1/*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7#include <linux/sched.h>
8#include <linux/errno.h>
9#include <linux/freezer.h>
10#include <linux/kthread.h>
11#include <linux/slab.h>
12#include <net/sock.h>
13#include <linux/sunrpc/stats.h>
14#include <linux/sunrpc/svc_xprt.h>
15#include <linux/sunrpc/svcsock.h>
16#include <linux/sunrpc/xprt.h>
17#include <linux/module.h>
18
19#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
20
21static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22static int svc_deferred_recv(struct svc_rqst *rqstp);
23static struct cache_deferred_req *svc_defer(struct cache_req *req);
24static void svc_age_temp_xprts(unsigned long closure);
25static void svc_delete_xprt(struct svc_xprt *xprt);
26static void svc_xprt_do_enqueue(struct svc_xprt *xprt);
27
28/* apparently the "standard" is that clients close
29 * idle connections after 5 minutes, servers after
30 * 6 minutes
31 *   http://www.connectathon.org/talks96/nfstcp.pdf
32 */
33static int svc_conn_age_period = 6*60;
34
35/* List of registered transport classes */
36static DEFINE_SPINLOCK(svc_xprt_class_lock);
37static LIST_HEAD(svc_xprt_class_list);
38
39/* SMP locking strategy:
40 *
41 *	svc_pool->sp_lock protects most of the fields of that pool.
42 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
43 *	when both need to be taken (rare), svc_serv->sv_lock is first.
44 *	BKL protects svc_serv->sv_nrthread.
45 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
46 *             and the ->sk_info_authunix cache.
47 *
48 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
49 *	enqueued multiply. During normal transport processing this bit
50 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
51 *	Providers should not manipulate this bit directly.
52 *
53 *	Some flags can be set to certain values at any time
54 *	providing that certain rules are followed:
55 *
56 *	XPT_CONN, XPT_DATA:
57 *		- Can be set or cleared at any time.
58 *		- After a set, svc_xprt_enqueue must be called to enqueue
59 *		  the transport for processing.
60 *		- After a clear, the transport must be read/accepted.
61 *		  If this succeeds, it must be set again.
62 *	XPT_CLOSE:
63 *		- Can set at any time. It is never cleared.
64 *      XPT_DEAD:
65 *		- Can only be set while XPT_BUSY is held which ensures
66 *		  that no other thread will be using the transport or will
67 *		  try to set XPT_DEAD.
68 */
69
70int svc_reg_xprt_class(struct svc_xprt_class *xcl)
71{
72	struct svc_xprt_class *cl;
73	int res = -EEXIST;
74
75	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
76
77	INIT_LIST_HEAD(&xcl->xcl_list);
78	spin_lock(&svc_xprt_class_lock);
79	/* Make sure there isn't already a class with the same name */
80	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
81		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
82			goto out;
83	}
84	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
85	res = 0;
86out:
87	spin_unlock(&svc_xprt_class_lock);
88	return res;
89}
90EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
91
92void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
93{
94	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
95	spin_lock(&svc_xprt_class_lock);
96	list_del_init(&xcl->xcl_list);
97	spin_unlock(&svc_xprt_class_lock);
98}
99EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
100
101/*
102 * Format the transport list for printing
103 */
104int svc_print_xprts(char *buf, int maxlen)
105{
106	struct svc_xprt_class *xcl;
107	char tmpstr[80];
108	int len = 0;
109	buf[0] = '\0';
110
111	spin_lock(&svc_xprt_class_lock);
112	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
113		int slen;
114
115		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
116		slen = strlen(tmpstr);
117		if (len + slen > maxlen)
118			break;
119		len += slen;
120		strcat(buf, tmpstr);
121	}
122	spin_unlock(&svc_xprt_class_lock);
123
124	return len;
125}
126
127static void svc_xprt_free(struct kref *kref)
128{
129	struct svc_xprt *xprt =
130		container_of(kref, struct svc_xprt, xpt_ref);
131	struct module *owner = xprt->xpt_class->xcl_owner;
132	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
133		svcauth_unix_info_release(xprt);
134	put_net(xprt->xpt_net);
135	/* See comment on corresponding get in xs_setup_bc_tcp(): */
136	if (xprt->xpt_bc_xprt)
137		xprt_put(xprt->xpt_bc_xprt);
138	xprt->xpt_ops->xpo_free(xprt);
139	module_put(owner);
140}
141
142void svc_xprt_put(struct svc_xprt *xprt)
143{
144	kref_put(&xprt->xpt_ref, svc_xprt_free);
145}
146EXPORT_SYMBOL_GPL(svc_xprt_put);
147
148/*
149 * Called by transport drivers to initialize the transport independent
150 * portion of the transport instance.
