svc_xprt.c revision f16b6e8d838b2e2bb4561201311c66ac02ad67df
1/*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7#include <linux/sched.h>
8#include <linux/smp_lock.h>
9#include <linux/errno.h>
10#include <linux/freezer.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <net/sock.h>
14#include <linux/sunrpc/stats.h>
15#include <linux/sunrpc/svc_xprt.h>
16#include <linux/sunrpc/svcsock.h>
17
18#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
19
20static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
21static int svc_deferred_recv(struct svc_rqst *rqstp);
22static struct cache_deferred_req *svc_defer(struct cache_req *req);
23static void svc_age_temp_xprts(unsigned long closure);
24
25/* apparently the "standard" is that clients close
26 * idle connections after 5 minutes, servers after
27 * 6 minutes
28 *   http://www.connectathon.org/talks96/nfstcp.pdf
29 */
30static int svc_conn_age_period = 6*60;
31
32/* List of registered transport classes */
33static DEFINE_SPINLOCK(svc_xprt_class_lock);
34static LIST_HEAD(svc_xprt_class_list);
35
36/* SMP locking strategy:
37 *
38 *	svc_pool->sp_lock protects most of the fields of that pool.
39 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
40 *	when both need to be taken (rare), svc_serv->sv_lock is first.
41 *	BKL protects svc_serv->sv_nrthread.
42 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
43 *             and the ->sk_info_authunix cache.
44 *
45 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
46 *	enqueued multiply. During normal transport processing this bit
47 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
48 *	Providers should not manipulate this bit directly.
49 *
50 *	Some flags can be set to certain values at any time
51 *	providing that certain rules are followed:
52 *
53 *	XPT_CONN, XPT_DATA:
54 *		- Can be set or cleared at any time.
55 *		- After a set, svc_xprt_enqueue must be called to enqueue
56 *		  the transport for processing.
57 *		- After a clear, the transport must be read/accepted.
58 *		  If this succeeds, it must be set again.
59 *	XPT_CLOSE:
60 *		- Can set at any time. It is never cleared.
61 *      XPT_DEAD:
62 *		- Can only be set while XPT_BUSY is held which ensures
63 *		  that no other thread will be using the transport or will
64 *		  try to set XPT_DEAD.
65 */
66
67int svc_reg_xprt_class(struct svc_xprt_class *xcl)
68{
69	struct svc_xprt_class *cl;
70	int res = -EEXIST;
71
72	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
73
74	INIT_LIST_HEAD(&xcl->xcl_list);
75	spin_lock(&svc_xprt_class_lock);
76	/* Make sure there isn't already a class with the same name */
77	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
78		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
79			goto out;
80	}
81	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
82	res = 0;
83out:
84	spin_unlock(&svc_xprt_class_lock);
85	return res;
86}
87EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
88
89void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
90{
91	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
92	spin_lock(&svc_xprt_class_lock);
93	list_del_init(&xcl->xcl_list);
94	spin_unlock(&svc_xprt_class_lock);
95}
96EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
97
98/*
99 * Format the transport list for printing
100 */
101int svc_print_xprts(char *buf, int maxlen)
102{
103	struct list_head *le;
104	char tmpstr[80];
105	int len = 0;
106	buf[0] = '\0';
107
108	spin_lock(&svc_xprt_class_lock);
109	list_for_each(le, &svc_xprt_class_list) {
110		int slen;
111		struct svc_xprt_class *xcl =
112			list_entry(le, struct svc_xprt_class, xcl_list);
113
114		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115		slen = strlen(tmpstr);
116		if (len + slen > maxlen)
117			break;
118		len += slen;
119		strcat(buf, tmpstr);
120	}
121	spin_unlock(&svc_xprt_class_lock);
122
123	return len;
124}
125
126static void svc_xprt_free(struct kref *kref)
127{
128	struct svc_xprt *xprt =
129		container_of(kref, struct svc_xprt, xpt_ref);
130	struct module *owner = xprt->xpt_class->xcl_owner;
131	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) &&
132	    xprt->xpt_auth_cache != NULL)
133		svcauth_unix_info_release(xprt->xpt_auth_cache);
134	xprt->xpt_ops->xpo_free(xprt);
135	module_put(owner);
136}
137
138void svc_xprt_put(struct svc_xprt *xprt)
139{
140	kref_put(&xprt->xpt_ref, svc_xprt_free);
141}
142EXPORT_SYMBOL_GPL(svc_xprt_put);
143
144/*
145 * Called by transport drivers to initialize the transport independent
146 * portion of the transport instance.
