svc_xprt.c revision 03cf6c9f49a8fea953d38648d016e3f46e814991
1/*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7#include <linux/sched.h>
8#include <linux/errno.h>
9#include <linux/freezer.h>
10#include <linux/kthread.h>
11#include <net/sock.h>
12#include <linux/sunrpc/stats.h>
13#include <linux/sunrpc/svc_xprt.h>
14
15#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
16
17#define SVC_MAX_WAKING 5
18
19static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
20static int svc_deferred_recv(struct svc_rqst *rqstp);
21static struct cache_deferred_req *svc_defer(struct cache_req *req);
22static void svc_age_temp_xprts(unsigned long closure);
23
24/* apparently the "standard" is that clients close
25 * idle connections after 5 minutes, servers after
26 * 6 minutes
27 *   http://www.connectathon.org/talks96/nfstcp.pdf
28 */
29static int svc_conn_age_period = 6*60;
30
31/* List of registered transport classes */
32static DEFINE_SPINLOCK(svc_xprt_class_lock);
33static LIST_HEAD(svc_xprt_class_list);
34
35/* SMP locking strategy:
36 *
37 *	svc_pool->sp_lock protects most of the fields of that pool.
38 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
39 *	when both need to be taken (rare), svc_serv->sv_lock is first.
40 *	BKL protects svc_serv->sv_nrthread.
41 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
42 *             and the ->sk_info_authunix cache.
43 *
44 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
45 *	enqueued multiply. During normal transport processing this bit
46 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
47 *	Providers should not manipulate this bit directly.
48 *
49 *	Some flags can be set to certain values at any time
50 *	providing that certain rules are followed:
51 *
52 *	XPT_CONN, XPT_DATA:
53 *		- Can be set or cleared at any time.
54 *		- After a set, svc_xprt_enqueue must be called to enqueue
55 *		  the transport for processing.
56 *		- After a clear, the transport must be read/accepted.
57 *		  If this succeeds, it must be set again.
58 *	XPT_CLOSE:
59 *		- Can set at any time. It is never cleared.
60 *      XPT_DEAD:
61 *		- Can only be set while XPT_BUSY is held which ensures
62 *		  that no other thread will be using the transport or will
63 *		  try to set XPT_DEAD.
64 */
65
66int svc_reg_xprt_class(struct svc_xprt_class *xcl)
67{
68	struct svc_xprt_class *cl;
69	int res = -EEXIST;
70
71	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
72
73	INIT_LIST_HEAD(&xcl->xcl_list);
74	spin_lock(&svc_xprt_class_lock);
75	/* Make sure there isn't already a class with the same name */
76	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
77		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
78			goto out;
79	}
80	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
81	res = 0;
82out:
83	spin_unlock(&svc_xprt_class_lock);
84	return res;
85}
86EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
87
88void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
89{
90	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
91	spin_lock(&svc_xprt_class_lock);
92	list_del_init(&xcl->xcl_list);
93	spin_unlock(&svc_xprt_class_lock);
94}
95EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
96
97/*
98 * Format the transport list for printing
99 */
100int svc_print_xprts(char *buf, int maxlen)
101{
102	struct list_head *le;
103	char tmpstr[80];
104	int len = 0;
105	buf[0] = '\0';
106
107	spin_lock(&svc_xprt_class_lock);
108	list_for_each(le, &svc_xprt_class_list) {
109		int slen;
110		struct svc_xprt_class *xcl =
111			list_entry(le, struct svc_xprt_class, xcl_list);
112
113		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
114		slen = strlen(tmpstr);
115		if (len + slen > maxlen)
116			break;
117		len += slen;
118		strcat(buf, tmpstr);
119	}
120	spin_unlock(&svc_xprt_class_lock);
121
122	return len;
123}
124
125static void svc_xprt_free(struct kref *kref)
126{
127	struct svc_xprt *xprt =
128		container_of(kref, struct svc_xprt, xpt_ref);
129	struct module *owner = xprt->xpt_class->xcl_owner;
130	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)
131	    && xprt->xpt_auth_cache != NULL)
132		svcauth_unix_info_release(xprt->xpt_auth_cache);
133	xprt->xpt_ops->xpo_free(xprt);
134	module_put(owner);
135}
136
137void svc_xprt_put(struct svc_xprt *xprt)
138{
139	kref_put(&xprt->xpt_ref, svc_xprt_free);
140}
141EXPORT_SYMBOL_GPL(svc_xprt_put);
142
143/*
144 * Called by transport drivers to initialize the transport independent
145 * portion of the transport instance.