151 */
152void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
153		   struct svc_xprt *xprt, struct svc_serv *serv)
154{
155	memset(xprt, 0, sizeof(*xprt));
156	xprt->xpt_class = xcl;
157	xprt->xpt_ops = xcl->xcl_ops;
158	kref_init(&xprt->xpt_ref);
159	xprt->xpt_server = serv;
160	INIT_LIST_HEAD(&xprt->xpt_list);
161	INIT_LIST_HEAD(&xprt->xpt_ready);
162	INIT_LIST_HEAD(&xprt->xpt_deferred);
163	INIT_LIST_HEAD(&xprt->xpt_users);
164	mutex_init(&xprt->xpt_mutex);
165	spin_lock_init(&xprt->xpt_lock);
166	set_bit(XPT_BUSY, &xprt->xpt_flags);
167	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
168	xprt->xpt_net = get_net(net);
169}
170EXPORT_SYMBOL_GPL(svc_xprt_init);
171
172static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
173					 struct svc_serv *serv,
174					 struct net *net,
175					 const int family,
176					 const unsigned short port,
177					 int flags)
178{
179	struct sockaddr_in sin = {
180		.sin_family		= AF_INET,
181		.sin_addr.s_addr	= htonl(INADDR_ANY),
182		.sin_port		= htons(port),
183	};
184#if IS_ENABLED(CONFIG_IPV6)
185	struct sockaddr_in6 sin6 = {
186		.sin6_family		= AF_INET6,
187		.sin6_addr		= IN6ADDR_ANY_INIT,
188		.sin6_port		= htons(port),
189	};
190#endif
191	struct sockaddr *sap;
192	size_t len;
193
194	switch (family) {
195	case PF_INET:
196		sap = (struct sockaddr *)&sin;
197		len = sizeof(sin);
198		break;
199#if IS_ENABLED(CONFIG_IPV6)
200	case PF_INET6:
201		sap = (struct sockaddr *)&sin6;
202		len = sizeof(sin6);
203		break;
204#endif
205	default:
206		return ERR_PTR(-EAFNOSUPPORT);
207	}
208
209	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
210}
211
212/*
213 * svc_xprt_received conditionally queues the transport for processing
214 * by another thread. The caller must hold the XPT_BUSY bit and must
215 * not thereafter touch transport data.
216 *
217 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
218 * insufficient) data.
219 */
220static void svc_xprt_received(struct svc_xprt *xprt)
221{
222	WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags));
223	if (!test_bit(XPT_BUSY, &xprt->xpt_flags))
224		return;
225	/* As soon as we clear busy, the xprt could be closed and
226	 * 'put', so we need a reference to call svc_xprt_do_enqueue with:
227	 */
228	svc_xprt_get(xprt);
229	smp_mb__before_atomic();
230	clear_bit(XPT_BUSY, &xprt->xpt_flags);
231	svc_xprt_do_enqueue(xprt);
232	svc_xprt_put(xprt);
233}
234
235void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
236{
237	clear_bit(XPT_TEMP, &new->xpt_flags);
238	spin_lock_bh(&serv->sv_lock);
239	list_add(&new->xpt_list, &serv->sv_permsocks);
240	spin_unlock_bh(&serv->sv_lock);
241	svc_xprt_received(new);
242}
243
244int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
245		    struct net *net, const int family,
246		    const unsigned short port, int flags)
247{
248	struct svc_xprt_class *xcl;
249
250	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
251	spin_lock(&svc_xprt_class_lock);
252	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
253		struct svc_xprt *newxprt;
254		unsigned short newport;
255
256		if (strcmp(xprt_name, xcl->xcl_name))
257			continue;
258
259		if (!try_module_get(xcl->xcl_owner))
260			goto err;
261
262		spin_unlock(&svc_xprt_class_lock);
263		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
264		if (IS_ERR(newxprt)) {
265			module_put(xcl->xcl_owner);
266			return PTR_ERR(newxprt);
267		}
268		svc_add_new_perm_xprt(serv, newxprt);
269		newport = svc_xprt_local_port(newxprt);
270		return newport;
271	}
272 err:
273	spin_unlock(&svc_xprt_class_lock);
274	dprintk("svc: transport %s not found\n", xprt_name);
275
276	/* This errno is exposed to user space.  Provide a reasonable
277	 * perror msg for a bad transport. */
278	return -EPROTONOSUPPORT;
279}
280EXPORT_SYMBOL_GPL(svc_create_xprt);
281
282/*
283 * Copy the local and remote xprt addresses to the rqstp structure
284 */
285void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
286{
287	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
288	rqstp->rq_addrlen = xprt->xpt_remotelen;
289
290	/*
291	 * Destination address in request is needed for binding the
292	 * source address in RPC replies/callbacks later.
293	 */
294	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
295	rqstp->rq_daddrlen = xprt->xpt_locallen;
296}
297EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
298
299/**
300 * svc_print_addr - Format rq_addr field for printing
301 * @rqstp: svc_rqst struct containing address to print
302 * @buf: target buffer for formatted address
303 * @len: length of target buffer
304 *
305 */
306char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
307{
308	return __svc_print_addr(svc_addr(rqstp), buf, len);
309}
310EXPORT_SYMBOL_GPL(svc_print_addr);
311
312/*
313 * Queue up an idle server thread.  Must have pool->sp_lock held.
314 * Note: this is really a stack rather than a queue, so that we only
315 * use as many different threads as we need, and the rest don't pollute
316 * the cache.
317 */
318static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
319{
320	list_add(&rqstp->rq_list, &pool->sp_threads);
321}
322
323/*
324 * Dequeue an nfsd thread.  Must have pool->sp_lock held.