147 */
148void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
149		   struct svc_serv *serv)
150{
151	memset(xprt, 0, sizeof(*xprt));
152	xprt->xpt_class = xcl;
153	xprt->xpt_ops = xcl->xcl_ops;
154	kref_init(&xprt->xpt_ref);
155	xprt->xpt_server = serv;
156	INIT_LIST_HEAD(&xprt->xpt_list);
157	INIT_LIST_HEAD(&xprt->xpt_ready);
158	INIT_LIST_HEAD(&xprt->xpt_deferred);
159	mutex_init(&xprt->xpt_mutex);
160	spin_lock_init(&xprt->xpt_lock);
161	set_bit(XPT_BUSY, &xprt->xpt_flags);
162	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
163}
164EXPORT_SYMBOL_GPL(svc_xprt_init);
165
166static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
167					 struct svc_serv *serv,
168					 const int family,
169					 const unsigned short port,
170					 int flags)
171{
172	struct sockaddr_in sin = {
173		.sin_family		= AF_INET,
174		.sin_addr.s_addr	= htonl(INADDR_ANY),
175		.sin_port		= htons(port),
176	};
177#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
178	struct sockaddr_in6 sin6 = {
179		.sin6_family		= AF_INET6,
180		.sin6_addr		= IN6ADDR_ANY_INIT,
181		.sin6_port		= htons(port),
182	};
183#endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
184	struct sockaddr *sap;
185	size_t len;
186
187	switch (family) {
188	case PF_INET:
189		sap = (struct sockaddr *)&sin;
190		len = sizeof(sin);
191		break;
192#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
193	case PF_INET6:
194		sap = (struct sockaddr *)&sin6;
195		len = sizeof(sin6);
196		break;
197#endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
198	default:
199		return ERR_PTR(-EAFNOSUPPORT);
200	}
201
202	return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
203}
204
205int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
206		    const int family, const unsigned short port,
207		    int flags)
208{
209	struct svc_xprt_class *xcl;
210
211	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
212	spin_lock(&svc_xprt_class_lock);
213	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
214		struct svc_xprt *newxprt;
215
216		if (strcmp(xprt_name, xcl->xcl_name))
217			continue;
218
219		if (!try_module_get(xcl->xcl_owner))
220			goto err;
221
222		spin_unlock(&svc_xprt_class_lock);
223		newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
224		if (IS_ERR(newxprt)) {
225			module_put(xcl->xcl_owner);
226			return PTR_ERR(newxprt);
227		}
228
229		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
230		spin_lock_bh(&serv->sv_lock);
231		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
232		spin_unlock_bh(&serv->sv_lock);
233		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
234		return svc_xprt_local_port(newxprt);
235	}
236 err:
237	spin_unlock(&svc_xprt_class_lock);
238	dprintk("svc: transport %s not found\n", xprt_name);
239
240	/* This errno is exposed to user space.  Provide a reasonable
241	 * perror msg for a bad transport. */
242	return -EPROTONOSUPPORT;
243}
244EXPORT_SYMBOL_GPL(svc_create_xprt);
245
246/*
247 * Copy the local and remote xprt addresses to the rqstp structure
248 */
249void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
250{
251	struct sockaddr *sin;
252
253	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
254	rqstp->rq_addrlen = xprt->xpt_remotelen;
255
256	/*
257	 * Destination address in request is needed for binding the
258	 * source address in RPC replies/callbacks later.
259	 */
260	sin = (struct sockaddr *)&xprt->xpt_local;
261	switch (sin->sa_family) {
262	case AF_INET:
263		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
264		break;
265	case AF_INET6:
266		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
267		break;
268	}
269}
270EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
271
272/**
273 * svc_print_addr - Format rq_addr field for printing
274 * @rqstp: svc_rqst struct containing address to print
275 * @buf: target buffer for formatted address
276 * @len: length of target buffer
277 *
278 */
279char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
280{
281	return __svc_print_addr(svc_addr(rqstp), buf, len);
282}
283EXPORT_SYMBOL_GPL(svc_print_addr);
284
285/*
286 * Queue up an idle server thread.  Must have pool->sp_lock held.
287 * Note: this is really a stack rather than a queue, so that we only
288 * use as many different threads as we need, and the rest don't pollute
289 * the cache.
290 */
291static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
292{
293	list_add(&rqstp->rq_list, &pool->sp_threads);
294}
295
296/*
297 * Dequeue an nfsd thread.  Must have pool->sp_lock held.
298 */
299static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
300{
301	list_del(&rqstp->rq_list);
302}
303
304/*
305 * Queue up a transport with data pending. If there are idle nfsd
306 * processes, wake 'em up.
307 *
308 */
309void svc_xprt_enqueue(struct svc_xprt *xprt)
310{
311	struct svc_serv	*serv = xprt->xpt_server;
312	struct svc_pool *pool;
313	struct svc_rqst	*rqstp;
314	int cpu;
315
316	if (!(xprt->xpt_flags &
317	      ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
318		return;
319
320	cpu = get_cpu();
321	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
322	put_cpu();
323
324	spin_lock_bh(&pool->sp_lock);
325
326	if (!list_empty(&pool->sp_threads) &&
327	    !list_empty(&pool->sp_sockets))
328		printk(KERN_ERR
329		       "svc_xprt_enqueue: "
330		       "threads and transports both waiting??\n");
331
332	if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
333		/* Don't enqueue dead transports */
334		dprintk("svc: transport %p is dead, not enqueued\n", xprt);
335		goto out_unlock;
336	}
337
338	pool->sp_stats.packets++;
339
340	/* Mark transport as busy. It will remain in this state until
341	 * the provider calls svc_xprt_received. We update XPT_BUSY
342	 * atomically because it also guards against trying to enqueue
343	 * the transport twice.