146 */
147void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
148		   struct svc_serv *serv)
149{
150	memset(xprt, 0, sizeof(*xprt));
151	xprt->xpt_class = xcl;
152	xprt->xpt_ops = xcl->xcl_ops;
153	kref_init(&xprt->xpt_ref);
154	xprt->xpt_server = serv;
155	INIT_LIST_HEAD(&xprt->xpt_list);
156	INIT_LIST_HEAD(&xprt->xpt_ready);
157	INIT_LIST_HEAD(&xprt->xpt_deferred);
158	mutex_init(&xprt->xpt_mutex);
159	spin_lock_init(&xprt->xpt_lock);
160	set_bit(XPT_BUSY, &xprt->xpt_flags);
161}
162EXPORT_SYMBOL_GPL(svc_xprt_init);
163
164static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
165					 struct svc_serv *serv,
166					 unsigned short port, int flags)
167{
168	struct sockaddr_in sin = {
169		.sin_family		= AF_INET,
170		.sin_addr.s_addr	= htonl(INADDR_ANY),
171		.sin_port		= htons(port),
172	};
173	struct sockaddr_in6 sin6 = {
174		.sin6_family		= AF_INET6,
175		.sin6_addr		= IN6ADDR_ANY_INIT,
176		.sin6_port		= htons(port),
177	};
178	struct sockaddr *sap;
179	size_t len;
180
181	switch (serv->sv_family) {
182	case AF_INET:
183		sap = (struct sockaddr *)&sin;
184		len = sizeof(sin);
185		break;
186	case AF_INET6:
187		sap = (struct sockaddr *)&sin6;
188		len = sizeof(sin6);
189		break;
190	default:
191		return ERR_PTR(-EAFNOSUPPORT);
192	}
193
194	return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
195}
196
197int svc_create_xprt(struct svc_serv *serv, char *xprt_name, unsigned short port,
198		    int flags)
199{
200	struct svc_xprt_class *xcl;
201
202	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
203	spin_lock(&svc_xprt_class_lock);
204	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
205		struct svc_xprt *newxprt;
206
207		if (strcmp(xprt_name, xcl->xcl_name))
208			continue;
209
210		if (!try_module_get(xcl->xcl_owner))
211			goto err;
212
213		spin_unlock(&svc_xprt_class_lock);
214		newxprt = __svc_xpo_create(xcl, serv, port, flags);
215		if (IS_ERR(newxprt)) {
216			module_put(xcl->xcl_owner);
217			return PTR_ERR(newxprt);
218		}
219
220		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
221		spin_lock_bh(&serv->sv_lock);
222		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
223		spin_unlock_bh(&serv->sv_lock);
224		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
225		return svc_xprt_local_port(newxprt);
226	}
227 err:
228	spin_unlock(&svc_xprt_class_lock);
229	dprintk("svc: transport %s not found\n", xprt_name);
230	return -ENOENT;
231}
232EXPORT_SYMBOL_GPL(svc_create_xprt);
233
234/*
235 * Copy the local and remote xprt addresses to the rqstp structure
236 */
237void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
238{
239	struct sockaddr *sin;
240
241	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
242	rqstp->rq_addrlen = xprt->xpt_remotelen;
243
244	/*
245	 * Destination address in request is needed for binding the
246	 * source address in RPC replies/callbacks later.
247	 */
248	sin = (struct sockaddr *)&xprt->xpt_local;
249	switch (sin->sa_family) {
250	case AF_INET:
251		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
252		break;
253	case AF_INET6:
254		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
255		break;
256	}
257}
258EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
259
260/**
261 * svc_print_addr - Format rq_addr field for printing
262 * @rqstp: svc_rqst struct containing address to print
263 * @buf: target buffer for formatted address
264 * @len: length of target buffer
265 *
266 */
267char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
268{
269	return __svc_print_addr(svc_addr(rqstp), buf, len);
270}
271EXPORT_SYMBOL_GPL(svc_print_addr);
272
273/*
274 * Queue up an idle server thread.  Must have pool->sp_lock held.
275 * Note: this is really a stack rather than a queue, so that we only
276 * use as many different threads as we need, and the rest don't pollute
277 * the cache.
278 */
279static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
280{
281	list_add(&rqstp->rq_list, &pool->sp_threads);
282}
283
284/*
285 * Dequeue an nfsd thread.  Must have pool->sp_lock held.
286 */
287static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
288{
289	list_del(&rqstp->rq_list);
290}
291
292/*
293 * Queue up a transport with data pending. If there are idle nfsd
294 * processes, wake 'em up.
295 *
296 */
297void svc_xprt_enqueue(struct svc_xprt *xprt)
298{
299	struct svc_serv	*serv = xprt->xpt_server;
300	struct svc_pool *pool;
301	struct svc_rqst	*rqstp;
302	int cpu;
303	int thread_avail;
304
305	if (!(xprt->xpt_flags &
306	      ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
307		return;
308
309	cpu = get_cpu();
310	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
311	put_cpu();
312
313	spin_lock_bh(&pool->sp_lock);
314
315	if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
316		/* Don't enqueue dead transports */
317		dprintk("svc: transport %p is dead, not enqueued\n", xprt);
318		goto out_unlock;
319	}
320
321	pool->sp_stats.packets++;
322
323	/* Mark transport as busy. It will remain in this state until
324	 * the provider calls svc_xprt_received. We update XPT_BUSY
325	 * atomically because it also guards against trying to enqueue
326	 * the transport twice.