325 */
326static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
327{
328	list_del(&rqstp->rq_list);
329}
330
331static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
332{
333	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
334		return true;
335	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
336		return xprt->xpt_ops->xpo_has_wspace(xprt);
337	return false;
338}
339
340static void svc_xprt_do_enqueue(struct svc_xprt *xprt)
341{
342	struct svc_pool *pool;
343	struct svc_rqst	*rqstp;
344	int cpu;
345
346	if (!svc_xprt_has_something_to_do(xprt))
347		return;
348
349	/* Mark transport as busy. It will remain in this state until
350	 * the provider calls svc_xprt_received. We update XPT_BUSY
351	 * atomically because it also guards against trying to enqueue
352	 * the transport twice.
353	 */
354	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
355		/* Don't enqueue transport while already enqueued */
356		dprintk("svc: transport %p busy, not enqueued\n", xprt);
357		return;
358	}
359
360	cpu = get_cpu();
361	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
362	spin_lock_bh(&pool->sp_lock);
363
364	pool->sp_stats.packets++;
365
366	if (!list_empty(&pool->sp_threads)) {
367		rqstp = list_entry(pool->sp_threads.next,
368				   struct svc_rqst,
369				   rq_list);
370		dprintk("svc: transport %p served by daemon %p\n",
371			xprt, rqstp);
372		svc_thread_dequeue(pool, rqstp);
373		if (rqstp->rq_xprt)
374			printk(KERN_ERR
375				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
376				rqstp, rqstp->rq_xprt);
377		/* Note the order of the following 3 lines:
378		 * We want to assign xprt to rqstp->rq_xprt only _after_
379		 * we've woken up the process, so that we don't race with
380		 * the lockless check in svc_get_next_xprt().
381		 */
382		svc_xprt_get(xprt);
383		wake_up_process(rqstp->rq_task);
384		rqstp->rq_xprt = xprt;
385		pool->sp_stats.threads_woken++;
386	} else {
387		dprintk("svc: transport %p put into queue\n", xprt);
388		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
389		pool->sp_stats.sockets_queued++;
390	}
391
392	spin_unlock_bh(&pool->sp_lock);
393	put_cpu();
394}
395
396/*
397 * Queue up a transport with data pending. If there are idle nfsd
398 * processes, wake 'em up.
399 *
400 */
401void svc_xprt_enqueue(struct svc_xprt *xprt)
402{
403	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
404		return;
405	svc_xprt_do_enqueue(xprt);
406}
407EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
408
409/*
410 * Dequeue the first transport.  Must be called with the pool->sp_lock held.
411 */
412static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
413{
414	struct svc_xprt	*xprt;
415
416	if (list_empty(&pool->sp_sockets))
417		return NULL;
418
419	xprt = list_entry(pool->sp_sockets.next,
420			  struct svc_xprt, xpt_ready);
421	list_del_init(&xprt->xpt_ready);
422
423	dprintk("svc: transport %p dequeued, inuse=%d\n",
424		xprt, atomic_read(&xprt->xpt_ref.refcount));
425
426	return xprt;
427}
428
429/**
430 * svc_reserve - change the space reserved for the reply to a request.
431 * @rqstp:  The request in question
432 * @space: new max space to reserve
433 *
434 * Each request reserves some space on the output queue of the transport
435 * to make sure the reply fits.  This function reduces that reserved
436 * space to be the amount of space used already, plus @space.
437 *
438 */
439void svc_reserve(struct svc_rqst *rqstp, int space)
440{
441	space += rqstp->rq_res.head[0].iov_len;
442
443	if (space < rqstp->rq_reserved) {
444		struct svc_xprt *xprt = rqstp->rq_xprt;
445		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
446		rqstp->rq_reserved = space;
447
448		if (xprt->xpt_ops->xpo_adjust_wspace)
449			xprt->xpt_ops->xpo_adjust_wspace(xprt);
450		svc_xprt_enqueue(xprt);
451	}
452}
453EXPORT_SYMBOL_GPL(svc_reserve);
454
455static void svc_xprt_release(struct svc_rqst *rqstp)
456{
457	struct svc_xprt	*xprt = rqstp->rq_xprt;
458
459	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
460
461	kfree(rqstp->rq_deferred);
462	rqstp->rq_deferred = NULL;
463
464	svc_free_res_pages(rqstp);
465	rqstp->rq_res.page_len = 0;
466	rqstp->rq_res.page_base = 0;
467
468	/* Reset response buffer and release
469	 * the reservation.
470	 * But first, check that enough space was reserved
471	 * for the reply, otherwise we have a bug!
472	 */
473	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
474		printk(KERN_ERR "RPC request reserved %d but used %d\n",
475		       rqstp->rq_reserved,
476		       rqstp->rq_res.len);
477
478	rqstp->rq_res.head[0].iov_len = 0;
479	svc_reserve(rqstp, 0);
480	rqstp->rq_xprt = NULL;
481
482	svc_xprt_put(xprt);
483}
484
485/*
486 * External function to wake up a server waiting for data
487 * This really only makes sense for services like lockd
488 * which have exactly one thread anyway.
