
586	new->cl_chatty = clnt->cl_chatty;
587	return new;
588
589out_err:
590	dprintk("RPC:       %s: returned error %d\n", __func__, err);
591	return ERR_PTR(err);
592}
593
594/**
595 * rpc_clone_client - Clone an RPC client structure
596 *
597 * @clnt: RPC client whose parameters are copied
598 *
599 * Returns a fresh RPC client or an ERR_PTR.
600 */
601struct rpc_clnt *rpc_clone_client(struct rpc_clnt *clnt)
602{
603	struct rpc_create_args args = {
604		.program	= clnt->cl_program,
605		.prognumber	= clnt->cl_prog,
606		.version	= clnt->cl_vers,
607		.authflavor	= clnt->cl_auth->au_flavor,
608	};
609	return __rpc_clone_client(&args, clnt);
610}
611EXPORT_SYMBOL_GPL(rpc_clone_client);
612
613/**
614 * rpc_clone_client_set_auth - Clone an RPC client structure and set its auth
615 *
616 * @clnt: RPC client whose parameters are copied
617 * @flavor: security flavor for new client
618 *
619 * Returns a fresh RPC client or an ERR_PTR.
620 */
621struct rpc_clnt *
622rpc_clone_client_set_auth(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
623{
624	struct rpc_create_args args = {
625		.program	= clnt->cl_program,
626		.prognumber	= clnt->cl_prog,
627		.version	= clnt->cl_vers,
628		.authflavor	= flavor,
629	};
630	return __rpc_clone_client(&args, clnt);
631}
632EXPORT_SYMBOL_GPL(rpc_clone_client_set_auth);
633
634/**
635 * rpc_switch_client_transport: switch the RPC transport on the fly
636 * @clnt: pointer to a struct rpc_clnt
637 * @args: pointer to the new transport arguments
638 * @timeout: pointer to the new timeout parameters
639 *
640 * This function allows the caller to switch the RPC transport for the
641 * rpc_clnt structure 'clnt' to allow it to connect to a mirrored NFS
642 * server, for instance.  It assumes that the caller has ensured that
643 * there are no active RPC tasks by using some form of locking.
644 *
645 * Returns zero if "clnt" is now using the new xprt.  Otherwise a
646 * negative errno is returned, and "clnt" continues to use the old
647 * xprt.
648 */
649int rpc_switch_client_transport(struct rpc_clnt *clnt,
650		struct xprt_create *args,
651		const struct rpc_timeout *timeout)
652{
653	const struct rpc_timeout *old_timeo;
654	rpc_authflavor_t pseudoflavor;
655	struct rpc_xprt *xprt, *old;
656	struct rpc_clnt *parent;
657	int err;
658
659	xprt = xprt_create_transport(args);
660	if (IS_ERR(xprt)) {
661		dprintk("RPC:       failed to create new xprt for clnt %p\n",
662			clnt);
663		return PTR_ERR(xprt);
664	}
665
666	pseudoflavor = clnt->cl_auth->au_flavor;
667
668	old_timeo = clnt->cl_timeout;
669	old = rpc_clnt_set_transport(clnt, xprt, timeout);
670
671	rpc_unregister_client(clnt);
672	__rpc_clnt_remove_pipedir(clnt);
673
674	/*
675	 * A new transport was created.  "clnt" therefore
676	 * becomes the root of a new cl_parent tree.  clnt's
677	 * children, if it has any, still point to the old xprt.
678	 */
679	parent = clnt->cl_parent;
680	clnt->cl_parent = clnt;
681
682	/*
683	 * The old rpc_auth cache cannot be re-used.  GSS
684	 * contexts in particular are between a single
685	 * client and server.
686	 */
687	err = rpc_client_register(clnt, pseudoflavor, NULL);
688	if (err)
689		goto out_revert;
690
691	synchronize_rcu();
692	if (parent != clnt)
693		rpc_release_client(parent);
694	xprt_put(old);
695	dprintk("RPC:       replaced xprt for clnt %p\n", clnt);
696	return 0;
697
698out_revert:
699	rpc_clnt_set_transport(clnt, old, old_timeo);
700	clnt->cl_parent = parent;
701	rpc_client_register(clnt, pseudoflavor, NULL);
702	xprt_put(xprt);
703	dprintk("RPC:       failed to switch xprt for clnt %p\n", clnt);
704	return err;
705}
706EXPORT_SYMBOL_GPL(rpc_switch_client_transport);
707
708/*
709 * Kill all tasks for the given client.
710 * XXX: kill their descendants as well?
711 */
712void rpc_killall_tasks(struct rpc_clnt *clnt)
713{
714	struct rpc_task	*rovr;
715
716
717	if (list_empty(&clnt->cl_tasks))
718		return;
719	dprintk("RPC:       killing all tasks for client %p\n", clnt);
720	/*
721	 * Spin lock all_tasks to prevent changes...
722	 */
723	spin_lock(&clnt->cl_lock);
724	list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
725		if (!RPC_IS_ACTIVATED(rovr))
726			continue;
727		if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
728			rovr->tk_flags |= RPC_TASK_KILLED;
729			rpc_exit(rovr, -EIO);
730			if (RPC_IS_QUEUED(rovr))
731				rpc_wake_up_queued_task(rovr->tk_waitqueue,
732							rovr);
733		}
734	}
735	spin_unlock(&clnt->cl_lock);
736}
737EXPORT_SYMBOL_GPL(rpc_killall_tasks);
738
739/*
740 * Properly shut down an RPC client, terminating all outstanding
741 * requests.
742 */
743void rpc_shutdown_client(struct rpc_clnt *clnt)
744{
745	might_sleep();
746
747	dprintk_rcu("RPC:       shutting down %s client for %s\n",
748			clnt->cl_program->name,
749			rcu_dereference(clnt->cl_xprt)->servername);
750
751	while (!list_empty(&clnt->cl_tasks)) {
752		rpc_killall_tasks(clnt);
753		wait_event_timeout(destroy_wait,
754			list_empty(&clnt->cl_tasks), 1*HZ);
755	}
756
757	rpc_release_client(clnt);
758}
759EXPORT_SYMBOL_GPL(rpc_shutdown_client);
760
761/*
762 * Free an RPC client
763 */
764static struct rpc_clnt *
765rpc_free_client(struct rpc_clnt *clnt)
766{
767	struct rpc_clnt *parent = NULL;
768
769	dprintk_rcu("RPC:       destroying %s client for %s\n",
770			clnt->cl_program->name,
771			rcu_dereference(clnt->cl_xprt)->servername);
772	if (clnt->cl_parent != clnt)
773		parent = clnt->cl_parent;
774	rpc_clnt_remove_pipedir(clnt);
775	rpc_unregister_client(clnt);
776	rpc_free_iostats(clnt->cl_metrics);
777	clnt->cl_metrics = NULL;
778	xprt_put(rcu_dereference_raw(clnt->cl_xprt));
779	rpciod_down();
780	rpc_free_clid(clnt);
781	kfree(clnt);
782	return parent;
783}
784
785/*
786 * Free an RPC client
787 */
788static struct rpc_clnt *
789rpc_free_auth(struct rpc_clnt *clnt)
790{
791	if (clnt->cl_auth == NULL)
792		return rpc_free_client(clnt);
793
794	/*
795	 * Note: RPCSEC_GSS may need to send NULL RPC calls in order to
796	 *       release remaining GSS contexts. This mechanism ensures
797	 *       that it can do so safely.
798	 */
799	atomic_inc(&clnt->cl_count);
800	rpcauth_release(clnt->cl_auth);
801	clnt->cl_auth = NULL;
802	if (atomic_dec_and_test(&clnt->cl_count))
803		return rpc_free_client(clnt);
804	return NULL;
805}
806
807/*
808 * Release reference to the RPC client
809 */
810void
811rpc_release_client(struct rpc_clnt *clnt)
812{
813	dprintk("RPC:       rpc_release_client(%p)\n", clnt);
814
815	do {
816		if (list_empty(&clnt->cl_tasks))
817			wake_up(&destroy_wait);
818		if (!atomic_dec_and_test(&clnt->cl_count))
819			break;
820		clnt = rpc_free_auth(clnt);
821	} while (clnt != NULL);
822}
823EXPORT_SYMBOL_GPL(rpc_release_client);
824
825/**
826 * rpc_bind_new_program - bind a new RPC program to an existing client
827 * @old: old rpc_client
828 * @program: rpc program to set
829 * @vers: rpc program version
830 *
831 * Clones the rpc client and sets up a new RPC program. This is mainly
832 * of use for enabling different RPC programs to share the same transport.