344	 */
345	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
346		/* Don't enqueue transport while already enqueued */
347		dprintk("svc: transport %p busy, not enqueued\n", xprt);
348		goto out_unlock;
349	}
350	BUG_ON(xprt->xpt_pool != NULL);
351	xprt->xpt_pool = pool;
352
353	/* Handle pending connection */
354	if (test_bit(XPT_CONN, &xprt->xpt_flags))
355		goto process;
356
357	/* Handle close in-progress */
358	if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
359		goto process;
360
361	/* Check if we have space to reply to a request */
362	if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
363		/* Don't enqueue while not enough space for reply */
364		dprintk("svc: no write space, transport %p  not enqueued\n",
365			xprt);
366		xprt->xpt_pool = NULL;
367		clear_bit(XPT_BUSY, &xprt->xpt_flags);
368		goto out_unlock;
369	}
370
371 process:
372	if (!list_empty(&pool->sp_threads)) {
373		rqstp = list_entry(pool->sp_threads.next,
374				   struct svc_rqst,
375				   rq_list);
376		dprintk("svc: transport %p served by daemon %p\n",
377			xprt, rqstp);
378		svc_thread_dequeue(pool, rqstp);
379		if (rqstp->rq_xprt)
380			printk(KERN_ERR
381				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
382				rqstp, rqstp->rq_xprt);
383		rqstp->rq_xprt = xprt;
384		svc_xprt_get(xprt);
385		rqstp->rq_reserved = serv->sv_max_mesg;
386		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
387		pool->sp_stats.threads_woken++;
388		BUG_ON(xprt->xpt_pool != pool);
389		wake_up(&rqstp->rq_wait);
390	} else {
391		dprintk("svc: transport %p put into queue\n", xprt);
392		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
393		pool->sp_stats.sockets_queued++;
394		BUG_ON(xprt->xpt_pool != pool);
395	}
396
397out_unlock:
398	spin_unlock_bh(&pool->sp_lock);
399}
400EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
401
402/*
403 * Dequeue the first transport.  Must be called with the pool->sp_lock held.
404 */
405static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
406{
407	struct svc_xprt	*xprt;
408
409	if (list_empty(&pool->sp_sockets))
410		return NULL;
411
412	xprt = list_entry(pool->sp_sockets.next,
413			  struct svc_xprt, xpt_ready);
414	list_del_init(&xprt->xpt_ready);
415
416	dprintk("svc: transport %p dequeued, inuse=%d\n",
417		xprt, atomic_read(&xprt->xpt_ref.refcount));
418
419	return xprt;
420}
421
422/*
423 * svc_xprt_received conditionally queues the transport for processing
424 * by another thread. The caller must hold the XPT_BUSY bit and must
425 * not thereafter touch transport data.
426 *
427 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
428 * insufficient) data.
429 */
430void svc_xprt_received(struct svc_xprt *xprt)
431{
432	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
433	xprt->xpt_pool = NULL;
434	clear_bit(XPT_BUSY, &xprt->xpt_flags);
435	svc_xprt_enqueue(xprt);
436}
437EXPORT_SYMBOL_GPL(svc_xprt_received);
438
439/**
440 * svc_reserve - change the space reserved for the reply to a request.
441 * @rqstp:  The request in question
442 * @space: new max space to reserve
443 *
444 * Each request reserves some space on the output queue of the transport
445 * to make sure the reply fits.  This function reduces that reserved
446 * space to be the amount of space used already, plus @space.
447 *
448 */
449void svc_reserve(struct svc_rqst *rqstp, int space)
450{
451	space += rqstp->rq_res.head[0].iov_len;
452
453	if (space < rqstp->rq_reserved) {
454		struct svc_xprt *xprt = rqstp->rq_xprt;
455		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
456		rqstp->rq_reserved = space;
457
458		svc_xprt_enqueue(xprt);
459	}
460}
461EXPORT_SYMBOL_GPL(svc_reserve);
462
463static void svc_xprt_release(struct svc_rqst *rqstp)
464{
465	struct svc_xprt	*xprt = rqstp->rq_xprt;
466
467	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
468
469	kfree(rqstp->rq_deferred);
470	rqstp->rq_deferred = NULL;
471
472	svc_free_res_pages(rqstp);
473	rqstp->rq_res.page_len = 0;
474	rqstp->rq_res.page_base = 0;
475
476	/* Reset response buffer and release
477	 * the reservation.
478	 * But first, check that enough space was reserved
479	 * for the reply, otherwise we have a bug!