489 */
490void svc_wake_up(struct svc_serv *serv)
491{
492	struct svc_rqst	*rqstp;
493	unsigned int i;
494	struct svc_pool *pool;
495
496	for (i = 0; i < serv->sv_nrpools; i++) {
497		pool = &serv->sv_pools[i];
498
499		spin_lock_bh(&pool->sp_lock);
500		if (!list_empty(&pool->sp_threads)) {
501			rqstp = list_entry(pool->sp_threads.next,
502					   struct svc_rqst,
503					   rq_list);
504			dprintk("svc: daemon %p woken up.\n", rqstp);
505			/*
506			svc_thread_dequeue(pool, rqstp);
507			rqstp->rq_xprt = NULL;
508			 */
509			wake_up_process(rqstp->rq_task);
510		} else
511			pool->sp_task_pending = 1;
512		spin_unlock_bh(&pool->sp_lock);
513	}
514}
515EXPORT_SYMBOL_GPL(svc_wake_up);
516
517int svc_port_is_privileged(struct sockaddr *sin)
518{
519	switch (sin->sa_family) {
520	case AF_INET:
521		return ntohs(((struct sockaddr_in *)sin)->sin_port)
522			< PROT_SOCK;
523	case AF_INET6:
524		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
525			< PROT_SOCK;
526	default:
527		return 0;
528	}
529}
530
531/*
532 * Make sure that we don't have too many active connections. If we have,
533 * something must be dropped. It's not clear what will happen if we allow
534 * "too many" connections, but when dealing with network-facing software,
535 * we have to code defensively. Here we do that by imposing hard limits.
536 *
537 * There's no point in trying to do random drop here for DoS
538 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
539 * attacker can easily beat that.
540 *
541 * The only somewhat efficient mechanism would be if drop old
542 * connections from the same IP first. But right now we don't even
543 * record the client IP in svc_sock.
544 *
545 * single-threaded services that expect a lot of clients will probably
546 * need to set sv_maxconn to override the default value which is based
547 * on the number of threads
548 */
549static void svc_check_conn_limits(struct svc_serv *serv)
550{
551	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
552				(serv->sv_nrthreads+3) * 20;
553
554	if (serv->sv_tmpcnt > limit) {
555		struct svc_xprt *xprt = NULL;
556		spin_lock_bh(&serv->sv_lock);
557		if (!list_empty(&serv->sv_tempsocks)) {
558			/* Try to help the admin */
559			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
560					       serv->sv_name, serv->sv_maxconn ?
561					       "max number of connections" :
562					       "number of threads");
563			/*
564			 * Always select the oldest connection. It's not fair,
565			 * but so is life
566			 */
567			xprt = list_entry(serv->sv_tempsocks.prev,
568					  struct svc_xprt,
569					  xpt_list);
570			set_bit(XPT_CLOSE, &xprt->xpt_flags);
571			svc_xprt_get(xprt);
572		}
573		spin_unlock_bh(&serv->sv_lock);
574
575		if (xprt) {
576			svc_xprt_enqueue(xprt);
577			svc_xprt_put(xprt);
578		}
579	}
580}
581
582static int svc_alloc_arg(struct svc_rqst *rqstp)
583{
584	struct svc_serv *serv = rqstp->rq_server;
585	struct xdr_buf *arg;
586	int pages;
587	int i;
588
589	/* now allocate needed pages.  If we get a failure, sleep briefly */
590	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
591	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
592	if (pages >= RPCSVC_MAXPAGES)
593		/* use as many pages as possible */
594		pages = RPCSVC_MAXPAGES - 1;
595	for (i = 0; i < pages ; i++)
596		while (rqstp->rq_pages[i] == NULL) {
597			struct page *p = alloc_page(GFP_KERNEL);
598			if (!p) {
599				set_current_state(TASK_INTERRUPTIBLE);
600				if (signalled() || kthread_should_stop()) {
601					set_current_state(TASK_RUNNING);
602					return -EINTR;
603				}
604				schedule_timeout(msecs_to_jiffies(500));
605			}
606			rqstp->rq_pages[i] = p;
607		}
608	rqstp->rq_page_end = &rqstp->rq_pages[i];
609	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
610
611	/* Make arg->head point to first page and arg->pages point to rest */
612	arg = &rqstp->rq_arg;
613	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
614	arg->head[0].iov_len = PAGE_SIZE;
615	arg->pages = rqstp->rq_pages + 1;
616	arg->page_base = 0;
617	/* save at least one page for response */
618	arg->page_len = (pages-2)*PAGE_SIZE;
619	arg->len = (pages-1)*PAGE_SIZE;
620	arg->tail[0].iov_len = 0;
621	return 0;
622}
623
624static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
625{
626	struct svc_xprt *xprt;
627	struct svc_pool		*pool = rqstp->rq_pool;
628	long			time_left = 0;
629
630	/* Normally we will wait up to 5 seconds for any required
631	 * cache information to be provided.
632	 */
633	rqstp->rq_chandle.thread_wait = 5*HZ;
634
635	spin_lock_bh(&pool->sp_lock);
636	xprt = svc_xprt_dequeue(pool);
637	if (xprt) {
638		rqstp->rq_xprt = xprt;
639		svc_xprt_get(xprt);
640
641		/* As there is a shortage of threads and this request
642		 * had to be queued, don't allow the thread to wait so
643		 * long for cache updates.
