svc_xprt.c revision f8c0d226fef05226ff1a85055c8ed663022f40c1
1/* 2 * linux/net/sunrpc/svc_xprt.c 3 * 4 * Author: Tom Tucker <tom@opengridcomputing.com> 5 */ 6 7#include <linux/sched.h> 8#include <linux/smp_lock.h> 9#include <linux/errno.h> 10#include <linux/freezer.h> 11#include <linux/kthread.h> 12#include <linux/slab.h> 13#include <net/sock.h> 14#include <linux/sunrpc/stats.h> 15#include <linux/sunrpc/svc_xprt.h> 16#include <linux/sunrpc/svcsock.h> 17 18#define RPCDBG_FACILITY RPCDBG_SVCXPRT 19 20static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); 21static int svc_deferred_recv(struct svc_rqst *rqstp); 22static struct cache_deferred_req *svc_defer(struct cache_req *req); 23static void svc_age_temp_xprts(unsigned long closure); 24 25/* apparently the "standard" is that clients close 26 * idle connections after 5 minutes, servers after 27 * 6 minutes 28 * http://www.connectathon.org/talks96/nfstcp.pdf 29 */ 30static int svc_conn_age_period = 6*60; 31 32/* List of registered transport classes */ 33static DEFINE_SPINLOCK(svc_xprt_class_lock); 34static LIST_HEAD(svc_xprt_class_list); 35 36/* SMP locking strategy: 37 * 38 * svc_pool->sp_lock protects most of the fields of that pool. 39 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. 40 * when both need to be taken (rare), svc_serv->sv_lock is first. 41 * BKL protects svc_serv->sv_nrthread. 42 * svc_sock->sk_lock protects the svc_sock->sk_deferred list 43 * and the ->sk_info_authunix cache. 44 * 45 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being 46 * enqueued multiply. During normal transport processing this bit 47 * is set by svc_xprt_enqueue and cleared by svc_xprt_received. 48 * Providers should not manipulate this bit directly. 49 * 50 * Some flags can be set to certain values at any time 51 * providing that certain rules are followed: 52 * 53 * XPT_CONN, XPT_DATA: 54 * - Can be set or cleared at any time. 55 * - After a set, svc_xprt_enqueue must be called to enqueue 56 * the transport for processing. 57 * - After a clear, the transport must be read/accepted. 58 * If this succeeds, it must be set again. 59 * XPT_CLOSE: 60 * - Can set at any time. It is never cleared. 61 * XPT_DEAD: 62 * - Can only be set while XPT_BUSY is held which ensures 63 * that no other thread will be using the transport or will 64 * try to set XPT_DEAD. 65 */ 66 67int svc_reg_xprt_class(struct svc_xprt_class *xcl) 68{ 69 struct svc_xprt_class *cl; 70 int res = -EEXIST; 71 72 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); 73 74 INIT_LIST_HEAD(&xcl->xcl_list); 75 spin_lock(&svc_xprt_class_lock); 76 /* Make sure there isn't already a class with the same name */ 77 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { 78 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) 79 goto out; 80 } 81 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); 82 res = 0; 83out: 84 spin_unlock(&svc_xprt_class_lock); 85 return res; 86} 87EXPORT_SYMBOL_GPL(svc_reg_xprt_class); 88 89void svc_unreg_xprt_class(struct svc_xprt_class *xcl) 90{ 91 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); 92 spin_lock(&svc_xprt_class_lock); 93 list_del_init(&xcl->xcl_list); 94 spin_unlock(&svc_xprt_class_lock); 95} 96EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); 97 98/* 99 * Format the transport list for printing 100 */ 101int svc_print_xprts(char *buf, int maxlen) 102{ 103 struct svc_xprt_class *xcl; 104 char tmpstr[80]; 105 int len = 0; 106 buf[0] = '\0'; 107 108 spin_lock(&svc_xprt_class_lock); 109 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 110 int slen; 111 112 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); 113 slen = strlen(tmpstr); 114 if (len + slen > maxlen) 115 break; 116 len += slen; 117 strcat(buf, tmpstr); 118 } 119 spin_unlock(&svc_xprt_class_lock); 120 121 return len; 122} 123 124static void svc_xprt_free(struct kref *kref) 125{ 126 struct svc_xprt *xprt = 127 container_of(kref, struct svc_xprt, xpt_ref); 128 struct module *owner = xprt->xpt_class->xcl_owner; 129 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) 130 svcauth_unix_info_release(xprt); 131 put_net(xprt->xpt_net); 132 xprt->xpt_ops->xpo_free(xprt); 133 module_put(owner); 134} 135 136void svc_xprt_put(struct svc_xprt *xprt) 137{ 138 kref_put(&xprt->xpt_ref, svc_xprt_free); 139} 140EXPORT_SYMBOL_GPL(svc_xprt_put); 141 142/* 143 * Called by transport drivers to initialize the transport independent 144 * portion of the transport instance. 