327	 */
328	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
329		/* Don't enqueue transport while already enqueued */
330		dprintk("svc: transport %p busy, not enqueued\n", xprt);
331		goto out_unlock;
332	}
333	BUG_ON(xprt->xpt_pool != NULL);
334	xprt->xpt_pool = pool;
335
336	/* Handle pending connection */
337	if (test_bit(XPT_CONN, &xprt->xpt_flags))
338		goto process;
339
340	/* Handle close in-progress */
341	if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
342		goto process;
343
344	/* Check if we have space to reply to a request */
345	if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
346		/* Don't enqueue while not enough space for reply */
347		dprintk("svc: no write space, transport %p  not enqueued\n",
348			xprt);
349		xprt->xpt_pool = NULL;
350		clear_bit(XPT_BUSY, &xprt->xpt_flags);
351		goto out_unlock;
352	}
353
354 process:
355	/* Work out whether threads are available */
356	thread_avail = !list_empty(&pool->sp_threads);	/* threads are asleep */
357	if (pool->sp_nwaking >= SVC_MAX_WAKING) {
358		/* too many threads are runnable and trying to wake up */
359		thread_avail = 0;
360		pool->sp_stats.overloads_avoided++;
361	}
362
363	if (thread_avail) {
364		rqstp = list_entry(pool->sp_threads.next,
365				   struct svc_rqst,
366				   rq_list);
367		dprintk("svc: transport %p served by daemon %p\n",
368			xprt, rqstp);
369		svc_thread_dequeue(pool, rqstp);
370		if (rqstp->rq_xprt)
371			printk(KERN_ERR
372				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
373				rqstp, rqstp->rq_xprt);
374		rqstp->rq_xprt = xprt;
375		svc_xprt_get(xprt);
376		rqstp->rq_reserved = serv->sv_max_mesg;
377		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
378		rqstp->rq_waking = 1;
379		pool->sp_nwaking++;
380		pool->sp_stats.threads_woken++;
381		BUG_ON(xprt->xpt_pool != pool);
382		wake_up(&rqstp->rq_wait);
383	} else {
384		dprintk("svc: transport %p put into queue\n", xprt);
385		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
386		pool->sp_stats.sockets_queued++;
387		BUG_ON(xprt->xpt_pool != pool);
388	}
389
390out_unlock:
391	spin_unlock_bh(&pool->sp_lock);
392}
393EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
394
395/*
396 * Dequeue the first transport.  Must be called with the pool->sp_lock held.
397 */
398static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
399{
400	struct svc_xprt	*xprt;
401
402	if (list_empty(&pool->sp_sockets))
403		return NULL;
404
405	xprt = list_entry(pool->sp_sockets.next,
406			  struct svc_xprt, xpt_ready);
407	list_del_init(&xprt->xpt_ready);
408
409	dprintk("svc: transport %p dequeued, inuse=%d\n",
410		xprt, atomic_read(&xprt->xpt_ref.refcount));
411
412	return xprt;
413}
414
415/*
416 * svc_xprt_received conditionally queues the transport for processing
417 * by another thread. The caller must hold the XPT_BUSY bit and must
418 * not thereafter touch transport data.
419 *
420 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
421 * insufficient) data.
422 */
423void svc_xprt_received(struct svc_xprt *xprt)
424{
425	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
426	xprt->xpt_pool = NULL;
427	clear_bit(XPT_BUSY, &xprt->xpt_flags);
428	svc_xprt_enqueue(xprt);
429}
430EXPORT_SYMBOL_GPL(svc_xprt_received);
431
432/**
433 * svc_reserve - change the space reserved for the reply to a request.
434 * @rqstp:  The request in question
435 * @space: new max space to reserve
436 *
437 * Each request reserves some space on the output queue of the transport
438 * to make sure the reply fits.  This function reduces that reserved
439 * space to be the amount of space used already, plus @space.
440 *
441 */
442void svc_reserve(struct svc_rqst *rqstp, int space)
443{
444	space += rqstp->rq_res.head[0].iov_len;
445
446	if (space < rqstp->rq_reserved) {
447		struct svc_xprt *xprt = rqstp->rq_xprt;
448		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
449		rqstp->rq_reserved = space;
450
451		svc_xprt_enqueue(xprt);
452	}
453}
454EXPORT_SYMBOL_GPL(svc_reserve);
455
456static void svc_xprt_release(struct svc_rqst *rqstp)
457{
458	struct svc_xprt	*xprt = rqstp->rq_xprt;
459
460	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
461
462	kfree(rqstp->rq_deferred);
463	rqstp->rq_deferred = NULL;
464
465	svc_free_res_pages(rqstp);
466	rqstp->rq_res.page_len = 0;
467	rqstp->rq_res.page_base = 0;
468
469	/* Reset response buffer and release
470	 * the reservation.