833 * The Sun NFSv2/v3 ACL protocol can do this.
834 */
835struct rpc_clnt *rpc_bind_new_program(struct rpc_clnt *old,
836				      const struct rpc_program *program,
837				      u32 vers)
838{
839	struct rpc_create_args args = {
840		.program	= program,
841		.prognumber	= program->number,
842		.version	= vers,
843		.authflavor	= old->cl_auth->au_flavor,
844	};
845	struct rpc_clnt *clnt;
846	int err;
847
848	clnt = __rpc_clone_client(&args, old);
849	if (IS_ERR(clnt))
850		goto out;
851	err = rpc_ping(clnt);
852	if (err != 0) {
853		rpc_shutdown_client(clnt);
854		clnt = ERR_PTR(err);
855	}
856out:
857	return clnt;
858}
859EXPORT_SYMBOL_GPL(rpc_bind_new_program);
860
861void rpc_task_release_client(struct rpc_task *task)
862{
863	struct rpc_clnt *clnt = task->tk_client;
864
865	if (clnt != NULL) {
866		/* Remove from client task list */
867		spin_lock(&clnt->cl_lock);
868		list_del(&task->tk_task);
869		spin_unlock(&clnt->cl_lock);
870		task->tk_client = NULL;
871
872		rpc_release_client(clnt);
873	}
874}
875
876static
877void rpc_task_set_client(struct rpc_task *task, struct rpc_clnt *clnt)
878{
879	if (clnt != NULL) {
880		rpc_task_release_client(task);
881		task->tk_client = clnt;
882		atomic_inc(&clnt->cl_count);
883		if (clnt->cl_softrtry)
884			task->tk_flags |= RPC_TASK_SOFT;
885		if (clnt->cl_noretranstimeo)
886			task->tk_flags |= RPC_TASK_NO_RETRANS_TIMEOUT;
887		if (sk_memalloc_socks()) {
888			struct rpc_xprt *xprt;
889
890			rcu_read_lock();
891			xprt = rcu_dereference(clnt->cl_xprt);
892			if (xprt->swapper)
893				task->tk_flags |= RPC_TASK_SWAPPER;
894			rcu_read_unlock();
895		}
896		/* Add to the client's list of all tasks */
897		spin_lock(&clnt->cl_lock);
898		list_add_tail(&task->tk_task, &clnt->cl_tasks);
899		spin_unlock(&clnt->cl_lock);
900	}
901}
902
903void rpc_task_reset_client(struct rpc_task *task, struct rpc_clnt *clnt)
904{
905	rpc_task_release_client(task);
906	rpc_task_set_client(task, clnt);
907}
908EXPORT_SYMBOL_GPL(rpc_task_reset_client);
909
910
911static void
912rpc_task_set_rpc_message(struct rpc_task *task, const struct rpc_message *msg)
913{
914	if (msg != NULL) {
915		task->tk_msg.rpc_proc = msg->rpc_proc;
916		task->tk_msg.rpc_argp = msg->rpc_argp;
917		task->tk_msg.rpc_resp = msg->rpc_resp;
918		if (msg->rpc_cred != NULL)
919			task->tk_msg.rpc_cred = get_rpccred(msg->rpc_cred);
920	}
921}
922
923/*
924 * Default callback for async RPC calls
925 */
926static void
927rpc_default_callback(struct rpc_task *task, void *data)
928{
929}
930
931static const struct rpc_call_ops rpc_default_ops = {
932	.rpc_call_done = rpc_default_callback,
933};
934
935/**
936 * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
937 * @task_setup_data: pointer to task initialisation data
938 */
939struct rpc_task *rpc_run_task(const struct rpc_task_setup *task_setup_data)
940{
941	struct rpc_task *task;
942
943	task = rpc_new_task(task_setup_data);
944	if (IS_ERR(task))
945		goto out;
946
947	rpc_task_set_client(task, task_setup_data->rpc_client);
948	rpc_task_set_rpc_message(task, task_setup_data->rpc_message);
949
950	if (task->tk_action == NULL)
951		rpc_call_start(task);
952
953	atomic_inc(&task->tk_count);
954	rpc_execute(task);
955out:
956	return task;
957}
958EXPORT_SYMBOL_GPL(rpc_run_task);
959
960/**
961 * rpc_call_sync - Perform a synchronous RPC call
962 * @clnt: pointer to RPC client
963 * @msg: RPC call parameters
964 * @flags: RPC call flags
965 */
966int rpc_call_sync(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags)
967{
968	struct rpc_task	*task;
969	struct rpc_task_setup task_setup_data = {
970		.rpc_client = clnt,
971		.rpc_message = msg,
972		.callback_ops = &rpc_default_ops,
973		.flags = flags,
974	};
975	int status;
976
977	WARN_ON_ONCE(flags & RPC_TASK_ASYNC);
978	if (flags & RPC_TASK_ASYNC) {
979		rpc_release_calldata(task_setup_data.callback_ops,
980			task_setup_data.callback_data);
981		return -EINVAL;
982	}
983
984	task = rpc_run_task(&task_setup_data);
985	if (IS_ERR(task))
986		return PTR_ERR(task);
987	status = task->tk_status;
988	rpc_put_task(task);
989	return status;
990}
991EXPORT_SYMBOL_GPL(rpc_call_sync);
992
993/**
994 * rpc_call_async - Perform an asynchronous RPC call
995 * @clnt: pointer to RPC client
996 * @msg: RPC call parameters
997 * @flags: RPC call flags
998 * @tk_ops: RPC call ops
999 * @data: user call data
1000 */
1001int
1002rpc_call_async(struct rpc_clnt *clnt, const struct rpc_message *msg, int flags,
1003	       const struct rpc_call_ops *tk_ops, void *data)
1004{
1005	struct rpc_task	*task;
1006	struct rpc_task_setup task_setup_data = {
1007		.rpc_client = clnt,
1008		.rpc_message = msg,
1009		.callback_ops = tk_ops,
1010		.callback_data = data,
1011		.flags = flags|RPC_TASK_ASYNC,
1012	};
1013
1014	task = rpc_run_task(&task_setup_data);
1015	if (IS_ERR(task))
1016		return PTR_ERR(task);
1017	rpc_put_task(task);
1018	return 0;
1019}
1020EXPORT_SYMBOL_GPL(rpc_call_async);
1021
1022#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1023/**
1024 * rpc_run_bc_task - Allocate a new RPC task for backchannel use, then run
1025 * rpc_execute against it
1026 * @req: RPC request
1027 * @tk_ops: RPC call ops
1028 */
1029struct rpc_task *rpc_run_bc_task(struct rpc_rqst *req,
1030				const struct rpc_call_ops *tk_ops)
1031{
1032	struct rpc_task *task;
1033	struct xdr_buf *xbufp = &req->rq_snd_buf;
1034	struct rpc_task_setup task_setup_data = {
1035		.callback_ops = tk_ops,
1036	};
1037
1038	dprintk("RPC: rpc_run_bc_task req= %p\n", req);
1039	/*
1040	 * Create an rpc_task to send the data
1041	 */
1042	task = rpc_new_task(&task_setup_data);
1043	if (IS_ERR(task)) {
1044		xprt_free_bc_request(req);
1045		goto out;
1046	}
1047	task->tk_rqstp = req;
1048
1049	/*
1050	 * Set up the xdr_buf length.
1051	 * This also indicates that the buffer is XDR encoded already.
1052	 */
1053	xbufp->len = xbufp->head[0].iov_len + xbufp->page_len +
1054			xbufp->tail[0].iov_len;
1055
1056	task->tk_action = call_bc_transmit;
1057	atomic_inc(&task->tk_count);
1058	WARN_ON_ONCE(atomic_read(&task->tk_count) != 2);
1059	rpc_execute(task);
1060
1061out:
1062	dprintk("RPC: rpc_run_bc_task: task= %p\n", task);
1063	return task;
1064}
1065#endif /* CONFIG_SUNRPC_BACKCHANNEL */
1066
1067void
1068rpc_call_start(struct rpc_task *task)
1069{
1070	task->tk_action = call_start;
1071}
1072EXPORT_SYMBOL_GPL(rpc_call_start);
1073
1074/**
1075 * rpc_peeraddr - extract remote peer address from clnt's xprt
1076 * @clnt: RPC client structure
1077 * @buf: target buffer
1078 * @bufsize: length of target buffer
1079 *
1080 * Returns the number of bytes that are actually in the stored address.