145 */ 146void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt, 147 struct svc_serv *serv) 148{ 149 memset(xprt, 0, sizeof(*xprt)); 150 xprt->xpt_class = xcl; 151 xprt->xpt_ops = xcl->xcl_ops; 152 kref_init(&xprt->xpt_ref); 153 xprt->xpt_server = serv; 154 INIT_LIST_HEAD(&xprt->xpt_list); 155 INIT_LIST_HEAD(&xprt->xpt_ready); 156 INIT_LIST_HEAD(&xprt->xpt_deferred); 157 INIT_LIST_HEAD(&xprt->xpt_users); 158 mutex_init(&xprt->xpt_mutex); 159 spin_lock_init(&xprt->xpt_lock); 160 set_bit(XPT_BUSY, &xprt->xpt_flags); 161 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending"); 162 xprt->xpt_net = get_net(&init_net); 163} 164EXPORT_SYMBOL_GPL(svc_xprt_init); 165 166static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, 167 struct svc_serv *serv, 168 struct net *net, 169 const int family, 170 const unsigned short port, 171 int flags) 172{ 173 struct sockaddr_in sin = { 174 .sin_family = AF_INET, 175 .sin_addr.s_addr = htonl(INADDR_ANY), 176 .sin_port = htons(port), 177 }; 178#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 179 struct sockaddr_in6 sin6 = { 180 .sin6_family = AF_INET6, 181 .sin6_addr = IN6ADDR_ANY_INIT, 182 .sin6_port = htons(port), 183 }; 184#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 185 struct sockaddr *sap; 186 size_t len; 187 188 switch (family) { 189 case PF_INET: 190 sap = (struct sockaddr *)&sin; 191 len = sizeof(sin); 192 break; 193#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 194 case PF_INET6: 195 sap = (struct sockaddr *)&sin6; 196 len = sizeof(sin6); 197 break; 198#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */ 199 default: 200 return ERR_PTR(-EAFNOSUPPORT); 201 } 202 203 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); 204} 205 206int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, 207 struct net *net, const int family, 208 const unsigned short port, int flags) 209{ 210 struct svc_xprt_class *xcl; 211 212 dprintk("svc: creating transport %s[%d]\n", xprt_name, port); 213 spin_lock(&svc_xprt_class_lock); 214 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { 215 struct svc_xprt *newxprt; 216 217 if (strcmp(xprt_name, xcl->xcl_name)) 218 continue; 219 220 if (!try_module_get(xcl->xcl_owner)) 221 goto err; 222 223 spin_unlock(&svc_xprt_class_lock); 224 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); 225 if (IS_ERR(newxprt)) { 226 module_put(xcl->xcl_owner); 227 return PTR_ERR(newxprt); 228 } 229 230 clear_bit(XPT_TEMP, &newxprt->xpt_flags); 231 spin_lock_bh(&serv->sv_lock); 232 list_add(&newxprt->xpt_list, &serv->sv_permsocks); 233 spin_unlock_bh(&serv->sv_lock); 234 clear_bit(XPT_BUSY, &newxprt->xpt_flags); 235 return svc_xprt_local_port(newxprt); 236 } 237 err: 238 spin_unlock(&svc_xprt_class_lock); 239 dprintk("svc: transport %s not found\n", xprt_name); 240 241 /* This errno is exposed to user space. Provide a reasonable 242 * perror msg for a bad transport. */ 243 return -EPROTONOSUPPORT; 244} 245EXPORT_SYMBOL_GPL(svc_create_xprt); 246 247/* 248 * Copy the local and remote xprt addresses to the rqstp structure 249 */ 250void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) 251{ 252 struct sockaddr *sin; 253 254 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); 255 rqstp->rq_addrlen = xprt->xpt_remotelen; 256 257 /* 258 * Destination address in request is needed for binding the 259 * source address in RPC replies/callbacks later. 260 */ 261 sin = (struct sockaddr *)&xprt->xpt_local; 262 switch (sin->sa_family) { 263 case AF_INET: 264 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr; 265 break; 266 case AF_INET6: 267 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr; 268 break; 269 } 270} 271EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); 272 273/** 274 * svc_print_addr - Format rq_addr field for printing 275 * @rqstp: svc_rqst struct containing address to print 276 * @buf: target buffer for formatted address 277 * @len: length of target buffer 278 * 279 */ 280char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) 281{ 282 return __svc_print_addr(svc_addr(rqstp), buf, len); 283} 284EXPORT_SYMBOL_GPL(svc_print_addr); 285 286/* 287 * Queue up an idle server thread. Must have pool->sp_lock held. 288 * Note: this is really a stack rather than a queue, so that we only 289 * use as many different threads as we need, and the rest don't pollute 290 * the cache. 291 */ 292static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp) 293{ 294 list_add(&rqstp->rq_list, &pool->sp_threads); 295} 296 297/* 298 * Dequeue an nfsd thread. Must have pool->sp_lock held. 299 */ 300static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp) 301{ 302 list_del(&rqstp->rq_list); 303} 304 305/* 306 * Queue up a transport with data pending. If there are idle nfsd 307 * processes, wake 'em up. 308 * 309 */ 310void svc_xprt_enqueue(struct svc_xprt *xprt) 311{ 312 struct svc_serv *serv = xprt->xpt_server; 313 struct svc_pool *pool; 314 struct svc_rqst *rqstp; 315 int cpu; 316 317 if (!