471	 * But first, check that enough space was reserved
472	 * for the reply, otherwise we have a bug!
473	 */
474	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
475		printk(KERN_ERR "RPC request reserved %d but used %d\n",
476		       rqstp->rq_reserved,
477		       rqstp->rq_res.len);
478
479	rqstp->rq_res.head[0].iov_len = 0;
480	svc_reserve(rqstp, 0);
481	rqstp->rq_xprt = NULL;
482
483	svc_xprt_put(xprt);
484}
485
486/*
487 * External function to wake up a server waiting for data
488 * This really only makes sense for services like lockd
489 * which have exactly one thread anyway.
490 */
491void svc_wake_up(struct svc_serv *serv)
492{
493	struct svc_rqst	*rqstp;
494	unsigned int i;
495	struct svc_pool *pool;
496
497	for (i = 0; i < serv->sv_nrpools; i++) {
498		pool = &serv->sv_pools[i];
499
500		spin_lock_bh(&pool->sp_lock);
501		if (!list_empty(&pool->sp_threads)) {
502			rqstp = list_entry(pool->sp_threads.next,
503					   struct svc_rqst,
504					   rq_list);
505			dprintk("svc: daemon %p woken up.\n", rqstp);
506			/*
507			svc_thread_dequeue(pool, rqstp);
508			rqstp->rq_xprt = NULL;
509			 */
510			wake_up(&rqstp->rq_wait);
511		}
512		spin_unlock_bh(&pool->sp_lock);
513	}
514}
515EXPORT_SYMBOL_GPL(svc_wake_up);
516
517int svc_port_is_privileged(struct sockaddr *sin)
518{
519	switch (sin->sa_family) {
520	case AF_INET:
521		return ntohs(((struct sockaddr_in *)sin)->sin_port)
522			< PROT_SOCK;
523	case AF_INET6:
524		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
525			< PROT_SOCK;
526	default:
527		return 0;
528	}
529}
530
531/*
532 * Make sure that we don't have too many active connections. If we have,
533 * something must be dropped. It's not clear what will happen if we allow
534 * "too many" connections, but when dealing with network-facing software,
535 * we have to code defensively. Here we do that by imposing hard limits.
536 *
537 * There's no point in trying to do random drop here for DoS
538 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
539 * attacker can easily beat that.
540 *
541 * The only somewhat efficient mechanism would be if drop old
542 * connections from the same IP first. But right now we don't even
543 * record the client IP in svc_sock.
544 *
545 * single-threaded services that expect a lot of clients will probably
546 * need to set sv_maxconn to override the default value which is based
547 * on the number of threads
548 */
549static void svc_check_conn_limits(struct svc_serv *serv)
550{
551	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
552				(serv->sv_nrthreads+3) * 20;
553
554	if (serv->sv_tmpcnt > limit) {
555		struct svc_xprt *xprt = NULL;
556		spin_lock_bh(&serv->sv_lock);
557		if (!list_empty(&serv->sv_tempsocks)) {
558			if (net_ratelimit()) {
559				/* Try to help the admin */
560				printk(KERN_NOTICE "%s: too many open  "
561				       "connections, consider increasing %s\n",
562				       serv->sv_name, serv->sv_maxconn ?
563				       "the max number of connections." :
564				       "the number of threads.");
565			}
566			/*
567			 * Always select the oldest connection. It's not fair,
568			 * but so is life
569			 */
570			xprt = list_entry(serv->sv_tempsocks.prev,
571					  struct svc_xprt,
572					  xpt_list);
573			set_bit(XPT_CLOSE, &xprt->xpt_flags);
574			svc_xprt_get(xprt);
575		}
576		spin_unlock_bh(&serv->sv_lock);
577
578		if (xprt) {
579			svc_xprt_enqueue(xprt);
580			svc_xprt_put(xprt);
581		}
582	}
583}
584
585/*
586 * Receive the next request on any transport.  This code is carefully
587 * organised not to touch any cachelines in the shared svc_serv
588 * structure, only cachelines in the local svc_pool.