480	 */
481	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
482		printk(KERN_ERR "RPC request reserved %d but used %d\n",
483		       rqstp->rq_reserved,
484		       rqstp->rq_res.len);
485
486	rqstp->rq_res.head[0].iov_len = 0;
487	svc_reserve(rqstp, 0);
488	rqstp->rq_xprt = NULL;
489
490	svc_xprt_put(xprt);
491}
492
493/*
494 * External function to wake up a server waiting for data
495 * This really only makes sense for services like lockd
496 * which have exactly one thread anyway.
497 */
498void svc_wake_up(struct svc_serv *serv)
499{
500	struct svc_rqst	*rqstp;
501	unsigned int i;
502	struct svc_pool *pool;
503
504	for (i = 0; i < serv->sv_nrpools; i++) {
505		pool = &serv->sv_pools[i];
506
507		spin_lock_bh(&pool->sp_lock);
508		if (!list_empty(&pool->sp_threads)) {
509			rqstp = list_entry(pool->sp_threads.next,
510					   struct svc_rqst,
511					   rq_list);
512			dprintk("svc: daemon %p woken up.\n", rqstp);
513			/*
514			svc_thread_dequeue(pool, rqstp);
515			rqstp->rq_xprt = NULL;
516			 */
517			wake_up(&rqstp->rq_wait);
518		}
519		spin_unlock_bh(&pool->sp_lock);
520	}
521}
522EXPORT_SYMBOL_GPL(svc_wake_up);
523
524int svc_port_is_privileged(struct sockaddr *sin)
525{
526	switch (sin->sa_family) {
527	case AF_INET:
528		return ntohs(((struct sockaddr_in *)sin)->sin_port)
529			< PROT_SOCK;
530	case AF_INET6:
531		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
532			< PROT_SOCK;
533	default:
534		return 0;
535	}
536}
537
538/*
539 * Make sure that we don't have too many active connections. If we have,
540 * something must be dropped. It's not clear what will happen if we allow
541 * "too many" connections, but when dealing with network-facing software,
542 * we have to code defensively. Here we do that by imposing hard limits.
543 *
544 * There's no point in trying to do random drop here for DoS
545 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
546 * attacker can easily beat that.
547 *
548 * The only somewhat efficient mechanism would be if drop old
549 * connections from the same IP first. But right now we don't even
550 * record the client IP in svc_sock.
551 *
552 * single-threaded services that expect a lot of clients will probably
553 * need to set sv_maxconn to override the default value which is based
554 * on the number of threads
555 */
556static void svc_check_conn_limits(struct svc_serv *serv)
557{
558	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
559				(serv->sv_nrthreads+3) * 20;
560
561	if (serv->sv_tmpcnt > limit) {
562		struct svc_xprt *xprt = NULL;
563		spin_lock_bh(&serv->sv_lock);
564		if (!list_empty(&serv->sv_tempsocks)) {
565			if (net_ratelimit()) {
566				/* Try to help the admin */
567				printk(KERN_NOTICE "%s: too many open  "
568				       "connections, consider increasing %s\n",
569				       serv->sv_name, serv->sv_maxconn ?
570				       "the max number of connections." :
571				       "the number of threads.");
572			}
573			/*
574			 * Always select the oldest connection. It's not fair,
575			 * but so is life
576			 */
577			xprt = list_entry(serv->sv_tempsocks.prev,
578					  struct svc_xprt,
579					  xpt_list);
580			set_bit(XPT_CLOSE, &xprt->xpt_flags);
581			svc_xprt_get(xprt);
582		}
583		spin_unlock_bh(&serv->sv_lock);
584
585		if (xprt) {
586			svc_xprt_enqueue(xprt);
587			svc_xprt_put(xprt);
588		}
589	}
590}
591
592/*
593 * Receive the next request on any transport.  This code is carefully
594 * organised not to touch any cachelines in the shared svc_serv
595 * structure, only cachelines in the local svc_pool.