(xprt->xpt_flags & 318 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED)))) 319 return; 320 321 cpu = get_cpu(); 322 pool = svc_pool_for_cpu(xprt->xpt_server, cpu); 323 put_cpu(); 324 325 spin_lock_bh(&pool->sp_lock); 326 327 if (!list_empty(&pool->sp_threads) && 328 !list_empty(&pool->sp_sockets)) 329 printk(KERN_ERR 330 "svc_xprt_enqueue: " 331 "threads and transports both waiting??\n"); 332 333 pool->sp_stats.packets++; 334 335 /* Mark transport as busy. It will remain in this state until 336 * the provider calls svc_xprt_received. We update XPT_BUSY 337 * atomically because it also guards against trying to enqueue 338 * the transport twice. 339 */ 340 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) { 341 /* Don't enqueue transport while already enqueued */ 342 dprintk("svc: transport %p busy, not enqueued\n", xprt); 343 goto out_unlock; 344 } 345 BUG_ON(xprt->xpt_pool != NULL); 346 xprt->xpt_pool = pool; 347 348 /* Handle pending connection */ 349 if (test_bit(XPT_CONN, &xprt->xpt_flags)) 350 goto process; 351 352 /* Handle close in-progress */ 353 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) 354 goto process; 355 356 /* Check if we have space to reply to a request */ 357 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) { 358 /* Don't enqueue while not enough space for reply */ 359 dprintk("svc: no write space, transport %p not enqueued\n", 360 xprt); 361 xprt->xpt_pool = NULL; 362 clear_bit(XPT_BUSY, &xprt->xpt_flags); 363 goto out_unlock; 364 } 365 366 process: 367 if (!list_empty(&pool->sp_threads)) { 368 rqstp = list_entry(pool->sp_threads.next, 369 struct svc_rqst, 370 rq_list); 371 dprintk("svc: transport %p served by daemon %p\n", 372 xprt, rqstp); 373 svc_thread_dequeue(pool, rqstp); 374 if (rqstp->rq_xprt) 375 printk(KERN_ERR 376 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n", 377 rqstp, rqstp->rq_xprt); 378 rqstp->rq_xprt = xprt; 379 svc_xprt_get(xprt); 380 rqstp->rq_reserved = serv->sv_max_mesg; 381 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 382 pool->sp_stats.threads_woken++; 383 BUG_ON(xprt->xpt_pool != pool); 384 wake_up(&rqstp->rq_wait); 385 } else { 386 dprintk("svc: transport %p put into queue\n", xprt); 387 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); 388 pool->sp_stats.sockets_queued++; 389 BUG_ON(xprt->xpt_pool != pool); 390 } 391 392out_unlock: 393 spin_unlock_bh(&pool->sp_lock); 394} 395EXPORT_SYMBOL_GPL(svc_xprt_enqueue); 396 397/* 398 * Dequeue the first transport. Must be called with the pool->sp_lock held. 399 */ 400static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) 401{ 402 struct svc_xprt *xprt; 403 404 if (list_empty(&pool->sp_sockets)) 405 return NULL; 406 407 xprt = list_entry(pool->sp_sockets.next, 408 struct svc_xprt, xpt_ready); 409 list_del_init(&xprt->xpt_ready); 410 411 dprintk("svc: transport %p dequeued, inuse=%d\n", 412 xprt, atomic_read(&xprt->xpt_ref.refcount)); 413 414 return xprt; 415} 416 417/* 418 * svc_xprt_received conditionally queues the transport for processing 419 * by another thread. The caller must hold the XPT_BUSY bit and must 420 * not thereafter touch transport data. 421 * 422 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or 423 * insufficient) data. 424 */ 425void svc_xprt_received(struct svc_xprt *xprt) 426{ 427 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags)); 428 xprt->xpt_pool = NULL; 429 clear_bit(XPT_BUSY, &xprt->xpt_flags); 430 svc_xprt_enqueue(xprt); 431} 432EXPORT_SYMBOL_GPL(svc_xprt_received); 433 434/** 435 * svc_reserve - change the space reserved for the reply to a request. 436 * @rqstp: The request in question 437 * @space: new max space to reserve 438 * 439 * Each request reserves some space on the output queue of the transport 440 * to make sure the reply fits. This function reduces that reserved 441 * space to be the amount of space used already, plus @space. 442 * 443 */ 444void svc_reserve(struct svc_rqst *rqstp, int space) 445{ 446 space += rqstp->rq_res.head[0].iov_len; 447 448 if (space < rqstp->rq_reserved) { 449 struct svc_xprt *xprt = rqstp->rq_xprt; 450 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); 451 rqstp->rq_reserved = space; 452 453 svc_xprt_enqueue(xprt); 454 } 455} 456EXPORT_SYMBOL_GPL(svc_reserve); 457 458static void svc_xprt_release(struct svc_rqst *rqstp) 459{ 460 struct svc_xprt *xprt = rqstp->rq_xprt; 461 462 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 463 464 kfree(rqstp->rq_deferred); 465 rqstp->rq_deferred = NULL; 466 467 svc_free_res_pages(rqstp); 468 rqstp->rq_res.page_len = 0; 469 rqstp->rq_res.page_base = 0; 470 471 /* Reset response buffer and release 472 * the reservation. 