589 */
590int svc_recv(struct svc_rqst *rqstp, long timeout)
591{
592	struct svc_xprt		*xprt = NULL;
593	struct svc_serv		*serv = rqstp->rq_server;
594	struct svc_pool		*pool = rqstp->rq_pool;
595	int			len, i;
596	int			pages;
597	struct xdr_buf		*arg;
598	DECLARE_WAITQUEUE(wait, current);
599	long			time_left;
600
601	dprintk("svc: server %p waiting for data (to = %ld)\n",
602		rqstp, timeout);
603
604	if (rqstp->rq_xprt)
605		printk(KERN_ERR
606			"svc_recv: service %p, transport not NULL!\n",
607			 rqstp);
608	if (waitqueue_active(&rqstp->rq_wait))
609		printk(KERN_ERR
610			"svc_recv: service %p, wait queue active!\n",
611			 rqstp);
612
613	/* now allocate needed pages.  If we get a failure, sleep briefly */
614	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
615	for (i = 0; i < pages ; i++)
616		while (rqstp->rq_pages[i] == NULL) {
617			struct page *p = alloc_page(GFP_KERNEL);
618			if (!p) {
619				set_current_state(TASK_INTERRUPTIBLE);
620				if (signalled() || kthread_should_stop()) {
621					set_current_state(TASK_RUNNING);
622					return -EINTR;
623				}
624				schedule_timeout(msecs_to_jiffies(500));
625			}
626			rqstp->rq_pages[i] = p;
627		}
628	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
629	BUG_ON(pages >= RPCSVC_MAXPAGES);
630
631	/* Make arg->head point to first page and arg->pages point to rest */
632	arg = &rqstp->rq_arg;
633	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
634	arg->head[0].iov_len = PAGE_SIZE;
635	arg->pages = rqstp->rq_pages + 1;
636	arg->page_base = 0;
637	/* save at least one page for response */
638	arg->page_len = (pages-2)*PAGE_SIZE;
639	arg->len = (pages-1)*PAGE_SIZE;
640	arg->tail[0].iov_len = 0;
641
642	try_to_freeze();
643	cond_resched();
644	if (signalled() || kthread_should_stop())
645		return -EINTR;
646
647	spin_lock_bh(&pool->sp_lock);
648	if (rqstp->rq_waking) {
649		rqstp->rq_waking = 0;
650		pool->sp_nwaking--;
651		BUG_ON(pool->sp_nwaking < 0);
652	}
653	xprt = svc_xprt_dequeue(pool);
654	if (xprt) {
655		rqstp->rq_xprt = xprt;
656		svc_xprt_get(xprt);
657		rqstp->rq_reserved = serv->sv_max_mesg;
658		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
659	} else {
660		/* No data pending. Go to sleep */
661		svc_thread_enqueue(pool, rqstp);
662
663		/*
664		 * We have to be able to interrupt this wait
665		 * to bring down the daemons ...
666		 */
667		set_current_state(TASK_INTERRUPTIBLE);
668
669		/*
670		 * checking kthread_should_stop() here allows us to avoid
671		 * locking and signalling when stopping kthreads that call
672		 * svc_recv. If the thread has already been woken up, then
673		 * we can exit here without sleeping. If not, then it
674		 * it'll be woken up quickly during the schedule_timeout
675		 */
676		if (kthread_should_stop()) {
677			set_current_state(TASK_RUNNING);
678			spin_unlock_bh(&pool->sp_lock);
679			return -EINTR;
680		}
681
682		add_wait_queue(&rqstp->rq_wait, &wait);
683		spin_unlock_bh(&pool->sp_lock);
684
685		time_left = schedule_timeout(timeout);
686
687		try_to_freeze();
688
689		spin_lock_bh(&pool->sp_lock);
690		remove_wait_queue(&rqstp->rq_wait, &wait);
691		if (!time_left)
692			pool->sp_stats.threads_timedout++;
693
694		xprt = rqstp->rq_xprt;
695		if (!xprt) {
696			svc_thread_dequeue(pool, rqstp);
697			spin_unlock_bh(&pool->sp_lock);
698			dprintk("svc: server %p, no data yet\n", rqstp);
699			if (signalled() || kthread_should_stop())
700				return -EINTR;
701			else
702				return -EAGAIN;
703		}
704	}
705	spin_unlock_bh(&pool->sp_lock);
706
707	len = 0;
708	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
709		dprintk("svc_recv: found XPT_CLOSE\n");
710		svc_delete_xprt(xprt);
711	} else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
712		struct svc_xprt *newxpt;
713		newxpt = xprt->xpt_ops->xpo_accept(xprt);
714		if (newxpt) {
715			/*
716			 * We know this module_get will succeed because the
717			 * listener holds a reference too
718			 */
719			__module_get(newxpt->xpt_class->xcl_owner);
720			svc_check_conn_limits(xprt->xpt_server);
721			spin_lock_bh(&serv->sv_lock);
722			set_bit(XPT_TEMP, &newxpt->xpt_flags);
723			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
724			serv->sv_tmpcnt++;
725			if (serv->sv_temptimer.function == NULL) {
726				/* setup timer to age temp transports */
727				setup_timer(&serv->sv_temptimer,
728					    svc_age_temp_xprts,
729					    (unsigned long)serv);
730				mod_timer(&serv->sv_temptimer,
731					  jiffies + svc_conn_age_period * HZ);
732			}
733			spin_unlock_bh(&serv->sv_lock);
734			svc_xprt_received(newxpt);
735		}
736		svc_xprt_received(xprt);
737	} else {
738		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
739			rqstp, pool->sp_id, xprt,
740			atomic_read(&xprt->xpt_ref.refcount));
741		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
742		if (rqstp->rq_deferred) {
743			svc_xprt_received(xprt);
744			len = svc_deferred_recv(rqstp);
745		} else
746			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
747		dprintk("svc: got len=%d\n", len);
748	}
749
750	/* No data, incomplete (TCP) read, or accept() */
751	if (len == 0 || len == -EAGAIN) {
752		rqstp->rq_res.len = 0;
753		svc_xprt_release(rqstp);
754		return -EAGAIN;
755	}
756	clear_bit(XPT_OLD, &xprt->xpt_flags);
757
758	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
759	rqstp->rq_chandle.defer = svc_defer;
760
761	if (serv->sv_stats)
762		serv->sv_stats->netcnt++;
763	return len;
764}
765EXPORT_SYMBOL_GPL(svc_recv);
766
767/*
768 * Drop request
769 */
770void svc_drop(struct svc_rqst *rqstp)
771{
772	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
773	svc_xprt_release(rqstp);
774}
775EXPORT_SYMBOL_GPL(svc_drop);
776
777/*
778 * Return reply to client.