1081 */
1082size_t rpc_peeraddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t bufsize)
1083{
1084	size_t bytes;
1085	struct rpc_xprt *xprt;
1086
1087	rcu_read_lock();
1088	xprt = rcu_dereference(clnt->cl_xprt);
1089
1090	bytes = xprt->addrlen;
1091	if (bytes > bufsize)
1092		bytes = bufsize;
1093	memcpy(buf, &xprt->addr, bytes);
1094	rcu_read_unlock();
1095
1096	return bytes;
1097}
1098EXPORT_SYMBOL_GPL(rpc_peeraddr);
1099
1100/**
1101 * rpc_peeraddr2str - return remote peer address in printable format
1102 * @clnt: RPC client structure
1103 * @format: address format
1104 *
1105 * NB: the lifetime of the memory referenced by the returned pointer is
1106 * the same as the rpc_xprt itself.  As long as the caller uses this
1107 * pointer, it must hold the RCU read lock.
1108 */
1109const char *rpc_peeraddr2str(struct rpc_clnt *clnt,
1110			     enum rpc_display_format_t format)
1111{
1112	struct rpc_xprt *xprt;
1113
1114	xprt = rcu_dereference(clnt->cl_xprt);
1115
1116	if (xprt->address_strings[format] != NULL)
1117		return xprt->address_strings[format];
1118	else
1119		return "unprintable";
1120}
1121EXPORT_SYMBOL_GPL(rpc_peeraddr2str);
1122
1123static const struct sockaddr_in rpc_inaddr_loopback = {
1124	.sin_family		= AF_INET,
1125	.sin_addr.s_addr	= htonl(INADDR_ANY),
1126};
1127
1128static const struct sockaddr_in6 rpc_in6addr_loopback = {
1129	.sin6_family		= AF_INET6,
1130	.sin6_addr		= IN6ADDR_ANY_INIT,
1131};
1132
1133/*
1134 * Try a getsockname() on a connected datagram socket.  Using a
1135 * connected datagram socket prevents leaving a socket in TIME_WAIT.
1136 * This conserves the ephemeral port number space.
1137 *
1138 * Returns zero and fills in "buf" if successful; otherwise, a
1139 * negative errno is returned.
1140 */
1141static int rpc_sockname(struct net *net, struct sockaddr *sap, size_t salen,
1142			struct sockaddr *buf, int buflen)
1143{
1144	struct socket *sock;
1145	int err;
1146
1147	err = __sock_create(net, sap->sa_family,
1148				SOCK_DGRAM, IPPROTO_UDP, &sock, 1);
1149	if (err < 0) {
1150		dprintk("RPC:       can't create UDP socket (%d)\n", err);
1151		goto out;
1152	}
1153
1154	switch (sap->sa_family) {
1155	case AF_INET:
1156		err = kernel_bind(sock,
1157				(struct sockaddr *)&rpc_inaddr_loopback,
1158				sizeof(rpc_inaddr_loopback));
1159		break;
1160	case AF_INET6:
1161		err = kernel_bind(sock,
1162				(struct sockaddr *)&rpc_in6addr_loopback,
1163				sizeof(rpc_in6addr_loopback));
1164		break;
1165	default:
1166		err = -EAFNOSUPPORT;
1167		goto out;
1168	}
1169	if (err < 0) {
1170		dprintk("RPC:       can't bind UDP socket (%d)\n", err);
1171		goto out_release;
1172	}
1173
1174	err = kernel_connect(sock, sap, salen, 0);
1175	if (err < 0) {
1176		dprintk("RPC:       can't connect UDP socket (%d)\n", err);
1177		goto out_release;
1178	}
1179
1180	err = kernel_getsockname(sock, buf, &buflen);
1181	if (err < 0) {
1182		dprintk("RPC:       getsockname failed (%d)\n", err);
1183		goto out_release;
1184	}
1185
1186	err = 0;
1187	if (buf->sa_family == AF_INET6) {
1188		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)buf;
1189		sin6->sin6_scope_id = 0;
1190	}
1191	dprintk("RPC:       %s succeeded\n", __func__);
1192
1193out_release:
1194	sock_release(sock);
1195out:
1196	return err;
1197}
1198
1199/*
1200 * Scraping a connected socket failed, so we don't have a useable
1201 * local address.  Fallback: generate an address that will prevent
1202 * the server from calling us back.
1203 *
1204 * Returns zero and fills in "buf" if successful; otherwise, a
1205 * negative errno is returned.
1206 */
1207static int rpc_anyaddr(int family, struct sockaddr *buf, size_t buflen)
1208{
1209	switch (family) {
1210	case AF_INET:
1211		if (buflen < sizeof(rpc_inaddr_loopback))
1212			return -EINVAL;
1213		memcpy(buf, &rpc_inaddr_loopback,
1214				sizeof(rpc_inaddr_loopback));
1215		break;
1216	case AF_INET6:
1217		if (buflen < sizeof(rpc_in6addr_loopback))
1218			return -EINVAL;
1219		memcpy(buf, &rpc_in6addr_loopback,
1220				sizeof(rpc_in6addr_loopback));
1221	default:
1222		dprintk("RPC:       %s: address family not supported\n",
1223			__func__);
1224		return -EAFNOSUPPORT;
1225	}
1226	dprintk("RPC:       %s: succeeded\n", __func__);
1227	return 0;
1228}
1229
1230/**
1231 * rpc_localaddr - discover local endpoint address for an RPC client
1232 * @clnt: RPC client structure
1233 * @buf: target buffer
1234 * @buflen: size of target buffer, in bytes
1235 *
1236 * Returns zero and fills in "buf" and "buflen" if successful;
1237 * otherwise, a negative errno is returned.
1238 *
1239 * This works even if the underlying transport is not currently connected,
1240 * or if the upper layer never previously provided a source address.
1241 *
1242 * The result of this function call is transient: multiple calls in
1243 * succession may give different results, depending on how local
1244 * networking configuration changes over time.
1245 */
1246int rpc_localaddr(struct rpc_clnt *clnt, struct sockaddr *buf, size_t buflen)
1247{
1248	struct sockaddr_storage address;
1249	struct sockaddr *sap = (struct sockaddr *)&address;
1250	struct rpc_xprt *xprt;
1251	struct net *net;
1252	size_t salen;
1253	int err;
1254
1255	rcu_read_lock();
1256	xprt = rcu_dereference(clnt->cl_xprt);
1257	salen = xprt->addrlen;
1258	memcpy(sap, &xprt->addr, salen);
1259	net = get_net(xprt->xprt_net);
1260	rcu_read_unlock();
1261
1262	rpc_set_port(sap, 0);
1263	err = rpc_sockname(net, sap, salen, buf, buflen);
1264	put_net(net);
1265	if (err != 0)
1266		/* Couldn't discover local address, return ANYADDR */
1267		return rpc_anyaddr(sap->sa_family, buf, buflen);
1268	return 0;
1269}
1270EXPORT_SYMBOL_GPL(rpc_localaddr);
1271
1272void
1273rpc_setbufsize(struct rpc_clnt *clnt, unsigned int sndsize, unsigned int rcvsize)
1274{
1275	struct rpc_xprt *xprt;
1276
1277	rcu_read_lock();
1278	xprt = rcu_dereference(clnt->cl_xprt);
1279	if (xprt->ops->set_buffer_size)
1280		xprt->ops->set_buffer_size(xprt, sndsize, rcvsize);
1281	rcu_read_unlock();
1282}
1283EXPORT_SYMBOL_GPL(rpc_setbufsize);
1284
1285/**
1286 * rpc_protocol - Get transport protocol number for an RPC client
1287 * @clnt: RPC client to query
1288 *
1289 */
1290int rpc_protocol(struct rpc_clnt *clnt)
1291{
1292	int protocol;
1293
1294	rcu_read_lock();
1295	protocol = rcu_dereference(clnt->cl_xprt)->prot;
1296	rcu_read_unlock();
1297	return protocol;
1298}
1299EXPORT_SYMBOL_GPL(rpc_protocol);
1300
1301/**
1302 * rpc_net_ns - Get the network namespace for this RPC client
1303 * @clnt: RPC client to query
1304 *
1305 */
1306struct net *rpc_net_ns(struct rpc_clnt *clnt)
1307{
1308	struct net *ret;
1309
1310	rcu_read_lock();
1311	ret = rcu_dereference(clnt->cl_xprt)->xprt_net;
1312	rcu_read_unlock();
1313	return ret;
1314}
1315EXPORT_SYMBOL_GPL(rpc_net_ns);
1316
1317/**
1318 * rpc_max_payload - Get maximum payload size for a transport, in bytes
1319 * @clnt: RPC client to query
1320 *
1321 * For stream transports, this is one RPC record fragment (see RFC
1322 * 1831), as we don't support multi-record requests yet.  For datagram
1323 * transports, this is the size of an IP packet minus the IP, UDP, and
1324 * RPC header sizes.