644		 */
645		rqstp->rq_chandle.thread_wait = 1*HZ;
646		pool->sp_task_pending = 0;
647	} else {
648		if (pool->sp_task_pending) {
649			pool->sp_task_pending = 0;
650			xprt = ERR_PTR(-EAGAIN);
651			goto out;
652		}
653		/*
654		 * We have to be able to interrupt this wait
655		 * to bring down the daemons ...
656		 */
657		set_current_state(TASK_INTERRUPTIBLE);
658
659		/* No data pending. Go to sleep */
660		svc_thread_enqueue(pool, rqstp);
661		spin_unlock_bh(&pool->sp_lock);
662
663		if (!(signalled() || kthread_should_stop())) {
664			time_left = schedule_timeout(timeout);
665			__set_current_state(TASK_RUNNING);
666
667			try_to_freeze();
668
669			xprt = rqstp->rq_xprt;
670			if (xprt != NULL)
671				return xprt;
672		} else
673			__set_current_state(TASK_RUNNING);
674
675		spin_lock_bh(&pool->sp_lock);
676		if (!time_left)
677			pool->sp_stats.threads_timedout++;
678
679		xprt = rqstp->rq_xprt;
680		if (!xprt) {
681			svc_thread_dequeue(pool, rqstp);
682			spin_unlock_bh(&pool->sp_lock);
683			dprintk("svc: server %p, no data yet\n", rqstp);
684			if (signalled() || kthread_should_stop())
685				return ERR_PTR(-EINTR);
686			else
687				return ERR_PTR(-EAGAIN);
688		}
689	}
690out:
691	spin_unlock_bh(&pool->sp_lock);
692	return xprt;
693}
694
695static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
696{
697	spin_lock_bh(&serv->sv_lock);
698	set_bit(XPT_TEMP, &newxpt->xpt_flags);
699	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
700	serv->sv_tmpcnt++;
701	if (serv->sv_temptimer.function == NULL) {
702		/* setup timer to age temp transports */
703		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
704			    (unsigned long)serv);
705		mod_timer(&serv->sv_temptimer,
706			  jiffies + svc_conn_age_period * HZ);
707	}
708	spin_unlock_bh(&serv->sv_lock);
709	svc_xprt_received(newxpt);
710}
711
712static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
713{
714	struct svc_serv *serv = rqstp->rq_server;
715	int len = 0;
716
717	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
718		dprintk("svc_recv: found XPT_CLOSE\n");
719		svc_delete_xprt(xprt);
720		/* Leave XPT_BUSY set on the dead xprt: */
721		return 0;
722	}
723	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
724		struct svc_xprt *newxpt;
725		/*
726		 * We know this module_get will succeed because the
727		 * listener holds a reference too
728		 */
729		__module_get(xprt->xpt_class->xcl_owner);
730		svc_check_conn_limits(xprt->xpt_server);
731		newxpt = xprt->xpt_ops->xpo_accept(xprt);
732		if (newxpt)
733			svc_add_new_temp_xprt(serv, newxpt);
734		else
735			module_put(xprt->xpt_class->xcl_owner);
736	} else {
737		/* XPT_DATA|XPT_DEFERRED case: */
738		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
739			rqstp, rqstp->rq_pool->sp_id, xprt,
740			atomic_read(&xprt->xpt_ref.refcount));
741		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
742		if (rqstp->rq_deferred)
743			len = svc_deferred_recv(rqstp);
744		else
745			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
746		dprintk("svc: got len=%d\n", len);
747		rqstp->rq_reserved = serv->sv_max_mesg;
748		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
749	}
750	/* clear XPT_BUSY: */
751	svc_xprt_received(xprt);
752	return len;
753}
754
755/*
756 * Receive the next request on any transport.  This code is carefully
757 * organised not to touch any cachelines in the shared svc_serv
758 * structure, only cachelines in the local svc_pool.
759 */
760int svc_recv(struct svc_rqst *rqstp, long timeout)
761{
762	struct svc_xprt		*xprt = NULL;
763	struct svc_serv		*serv = rqstp->rq_server;
764	int			len, err;
765
766	dprintk("svc: server %p waiting for data (to = %ld)\n",
767		rqstp, timeout);
768
769	if (rqstp->rq_xprt)
770		printk(KERN_ERR
771			"svc_recv: service %p, transport not NULL!\n",
772			 rqstp);
773
774	err = svc_alloc_arg(rqstp);
775	if (err)
776		return err;
777
778	try_to_freeze();
779	cond_resched();
780	if (signalled() || kthread_should_stop())
781		return -EINTR;
782
783	xprt = svc_get_next_xprt(rqstp, timeout);
784	if (IS_ERR(xprt))
785		return PTR_ERR(xprt);
786
787	len = svc_handle_xprt(rqstp, xprt);
788
789	/* No data, incomplete (TCP) read, or accept() */
790	if (len <= 0)
791		goto out;
792
793	clear_bit(XPT_OLD, &xprt->xpt_flags);
794
795	rqstp->rq_secure = xprt->xpt_ops->xpo_secure_port(rqstp);
796	rqstp->rq_chandle.defer = svc_defer;
797
798	if (serv->sv_stats)
799		serv->sv_stats->netcnt++;
800	return len;
801out:
802	rqstp->rq_res.len = 0;
803	svc_xprt_release(rqstp);
804	return -EAGAIN;
805}
806EXPORT_SYMBOL_GPL(svc_recv);
807
808/*
809 * Drop request
810 */
811void svc_drop(struct svc_rqst *rqstp)
812{
813	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
814	svc_xprt_release(rqstp);
815}
816EXPORT_SYMBOL_GPL(svc_drop);
817
818/*
819 * Return reply to client.