779 */
780int svc_send(struct svc_rqst *rqstp)
781{
782	struct svc_xprt	*xprt;
783	int		len;
784	struct xdr_buf	*xb;
785
786	xprt = rqstp->rq_xprt;
787	if (!xprt)
788		return -EFAULT;
789
790	/* release the receive skb before sending the reply */
791	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
792
793	/* calculate over-all length */
794	xb = &rqstp->rq_res;
795	xb->len = xb->head[0].iov_len +
796		xb->page_len +
797		xb->tail[0].iov_len;
798
799	/* Grab mutex to serialize outgoing data. */
800	mutex_lock(&xprt->xpt_mutex);
801	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
802		len = -ENOTCONN;
803	else
804		len = xprt->xpt_ops->xpo_sendto(rqstp);
805	mutex_unlock(&xprt->xpt_mutex);
806	svc_xprt_release(rqstp);
807
808	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
809		return 0;
810	return len;
811}
812
813/*
814 * Timer function to close old temporary transports, using
815 * a mark-and-sweep algorithm.
816 */
817static void svc_age_temp_xprts(unsigned long closure)
818{
819	struct svc_serv *serv = (struct svc_serv *)closure;
820	struct svc_xprt *xprt;
821	struct list_head *le, *next;
822	LIST_HEAD(to_be_aged);
823
824	dprintk("svc_age_temp_xprts\n");
825
826	if (!spin_trylock_bh(&serv->sv_lock)) {
827		/* busy, try again 1 sec later */
828		dprintk("svc_age_temp_xprts: busy\n");
829		mod_timer(&serv->sv_temptimer, jiffies + HZ);
830		return;
831	}
832
833	list_for_each_safe(le, next, &serv->sv_tempsocks) {
834		xprt = list_entry(le, struct svc_xprt, xpt_list);
835
836		/* First time through, just mark it OLD. Second time
837		 * through, close it. */
838		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
839			continue;
840		if (atomic_read(&xprt->xpt_ref.refcount) > 1
841		    || test_bit(XPT_BUSY, &xprt->xpt_flags))
842			continue;
843		svc_xprt_get(xprt);
844		list_move(le, &to_be_aged);
845		set_bit(XPT_CLOSE, &xprt->xpt_flags);
846		set_bit(XPT_DETACHED, &xprt->xpt_flags);
847	}
848	spin_unlock_bh(&serv->sv_lock);
849
850	while (!list_empty(&to_be_aged)) {
851		le = to_be_aged.next;
852		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
853		list_del_init(le);
854		xprt = list_entry(le, struct svc_xprt, xpt_list);
855
856		dprintk("queuing xprt %p for closing\n", xprt);
857
858		/* a thread will dequeue and close it soon */
859		svc_xprt_enqueue(xprt);
860		svc_xprt_put(xprt);
861	}
862
863	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
864}
865
866/*
867 * Remove a dead transport
868 */
869void svc_delete_xprt(struct svc_xprt *xprt)
870{
871	struct svc_serv	*serv = xprt->xpt_server;
872	struct svc_deferred_req *dr;
873
874	/* Only do this once */
875	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
876		return;
877
878	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
879	xprt->xpt_ops->xpo_detach(xprt);
880
881	spin_lock_bh(&serv->sv_lock);
882	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
883		list_del_init(&xprt->xpt_list);
884	/*
885	 * We used to delete the transport from whichever list
886	 * it's sk_xprt.xpt_ready node was on, but we don't actually
887	 * need to.  This is because the only time we're called
888	 * while still attached to a queue, the queue itself
889	 * is about to be destroyed (in svc_destroy).