1325 */
1326size_t rpc_max_payload(struct rpc_clnt *clnt)
1327{
1328	size_t ret;
1329
1330	rcu_read_lock();
1331	ret = rcu_dereference(clnt->cl_xprt)->max_payload;
1332	rcu_read_unlock();
1333	return ret;
1334}
1335EXPORT_SYMBOL_GPL(rpc_max_payload);
1336
1337/**
1338 * rpc_get_timeout - Get timeout for transport in units of HZ
1339 * @clnt: RPC client to query
1340 */
1341unsigned long rpc_get_timeout(struct rpc_clnt *clnt)
1342{
1343	unsigned long ret;
1344
1345	rcu_read_lock();
1346	ret = rcu_dereference(clnt->cl_xprt)->timeout->to_initval;
1347	rcu_read_unlock();
1348	return ret;
1349}
1350EXPORT_SYMBOL_GPL(rpc_get_timeout);
1351
1352/**
1353 * rpc_force_rebind - force transport to check that remote port is unchanged
1354 * @clnt: client to rebind
1355 *
1356 */
1357void rpc_force_rebind(struct rpc_clnt *clnt)
1358{
1359	if (clnt->cl_autobind) {
1360		rcu_read_lock();
1361		xprt_clear_bound(rcu_dereference(clnt->cl_xprt));
1362		rcu_read_unlock();
1363	}
1364}
1365EXPORT_SYMBOL_GPL(rpc_force_rebind);
1366
1367/*
1368 * Restart an (async) RPC call from the call_prepare state.
1369 * Usually called from within the exit handler.
1370 */
1371int
1372rpc_restart_call_prepare(struct rpc_task *task)
1373{
1374	if (RPC_ASSASSINATED(task))
1375		return 0;
1376	task->tk_action = call_start;
1377	task->tk_status = 0;
1378	if (task->tk_ops->rpc_call_prepare != NULL)
1379		task->tk_action = rpc_prepare_task;
1380	return 1;
1381}
1382EXPORT_SYMBOL_GPL(rpc_restart_call_prepare);
1383
1384/*
1385 * Restart an (async) RPC call. Usually called from within the
1386 * exit handler.
1387 */
1388int
1389rpc_restart_call(struct rpc_task *task)
1390{
1391	if (RPC_ASSASSINATED(task))
1392		return 0;
1393	task->tk_action = call_start;
1394	task->tk_status = 0;
1395	return 1;
1396}
1397EXPORT_SYMBOL_GPL(rpc_restart_call);
1398
1399#ifdef RPC_DEBUG
1400static const char *rpc_proc_name(const struct rpc_task *task)
1401{
1402	const struct rpc_procinfo *proc = task->tk_msg.rpc_proc;
1403
1404	if (proc) {
1405		if (proc->p_name)
1406			return proc->p_name;
1407		else
1408			return "NULL";
1409	} else
1410		return "no proc";
1411}
1412#endif
1413
1414/*
1415 * 0.  Initial state
1416 *
1417 *     Other FSM states can be visited zero or more times, but
1418 *     this state is visited exactly once for each RPC.
1419 */
1420static void
1421call_start(struct rpc_task *task)
1422{
1423	struct rpc_clnt	*clnt = task->tk_client;
1424
1425	dprintk("RPC: %5u call_start %s%d proc %s (%s)\n", task->tk_pid,
1426			clnt->cl_program->name, clnt->cl_vers,
1427			rpc_proc_name(task),
1428			(RPC_IS_ASYNC(task) ? "async" : "sync"));
1429
1430	/* Increment call count */
1431	task->tk_msg.rpc_proc->p_count++;
1432	clnt->cl_stats->rpccnt++;
1433	task->tk_action = call_reserve;
1434}
1435
1436/*
1437 * 1.	Reserve an RPC call slot
1438 */
1439static void
1440call_reserve(struct rpc_task *task)
1441{
1442	dprint_status(task);
1443
1444	task->tk_status  = 0;
1445	task->tk_action  = call_reserveresult;
1446	xprt_reserve(task);
1447}
1448
1449static void call_retry_reserve(struct rpc_task *task);
1450
1451/*
1452 * 1b.	Grok the result of xprt_reserve()
1453 */
1454static void
1455call_reserveresult(struct rpc_task *task)
1456{
1457	int status = task->tk_status;
1458
1459	dprint_status(task);
1460
1461	/*
1462	 * After a call to xprt_reserve(), we must have either
1463	 * a request slot or else an error status.
1464	 */
1465	task->tk_status = 0;
1466	if (status >= 0) {
1467		if (task->tk_rqstp) {
1468			task->tk_action = call_refresh;
1469			return;
1470		}
1471
1472		printk(KERN_ERR "%s: status=%d, but no request slot, exiting\n",
1473				__func__, status);
1474		rpc_exit(task, -EIO);
1475		return;
1476	}
1477
1478	/*
1479	 * Even though there was an error, we may have acquired
1480	 * a request slot somehow.  Make sure not to leak it.
1481	 */
1482	if (task->tk_rqstp) {
1483		printk(KERN_ERR "%s: status=%d, request allocated anyway\n",
1484				__func__, status);
1485		xprt_release(task);
1486	}
1487
1488	switch (status) {
1489	case -ENOMEM:
1490		rpc_delay(task, HZ >> 2);
1491	case -EAGAIN:	/* woken up; retry */
1492		task->tk_action = call_retry_reserve;
1493		return;
1494	case -EIO:	/* probably a shutdown */
1495		break;
1496	default:
1497		printk(KERN_ERR "%s: unrecognized error %d, exiting\n",
1498				__func__, status);
1499		break;
1500	}
1501	rpc_exit(task, status);
1502}
1503
1504/*
1505 * 1c.	Retry reserving an RPC call slot
1506 */
1507static void
1508call_retry_reserve(struct rpc_task *task)
1509{
1510	dprint_status(task);
1511
1512	task->tk_status  = 0;
1513	task->tk_action  = call_reserveresult;
1514	xprt_retry_reserve(task);
1515}
1516
1517/*
1518 * 2.	Bind and/or refresh the credentials
1519 */
1520static void
1521call_refresh(struct rpc_task *task)
1522{
1523	dprint_status(task);
1524
1525	task->tk_action = call_refreshresult;
1526	task->tk_status = 0;
1527	task->tk_client->cl_stats->rpcauthrefresh++;
1528	rpcauth_refreshcred(task);
1529}
1530
1531/*
1532 * 2a.	Process the results of a credential refresh
1533 */
1534static void
1535call_refreshresult(struct rpc_task *task)
1536{
1537	int status = task->tk_status;
1538
1539	dprint_status(task);
1540
1541	task->tk_status = 0;
1542	task->tk_action = call_refresh;
1543	switch (status) {
1544	case 0:
1545		if (rpcauth_uptodatecred(task)) {
1546			task->tk_action = call_allocate;
1547			return;
1548		}
1549		/* Use rate-limiting and a max number of retries if refresh
1550		 * had status 0 but failed to update the cred.
1551		 */
1552	case -ETIMEDOUT:
1553		rpc_delay(task, 3*HZ);
1554	case -EAGAIN:
1555		status = -EACCES;
1556	case -EKEYEXPIRED:
1557		if (!task->tk_cred_retry)
1558			break;
1559		task->tk_cred_retry--;
1560		dprintk("RPC: %5u %s: retry refresh creds\n",
1561				task->tk_pid, __func__);
1562		return;
1563	}
1564	dprintk("RPC: %5u %s: refresh creds failed with error %d\n",
1565				task->tk_pid, __func__, status);
1566	rpc_exit(task, status);
1567}
1568
1569/*
1570 * 2b.	Allocate the buffer. For details, see sched.c:rpc_malloc.