596 */
597int svc_recv(struct svc_rqst *rqstp, long timeout)
598{
599	struct svc_xprt		*xprt = NULL;
600	struct svc_serv		*serv = rqstp->rq_server;
601	struct svc_pool		*pool = rqstp->rq_pool;
602	int			len, i;
603	int			pages;
604	struct xdr_buf		*arg;
605	DECLARE_WAITQUEUE(wait, current);
606	long			time_left;
607
608	dprintk("svc: server %p waiting for data (to = %ld)\n",
609		rqstp, timeout);
610
611	if (rqstp->rq_xprt)
612		printk(KERN_ERR
613			"svc_recv: service %p, transport not NULL!\n",
614			 rqstp);
615	if (waitqueue_active(&rqstp->rq_wait))
616		printk(KERN_ERR
617			"svc_recv: service %p, wait queue active!\n",
618			 rqstp);
619
620	/* now allocate needed pages.  If we get a failure, sleep briefly */
621	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
622	for (i = 0; i < pages ; i++)
623		while (rqstp->rq_pages[i] == NULL) {
624			struct page *p = alloc_page(GFP_KERNEL);
625			if (!p) {
626				set_current_state(TASK_INTERRUPTIBLE);
627				if (signalled() || kthread_should_stop()) {
628					set_current_state(TASK_RUNNING);
629					return -EINTR;
630				}
631				schedule_timeout(msecs_to_jiffies(500));
632			}
633			rqstp->rq_pages[i] = p;
634		}
635	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
636	BUG_ON(pages >= RPCSVC_MAXPAGES);
637
638	/* Make arg->head point to first page and arg->pages point to rest */
639	arg = &rqstp->rq_arg;
640	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
641	arg->head[0].iov_len = PAGE_SIZE;
642	arg->pages = rqstp->rq_pages + 1;
643	arg->page_base = 0;
644	/* save at least one page for response */
645	arg->page_len = (pages-2)*PAGE_SIZE;
646	arg->len = (pages-1)*PAGE_SIZE;
647	arg->tail[0].iov_len = 0;
648
649	try_to_freeze();
650	cond_resched();
651	if (signalled() || kthread_should_stop())
652		return -EINTR;
653
654	/* Normally we will wait up to 5 seconds for any required
655	 * cache information to be provided.
656	 */
657	rqstp->rq_chandle.thread_wait = 5*HZ;
658
659	spin_lock_bh(&pool->sp_lock);
660	xprt = svc_xprt_dequeue(pool);
661	if (xprt) {
662		rqstp->rq_xprt = xprt;
663		svc_xprt_get(xprt);
664		rqstp->rq_reserved = serv->sv_max_mesg;
665		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
666
667		/* As there is a shortage of threads and this request
668		 * had to be queue, don't allow the thread to wait so
669		 * long for cache updates.
670		 */
671		rqstp->rq_chandle.thread_wait = 1*HZ;
672	} else {
673		/* No data pending. Go to sleep */
674		svc_thread_enqueue(pool, rqstp);
675
676		/*
677		 * We have to be able to interrupt this wait
678		 * to bring down the daemons ...
679		 */
680		set_current_state(TASK_INTERRUPTIBLE);
681
682		/*
683		 * checking kthread_should_stop() here allows us to avoid
684		 * locking and signalling when stopping kthreads that call
685		 * svc_recv. If the thread has already been woken up, then
686		 * we can exit here without sleeping. If not, then it
687		 * it'll be woken up quickly during the schedule_timeout
688		 */
689		if (kthread_should_stop()) {
690			set_current_state(TASK_RUNNING);
691			spin_unlock_bh(&pool->sp_lock);
692			return -EINTR;
693		}
694
695		add_wait_queue(&rqstp->rq_wait, &wait);
696		spin_unlock_bh(&pool->sp_lock);
697
698		time_left = schedule_timeout(timeout);
699
700		try_to_freeze();
701
702		spin_lock_bh(&pool->sp_lock);
703		remove_wait_queue(&rqstp->rq_wait, &wait);
704		if (!time_left)
705			pool->sp_stats.threads_timedout++;
706
707		xprt = rqstp->rq_xprt;
708		if (!xprt) {
709			svc_thread_dequeue(pool, rqstp);
710			spin_unlock_bh(&pool->sp_lock);
711			dprintk("svc: server %p, no data yet\n", rqstp);
712			if (signalled() || kthread_should_stop())
713				return -EINTR;
714			else
715				return -EAGAIN;
716		}
717	}
718	spin_unlock_bh(&pool->sp_lock);
719
720	len = 0;
721	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
722		dprintk("svc_recv: found XPT_CLOSE\n");
723		svc_delete_xprt(xprt);
724	} else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
725		struct svc_xprt *newxpt;
726		newxpt = xprt->xpt_ops->xpo_accept(xprt);
727		if (newxpt) {
728			/*
729			 * We know this module_get will succeed because the
730			 * listener holds a reference too
731			 */
732			__module_get(newxpt->xpt_class->xcl_owner);
733			svc_check_conn_limits(xprt->xpt_server);
734			spin_lock_bh(&serv->sv_lock);
735			set_bit(XPT_TEMP, &newxpt->xpt_flags);
736			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
737			serv->sv_tmpcnt++;
738			if (serv->sv_temptimer.function == NULL) {
739				/* setup timer to age temp transports */
740				setup_timer(&serv->sv_temptimer,
741					    svc_age_temp_xprts,
742					    (unsigned long)serv);
743				mod_timer(&serv->sv_temptimer,
744					  jiffies + svc_conn_age_period * HZ);
745			}
746			spin_unlock_bh(&serv->sv_lock);
747			svc_xprt_received(newxpt);
748		}
749		svc_xprt_received(xprt);
750	} else {
751		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
752			rqstp, pool->sp_id, xprt,
753			atomic_read(&xprt->xpt_ref.refcount));
754		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
755		if (rqstp->rq_deferred) {
756			svc_xprt_received(xprt);
757			len = svc_deferred_recv(rqstp);
758		} else {
759			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
760			svc_xprt_received(xprt);
761		}
762		dprintk("svc: got len=%d\n", len);
763	}
764
765	/* No data, incomplete (TCP) read, or accept() */
766	if (len == 0 || len == -EAGAIN) {
767		rqstp->rq_res.len = 0;
768		svc_xprt_release(rqstp);
769		return -EAGAIN;
770	}
771	clear_bit(XPT_OLD, &xprt->xpt_flags);
772
773	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
774	rqstp->rq_chandle.defer = svc_defer;
775
776	if (serv->sv_stats)
777		serv->sv_stats->netcnt++;
778	return len;
779}
780EXPORT_SYMBOL_GPL(svc_recv);
781
782/*
783 * Drop request
784 */
785void svc_drop(struct svc_rqst *rqstp)
786{
787	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
788	svc_xprt_release(rqstp);
789}
790EXPORT_SYMBOL_GPL(svc_drop);
791
792/*
793 * Return reply to client.