890	 */
891	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
892		serv->sv_tmpcnt--;
893
894	for (dr = svc_deferred_dequeue(xprt); dr;
895	     dr = svc_deferred_dequeue(xprt)) {
896		svc_xprt_put(xprt);
897		kfree(dr);
898	}
899
900	svc_xprt_put(xprt);
901	spin_unlock_bh(&serv->sv_lock);
902}
903
904void svc_close_xprt(struct svc_xprt *xprt)
905{
906	set_bit(XPT_CLOSE, &xprt->xpt_flags);
907	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
908		/* someone else will have to effect the close */
909		return;
910
911	svc_xprt_get(xprt);
912	svc_delete_xprt(xprt);
913	clear_bit(XPT_BUSY, &xprt->xpt_flags);
914	svc_xprt_put(xprt);
915}
916EXPORT_SYMBOL_GPL(svc_close_xprt);
917
918void svc_close_all(struct list_head *xprt_list)
919{
920	struct svc_xprt *xprt;
921	struct svc_xprt *tmp;
922
923	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
924		set_bit(XPT_CLOSE, &xprt->xpt_flags);
925		if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
926			/* Waiting to be processed, but no threads left,
927			 * So just remove it from the waiting list
928			 */
929			list_del_init(&xprt->xpt_ready);
930			clear_bit(XPT_BUSY, &xprt->xpt_flags);
931		}
932		svc_close_xprt(xprt);
933	}
934}
935
936/*
937 * Handle defer and revisit of requests
938 */
939
940static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
941{
942	struct svc_deferred_req *dr =
943		container_of(dreq, struct svc_deferred_req, handle);
944	struct svc_xprt *xprt = dr->xprt;
945
946	spin_lock(&xprt->xpt_lock);
947	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
948	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
949		spin_unlock(&xprt->xpt_lock);
950		dprintk("revisit canceled\n");
951		svc_xprt_put(xprt);
952		kfree(dr);
953		return;
954	}
955	dprintk("revisit queued\n");
956	dr->xprt = NULL;
957	list_add(&dr->handle.recent, &xprt->xpt_deferred);
958	spin_unlock(&xprt->xpt_lock);
959	svc_xprt_enqueue(xprt);
960	svc_xprt_put(xprt);
961}
962
963/*
964 * Save the request off for later processing. The request buffer looks
965 * like this:
966 *
967 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
968 *
969 * This code can only handle requests that consist of an xprt-header
970 * and rpc-header.
971 */
972static struct cache_deferred_req *svc_defer(struct cache_req *req)
973{
974	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
975	struct svc_deferred_req *dr;
976
977	if (rqstp->rq_arg.page_len)
978		return NULL; /* if more than a page, give up FIXME */
979	if (rqstp->rq_deferred) {
980		dr = rqstp->rq_deferred;
981		rqstp->rq_deferred = NULL;
982	} else {
983		size_t skip;
984		size_t size;
985		/* FIXME maybe discard if size too large */
986		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
987		dr = kmalloc(size, GFP_KERNEL);
988		if (dr == NULL)
989			return NULL;
990
991		dr->handle.owner = rqstp->rq_server;
992		dr->prot = rqstp->rq_prot;
993		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
994		dr->addrlen = rqstp->rq_addrlen;
995		dr->daddr = rqstp->rq_daddr;
996		dr->argslen = rqstp->rq_arg.len >> 2;
997		dr->xprt_hlen = rqstp->rq_xprt_hlen;
998
999		/* back up head to the start of the buffer and copy */
1000		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1001		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1002		       dr->argslen << 2);
1003	}
1004	svc_xprt_get(rqstp->rq_xprt);
1005	dr->xprt = rqstp->rq_xprt;
1006
1007	dr->handle.revisit = svc_revisit;
1008	return &dr->handle;
1009}
1010
1011/*
1012 * recv data from a deferred request into an active one
1013 */
1014static int svc_deferred_recv(struct svc_rqst *rqstp)
1015{
1016	struct svc_deferred_req *dr = rqstp->rq_deferred;
1017
1018	/* setup iov_base past transport header */
1019	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1020	/* The iov_len does not include the transport header bytes */
1021	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1022	rqstp->rq_arg.page_len = 0;
1023	/* The rq_arg.len includes the transport header bytes */
1024	rqstp->rq_arg.len     = dr->argslen<<2;
1025	rqstp->rq_prot        = dr->prot;
1026	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1027	rqstp->rq_addrlen     = dr->addrlen;
1028	/* Save off transport header len in case we get deferred again */
1029	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1030	rqstp->rq_daddr       = dr->daddr;
1031	rqstp->rq_respages    = rqstp->rq_pages;
1032	return (dr->argslen<<2) - dr->xprt_hlen;
1033}
1034
1035
1036static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1037{
1038	struct svc_deferred_req *dr = NULL;
1039
1040	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1041		return NULL;
1042	spin_lock(&xprt->xpt_lock);
1043	clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1044	if (!list_empty(&xprt->xpt_deferred)) {
1045		dr = list_entry(xprt->xpt_deferred.next,
1046				struct svc_deferred_req,
1047				handle.recent);
1048		list_del_init(&dr->handle.recent);
1049		set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1050	}
1051	spin_unlock(&xprt->xpt_lock);
1052	return dr;
1053}
1054
1055/*
1056 * Return the transport instance pointer for the endpoint accepting
1057 * connections/peer traffic from the specified transport class,
1058 * address family and port.
