svc_xprt.c revision f8c0d226fef05226ff1a85055c8ed663022f40c1
1/*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7#include <linux/sched.h>
8#include <linux/smp_lock.h>
9#include <linux/errno.h>
10#include <linux/freezer.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <net/sock.h>
14#include <linux/sunrpc/stats.h>
15#include <linux/sunrpc/svc_xprt.h>
16#include <linux/sunrpc/svcsock.h>
17
18#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
19
20static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
21static int svc_deferred_recv(struct svc_rqst *rqstp);
22static struct cache_deferred_req *svc_defer(struct cache_req *req);
23static void svc_age_temp_xprts(unsigned long closure);
24
25/* apparently the "standard" is that clients close
26 * idle connections after 5 minutes, servers after
27 * 6 minutes
28 *   http://www.connectathon.org/talks96/nfstcp.pdf
29 */
30static int svc_conn_age_period = 6*60;
31
32/* List of registered transport classes */
33static DEFINE_SPINLOCK(svc_xprt_class_lock);
34static LIST_HEAD(svc_xprt_class_list);
35
36/* SMP locking strategy:
37 *
38 *	svc_pool->sp_lock protects most of the fields of that pool.
39 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
40 *	when both need to be taken (rare), svc_serv->sv_lock is first.
41 *	BKL protects svc_serv->sv_nrthread.
42 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
43 *             and the ->sk_info_authunix cache.
44 *
45 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
46 *	enqueued multiply. During normal transport processing this bit
47 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
48 *	Providers should not manipulate this bit directly.
49 *
50 *	Some flags can be set to certain values at any time
51 *	providing that certain rules are followed:
52 *
53 *	XPT_CONN, XPT_DATA:
54 *		- Can be set or cleared at any time.
55 *		- After a set, svc_xprt_enqueue must be called to enqueue
56 *		  the transport for processing.
57 *		- After a clear, the transport must be read/accepted.
58 *		  If this succeeds, it must be set again.
59 *	XPT_CLOSE:
60 *		- Can set at any time. It is never cleared.
61 *      XPT_DEAD:
62 *		- Can only be set while XPT_BUSY is held which ensures
63 *		  that no other thread will be using the transport or will
64 *		  try to set XPT_DEAD.
65 */
66
67int svc_reg_xprt_class(struct svc_xprt_class *xcl)
68{
69	struct svc_xprt_class *cl;
70	int res = -EEXIST;
71
72	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
73
74	INIT_LIST_HEAD(&xcl->xcl_list);
75	spin_lock(&svc_xprt_class_lock);
76	/* Make sure there isn't already a class with the same name */
77	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
78		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
79			goto out;
80	}
81	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
82	res = 0;
83out:
84	spin_unlock(&svc_xprt_class_lock);
85	return res;
86}
87EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
88
89void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
90{
91	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
92	spin_lock(&svc_xprt_class_lock);
93	list_del_init(&xcl->xcl_list);
94	spin_unlock(&svc_xprt_class_lock);
95}
96EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
97
98/*
99 * Format the transport list for printing
100 */
101int svc_print_xprts(char *buf, int maxlen)
102{
103	struct svc_xprt_class *xcl;
104	char tmpstr[80];
105	int len = 0;
106	buf[0] = '\0';
107
108	spin_lock(&svc_xprt_class_lock);
109	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
110		int slen;
111
112		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
113		slen = strlen(tmpstr);
114		if (len + slen > maxlen)
115			break;
116		len += slen;
117		strcat(buf, tmpstr);
118	}
119	spin_unlock(&svc_xprt_class_lock);
120
121	return len;
122}
123
124static void svc_xprt_free(struct kref *kref)
125{
126	struct svc_xprt *xprt =
127		container_of(kref, struct svc_xprt, xpt_ref);
128	struct module *owner = xprt->xpt_class->xcl_owner;
129	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
130		svcauth_unix_info_release(xprt);
131	put_net(xprt->xpt_net);
132	xprt->xpt_ops->xpo_free(xprt);
133	module_put(owner);
134}
135
136void svc_xprt_put(struct svc_xprt *xprt)
137{
138	kref_put(&xprt->xpt_ref, svc_xprt_free);
139}
140EXPORT_SYMBOL_GPL(svc_xprt_put);
141
142/*
143 * Called by transport drivers to initialize the transport independent
144 * portion of the transport instance.