473 * But first, check that enough space was reserved 474 * for the reply, otherwise we have a bug! 475 */ 476 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 477 printk(KERN_ERR "RPC request reserved %d but used %d\n", 478 rqstp->rq_reserved, 479 rqstp->rq_res.len); 480 481 rqstp->rq_res.head[0].iov_len = 0; 482 svc_reserve(rqstp, 0); 483 rqstp->rq_xprt = NULL; 484 485 svc_xprt_put(xprt); 486} 487 488/* 489 * External function to wake up a server waiting for data 490 * This really only makes sense for services like lockd 491 * which have exactly one thread anyway. 492 */ 493void svc_wake_up(struct svc_serv *serv) 494{ 495 struct svc_rqst *rqstp; 496 unsigned int i; 497 struct svc_pool *pool; 498 499 for (i = 0; i < serv->sv_nrpools; i++) { 500 pool = &serv->sv_pools[i]; 501 502 spin_lock_bh(&pool->sp_lock); 503 if (!list_empty(&pool->sp_threads)) { 504 rqstp = list_entry(pool->sp_threads.next, 505 struct svc_rqst, 506 rq_list); 507 dprintk("svc: daemon %p woken up.\n", rqstp); 508 /* 509 svc_thread_dequeue(pool, rqstp); 510 rqstp->rq_xprt = NULL; 511 */ 512 wake_up(&rqstp->rq_wait); 513 } 514 spin_unlock_bh(&pool->sp_lock); 515 } 516} 517EXPORT_SYMBOL_GPL(svc_wake_up); 518 519int svc_port_is_privileged(struct sockaddr *sin) 520{ 521 switch (sin->sa_family) { 522 case AF_INET: 523 return ntohs(((struct sockaddr_in *)sin)->sin_port) 524 < PROT_SOCK; 525 case AF_INET6: 526 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) 527 < PROT_SOCK; 528 default: 529 return 0; 530 } 531} 532 533/* 534 * Make sure that we don't have too many active connections. If we have, 535 * something must be dropped. It's not clear what will happen if we allow 536 * "too many" connections, but when dealing with network-facing software, 537 * we have to code defensively. Here we do that by imposing hard limits. 538 * 539 * There's no point in trying to do random drop here for DoS 540 * prevention. The NFS clients does 1 reconnect in 15 seconds. An 541 * attacker can easily beat that. 542 * 543 * The only somewhat efficient mechanism would be if drop old 544 * connections from the same IP first. But right now we don't even 545 * record the client IP in svc_sock. 546 * 547 * single-threaded services that expect a lot of clients will probably 548 * need to set sv_maxconn to override the default value which is based 549 * on the number of threads 550 */ 551static void svc_check_conn_limits(struct svc_serv *serv) 552{ 553 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : 554 (serv->sv_nrthreads+3) * 20; 555 556 if (serv->sv_tmpcnt > limit) { 557 struct svc_xprt *xprt = NULL; 558 spin_lock_bh(&serv->sv_lock); 559 if (!list_empty(&serv->sv_tempsocks)) { 560 if (net_ratelimit()) { 561 /* Try to help the admin */ 562 printk(KERN_NOTICE "%s: too many open " 563 "connections, consider increasing %s\n", 564 serv->sv_name, serv->sv_maxconn ? 565 "the max number of connections." : 566 "the number of threads."); 567 } 568 /* 569 * Always select the oldest connection. It's not fair, 570 * but so is life 571 */ 572 xprt = list_entry(serv->sv_tempsocks.prev, 573 struct svc_xprt, 574 xpt_list); 575 set_bit(XPT_CLOSE, &xprt->xpt_flags); 576 svc_xprt_get(xprt); 577 } 578 spin_unlock_bh(&serv->sv_lock); 579 580 if (xprt) { 581 svc_xprt_enqueue(xprt); 582 svc_xprt_put(xprt); 583 } 584 } 585} 586 587/* 588 * Receive the next request on any transport. This code is carefully 589 * organised not to touch any cachelines in the shared svc_serv 590 * structure, only cachelines in the local svc_pool. 591 */ 592int svc_recv(struct svc_rqst *rqstp, long timeout) 593{ 594 struct svc_xprt *xprt = NULL; 595 struct svc_serv *serv = rqstp->rq_server; 596 struct svc_pool *pool = rqstp->rq_pool; 597 int len, i; 598 int pages; 599 struct xdr_buf *arg; 600 DECLARE_WAITQUEUE(wait, current); 601 long time_left; 602 603 dprintk("svc: server %p waiting for data (to = %ld)\n", 604 rqstp, timeout); 605 606 if (rqstp->rq_xprt) 607 printk(KERN_ERR 608 "svc_recv: service %p, transport not NULL!\n", 609 rqstp); 610 if (waitqueue_active(&rqstp->rq_wait)) 611 printk(KERN_ERR 612 "svc_recv: service %p, wait queue active!