820 */
821int svc_send(struct svc_rqst *rqstp)
822{
823	struct svc_xprt	*xprt;
824	int		len;
825	struct xdr_buf	*xb;
826
827	xprt = rqstp->rq_xprt;
828	if (!xprt)
829		return -EFAULT;
830
831	/* release the receive skb before sending the reply */
832	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
833
834	/* calculate over-all length */
835	xb = &rqstp->rq_res;
836	xb->len = xb->head[0].iov_len +
837		xb->page_len +
838		xb->tail[0].iov_len;
839
840	/* Grab mutex to serialize outgoing data. */
841	mutex_lock(&xprt->xpt_mutex);
842	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
843			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
844		len = -ENOTCONN;
845	else
846		len = xprt->xpt_ops->xpo_sendto(rqstp);
847	mutex_unlock(&xprt->xpt_mutex);
848	rpc_wake_up(&xprt->xpt_bc_pending);
849	svc_xprt_release(rqstp);
850
851	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
852		return 0;
853	return len;
854}
855
856/*
857 * Timer function to close old temporary transports, using
858 * a mark-and-sweep algorithm.
859 */
860static void svc_age_temp_xprts(unsigned long closure)
861{
862	struct svc_serv *serv = (struct svc_serv *)closure;
863	struct svc_xprt *xprt;
864	struct list_head *le, *next;
865
866	dprintk("svc_age_temp_xprts\n");
867
868	if (!spin_trylock_bh(&serv->sv_lock)) {
869		/* busy, try again 1 sec later */
870		dprintk("svc_age_temp_xprts: busy\n");
871		mod_timer(&serv->sv_temptimer, jiffies + HZ);
872		return;
873	}
874
875	list_for_each_safe(le, next, &serv->sv_tempsocks) {
876		xprt = list_entry(le, struct svc_xprt, xpt_list);
877
878		/* First time through, just mark it OLD. Second time
879		 * through, close it. */
880		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
881			continue;
882		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
883		    test_bit(XPT_BUSY, &xprt->xpt_flags))
884			continue;
885		list_del_init(le);
886		set_bit(XPT_CLOSE, &xprt->xpt_flags);
887		set_bit(XPT_DETACHED, &xprt->xpt_flags);
888		dprintk("queuing xprt %p for closing\n", xprt);
889
890		/* a thread will dequeue and close it soon */
891		svc_xprt_enqueue(xprt);
892	}
893	spin_unlock_bh(&serv->sv_lock);
894
895	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
896}
897
898static void call_xpt_users(struct svc_xprt *xprt)
899{
900	struct svc_xpt_user *u;
901
902	spin_lock(&xprt->xpt_lock);
903	while (!list_empty(&xprt->xpt_users)) {
904		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
905		list_del(&u->list);
906		u->callback(u);
907	}
908	spin_unlock(&xprt->xpt_lock);
909}
910
911/*
912 * Remove a dead transport
913 */
914static void svc_delete_xprt(struct svc_xprt *xprt)
915{
916	struct svc_serv	*serv = xprt->xpt_server;
917	struct svc_deferred_req *dr;
918
919	/* Only do this once */
920	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
921		BUG();
922
923	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
924	xprt->xpt_ops->xpo_detach(xprt);
925
926	spin_lock_bh(&serv->sv_lock);
927	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
928		list_del_init(&xprt->xpt_list);
929	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
930	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
931		serv->sv_tmpcnt--;
932	spin_unlock_bh(&serv->sv_lock);
933
934	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
935		kfree(dr);
936
937	call_xpt_users(xprt);
938	svc_xprt_put(xprt);
939}
940
941void svc_close_xprt(struct svc_xprt *xprt)
942{
943	set_bit(XPT_CLOSE, &xprt->xpt_flags);
944	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
945		/* someone else will have to effect the close */
946		return;
947	/*
948	 * We expect svc_close_xprt() to work even when no threads are
949	 * running (e.g., while configuring the server before starting
950	 * any threads), so if the transport isn't busy, we delete
951	 * it ourself:
952	 */
953	svc_delete_xprt(xprt);
954}
955EXPORT_SYMBOL_GPL(svc_close_xprt);
956
957static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
958{
959	struct svc_xprt *xprt;
960	int ret = 0;
961
962	spin_lock(&serv->sv_lock);
963	list_for_each_entry(xprt, xprt_list, xpt_list) {
964		if (xprt->xpt_net != net)
965			continue;
966		ret++;
967		set_bit(XPT_CLOSE, &xprt->xpt_flags);
968		svc_xprt_enqueue(xprt);
969	}
970	spin_unlock(&serv->sv_lock);
971	return ret;
972}
973
974static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
975{
976	struct svc_pool *pool;
977	struct svc_xprt *xprt;
978	struct svc_xprt *tmp;
979	int i;
980
981	for (i = 0; i < serv->sv_nrpools; i++) {
982		pool = &serv->sv_pools[i];
983
984		spin_lock_bh(&pool->sp_lock);
985		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
986			if (xprt->xpt_net != net)
987				continue;
988			list_del_init(&xprt->xpt_ready);
989			spin_unlock_bh(&pool->sp_lock);
990			return xprt;
991		}
992		spin_unlock_bh(&pool->sp_lock);
993	}
994	return NULL;
995}
996
997static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
998{
999	struct svc_xprt *xprt;
1000
1001	while ((xprt = svc_dequeue_net(serv, net))) {
1002		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1003		svc_delete_xprt(xprt);
1004	}
1005}
1006
1007/*
1008 * Server threads may still be running (especially in the case where the
1009 * service is still running in other network namespaces).