1571 *	(Note: buffer memory is freed in xprt_release).
1572 */
1573static void
1574call_allocate(struct rpc_task *task)
1575{
1576	unsigned int slack = task->tk_rqstp->rq_cred->cr_auth->au_cslack;
1577	struct rpc_rqst *req = task->tk_rqstp;
1578	struct rpc_xprt *xprt = req->rq_xprt;
1579	struct rpc_procinfo *proc = task->tk_msg.rpc_proc;
1580
1581	dprint_status(task);
1582
1583	task->tk_status = 0;
1584	task->tk_action = call_bind;
1585
1586	if (req->rq_buffer)
1587		return;
1588
1589	if (proc->p_proc != 0) {
1590		BUG_ON(proc->p_arglen == 0);
1591		if (proc->p_decode != NULL)
1592			BUG_ON(proc->p_replen == 0);
1593	}
1594
1595	/*
1596	 * Calculate the size (in quads) of the RPC call
1597	 * and reply headers, and convert both values
1598	 * to byte sizes.
1599	 */
1600	req->rq_callsize = RPC_CALLHDRSIZE + (slack << 1) + proc->p_arglen;
1601	req->rq_callsize <<= 2;
1602	req->rq_rcvsize = RPC_REPHDRSIZE + slack + proc->p_replen;
1603	req->rq_rcvsize <<= 2;
1604
1605	req->rq_buffer = xprt->ops->buf_alloc(task,
1606					req->rq_callsize + req->rq_rcvsize);
1607	if (req->rq_buffer != NULL)
1608		return;
1609
1610	dprintk("RPC: %5u rpc_buffer allocation failed\n", task->tk_pid);
1611
1612	if (RPC_IS_ASYNC(task) || !fatal_signal_pending(current)) {
1613		task->tk_action = call_allocate;
1614		rpc_delay(task, HZ>>4);
1615		return;
1616	}
1617
1618	rpc_exit(task, -ERESTARTSYS);
1619}
1620
1621static inline int
1622rpc_task_need_encode(struct rpc_task *task)
1623{
1624	return task->tk_rqstp->rq_snd_buf.len == 0;
1625}
1626
1627static inline void
1628rpc_task_force_reencode(struct rpc_task *task)
1629{
1630	task->tk_rqstp->rq_snd_buf.len = 0;
1631	task->tk_rqstp->rq_bytes_sent = 0;
1632}
1633
1634static inline void
1635rpc_xdr_buf_init(struct xdr_buf *buf, void *start, size_t len)
1636{
1637	buf->head[0].iov_base = start;
1638	buf->head[0].iov_len = len;
1639	buf->tail[0].iov_len = 0;
1640	buf->page_len = 0;
1641	buf->flags = 0;
1642	buf->len = 0;
1643	buf->buflen = len;
1644}
1645
1646/*
1647 * 3.	Encode arguments of an RPC call
1648 */
1649static void
1650rpc_xdr_encode(struct rpc_task *task)
1651{
1652	struct rpc_rqst	*req = task->tk_rqstp;
1653	kxdreproc_t	encode;
1654	__be32		*p;
1655
1656	dprint_status(task);
1657
1658	rpc_xdr_buf_init(&req->rq_snd_buf,
1659			 req->rq_buffer,
1660			 req->rq_callsize);
1661	rpc_xdr_buf_init(&req->rq_rcv_buf,
1662			 (char *)req->rq_buffer + req->rq_callsize,
1663			 req->rq_rcvsize);
1664
1665	p = rpc_encode_header(task);
1666	if (p == NULL) {
1667		printk(KERN_INFO "RPC: couldn't encode RPC header, exit EIO\n");
1668		rpc_exit(task, -EIO);
1669		return;
1670	}
1671
1672	encode = task->tk_msg.rpc_proc->p_encode;
1673	if (encode == NULL)
1674		return;
1675
1676	task->tk_status = rpcauth_wrap_req(task, encode, req, p,
1677			task->tk_msg.rpc_argp);
1678}
1679
1680/*
1681 * 4.	Get the server port number if not yet set
1682 */
1683static void
1684call_bind(struct rpc_task *task)
1685{
1686	struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
1687
1688	dprint_status(task);
1689
1690	task->tk_action = call_connect;
1691	if (!xprt_bound(xprt)) {
1692		task->tk_action = call_bind_status;
1693		task->tk_timeout = xprt->bind_timeout;
1694		xprt->ops->rpcbind(task);
1695	}
1696}
1697
1698/*
1699 * 4a.	Sort out bind result
1700 */
1701static void
1702call_bind_status(struct rpc_task *task)
1703{
1704	int status = -EIO;
1705
1706	if (task->tk_status >= 0) {
1707		dprint_status(task);
1708		task->tk_status = 0;
1709		task->tk_action = call_connect;
1710		return;
1711	}
1712
1713	trace_rpc_bind_status(task);
1714	switch (task->tk_status) {
1715	case -ENOMEM:
1716		dprintk("RPC: %5u rpcbind out of memory\n", task->tk_pid);
1717		rpc_delay(task, HZ >> 2);
1718		goto retry_timeout;
1719	case -EACCES:
1720		dprintk("RPC: %5u remote rpcbind: RPC program/version "
1721				"unavailable\n", task->tk_pid);
1722		/* fail immediately if this is an RPC ping */
1723		if (task->tk_msg.rpc_proc->p_proc == 0) {
1724			status = -EOPNOTSUPP;
1725			break;
1726		}
1727		if (task->tk_rebind_retry == 0)
1728			break;
1729		task->tk_rebind_retry--;
1730		rpc_delay(task, 3*HZ);
1731		goto retry_timeout;
1732	case -ETIMEDOUT:
1733		dprintk("RPC: %5u rpcbind request timed out\n",
1734				task->tk_pid);
1735		goto retry_timeout;
1736	case -EPFNOSUPPORT:
1737		/* server doesn't support any rpcbind version we know of */
1738		dprintk("RPC: %5u unrecognized remote rpcbind service\n",
1739				task->tk_pid);
1740		break;
1741	case -EPROTONOSUPPORT:
1742		dprintk("RPC: %5u remote rpcbind version unavailable, retrying\n",
1743				task->tk_pid);
1744		goto retry_timeout;
1745	case -ECONNREFUSED:		/* connection problems */
1746	case -ECONNRESET:
1747	case -ECONNABORTED:
1748	case -ENOTCONN:
1749	case -EHOSTDOWN:
1750	case -EHOSTUNREACH:
1751	case -ENETUNREACH:
1752	case -ENOBUFS:
1753	case -EPIPE:
1754		dprintk("RPC: %5u remote rpcbind unreachable: %d\n",
1755				task->tk_pid, task->tk_status);
1756		if (!RPC_IS_SOFTCONN(task)) {
1757			rpc_delay(task, 5*HZ);
1758			goto retry_timeout;
1759		}
1760		status = task->tk_status;
1761		break;
1762	default:
1763		dprintk("RPC: %5u unrecognized rpcbind error (%d)\n",
1764				task->tk_pid, -task->tk_status);
1765	}
1766
1767	rpc_exit(task, status);
1768	return;
1769
1770retry_timeout:
1771	task->tk_status = 0;
1772	task->tk_action = call_timeout;
1773}
1774
1775/*
1776 * 4b.	Connect to the RPC server
1777 */
1778static void
1779call_connect(struct rpc_task *task)
1780{
1781	struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
1782
1783	dprintk("RPC: %5u call_connect xprt %p %s connected\n",
1784			task->tk_pid, xprt,
1785			(xprt_connected(xprt) ? "is" : "is not"));
1786
1787	task->tk_action = call_transmit;
1788	if (!xprt_connected(xprt)) {
1789		task->tk_action = call_connect_status;
1790		if (task->tk_status < 0)
1791			return;
1792		if (task->tk_flags & RPC_TASK_NOCONNECT) {
1793			rpc_exit(task, -ENOTCONN);
1794			return;
1795		}
1796		xprt_connect(task);
1797	}
1798}
1799
1800/*
1801 * 4c.	Sort out connect result
1802 */
1803static void
1804call_connect_status(struct rpc_task *task)
1805{
1806	struct rpc_clnt *clnt = task->tk_client;
1807	int status = task->tk_status;
1808
1809	dprint_status(task);
1810
1811	trace_rpc_connect_status(task, status);
1812	task->tk_status = 0;
1813	switch (status) {
1814	case -ECONNREFUSED:
1815	case -ECONNRESET:
1816	case -ECONNABORTED:
1817	case -ENETUNREACH:
1818	case -EHOSTUNREACH:
1819	case -ENOBUFS:
1820	case -EPIPE:
1821		if (RPC_IS_SOFTCONN(task))
1822			break;
1823		/* retry with existing socket, after a delay */
1824		rpc_delay(task, 3*HZ);
1825	case -EAGAIN:
1826		/* Check for timeouts before looping back to call_bind */
1827	case -ETIMEDOUT:
1828		task->tk_action = call_timeout;
1829		return;
1830	case 0:
1831		clnt->cl_stats->netreconn++;
1832		task->tk_action = call_transmit;
1833		return;
1834	}
1835	rpc_exit(task, status);
1836}
1837
1838/*
1839 * 5.	Transmit the RPC request, and wait for reply
1840 */
1841static void
1842call_transmit(struct rpc_task *task)
1843{
1844	int is_retrans = RPC_WAS_SENT(task);
1845
1846	dprint_status(task);
1847
1848	task->tk_action = call_status;
1849	if (task->tk_status < 0)
1850		return;
1851	if (!xprt_prepare_transmit(task))
1852		return;
1853	task->tk_action = call_transmit_status;
1854	/* Encode here so that rpcsec_gss can use correct sequence number. */
1855	if (rpc_task_need_encode(task)) {
1856		rpc_xdr_encode(task);
1857		/* Did the encode result in an error condition? */
1858		if (task->tk_status != 0) {
1859			/* Was the error nonfatal? */
1860			if (task->tk_status == -EAGAIN)
1861				rpc_delay(task, HZ >> 4);
1862			else
1863				rpc_exit(task, task->tk_status);
1864			return;
1865		}
1866	}
1867	xprt_transmit(task);
1868	if (task->tk_status < 0)
1869		return;
1870	if (is_retrans)
1871		task->tk_client->cl_stats->rpcretrans++;
1872	/*
1873	 * On success, ensure that we call xprt_end_transmit() before sleeping
1874	 * in order to allow access to the socket to other RPC requests.