794 */
795int svc_send(struct svc_rqst *rqstp)
796{
797	struct svc_xprt	*xprt;
798	int		len;
799	struct xdr_buf	*xb;
800
801	xprt = rqstp->rq_xprt;
802	if (!xprt)
803		return -EFAULT;
804
805	/* release the receive skb before sending the reply */
806	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
807
808	/* calculate over-all length */
809	xb = &rqstp->rq_res;
810	xb->len = xb->head[0].iov_len +
811		xb->page_len +
812		xb->tail[0].iov_len;
813
814	/* Grab mutex to serialize outgoing data. */
815	mutex_lock(&xprt->xpt_mutex);
816	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
817		len = -ENOTCONN;
818	else
819		len = xprt->xpt_ops->xpo_sendto(rqstp);
820	mutex_unlock(&xprt->xpt_mutex);
821	rpc_wake_up(&xprt->xpt_bc_pending);
822	svc_xprt_release(rqstp);
823
824	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
825		return 0;
826	return len;
827}
828
829/*
830 * Timer function to close old temporary transports, using
831 * a mark-and-sweep algorithm.
832 */
833static void svc_age_temp_xprts(unsigned long closure)
834{
835	struct svc_serv *serv = (struct svc_serv *)closure;
836	struct svc_xprt *xprt;
837	struct list_head *le, *next;
838	LIST_HEAD(to_be_aged);
839
840	dprintk("svc_age_temp_xprts\n");
841
842	if (!spin_trylock_bh(&serv->sv_lock)) {
843		/* busy, try again 1 sec later */
844		dprintk("svc_age_temp_xprts: busy\n");
845		mod_timer(&serv->sv_temptimer, jiffies + HZ);
846		return;
847	}
848
849	list_for_each_safe(le, next, &serv->sv_tempsocks) {
850		xprt = list_entry(le, struct svc_xprt, xpt_list);
851
852		/* First time through, just mark it OLD. Second time
853		 * through, close it. */
854		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
855			continue;
856		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
857		    test_bit(XPT_BUSY, &xprt->xpt_flags))
858			continue;
859		svc_xprt_get(xprt);
860		list_move(le, &to_be_aged);
861		set_bit(XPT_CLOSE, &xprt->xpt_flags);
862		set_bit(XPT_DETACHED, &xprt->xpt_flags);
863	}
864	spin_unlock_bh(&serv->sv_lock);
865
866	while (!list_empty(&to_be_aged)) {
867		le = to_be_aged.next;
868		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
869		list_del_init(le);
870		xprt = list_entry(le, struct svc_xprt, xpt_list);
871
872		dprintk("queuing xprt %p for closing\n", xprt);
873
874		/* a thread will dequeue and close it soon */
875		svc_xprt_enqueue(xprt);
876		svc_xprt_put(xprt);
877	}
878
879	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
880}
881
882/*
883 * Remove a dead transport
884 */
885void svc_delete_xprt(struct svc_xprt *xprt)
886{
887	struct svc_serv	*serv = xprt->xpt_server;
888	struct svc_deferred_req *dr;
889
890	/* Only do this once */
891	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
892		return;
893
894	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
895	xprt->xpt_ops->xpo_detach(xprt);
896
897	spin_lock_bh(&serv->sv_lock);
898	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
899		list_del_init(&xprt->xpt_list);
900	/*
901	 * We used to delete the transport from whichever list
902	 * it's sk_xprt.xpt_ready node was on, but we don't actually
903	 * need to.  This is because the only time we're called
904	 * while still attached to a queue, the queue itself
905	 * is about to be destroyed (in svc_destroy).