145 */
146void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
147		   struct svc_serv *serv)
148{
149	memset(xprt, 0, sizeof(*xprt));
150	xprt->xpt_class = xcl;
151	xprt->xpt_ops = xcl->xcl_ops;
152	kref_init(&xprt->xpt_ref);
153	xprt->xpt_server = serv;
154	INIT_LIST_HEAD(&xprt->xpt_list);
155	INIT_LIST_HEAD(&xprt->xpt_ready);
156	INIT_LIST_HEAD(&xprt->xpt_deferred);
157	INIT_LIST_HEAD(&xprt->xpt_users);
158	mutex_init(&xprt->xpt_mutex);
159	spin_lock_init(&xprt->xpt_lock);
160	set_bit(XPT_BUSY, &xprt->xpt_flags);
161	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
162	xprt->xpt_net = get_net(&init_net);
163}
164EXPORT_SYMBOL_GPL(svc_xprt_init);
165
166static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
167					 struct svc_serv *serv,
168					 struct net *net,
169					 const int family,
170					 const unsigned short port,
171					 int flags)
172{
173	struct sockaddr_in sin = {
174		.sin_family		= AF_INET,
175		.sin_addr.s_addr	= htonl(INADDR_ANY),
176		.sin_port		= htons(port),
177	};
178#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
179	struct sockaddr_in6 sin6 = {
180		.sin6_family		= AF_INET6,
181		.sin6_addr		= IN6ADDR_ANY_INIT,
182		.sin6_port		= htons(port),
183	};
184#endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
185	struct sockaddr *sap;
186	size_t len;
187
188	switch (family) {
189	case PF_INET:
190		sap = (struct sockaddr *)&sin;
191		len = sizeof(sin);
192		break;
193#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
194	case PF_INET6:
195		sap = (struct sockaddr *)&sin6;
196		len = sizeof(sin6);
197		break;
198#endif	/* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
199	default:
200		return ERR_PTR(-EAFNOSUPPORT);
201	}
202
203	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
204}
205
206int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
207		    struct net *net, const int family,
208		    const unsigned short port, int flags)
209{
210	struct svc_xprt_class *xcl;
211
212	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
213	spin_lock(&svc_xprt_class_lock);
214	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
215		struct svc_xprt *newxprt;
216
217		if (strcmp(xprt_name, xcl->xcl_name))
218			continue;
219
220		if (!try_module_get(xcl->xcl_owner))
221			goto err;
222
223		spin_unlock(&svc_xprt_class_lock);
224		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
225		if (IS_ERR(newxprt)) {
226			module_put(xcl->xcl_owner);
227			return PTR_ERR(newxprt);
228		}
229
230		clear_bit(XPT_TEMP, &newxprt->xpt_flags);
231		spin_lock_bh(&serv->sv_lock);
232		list_add(&newxprt->xpt_list, &serv->sv_permsocks);
233		spin_unlock_bh(&serv->sv_lock);
234		clear_bit(XPT_BUSY, &newxprt->xpt_flags);
235		return svc_xprt_local_port(newxprt);
236	}
237 err:
238	spin_unlock(&svc_xprt_class_lock);
239	dprintk("svc: transport %s not found\n", xprt_name);
240
241	/* This errno is exposed to user space.  Provide a reasonable
242	 * perror msg for a bad transport. */
243	return -EPROTONOSUPPORT;
244}
245EXPORT_SYMBOL_GPL(svc_create_xprt);
246
247/*
248 * Copy the local and remote xprt addresses to the rqstp structure
249 */
250void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
251{
252	struct sockaddr *sin;
253
254	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
255	rqstp->rq_addrlen = xprt->xpt_remotelen;
256
257	/*
258	 * Destination address in request is needed for binding the
259	 * source address in RPC replies/callbacks later.