\n", 613 rqstp); 614 615 /* now allocate needed pages. If we get a failure, sleep briefly */ 616 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE; 617 for (i = 0; i < pages ; i++) 618 while (rqstp->rq_pages[i] == NULL) { 619 struct page *p = alloc_page(GFP_KERNEL); 620 if (!p) { 621 set_current_state(TASK_INTERRUPTIBLE); 622 if (signalled() || kthread_should_stop()) { 623 set_current_state(TASK_RUNNING); 624 return -EINTR; 625 } 626 schedule_timeout(msecs_to_jiffies(500)); 627 } 628 rqstp->rq_pages[i] = p; 629 } 630 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ 631 BUG_ON(pages >= RPCSVC_MAXPAGES); 632 633 /* Make arg->head point to first page and arg->pages point to rest */ 634 arg = &rqstp->rq_arg; 635 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); 636 arg->head[0].iov_len = PAGE_SIZE; 637 arg->pages = rqstp->rq_pages + 1; 638 arg->page_base = 0; 639 /* save at least one page for response */ 640 arg->page_len = (pages-2)*PAGE_SIZE; 641 arg->len = (pages-1)*PAGE_SIZE; 642 arg->tail[0].iov_len = 0; 643 644 try_to_freeze(); 645 cond_resched(); 646 if (signalled() || kthread_should_stop()) 647 return -EINTR; 648 649 /* Normally we will wait up to 5 seconds for any required 650 * cache information to be provided. 651 */ 652 rqstp->rq_chandle.thread_wait = 5*HZ; 653 654 spin_lock_bh(&pool->sp_lock); 655 xprt = svc_xprt_dequeue(pool); 656 if (xprt) { 657 rqstp->rq_xprt = xprt; 658 svc_xprt_get(xprt); 659 rqstp->rq_reserved = serv->sv_max_mesg; 660 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); 661 662 /* As there is a shortage of threads and this request 663 * had to be queued, don't allow the thread to wait so 664 * long for cache updates. 665 */ 666 rqstp->rq_chandle.thread_wait = 1*HZ; 667 } else { 668 /* No data pending. Go to sleep */ 669 svc_thread_enqueue(pool, rqstp); 670 671 /* 672 * We have to be able to interrupt this wait 673 * to bring down the daemons ... 674 */ 675 set_current_state(TASK_INTERRUPTIBLE); 676 677 /* 678 * checking kthread_should_stop() here allows us to avoid 679 * locking and signalling when stopping kthreads that call 680 * svc_recv. If the thread has already been woken up, then 681 * we can exit here without sleeping. If not, then it 682 * it'll be woken up quickly during the schedule_timeout 683 */ 684 if (kthread_should_stop()) { 685 set_current_state(TASK_RUNNING); 686 spin_unlock_bh(&pool->sp_lock); 687 return -EINTR; 688 } 689 690 add_wait_queue(&rqstp->rq_wait, &wait); 691 spin_unlock_bh(&pool->sp_lock); 692 693 time_left = schedule_timeout(timeout); 694 695 try_to_freeze(); 696 697 spin_lock_bh(&pool->sp_lock); 698 remove_wait_queue(&rqstp->rq_wait, &wait); 699 if (!time_left) 700 pool->sp_stats.threads_timedout++; 701 702 xprt = rqstp->rq_xprt; 703 if (!xprt) { 704 svc_thread_dequeue(pool, rqstp); 705 spin_unlock_bh(&pool->sp_lock); 706 dprintk("svc: server %p, no data yet\n", rqstp); 707 if (signalled() || kthread_should_stop()) 708 return -EINTR; 709 else 710 return -EAGAIN; 711 } 712 } 713 spin_unlock_bh(&pool->sp_lock); 714 715 len = 0; 716 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { 717 dprintk("svc_recv: found XPT_CLOSE\n"); 718 svc_delete_xprt(xprt); 719 /* Leave XPT_BUSY set on the dead xprt: */ 720 goto out; 721 } 722 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { 723 struct svc_xprt *newxpt; 724 newxpt = xprt->xpt_ops->xpo_accept(xprt); 725 if (newxpt) { 726 /* 727 * We know this module_get will succeed because the 728 * listener holds a reference too 729 */ 730 __module_get(newxpt->xpt_class->xcl_owner); 731 svc_check_conn_limits(xprt->xpt_server); 732 spin_lock_bh(&serv->sv_lock); 733 set_bit(XPT_TEMP, &newxpt->xpt_flags); 734 list_add(&newxpt->xpt_list, &serv->sv_tempsocks); 735 serv->sv_tmpcnt++; 736 if (serv->sv_temptimer.function == NULL) { 737 /* setup timer to age temp transports */ 738 setup_timer(&serv->sv_temptimer, 739 svc_age_temp_xprts, 740 (unsigned long)serv); 741 mod_timer(&serv->sv_temptimer, 742 jiffies + svc_conn_age_period * HZ); 743 } 744 spin_unlock_bh(&serv->sv_lock); 745 svc_xprt_received(newxpt); 746 } 747 } else { 748 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", 749 rqstp, pool->sp_id, xprt, 750 atomic_read(&xprt->xpt_ref.refcount)); 751 rqstp->rq_deferred = svc_deferred_dequeue(xprt); 752 if (rqstp->rq_deferred) 753 len = svc_deferred_recv(rqstp); 754 else 755 len = xprt->xpt_ops->xpo_recvfrom(rqstp); 756 dprintk("svc: got len=%d\n", len); 757 } 758 svc_xprt_received(xprt); 759 760 /* No data, incomplete (TCP) read, or accept() */ 761 if (len == 0 || len == -EAGAIN) 762 goto out; 763 764 clear_bit(XPT_OLD, &xprt->xpt_flags); 765 766 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp)); 767 rqstp->rq_chandle.defer = svc_defer; 768 769 if (serv->sv_stats) 770 serv->sv_stats->netcnt++; 771 return len; 772out: 773 rqstp->rq_res.len = 0; 774 svc_xprt_release(rqstp); 775 return -EAGAIN; 776} 777EXPORT_SYMBOL_GPL(svc_recv); 778 779/* 780 * Drop request 781 */ 782void svc_drop(struct svc_rqst *rqstp) 783{ 784 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); 785 svc_xprt_release(rqstp); 786} 787EXPORT_SYMBOL_GPL(svc_drop); 788 789/* 790 * Return reply to client. 