906	 */
907	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
908		serv->sv_tmpcnt--;
909	spin_unlock_bh(&serv->sv_lock);
910
911	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
912		kfree(dr);
913
914	svc_xprt_put(xprt);
915}
916
917void svc_close_xprt(struct svc_xprt *xprt)
918{
919	set_bit(XPT_CLOSE, &xprt->xpt_flags);
920	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
921		/* someone else will have to effect the close */
922		return;
923
924	svc_xprt_get(xprt);
925	svc_delete_xprt(xprt);
926	clear_bit(XPT_BUSY, &xprt->xpt_flags);
927	svc_xprt_put(xprt);
928}
929EXPORT_SYMBOL_GPL(svc_close_xprt);
930
931void svc_close_all(struct list_head *xprt_list)
932{
933	struct svc_xprt *xprt;
934	struct svc_xprt *tmp;
935
936	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
937		set_bit(XPT_CLOSE, &xprt->xpt_flags);
938		if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
939			/* Waiting to be processed, but no threads left,
940			 * So just remove it from the waiting list
941			 */
942			list_del_init(&xprt->xpt_ready);
943			clear_bit(XPT_BUSY, &xprt->xpt_flags);
944		}
945		svc_close_xprt(xprt);
946	}
947}
948
949/*
950 * Handle defer and revisit of requests
951 */
952
953static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
954{
955	struct svc_deferred_req *dr =
956		container_of(dreq, struct svc_deferred_req, handle);
957	struct svc_xprt *xprt = dr->xprt;
958
959	spin_lock(&xprt->xpt_lock);
960	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
961	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
962		spin_unlock(&xprt->xpt_lock);
963		dprintk("revisit canceled\n");
964		svc_xprt_put(xprt);
965		kfree(dr);
966		return;
967	}
968	dprintk("revisit queued\n");
969	dr->xprt = NULL;
970	list_add(&dr->handle.recent, &xprt->xpt_deferred);
971	spin_unlock(&xprt->xpt_lock);
972	svc_xprt_enqueue(xprt);
973	svc_xprt_put(xprt);
974}
975
976/*
977 * Save the request off for later processing. The request buffer looks
978 * like this:
979 *
980 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
981 *
982 * This code can only handle requests that consist of an xprt-header
983 * and rpc-header.
984 */
985static struct cache_deferred_req *svc_defer(struct cache_req *req)
986{
987	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
988	struct svc_deferred_req *dr;
989
990	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
991		return NULL; /* if more than a page, give up FIXME */
992	if (rqstp->rq_deferred) {
993		dr = rqstp->rq_deferred;
994		rqstp->rq_deferred = NULL;
995	} else {
996		size_t skip;
997		size_t size;
998		/* FIXME maybe discard if size too large */
999		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1000		dr = kmalloc(size, GFP_KERNEL);
1001		if (dr == NULL)
1002			return NULL;
1003
1004		dr->handle.owner = rqstp->rq_server;
1005		dr->prot = rqstp->rq_prot;
1006		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1007		dr->addrlen = rqstp->rq_addrlen;
1008		dr->daddr = rqstp->rq_daddr;
1009		dr->argslen = rqstp->rq_arg.len >> 2;
1010		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1011
1012		/* back up head to the start of the buffer and copy */
1013		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1014		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1015		       dr->argslen << 2);
1016	}
1017	svc_xprt_get(rqstp->rq_xprt);
1018	dr->xprt = rqstp->rq_xprt;
1019
1020	dr->handle.revisit = svc_revisit;
1021	return &dr->handle;
1022}
1023
1024/*
1025 * recv data from a deferred request into an active one
1026 */
1027static int svc_deferred_recv(struct svc_rqst *rqstp)
1028{
1029	struct svc_deferred_req *dr = rqstp->rq_deferred;
1030
1031	/* setup iov_base past transport header */
1032	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1033	/* The iov_len does not include the transport header bytes */
1034	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1035	rqstp->rq_arg.page_len = 0;
1036	/* The rq_arg.len includes the transport header bytes */
1037	rqstp->rq_arg.len     = dr->argslen<<2;
1038	rqstp->rq_prot        = dr->prot;
1039	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1040	rqstp->rq_addrlen     = dr->addrlen;
1041	/* Save off transport header len in case we get deferred again */
1042	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1043	rqstp->rq_daddr       = dr->daddr;
1044	rqstp->rq_respages    = rqstp->rq_pages;
1045	return (dr->argslen<<2) - dr->xprt_hlen;
1046}
1047
1048
1049static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1050{
1051	struct svc_deferred_req *dr = NULL;
1052
1053	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1054		return NULL;
1055	spin_lock(&xprt->xpt_lock);
1056	clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1057	if (!list_empty(&xprt->xpt_deferred)) {
1058		dr = list_entry(xprt->xpt_deferred.next,
1059				struct svc_deferred_req,
1060				handle.recent);
1061		list_del_init(&dr->handle.recent);
1062		set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1063	}
1064	spin_unlock(&xprt->xpt_lock);
1065	return dr;
1066}
1067
1068/**
1069 * svc_find_xprt - find an RPC transport instance
1070 * @serv: pointer to svc_serv to search
1071 * @xcl_name: C string containing transport's class name
1072 * @af: Address family of transport's local address
1073 * @port: transport's IP port number
1074 *
1075 * Return the transport instance pointer for the endpoint accepting
1076 * connections/peer traffic from the specified transport class,
1077 * address family and port.