1875	 */
1876	call_transmit_status(task);
1877	if (rpc_reply_expected(task))
1878		return;
1879	task->tk_action = rpc_exit_task;
1880	rpc_wake_up_queued_task(&task->tk_rqstp->rq_xprt->pending, task);
1881}
1882
1883/*
1884 * 5a.	Handle cleanup after a transmission
1885 */
1886static void
1887call_transmit_status(struct rpc_task *task)
1888{
1889	task->tk_action = call_status;
1890
1891	/*
1892	 * Common case: success.  Force the compiler to put this
1893	 * test first.
1894	 */
1895	if (task->tk_status == 0) {
1896		xprt_end_transmit(task);
1897		rpc_task_force_reencode(task);
1898		return;
1899	}
1900
1901	switch (task->tk_status) {
1902	case -EAGAIN:
1903		break;
1904	default:
1905		dprint_status(task);
1906		xprt_end_transmit(task);
1907		rpc_task_force_reencode(task);
1908		break;
1909		/*
1910		 * Special cases: if we've been waiting on the
1911		 * socket's write_space() callback, or if the
1912		 * socket just returned a connection error,
1913		 * then hold onto the transport lock.
1914		 */
1915	case -ECONNREFUSED:
1916	case -EHOSTDOWN:
1917	case -EHOSTUNREACH:
1918	case -ENETUNREACH:
1919	case -EPERM:
1920		if (RPC_IS_SOFTCONN(task)) {
1921			xprt_end_transmit(task);
1922			rpc_exit(task, task->tk_status);
1923			break;
1924		}
1925	case -ECONNRESET:
1926	case -ECONNABORTED:
1927	case -ENOTCONN:
1928	case -ENOBUFS:
1929	case -EPIPE:
1930		rpc_task_force_reencode(task);
1931	}
1932}
1933
1934#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1935/*
1936 * 5b.	Send the backchannel RPC reply.  On error, drop the reply.  In
1937 * addition, disconnect on connectivity errors.
1938 */
1939static void
1940call_bc_transmit(struct rpc_task *task)
1941{
1942	struct rpc_rqst *req = task->tk_rqstp;
1943
1944	if (!xprt_prepare_transmit(task)) {
1945		/*
1946		 * Could not reserve the transport. Try again after the
1947		 * transport is released.
1948		 */
1949		task->tk_status = 0;
1950		task->tk_action = call_bc_transmit;
1951		return;
1952	}
1953
1954	task->tk_action = rpc_exit_task;
1955	if (task->tk_status < 0) {
1956		printk(KERN_NOTICE "RPC: Could not send backchannel reply "
1957			"error: %d\n", task->tk_status);
1958		return;
1959	}
1960
1961	xprt_transmit(task);
1962	xprt_end_transmit(task);
1963	dprint_status(task);
1964	switch (task->tk_status) {
1965	case 0:
1966		/* Success */
1967		break;
1968	case -EHOSTDOWN:
1969	case -EHOSTUNREACH:
1970	case -ENETUNREACH:
1971	case -ETIMEDOUT:
1972		/*
1973		 * Problem reaching the server.  Disconnect and let the
1974		 * forechannel reestablish the connection.  The server will
1975		 * have to retransmit the backchannel request and we'll
1976		 * reprocess it.  Since these ops are idempotent, there's no
1977		 * need to cache our reply at this time.
1978		 */
1979		printk(KERN_NOTICE "RPC: Could not send backchannel reply "
1980			"error: %d\n", task->tk_status);
1981		xprt_conditional_disconnect(req->rq_xprt,
1982			req->rq_connect_cookie);
1983		break;
1984	default:
1985		/*
1986		 * We were unable to reply and will have to drop the
1987		 * request.  The server should reconnect and retransmit.
1988		 */
1989		WARN_ON_ONCE(task->tk_status == -EAGAIN);
1990		printk(KERN_NOTICE "RPC: Could not send backchannel reply "
1991			"error: %d\n", task->tk_status);
1992		break;
1993	}
1994	rpc_wake_up_queued_task(&req->rq_xprt->pending, task);
1995}
1996#endif /* CONFIG_SUNRPC_BACKCHANNEL */
1997
1998/*
1999 * 6.	Sort out the RPC call status
2000 */
2001static void
2002call_status(struct rpc_task *task)
2003{
2004	struct rpc_clnt	*clnt = task->tk_client;
2005	struct rpc_rqst	*req = task->tk_rqstp;
2006	int		status;
2007
2008	if (req->rq_reply_bytes_recvd > 0 && !req->rq_bytes_sent)
2009		task->tk_status = req->rq_reply_bytes_recvd;
2010
2011	dprint_status(task);
2012
2013	status = task->tk_status;
2014	if (status >= 0) {
2015		task->tk_action = call_decode;
2016		return;
2017	}
2018
2019	trace_rpc_call_status(task);
2020	task->tk_status = 0;
2021	switch(status) {
2022	case -EHOSTDOWN:
2023	case -EHOSTUNREACH:
2024	case -ENETUNREACH:
2025	case -EPERM:
2026		if (RPC_IS_SOFTCONN(task)) {
2027			rpc_exit(task, status);
2028			break;
2029		}
2030		/*
2031		 * Delay any retries for 3 seconds, then handle as if it
2032		 * were a timeout.
2033		 */
2034		rpc_delay(task, 3*HZ);
2035	case -ETIMEDOUT:
2036		task->tk_action = call_timeout;
2037		if (!(task->tk_flags & RPC_TASK_NO_RETRANS_TIMEOUT)
2038		    && task->tk_client->cl_discrtry)
2039			xprt_conditional_disconnect(req->rq_xprt,
2040					req->rq_connect_cookie);
2041		break;
2042	case -ECONNREFUSED:
2043	case -ECONNRESET:
2044	case -ECONNABORTED:
2045		rpc_force_rebind(clnt);
2046	case -ENOBUFS:
2047		rpc_delay(task, 3*HZ);
2048	case -EPIPE:
2049	case -ENOTCONN:
2050		task->tk_action = call_bind;
2051		break;
2052	case -EAGAIN:
2053		task->tk_action = call_transmit;
2054		break;
2055	case -EIO:
2056		/* shutdown or soft timeout */
2057		rpc_exit(task, status);
2058		break;
2059	default:
2060		if (clnt->cl_chatty)
2061			printk("%s: RPC call returned error %d\n",
2062			       clnt->cl_program->name, -status);
2063		rpc_exit(task, status);
2064	}
2065}
2066
2067/*
2068 * 6a.	Handle RPC timeout
2069 * 	We do not release the request slot, so we keep using the
2070 *	same XID for all retransmits.