791 */ 792int svc_send(struct svc_rqst *rqstp) 793{ 794 struct svc_xprt *xprt; 795 int len; 796 struct xdr_buf *xb; 797 798 xprt = rqstp->rq_xprt; 799 if (!xprt) 800 return -EFAULT; 801 802 /* release the receive skb before sending the reply */ 803 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp); 804 805 /* calculate over-all length */ 806 xb = &rqstp->rq_res; 807 xb->len = xb->head[0].iov_len + 808 xb->page_len + 809 xb->tail[0].iov_len; 810 811 /* Grab mutex to serialize outgoing data. */ 812 mutex_lock(&xprt->xpt_mutex); 813 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) 814 len = -ENOTCONN; 815 else 816 len = xprt->xpt_ops->xpo_sendto(rqstp); 817 mutex_unlock(&xprt->xpt_mutex); 818 rpc_wake_up(&xprt->xpt_bc_pending); 819 svc_xprt_release(rqstp); 820 821 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 822 return 0; 823 return len; 824} 825 826/* 827 * Timer function to close old temporary transports, using 828 * a mark-and-sweep algorithm. 829 */ 830static void svc_age_temp_xprts(unsigned long closure) 831{ 832 struct svc_serv *serv = (struct svc_serv *)closure; 833 struct svc_xprt *xprt; 834 struct list_head *le, *next; 835 LIST_HEAD(to_be_aged); 836 837 dprintk("svc_age_temp_xprts\n"); 838 839 if (!spin_trylock_bh(&serv->sv_lock)) { 840 /* busy, try again 1 sec later */ 841 dprintk("svc_age_temp_xprts: busy\n"); 842 mod_timer(&serv->sv_temptimer, jiffies + HZ); 843 return; 844 } 845 846 list_for_each_safe(le, next, &serv->sv_tempsocks) { 847 xprt = list_entry(le, struct svc_xprt, xpt_list); 848 849 /* First time through, just mark it OLD. Second time 850 * through, close it. */ 851 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) 852 continue; 853 if (atomic_read(&xprt->xpt_ref.refcount) > 1 || 854 test_bit(XPT_BUSY, &xprt->xpt_flags)) 855 continue; 856 svc_xprt_get(xprt); 857 list_move(le, &to_be_aged); 858 set_bit(XPT_CLOSE, &xprt->xpt_flags); 859 set_bit(XPT_DETACHED, &xprt->xpt_flags); 860 } 861 spin_unlock_bh(&serv->sv_lock); 862 863 while (!list_empty(&to_be_aged)) { 864 le = to_be_aged.next; 865 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */ 866 list_del_init(le); 867 xprt = list_entry(le, struct svc_xprt, xpt_list); 868 869 dprintk("queuing xprt %p for closing\n", xprt); 870 871 /* a thread will dequeue and close it soon */ 872 svc_xprt_enqueue(xprt); 873 svc_xprt_put(xprt); 874 } 875 876 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); 877} 878 879static void call_xpt_users(struct svc_xprt *xprt) 880{ 881 struct svc_xpt_user *u; 882 883 spin_lock(&xprt->xpt_lock); 884 while (!list_empty(&xprt->xpt_users)) { 885 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); 886 list_del(&u->list); 887 u->callback(u); 888 } 889 spin_unlock(&xprt->xpt_lock); 890} 891 892/* 893 * Remove a dead transport 894 */ 895void svc_delete_xprt(struct svc_xprt *xprt) 896{ 897 struct svc_serv *serv = xprt->xpt_server; 898 struct svc_deferred_req *dr; 899 900 /* Only do this once */ 901 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) 902 BUG(); 903 904 dprintk("svc: svc_delete_xprt(%p)\n", xprt); 905 xprt->xpt_ops->xpo_detach(xprt); 906 907 spin_lock_bh(&serv->sv_lock); 908 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags)) 909 list_del_init(&xprt->xpt_list); 910 /* 911 * We used to delete the transport from whichever list 912 * it's sk_xprt.xpt_ready node was on, but we don't actually 913 * need to. This is because the only time we're called 914 * while still attached to a queue, the queue itself 915 * is about to be destroyed (in svc_destroy). 916 */ 917 if (test_bit(XPT_TEMP, &xprt->xpt_flags)) 918 serv->sv_tmpcnt--; 919 spin_unlock_bh(&serv->sv_lock); 920 921 while ((dr = svc_deferred_dequeue(xprt)) != NULL) 922 kfree(dr); 923 924 call_xpt_users(xprt); 925 svc_xprt_put(xprt); 926} 927 928void svc_close_xprt(struct svc_xprt *xprt) 929{ 930 set_bit(XPT_CLOSE, &xprt->xpt_flags); 931 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) 932 /* someone else will have to effect the close */ 933 return; 934 935 svc_delete_xprt(xprt); 936} 937EXPORT_SYMBOL_GPL(svc_close_xprt); 938 939void svc_close_all(struct list_head *xprt_list) 940{ 941 struct svc_xprt *xprt; 942 struct svc_xprt *tmp; 943 944 /* 945 * The server is shutting down, and no more threads are running. 