1010 *
1011 * So we shut down sockets the same way we would on a running server, by
1012 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1013 * the close.  In the case there are no such other threads,
1014 * threads running, svc_clean_up_xprts() does a simple version of a
1015 * server's main event loop, and in the case where there are other
1016 * threads, we may need to wait a little while and then check again to
1017 * see if they're done.
1018 */
1019void svc_close_net(struct svc_serv *serv, struct net *net)
1020{
1021	int delay = 0;
1022
1023	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1024	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1025
1026		svc_clean_up_xprts(serv, net);
1027		msleep(delay++);
1028	}
1029}
1030
1031/*
1032 * Handle defer and revisit of requests
1033 */
1034
1035static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1036{
1037	struct svc_deferred_req *dr =
1038		container_of(dreq, struct svc_deferred_req, handle);
1039	struct svc_xprt *xprt = dr->xprt;
1040
1041	spin_lock(&xprt->xpt_lock);
1042	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1043	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1044		spin_unlock(&xprt->xpt_lock);
1045		dprintk("revisit canceled\n");
1046		svc_xprt_put(xprt);
1047		kfree(dr);
1048		return;
1049	}
1050	dprintk("revisit queued\n");
1051	dr->xprt = NULL;
1052	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1053	spin_unlock(&xprt->xpt_lock);
1054	svc_xprt_enqueue(xprt);
1055	svc_xprt_put(xprt);
1056}
1057
1058/*
1059 * Save the request off for later processing. The request buffer looks
1060 * like this:
1061 *
1062 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1063 *
1064 * This code can only handle requests that consist of an xprt-header
1065 * and rpc-header.
1066 */
1067static struct cache_deferred_req *svc_defer(struct cache_req *req)
1068{
1069	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1070	struct svc_deferred_req *dr;
1071
1072	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1073		return NULL; /* if more than a page, give up FIXME */
1074	if (rqstp->rq_deferred) {
1075		dr = rqstp->rq_deferred;
1076		rqstp->rq_deferred = NULL;
1077	} else {
1078		size_t skip;
1079		size_t size;
1080		/* FIXME maybe discard if size too large */
1081		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1082		dr = kmalloc(size, GFP_KERNEL);
1083		if (dr == NULL)
1084			return NULL;
1085
1086		dr->handle.owner = rqstp->rq_server;
1087		dr->prot = rqstp->rq_prot;
1088		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1089		dr->addrlen = rqstp->rq_addrlen;
1090		dr->daddr = rqstp->rq_daddr;
1091		dr->argslen = rqstp->rq_arg.len >> 2;
1092		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1093
1094		/* back up head to the start of the buffer and copy */
1095		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1096		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1097		       dr->argslen << 2);
1098	}
1099	svc_xprt_get(rqstp->rq_xprt);
1100	dr->xprt = rqstp->rq_xprt;
1101	rqstp->rq_dropme = true;
1102
1103	dr->handle.revisit = svc_revisit;
1104	return &dr->handle;
1105}
1106
1107/*
1108 * recv data from a deferred request into an active one
1109 */
1110static int svc_deferred_recv(struct svc_rqst *rqstp)
1111{
1112	struct svc_deferred_req *dr = rqstp->rq_deferred;
1113
1114	/* setup iov_base past transport header */
1115	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1116	/* The iov_len does not include the transport header bytes */
1117	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1118	rqstp->rq_arg.page_len = 0;
1119	/* The rq_arg.len includes the transport header bytes */
1120	rqstp->rq_arg.len     = dr->argslen<<2;
1121	rqstp->rq_prot        = dr->prot;
1122	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1123	rqstp->rq_addrlen     = dr->addrlen;
1124	/* Save off transport header len in case we get deferred again */
1125	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1126	rqstp->rq_daddr       = dr->daddr;
1127	rqstp->rq_respages    = rqstp->rq_pages;
1128	return (dr->argslen<<2) - dr->xprt_hlen;
1129}
1130
1131
1132static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1133{
1134	struct svc_deferred_req *dr = NULL;
1135
1136	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1137		return NULL;
1138	spin_lock(&xprt->xpt_lock);
1139	if (!list_empty(&xprt->xpt_deferred)) {
1140		dr = list_entry(xprt->xpt_deferred.next,
1141				struct svc_deferred_req,
1142				handle.recent);
1143		list_del_init(&dr->handle.recent);
1144	} else
1145		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1146	spin_unlock(&xprt->xpt_lock);
1147	return dr;
1148}
1149
1150/**
1151 * svc_find_xprt - find an RPC transport instance
1152 * @serv: pointer to svc_serv to search
1153 * @xcl_name: C string containing transport's class name
1154 * @net: owner net pointer
1155 * @af: Address family of transport's local address
1156 * @port: transport's IP port number
1157 *
1158 * Return the transport instance pointer for the endpoint accepting
1159 * connections/peer traffic from the specified transport class,
1160 * address family and port.