260	 */
261	sin = (struct sockaddr *)&xprt->xpt_local;
262	switch (sin->sa_family) {
263	case AF_INET:
264		rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
265		break;
266	case AF_INET6:
267		rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
268		break;
269	}
270}
271EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
272
273/**
274 * svc_print_addr - Format rq_addr field for printing
275 * @rqstp: svc_rqst struct containing address to print
276 * @buf: target buffer for formatted address
277 * @len: length of target buffer
278 *
279 */
280char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
281{
282	return __svc_print_addr(svc_addr(rqstp), buf, len);
283}
284EXPORT_SYMBOL_GPL(svc_print_addr);
285
286/*
287 * Queue up an idle server thread.  Must have pool->sp_lock held.
288 * Note: this is really a stack rather than a queue, so that we only
289 * use as many different threads as we need, and the rest don't pollute
290 * the cache.
291 */
292static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
293{
294	list_add(&rqstp->rq_list, &pool->sp_threads);
295}
296
297/*
298 * Dequeue an nfsd thread.  Must have pool->sp_lock held.
299 */
300static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
301{
302	list_del(&rqstp->rq_list);
303}
304
305/*
306 * Queue up a transport with data pending. If there are idle nfsd
307 * processes, wake 'em up.
308 *
309 */
310void svc_xprt_enqueue(struct svc_xprt *xprt)
311{
312	struct svc_serv	*serv = xprt->xpt_server;
313	struct svc_pool *pool;
314	struct svc_rqst	*rqstp;
315	int cpu;
316
317	if (!(xprt->xpt_flags &
318	      ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
319		return;
320
321	cpu = get_cpu();
322	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
323	put_cpu();
324
325	spin_lock_bh(&pool->sp_lock);
326
327	if (!list_empty(&pool->sp_threads) &&
328	    !list_empty(&pool->sp_sockets))
329		printk(KERN_ERR
330		       "svc_xprt_enqueue: "
331		       "threads and transports both waiting??\n");
332
333	pool->sp_stats.packets++;
334
335	/* Mark transport as busy. It will remain in this state until
336	 * the provider calls svc_xprt_received. We update XPT_BUSY
337	 * atomically because it also guards against trying to enqueue
338	 * the transport twice.
339	 */
340	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
341		/* Don't enqueue transport while already enqueued */
342		dprintk("svc: transport %p busy, not enqueued\n", xprt);
343		goto out_unlock;
344	}
345	BUG_ON(xprt->xpt_pool != NULL);
346	xprt->xpt_pool = pool;
347
348	/* Handle pending connection */
349	if (test_bit(XPT_CONN, &xprt->xpt_flags))
350		goto process;
351
352	/* Handle close in-progress */
353	if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
354		goto process;
355
356	/* Check if we have space to reply to a request */
357	if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
358		/* Don't enqueue while not enough space for reply */
359		dprintk("svc: no write space, transport %p  not enqueued\n",
360			xprt);
361		xprt->xpt_pool = NULL;
362		clear_bit(XPT_BUSY, &xprt->xpt_flags);
363		goto out_unlock;
364	}
365
366 process:
367	if (!list_empty(&pool->sp_threads)) {
368		rqstp = list_entry(pool->sp_threads.next,
369				   struct svc_rqst,
370				   rq_list);
371		dprintk("svc: transport %p served by daemon %p\n",
372			xprt, rqstp);
373		svc_thread_dequeue(pool, rqstp);
374		if (rqstp->rq_xprt)
375			printk(KERN_ERR
376				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
377				rqstp, rqstp->rq_xprt);
378		rqstp->rq_xprt = xprt;
379		svc_xprt_get(xprt);
380		rqstp->rq_reserved = serv->sv_max_mesg;
381		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
382		pool->sp_stats.threads_woken++;
383		BUG_ON(xprt->xpt_pool != pool);
384		wake_up(&rqstp->rq_wait);
385	} else {
386		dprintk("svc: transport %p put into queue\n", xprt);
387		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
388		pool->sp_stats.sockets_queued++;
389		BUG_ON(xprt->xpt_pool != pool);
390	}
391
392out_unlock:
393	spin_unlock_bh(&pool->sp_lock);
394}
395EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
396
397/*
398 * Dequeue the first transport.  Must be called with the pool->sp_lock held.