946 * svc_xprt_enqueue() might still be running, but at worst it 947 * will re-add the xprt to sp_sockets, which will soon get 948 * freed. So we don't bother with any more locking, and don't 949 * leave the close to the (nonexistent) server threads: 950 */ 951 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) { 952 set_bit(XPT_CLOSE, &xprt->xpt_flags); 953 svc_delete_xprt(xprt); 954 } 955} 956 957/* 958 * Handle defer and revisit of requests 959 */ 960 961static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 962{ 963 struct svc_deferred_req *dr = 964 container_of(dreq, struct svc_deferred_req, handle); 965 struct svc_xprt *xprt = dr->xprt; 966 967 spin_lock(&xprt->xpt_lock); 968 set_bit(XPT_DEFERRED, &xprt->xpt_flags); 969 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { 970 spin_unlock(&xprt->xpt_lock); 971 dprintk("revisit canceled\n"); 972 svc_xprt_put(xprt); 973 kfree(dr); 974 return; 975 } 976 dprintk("revisit queued\n"); 977 dr->xprt = NULL; 978 list_add(&dr->handle.recent, &xprt->xpt_deferred); 979 spin_unlock(&xprt->xpt_lock); 980 svc_xprt_enqueue(xprt); 981 svc_xprt_put(xprt); 982} 983 984/* 985 * Save the request off for later processing. The request buffer looks 986 * like this: 987 * 988 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> 989 * 990 * This code can only handle requests that consist of an xprt-header 991 * and rpc-header. 992 */ 993static struct cache_deferred_req *svc_defer(struct cache_req *req) 994{ 995 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 996 struct svc_deferred_req *dr; 997 998 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral) 999 return NULL; /* if more than a page, give up FIXME */ 1000 if (rqstp->rq_deferred) { 1001 dr = rqstp->rq_deferred; 1002 rqstp->rq_deferred = NULL; 1003 } else { 1004 size_t skip; 1005 size_t size; 1006 /* FIXME maybe discard if size too large */ 1007 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; 1008 dr = kmalloc(size, GFP_KERNEL); 1009 if (dr == NULL) 1010 return NULL; 1011 1012 dr->handle.owner = rqstp->rq_server; 1013 dr->prot = rqstp->rq_prot; 1014 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); 1015 dr->addrlen = rqstp->rq_addrlen; 1016 dr->daddr = rqstp->rq_daddr; 1017 dr->argslen = rqstp->rq_arg.len >> 2; 1018 dr->xprt_hlen = rqstp->rq_xprt_hlen; 1019 1020 /* back up head to the start of the buffer and copy */ 1021 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1022 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, 1023 dr->argslen << 2); 1024 } 1025 svc_xprt_get(rqstp->rq_xprt); 1026 dr->xprt = rqstp->rq_xprt; 1027 1028 dr->handle.revisit = svc_revisit; 1029 return &dr->handle; 1030} 1031 1032/* 1033 * recv data from a deferred request into an active one 1034 */ 1035static int svc_deferred_recv(struct svc_rqst *rqstp) 1036{ 1037 struct svc_deferred_req *dr = rqstp->rq_deferred; 1038 1039 /* setup iov_base past transport header */ 1040 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); 1041 /* The iov_len does not include the transport header bytes */ 1042 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; 1043 rqstp->rq_arg.page_len = 0; 1044 /* The rq_arg.len includes the transport header bytes */ 1045 rqstp->rq_arg.len = dr->argslen<<2; 1046 rqstp->rq_prot = dr->prot; 1047 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); 1048 rqstp->rq_addrlen = dr->addrlen; 1049 /* Save off transport header len in case we get deferred again */ 1050 rqstp->rq_xprt_hlen = dr->xprt_hlen; 1051 rqstp->rq_daddr = dr->daddr; 1052 rqstp->rq_respages = rqstp->rq_pages; 1053 return (dr->argslen<<2) - dr->xprt_hlen; 1054} 1055 1056 1057static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) 1058{ 1059 struct svc_deferred_req *dr = NULL; 1060 1061 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) 1062 return NULL; 1063 spin_lock(&xprt->xpt_lock); 1064 if (!list_empty(&xprt->xpt_deferred)) { 1065 dr = list_entry(xprt->xpt_deferred.next, 1066 struct svc_deferred_req, 1067 handle.recent); 1068 list_del_init(&dr->handle.recent); 1069 } else 1070 clear_bit(XPT_DEFERRED, &xprt->xpt_flags); 1071 spin_unlock(&xprt->xpt_lock); 1072 return dr; 1073} 1074 1075/** 1076 * svc_find_xprt - find an RPC transport instance 1077 * @serv: pointer to svc_serv to search 1078 * @xcl_name: C string containing transport's class name 1079 * @af: Address family of transport's local address 1080 * @port: transport's IP port number 1081 * 1082 * Return the transport instance pointer for the endpoint accepting 1083 * connections/peer traffic from the specified transport class, 1084 * address family and port. 1085 * 1086 * Specifying 0 for the address family or port is effectively a 1087 * wild-card, and will result in matching the first transport in the 1088 * service's list that has a matching class name. 1089 */ 1090struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, 1091 const sa_family_t af, const unsigned short port) 1092{ 1093 struct svc_xprt *xprt; 1094 struct svc_xprt *found = NULL; 1095 1096 /* Sanity check the args */ 1097 if (serv == NULL || xcl_name == NULL) 1098 return found; 1099 1100 spin_lock_bh(&serv->sv_lock); 1101 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1102 if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) 1103 continue; 1104 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) 1105 continue; 1106 if (port != 0 && port != svc_xprt_local_port(xprt)) 1107 continue; 1108 found = xprt; 1109 svc_xprt_get(xprt); 1110 break; 1111 } 1112 spin_unlock_bh(&serv->sv_lock); 1113 return found; 1114} 1115EXPORT_SYMBOL_GPL(svc_find_xprt); 1116 1117static int svc_one_xprt_name(const struct svc_xprt *xprt, 1118 char *pos, int remaining) 1119{ 1120 int len; 1121 1122 len = snprintf(pos, remaining, "%s %u\n", 1123 xprt->xpt_class->xcl_name, 1124 svc_xprt_local_port(xprt)); 1125 if (len >= remaining) 1126 return -ENAMETOOLONG; 1127 return len; 1128} 1129 1130/** 1131 * svc_xprt_names - format a buffer with a list of transport names 1132 * @serv: pointer to an RPC service 1133 * @buf: pointer to a buffer to be filled in 1134 * @buflen: length of buffer to be filled in 1135 * 1136 * Fills in @buf with a string containing a list of transport names, 1137 * each name terminated with '\n'. 1138 * 1139 * Returns positive length of the filled-in string on success; otherwise 1140 * a negative errno value is returned if an error occurs. 1141 */ 1142int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) 1143{ 1144 struct svc_xprt *xprt; 1145 int len, totlen; 1146 char *pos; 1147 1148 /* Sanity check args */ 1149 if (!serv) 1150 return 0; 1151 1152 spin_lock_bh(&serv->sv_lock); 1153 1154 pos = buf; 1155 totlen = 0; 1156 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { 1157 len = svc_one_xprt_name(xprt, pos, buflen - totlen); 1158 if (len < 0) { 1159 *buf = '\0'; 1160 totlen = len; 1161 } 1162 if (len <= 0) 1163 break; 1164 1165 pos += len; 1166 totlen += len; 1167 } 1168 1169 spin_unlock_bh(&serv->sv_lock); 1170 return totlen; 1171} 1172EXPORT_SYMBOL_GPL(svc_xprt_names); 1173 1174 1175/*----------------------------------------------------------------------------*/ 1176 1177static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) 1178{ 1179 unsigned int pidx = (unsigned int)*pos; 1180 struct svc_serv *serv = m->private; 1181 1182 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); 1183 1184 if (!pidx) 1185 return SEQ_START_TOKEN; 1186 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); 1187} 1188 1189static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) 1190{ 1191 struct svc_pool *pool = p; 1192 struct svc_serv *serv = m->private; 1193 1194 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); 1195 1196 if (p == SEQ_START_TOKEN) { 1197 pool = &serv->sv_pools[0]; 1198 } else { 1199 unsigned int pidx = (pool - &serv->sv_pools[0]); 1200 if (pidx < serv->sv_nrpools-1) 1201 pool = &serv->sv_pools[pidx+1]; 1202 else 1203 pool = NULL; 1204 } 1205 ++*pos; 1206 return pool; 1207} 1208 1209static void svc_pool_stats_stop(struct seq_file *m, void *p) 1210{ 1211} 1212 1213static int svc_pool_stats_show(struct seq_file *m, void *p) 1214{ 1215 struct svc_pool *pool = p; 1216 1217 if (p == SEQ_START_TOKEN) { 1218 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); 1219 return 0; 1220 } 1221 1222 seq_printf(m, "%u %lu %lu %lu %lu\n", 1223 pool->sp_id, 1224 pool->sp_stats.packets, 1225 pool->sp_stats.sockets_queued, 1226 pool->sp_stats.threads_woken, 1227 pool->sp_stats.threads_timedout); 1228 1229 return 0; 1230} 1231 1232static const struct seq_operations svc_pool_stats_seq_ops = { 1233 .start = svc_pool_stats_start, 1234 .next = svc_pool_stats_next, 1235 .stop = svc_pool_stats_stop, 1236 .show = svc_pool_stats_show, 1237}; 1238 1239int svc_pool_stats_open(struct svc_serv *serv, struct file *file) 1240{ 1241 int err; 1242 1243 err = seq_open(file, &svc_pool_stats_seq_ops); 1244 if (!err) 1245 ((struct seq_file *) file->private_data)->private = serv; 1246 return err; 1247} 1248EXPORT_SYMBOL(svc_pool_stats_open); 1249 1250/*----------------------------------------------------------------------------*/ 1251