1059 *
1060 * Specifying 0 for the address family or port is effectively a
1061 * wild-card, and will result in matching the first transport in the
1062 * service's list that has a matching class name.
1063 */
1064struct svc_xprt *svc_find_xprt(struct svc_serv *serv, char *xcl_name,
1065			       int af, int port)
1066{
1067	struct svc_xprt *xprt;
1068	struct svc_xprt *found = NULL;
1069
1070	/* Sanity check the args */
1071	if (!serv || !xcl_name)
1072		return found;
1073
1074	spin_lock_bh(&serv->sv_lock);
1075	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1076		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1077			continue;
1078		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1079			continue;
1080		if (port && port != svc_xprt_local_port(xprt))
1081			continue;
1082		found = xprt;
1083		svc_xprt_get(xprt);
1084		break;
1085	}
1086	spin_unlock_bh(&serv->sv_lock);
1087	return found;
1088}
1089EXPORT_SYMBOL_GPL(svc_find_xprt);
1090
1091/*
1092 * Format a buffer with a list of the active transports. A zero for
1093 * the buflen parameter disables target buffer overflow checking.
1094 */
1095int svc_xprt_names(struct svc_serv *serv, char *buf, int buflen)
1096{
1097	struct svc_xprt *xprt;
1098	char xprt_str[64];
1099	int totlen = 0;
1100	int len;
1101
1102	/* Sanity check args */
1103	if (!serv)
1104		return 0;
1105
1106	spin_lock_bh(&serv->sv_lock);
1107	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1108		len = snprintf(xprt_str, sizeof(xprt_str),
1109			       "%s %d\n", xprt->xpt_class->xcl_name,
1110			       svc_xprt_local_port(xprt));
1111		/* If the string was truncated, replace with error string */
1112		if (len >= sizeof(xprt_str))
1113			strcpy(xprt_str, "name-too-long\n");
1114		/* Don't overflow buffer */
1115		len = strlen(xprt_str);
1116		if (buflen && (len + totlen >= buflen))
1117			break;
1118		strcpy(buf+totlen, xprt_str);
1119		totlen += len;
1120	}
1121	spin_unlock_bh(&serv->sv_lock);
1122	return totlen;
1123}
1124EXPORT_SYMBOL_GPL(svc_xprt_names);
1125
1126
1127/*----------------------------------------------------------------------------*/
1128
1129static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1130{
1131	unsigned int pidx = (unsigned int)*pos;
1132	struct svc_serv *serv = m->private;
1133
1134	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1135
1136	lock_kernel();
1137	/* bump up the pseudo refcount while traversing */
1138	svc_get(serv);
1139	unlock_kernel();
1140
1141	if (!pidx)
1142		return SEQ_START_TOKEN;
1143	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1144}
1145
1146static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1147{
1148	struct svc_pool *pool = p;
1149	struct svc_serv *serv = m->private;
1150
1151	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1152
1153	if (p == SEQ_START_TOKEN) {
1154		pool = &serv->sv_pools[0];
1155	} else {
1156		unsigned int pidx = (pool - &serv->sv_pools[0]);
1157		if (pidx < serv->sv_nrpools-1)
1158			pool = &serv->sv_pools[pidx+1];
1159		else
1160			pool = NULL;
1161	}
1162	++*pos;
1163	return pool;
1164}
1165
1166static void svc_pool_stats_stop(struct seq_file *m, void *p)
1167{
1168	struct svc_serv *serv = m->private;
1169
1170	lock_kernel();
1171	/* this function really, really should have been called svc_put() */
1172	svc_destroy(serv);
1173	unlock_kernel();
1174}
1175
1176static int svc_pool_stats_show(struct seq_file *m, void *p)
1177{
1178	struct svc_pool *pool = p;
1179
1180	if (p == SEQ_START_TOKEN) {
1181		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken overloads-avoided threads-timedout\n");
1182		return 0;
1183	}
1184
1185	seq_printf(m, "%u %lu %lu %lu %lu %lu\n",
1186		pool->sp_id,
1187		pool->sp_stats.packets,
1188		pool->sp_stats.sockets_queued,
1189		pool->sp_stats.threads_woken,
1190		pool->sp_stats.overloads_avoided,
1191		pool->sp_stats.threads_timedout);
1192
1193	return 0;
1194}
1195
1196static const struct seq_operations svc_pool_stats_seq_ops = {
1197	.start	= svc_pool_stats_start,
1198	.next	= svc_pool_stats_next,
1199	.stop	= svc_pool_stats_stop,
1200	.show	= svc_pool_stats_show,
1201};
1202
1203int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1204{
1205	int err;
1206
1207	err = seq_open(file, &svc_pool_stats_seq_ops);
1208	if (!err)
1209		((struct seq_file *) file->private_data)->private = serv;
1210	return err;
1211}
1212EXPORT_SYMBOL(svc_pool_stats_open);
1213
1214/*----------------------------------------------------------------------------*/
1215