2071 */
2072static void
2073call_timeout(struct rpc_task *task)
2074{
2075	struct rpc_clnt	*clnt = task->tk_client;
2076
2077	if (xprt_adjust_timeout(task->tk_rqstp) == 0) {
2078		dprintk("RPC: %5u call_timeout (minor)\n", task->tk_pid);
2079		goto retry;
2080	}
2081
2082	dprintk("RPC: %5u call_timeout (major)\n", task->tk_pid);
2083	task->tk_timeouts++;
2084
2085	if (RPC_IS_SOFTCONN(task)) {
2086		rpc_exit(task, -ETIMEDOUT);
2087		return;
2088	}
2089	if (RPC_IS_SOFT(task)) {
2090		if (clnt->cl_chatty) {
2091			rcu_read_lock();
2092			printk(KERN_NOTICE "%s: server %s not responding, timed out\n",
2093				clnt->cl_program->name,
2094				rcu_dereference(clnt->cl_xprt)->servername);
2095			rcu_read_unlock();
2096		}
2097		if (task->tk_flags & RPC_TASK_TIMEOUT)
2098			rpc_exit(task, -ETIMEDOUT);
2099		else
2100			rpc_exit(task, -EIO);
2101		return;
2102	}
2103
2104	if (!(task->tk_flags & RPC_CALL_MAJORSEEN)) {
2105		task->tk_flags |= RPC_CALL_MAJORSEEN;
2106		if (clnt->cl_chatty) {
2107			rcu_read_lock();
2108			printk(KERN_NOTICE "%s: server %s not responding, still trying\n",
2109			clnt->cl_program->name,
2110			rcu_dereference(clnt->cl_xprt)->servername);
2111			rcu_read_unlock();
2112		}
2113	}
2114	rpc_force_rebind(clnt);
2115	/*
2116	 * Did our request time out due to an RPCSEC_GSS out-of-sequence
2117	 * event? RFC2203 requires the server to drop all such requests.
2118	 */
2119	rpcauth_invalcred(task);
2120
2121retry:
2122	task->tk_action = call_bind;
2123	task->tk_status = 0;
2124}
2125
2126/*
2127 * 7.	Decode the RPC reply
2128 */
2129static void
2130call_decode(struct rpc_task *task)
2131{
2132	struct rpc_clnt	*clnt = task->tk_client;
2133	struct rpc_rqst	*req = task->tk_rqstp;
2134	kxdrdproc_t	decode = task->tk_msg.rpc_proc->p_decode;
2135	__be32		*p;
2136
2137	dprint_status(task);
2138
2139	if (task->tk_flags & RPC_CALL_MAJORSEEN) {
2140		if (clnt->cl_chatty) {
2141			rcu_read_lock();
2142			printk(KERN_NOTICE "%s: server %s OK\n",
2143				clnt->cl_program->name,
2144				rcu_dereference(clnt->cl_xprt)->servername);
2145			rcu_read_unlock();
2146		}
2147		task->tk_flags &= ~RPC_CALL_MAJORSEEN;
2148	}
2149
2150	/*
2151	 * Ensure that we see all writes made by xprt_complete_rqst()
2152	 * before it changed req->rq_reply_bytes_recvd.
2153	 */
2154	smp_rmb();
2155	req->rq_rcv_buf.len = req->rq_private_buf.len;
2156
2157	/* Check that the softirq receive buffer is valid */
2158	WARN_ON(memcmp(&req->rq_rcv_buf, &req->rq_private_buf,
2159				sizeof(req->rq_rcv_buf)) != 0);
2160
2161	if (req->rq_rcv_buf.len < 12) {
2162		if (!RPC_IS_SOFT(task)) {
2163			task->tk_action = call_bind;
2164			goto out_retry;
2165		}
2166		dprintk("RPC:       %s: too small RPC reply size (%d bytes)\n",
2167				clnt->cl_program->name, task->tk_status);
2168		task->tk_action = call_timeout;
2169		goto out_retry;
2170	}
2171
2172	p = rpc_verify_header(task);
2173	if (IS_ERR(p)) {
2174		if (p == ERR_PTR(-EAGAIN))
2175			goto out_retry;
2176		return;
2177	}
2178
2179	task->tk_action = rpc_exit_task;
2180
2181	if (decode) {
2182		task->tk_status = rpcauth_unwrap_resp(task, decode, req, p,
2183						      task->tk_msg.rpc_resp);
2184	}
2185	dprintk("RPC: %5u call_decode result %d\n", task->tk_pid,
2186			task->tk_status);
2187	return;
2188out_retry:
2189	task->tk_status = 0;
2190	/* Note: rpc_verify_header() may have freed the RPC slot */
2191	if (task->tk_rqstp == req) {
2192		req->rq_reply_bytes_recvd = req->rq_rcv_buf.len = 0;
2193		if (task->tk_client->cl_discrtry)
2194			xprt_conditional_disconnect(req->rq_xprt,
2195					req->rq_connect_cookie);
2196	}
2197}
2198
2199static __be32 *
2200rpc_encode_header(struct rpc_task *task)
2201{
2202	struct rpc_clnt *clnt = task->tk_client;
2203	struct rpc_rqst	*req = task->tk_rqstp;
2204	__be32		*p = req->rq_svec[0].iov_base;
2205
2206	/* FIXME: check buffer size? */
2207
2208	p = xprt_skip_transport_header(req->rq_xprt, p);
2209	*p++ = req->rq_xid;		/* XID */
2210	*p++ = htonl(RPC_CALL);		/* CALL */
2211	*p++ = htonl(RPC_VERSION);	/* RPC version */
2212	*p++ = htonl(clnt->cl_prog);	/* program number */
2213	*p++ = htonl(clnt->cl_vers);	/* program version */
2214	*p++ = htonl(task->tk_msg.rpc_proc->p_proc);	/* procedure */
2215	p = rpcauth_marshcred(task, p);
2216	req->rq_slen = xdr_adjust_iovec(&req->rq_svec[0], p);
2217	return p;
2218}
2219
2220static __be32 *
2221rpc_verify_header(struct rpc_task *task)
2222{
2223	struct rpc_clnt *clnt = task->tk_client;
2224	struct kvec *iov = &task->tk_rqstp->rq_rcv_buf.head[0];
2225	int len = task->tk_rqstp->rq_rcv_buf.len >> 2;
2226	__be32	*p = iov->iov_base;
2227	u32 n;
2228	int error = -EACCES;
2229
2230	if ((task->tk_rqstp->rq_rcv_buf.len & 3) != 0) {
2231		/* RFC-1014 says that the representation of XDR data must be a
2232		 * multiple of four bytes
2233		 * - if it isn't pointer subtraction in the NFS client may give
2234		 *   undefined results
2235		 */
2236		dprintk("RPC: %5u %s: XDR representation not a multiple of"
2237		       " 4 bytes: 0x%x\n", task->tk_pid, __func__,
2238		       task->tk_rqstp->rq_rcv_buf.len);
2239		error = -EIO;
2240		goto out_err;
2241	}
2242	if ((len -= 3) < 0)
2243		goto out_overflow;
2244
2245	p += 1; /* skip XID */
2246	if ((n = ntohl(*p++)) != RPC_REPLY) {
2247		dprintk("RPC: %5u %s: not an RPC reply: %x\n",
2248			task->tk_pid, __func__, n);
2249		error = -EIO;
2250		goto out_garbage;
2251	}
2252
2253	if ((n = ntohl(*p++)) != RPC_MSG_ACCEPTED) {
2254		if (--len < 0)
2255			goto out_overflow;
2256		switch ((n = ntohl(*p++))) {
2257		case RPC_AUTH_ERROR:
2258			break;
2259		case RPC_MISMATCH:
2260			dprintk("RPC: %5u %s: RPC call version mismatch!\n",
2261				task->tk_pid, __func__);
2262			error = -EPROTONOSUPPORT;
2263			goto out_err;
2264		default:
2265			dprintk("RPC: %5u %s: RPC call rejected, "
2266				"unknown error: %x\n",
2267				task->tk_pid, __func__, n);
2268			error = -EIO;
2269			goto out_err;
2270		}
2271		if (--len < 0)
2272			goto out_overflow;