1078 *
1079 * Specifying 0 for the address family or port is effectively a
1080 * wild-card, and will result in matching the first transport in the
1081 * service's list that has a matching class name.
1082 */
1083struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1084			       const sa_family_t af, const unsigned short port)
1085{
1086	struct svc_xprt *xprt;
1087	struct svc_xprt *found = NULL;
1088
1089	/* Sanity check the args */
1090	if (serv == NULL || xcl_name == NULL)
1091		return found;
1092
1093	spin_lock_bh(&serv->sv_lock);
1094	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1095		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1096			continue;
1097		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1098			continue;
1099		if (port != 0 && port != svc_xprt_local_port(xprt))
1100			continue;
1101		found = xprt;
1102		svc_xprt_get(xprt);
1103		break;
1104	}
1105	spin_unlock_bh(&serv->sv_lock);
1106	return found;
1107}
1108EXPORT_SYMBOL_GPL(svc_find_xprt);
1109
1110static int svc_one_xprt_name(const struct svc_xprt *xprt,
1111			     char *pos, int remaining)
1112{
1113	int len;
1114
1115	len = snprintf(pos, remaining, "%s %u\n",
1116			xprt->xpt_class->xcl_name,
1117			svc_xprt_local_port(xprt));
1118	if (len >= remaining)
1119		return -ENAMETOOLONG;
1120	return len;
1121}
1122
1123/**
1124 * svc_xprt_names - format a buffer with a list of transport names
1125 * @serv: pointer to an RPC service
1126 * @buf: pointer to a buffer to be filled in
1127 * @buflen: length of buffer to be filled in
1128 *
1129 * Fills in @buf with a string containing a list of transport names,
1130 * each name terminated with '\n'.
1131 *
1132 * Returns positive length of the filled-in string on success; otherwise
1133 * a negative errno value is returned if an error occurs.
1134 */
1135int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1136{
1137	struct svc_xprt *xprt;
1138	int len, totlen;
1139	char *pos;
1140
1141	/* Sanity check args */
1142	if (!serv)
1143		return 0;
1144
1145	spin_lock_bh(&serv->sv_lock);
1146
1147	pos = buf;
1148	totlen = 0;
1149	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1150		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1151		if (len < 0) {
1152			*buf = '\0';
1153			totlen = len;
1154		}
1155		if (len <= 0)
1156			break;
1157
1158		pos += len;
1159		totlen += len;
1160	}
1161
1162	spin_unlock_bh(&serv->sv_lock);
1163	return totlen;
1164}
1165EXPORT_SYMBOL_GPL(svc_xprt_names);
1166
1167
1168/*----------------------------------------------------------------------------*/
1169
1170static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1171{
1172	unsigned int pidx = (unsigned int)*pos;
1173	struct svc_serv *serv = m->private;
1174
1175	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1176
1177	if (!pidx)
1178		return SEQ_START_TOKEN;
1179	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1180}
1181
1182static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1183{
1184	struct svc_pool *pool = p;
1185	struct svc_serv *serv = m->private;
1186
1187	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1188
1189	if (p == SEQ_START_TOKEN) {
1190		pool = &serv->sv_pools[0];
1191	} else {
1192		unsigned int pidx = (pool - &serv->sv_pools[0]);
1193		if (pidx < serv->sv_nrpools-1)
1194			pool = &serv->sv_pools[pidx+1];
1195		else
1196			pool = NULL;
1197	}
1198	++*pos;
1199	return pool;
1200}
1201
1202static void svc_pool_stats_stop(struct seq_file *m, void *p)
1203{
1204}
1205
1206static int svc_pool_stats_show(struct seq_file *m, void *p)
1207{
1208	struct svc_pool *pool = p;
1209
1210	if (p == SEQ_START_TOKEN) {
1211		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1212		return 0;
1213	}
1214
1215	seq_printf(m, "%u %lu %lu %lu %lu\n",
1216		pool->sp_id,
1217		pool->sp_stats.packets,
1218		pool->sp_stats.sockets_queued,
1219		pool->sp_stats.threads_woken,
1220		pool->sp_stats.threads_timedout);
1221
1222	return 0;
1223}
1224
1225static const struct seq_operations svc_pool_stats_seq_ops = {
1226	.start	= svc_pool_stats_start,
1227	.next	= svc_pool_stats_next,
1228	.stop	= svc_pool_stats_stop,
1229	.show	= svc_pool_stats_show,
1230};
1231
1232int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1233{
1234	int err;
1235
1236	err = seq_open(file, &svc_pool_stats_seq_ops);
1237	if (!err)
1238		((struct seq_file *) file->private_data)->private = serv;
1239	return err;
1240}
1241EXPORT_SYMBOL(svc_pool_stats_open);
1242
1243/*----------------------------------------------------------------------------*/
1244