1161 *
1162 * Specifying 0 for the address family or port is effectively a
1163 * wild-card, and will result in matching the first transport in the
1164 * service's list that has a matching class name.
1165 */
1166struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1167			       struct net *net, const sa_family_t af,
1168			       const unsigned short port)
1169{
1170	struct svc_xprt *xprt;
1171	struct svc_xprt *found = NULL;
1172
1173	/* Sanity check the args */
1174	if (serv == NULL || xcl_name == NULL)
1175		return found;
1176
1177	spin_lock_bh(&serv->sv_lock);
1178	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1179		if (xprt->xpt_net != net)
1180			continue;
1181		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1182			continue;
1183		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1184			continue;
1185		if (port != 0 && port != svc_xprt_local_port(xprt))
1186			continue;
1187		found = xprt;
1188		svc_xprt_get(xprt);
1189		break;
1190	}
1191	spin_unlock_bh(&serv->sv_lock);
1192	return found;
1193}
1194EXPORT_SYMBOL_GPL(svc_find_xprt);
1195
1196static int svc_one_xprt_name(const struct svc_xprt *xprt,
1197			     char *pos, int remaining)
1198{
1199	int len;
1200
1201	len = snprintf(pos, remaining, "%s %u\n",
1202			xprt->xpt_class->xcl_name,
1203			svc_xprt_local_port(xprt));
1204	if (len >= remaining)
1205		return -ENAMETOOLONG;
1206	return len;
1207}
1208
1209/**
1210 * svc_xprt_names - format a buffer with a list of transport names
1211 * @serv: pointer to an RPC service
1212 * @buf: pointer to a buffer to be filled in
1213 * @buflen: length of buffer to be filled in
1214 *
1215 * Fills in @buf with a string containing a list of transport names,
1216 * each name terminated with '\n'.
1217 *
1218 * Returns positive length of the filled-in string on success; otherwise
1219 * a negative errno value is returned if an error occurs.
1220 */
1221int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1222{
1223	struct svc_xprt *xprt;
1224	int len, totlen;
1225	char *pos;
1226
1227	/* Sanity check args */
1228	if (!serv)
1229		return 0;
1230
1231	spin_lock_bh(&serv->sv_lock);
1232
1233	pos = buf;
1234	totlen = 0;
1235	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1236		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1237		if (len < 0) {
1238			*buf = '\0';
1239			totlen = len;
1240		}
1241		if (len <= 0)
1242			break;
1243
1244		pos += len;
1245		totlen += len;
1246	}
1247
1248	spin_unlock_bh(&serv->sv_lock);
1249	return totlen;
1250}
1251EXPORT_SYMBOL_GPL(svc_xprt_names);
1252
1253
1254/*----------------------------------------------------------------------------*/
1255
1256static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1257{
1258	unsigned int pidx = (unsigned int)*pos;
1259	struct svc_serv *serv = m->private;
1260
1261	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1262
1263	if (!pidx)
1264		return SEQ_START_TOKEN;
1265	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1266}
1267
1268static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1269{
1270	struct svc_pool *pool = p;
1271	struct svc_serv *serv = m->private;
1272
1273	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1274
1275	if (p == SEQ_START_TOKEN) {
1276		pool = &serv->sv_pools[0];
1277	} else {
1278		unsigned int pidx = (pool - &serv->sv_pools[0]);
1279		if (pidx < serv->sv_nrpools-1)
1280			pool = &serv->sv_pools[pidx+1];
1281		else
1282			pool = NULL;
1283	}
1284	++*pos;
1285	return pool;
1286}
1287
1288static void svc_pool_stats_stop(struct seq_file *m, void *p)
1289{
1290}
1291
1292static int svc_pool_stats_show(struct seq_file *m, void *p)
1293{
1294	struct svc_pool *pool = p;
1295
1296	if (p == SEQ_START_TOKEN) {
1297		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1298		return 0;
1299	}
1300
1301	seq_printf(m, "%u %lu %lu %lu %lu\n",
1302		pool->sp_id,
1303		pool->sp_stats.packets,
1304		pool->sp_stats.sockets_queued,
1305		pool->sp_stats.threads_woken,
1306		pool->sp_stats.threads_timedout);
1307
1308	return 0;
1309}
1310
1311static const struct seq_operations svc_pool_stats_seq_ops = {
1312	.start	= svc_pool_stats_start,
1313	.next	= svc_pool_stats_next,
1314	.stop	= svc_pool_stats_stop,
1315	.show	= svc_pool_stats_show,
1316};
1317
1318int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1319{
1320	int err;
1321
1322	err = seq_open(file, &svc_pool_stats_seq_ops);
1323	if (!err)
1324		((struct seq_file *) file->private_data)->private = serv;
1325	return err;
1326}
1327EXPORT_SYMBOL(svc_pool_stats_open);
1328
1329/*----------------------------------------------------------------------------*/
1330