2273		switch ((n = ntohl(*p++))) {
2274		case RPC_AUTH_REJECTEDCRED:
2275		case RPC_AUTH_REJECTEDVERF:
2276		case RPCSEC_GSS_CREDPROBLEM:
2277		case RPCSEC_GSS_CTXPROBLEM:
2278			if (!task->tk_cred_retry)
2279				break;
2280			task->tk_cred_retry--;
2281			dprintk("RPC: %5u %s: retry stale creds\n",
2282					task->tk_pid, __func__);
2283			rpcauth_invalcred(task);
2284			/* Ensure we obtain a new XID! */
2285			xprt_release(task);
2286			task->tk_action = call_reserve;
2287			goto out_retry;
2288		case RPC_AUTH_BADCRED:
2289		case RPC_AUTH_BADVERF:
2290			/* possibly garbled cred/verf? */
2291			if (!task->tk_garb_retry)
2292				break;
2293			task->tk_garb_retry--;
2294			dprintk("RPC: %5u %s: retry garbled creds\n",
2295					task->tk_pid, __func__);
2296			task->tk_action = call_bind;
2297			goto out_retry;
2298		case RPC_AUTH_TOOWEAK:
2299			rcu_read_lock();
2300			printk(KERN_NOTICE "RPC: server %s requires stronger "
2301			       "authentication.\n",
2302			       rcu_dereference(clnt->cl_xprt)->servername);
2303			rcu_read_unlock();
2304			break;
2305		default:
2306			dprintk("RPC: %5u %s: unknown auth error: %x\n",
2307					task->tk_pid, __func__, n);
2308			error = -EIO;
2309		}
2310		dprintk("RPC: %5u %s: call rejected %d\n",
2311				task->tk_pid, __func__, n);
2312		goto out_err;
2313	}
2314	p = rpcauth_checkverf(task, p);
2315	if (IS_ERR(p)) {
2316		error = PTR_ERR(p);
2317		dprintk("RPC: %5u %s: auth check failed with %d\n",
2318				task->tk_pid, __func__, error);
2319		goto out_garbage;		/* bad verifier, retry */
2320	}
2321	len = p - (__be32 *)iov->iov_base - 1;
2322	if (len < 0)
2323		goto out_overflow;
2324	switch ((n = ntohl(*p++))) {
2325	case RPC_SUCCESS:
2326		return p;
2327	case RPC_PROG_UNAVAIL:
2328		dprintk_rcu("RPC: %5u %s: program %u is unsupported "
2329				"by server %s\n", task->tk_pid, __func__,
2330				(unsigned int)clnt->cl_prog,
2331				rcu_dereference(clnt->cl_xprt)->servername);
2332		error = -EPFNOSUPPORT;
2333		goto out_err;
2334	case RPC_PROG_MISMATCH:
2335		dprintk_rcu("RPC: %5u %s: program %u, version %u unsupported "
2336				"by server %s\n", task->tk_pid, __func__,
2337				(unsigned int)clnt->cl_prog,
2338				(unsigned int)clnt->cl_vers,
2339				rcu_dereference(clnt->cl_xprt)->servername);
2340		error = -EPROTONOSUPPORT;
2341		goto out_err;
2342	case RPC_PROC_UNAVAIL:
2343		dprintk_rcu("RPC: %5u %s: proc %s unsupported by program %u, "
2344				"version %u on server %s\n",
2345				task->tk_pid, __func__,
2346				rpc_proc_name(task),
2347				clnt->cl_prog, clnt->cl_vers,
2348				rcu_dereference(clnt->cl_xprt)->servername);
2349		error = -EOPNOTSUPP;
2350		goto out_err;
2351	case RPC_GARBAGE_ARGS:
2352		dprintk("RPC: %5u %s: server saw garbage\n",
2353				task->tk_pid, __func__);
2354		break;			/* retry */
2355	default:
2356		dprintk("RPC: %5u %s: server accept status: %x\n",
2357				task->tk_pid, __func__, n);
2358		/* Also retry */
2359	}
2360
2361out_garbage:
2362	clnt->cl_stats->rpcgarbage++;
2363	if (task->tk_garb_retry) {
2364		task->tk_garb_retry--;
2365		dprintk("RPC: %5u %s: retrying\n",
2366				task->tk_pid, __func__);
2367		task->tk_action = call_bind;
2368out_retry:
2369		return ERR_PTR(-EAGAIN);
2370	}
2371out_err:
2372	rpc_exit(task, error);
2373	dprintk("RPC: %5u %s: call failed with error %d\n", task->tk_pid,
2374			__func__, error);
2375	return ERR_PTR(error);
2376out_overflow:
2377	dprintk("RPC: %5u %s: server reply was truncated.\n", task->tk_pid,
2378			__func__);
2379	goto out_garbage;
2380}
2381
2382static void rpcproc_encode_null(void *rqstp, struct xdr_stream *xdr, void *obj)
2383{
2384}
2385
2386static int rpcproc_decode_null(void *rqstp, struct xdr_stream *xdr, void *obj)
2387{
2388	return 0;
2389}
2390
2391static struct rpc_procinfo rpcproc_null = {
2392	.p_encode = rpcproc_encode_null,
2393	.p_decode = rpcproc_decode_null,
2394};
2395
2396static int rpc_ping(struct rpc_clnt *clnt)
2397{
2398	struct rpc_message msg = {
2399		.rpc_proc = &rpcproc_null,
2400	};
2401	int err;
2402	msg.rpc_cred = authnull_ops.lookup_cred(NULL, NULL, 0);
2403	err = rpc_call_sync(clnt, &msg, RPC_TASK_SOFT | RPC_TASK_SOFTCONN);
2404	put_rpccred(msg.rpc_cred);
2405	return err;
2406}
2407
2408struct rpc_task *rpc_call_null(struct rpc_clnt *clnt, struct rpc_cred *cred, int flags)
2409{
2410	struct rpc_message msg = {
2411		.rpc_proc = &rpcproc_null,
2412		.rpc_cred = cred,
2413	};
2414	struct rpc_task_setup task_setup_data = {
2415		.rpc_client = clnt,
2416		.rpc_message = &msg,
2417		.callback_ops = &rpc_default_ops,
2418		.flags = flags,
2419	};
2420	return rpc_run_task(&task_setup_data);
2421}
2422EXPORT_SYMBOL_GPL(rpc_call_null);
2423
2424#ifdef RPC_DEBUG
2425static void rpc_show_header(void)
2426{
2427	printk(KERN_INFO "-pid- flgs status -client- --rqstp- "
2428		"-timeout ---ops--\n");
2429}
2430
2431static void rpc_show_task(const struct rpc_clnt *clnt,
2432			  const struct rpc_task *task)
2433{
2434	const char *rpc_waitq = "none";
2435
2436	if (RPC_IS_QUEUED(task))
2437		rpc_waitq = rpc_qname(task->tk_waitqueue);
2438
2439	printk(KERN_INFO "%5u %04x %6d %8p %8p %8ld %8p %sv%u %s a:%ps q:%s\n",
2440		task->tk_pid, task->tk_flags, task->tk_status,
2441		clnt, task->tk_rqstp, task->tk_timeout, task->tk_ops,
2442		clnt->cl_program->name, clnt->cl_vers, rpc_proc_name(task),
2443		task->tk_action, rpc_waitq);
2444}
2445
2446void rpc_show_tasks(struct net *net)
2447{
2448	struct rpc_clnt *clnt;
2449	struct rpc_task *task;
2450	int header = 0;
2451	struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
2452
2453	spin_lock(&sn->rpc_client_lock);
2454	list_for_each_entry(clnt, &sn->all_clients, cl_clients) {
2455		spin_lock(&clnt->cl_lock);
2456		list_for_each_entry(task, &clnt->cl_tasks, tk_task) {
2457			if (!header) {
2458				rpc_show_header();
2459				header++;
2460			}
2461			rpc_show_task(clnt, task);
2462		}
2463		spin_unlock(&clnt->cl_lock);
2464	}
2465	spin_unlock(&sn->rpc_client_lock);
2466}
2467#endif
2468