399 */
400static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
401{
402	struct svc_xprt	*xprt;
403
404	if (list_empty(&pool->sp_sockets))
405		return NULL;
406
407	xprt = list_entry(pool->sp_sockets.next,
408			  struct svc_xprt, xpt_ready);
409	list_del_init(&xprt->xpt_ready);
410
411	dprintk("svc: transport %p dequeued, inuse=%d\n",
412		xprt, atomic_read(&xprt->xpt_ref.refcount));
413
414	return xprt;
415}
416
417/*
418 * svc_xprt_received conditionally queues the transport for processing
419 * by another thread. The caller must hold the XPT_BUSY bit and must
420 * not thereafter touch transport data.
421 *
422 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
423 * insufficient) data.
424 */
425void svc_xprt_received(struct svc_xprt *xprt)
426{
427	BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
428	xprt->xpt_pool = NULL;
429	clear_bit(XPT_BUSY, &xprt->xpt_flags);
430	svc_xprt_enqueue(xprt);
431}
432EXPORT_SYMBOL_GPL(svc_xprt_received);
433
434/**
435 * svc_reserve - change the space reserved for the reply to a request.
436 * @rqstp:  The request in question
437 * @space: new max space to reserve
438 *
439 * Each request reserves some space on the output queue of the transport
440 * to make sure the reply fits.  This function reduces that reserved
441 * space to be the amount of space used already, plus @space.
442 *
443 */
444void svc_reserve(struct svc_rqst *rqstp, int space)
445{
446	space += rqstp->rq_res.head[0].iov_len;
447
448	if (space < rqstp->rq_reserved) {
449		struct svc_xprt *xprt = rqstp->rq_xprt;
450		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
451		rqstp->rq_reserved = space;
452
453		svc_xprt_enqueue(xprt);
454	}
455}
456EXPORT_SYMBOL_GPL(svc_reserve);
457
458static void svc_xprt_release(struct svc_rqst *rqstp)
459{
460	struct svc_xprt	*xprt = rqstp->rq_xprt;
461
462	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
463
464	kfree(rqstp->rq_deferred);
465	rqstp->rq_deferred = NULL;
466
467	svc_free_res_pages(rqstp);
468	rqstp->rq_res.page_len = 0;
469	rqstp->rq_res.page_base = 0;
470
471	/* Reset response buffer and release
472	 * the reservation.
473	 * But first, check that enough space was reserved
474	 * for the reply, otherwise we have a bug!
475	 */
476	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
477		printk(KERN_ERR "RPC request reserved %d but used %d\n",
478		       rqstp->rq_reserved,
479		       rqstp->rq_res.len);
480
481	rqstp->rq_res.head[0].iov_len = 0;
482	svc_reserve(rqstp, 0);
483	rqstp->rq_xprt = NULL;
484
485	svc_xprt_put(xprt);
486}
487
488/*
489 * External function to wake up a server waiting for data
490 * This really only makes sense for services like lockd
491 * which have exactly one thread anyway.
492 */
493void svc_wake_up(struct svc_serv *serv)
494{
495	struct svc_rqst	*rqstp;
496	unsigned int i;
497	struct svc_pool *pool;
498
499	for (i = 0; i < serv->sv_nrpools; i++) {
500		pool = &serv->sv_pools[i];
501
502		spin_lock_bh(&pool->sp_lock);
503		if (!list_empty(&pool->sp_threads)) {
504			rqstp = list_entry(pool->sp_threads.next,
505					   struct svc_rqst,
506					   rq_list);
507			dprintk("svc: daemon %p woken up.\n", rqstp);
508			/*
509			svc_thread_dequeue(pool, rqstp);
510			rqstp->rq_xprt = NULL;
511			 */
512			wake_up(&rqstp->rq_wait);
513		}
514		spin_unlock_bh(&pool->sp_lock);
515	}
516}
517EXPORT_SYMBOL_GPL(svc_wake_up);
518
519int svc_port_is_privileged(struct sockaddr *sin)
520{
521	switch (sin->sa_family) {
522	case AF_INET:
523		return ntohs(((struct sockaddr_in *)sin)->sin_port)
524			< PROT_SOCK;
525	case AF_INET6:
526		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
527			< PROT_SOCK;
528	default:
529		return 0;
530	}
531}
532
533/*
534 * Make sure that we don't have too many active connections. If we have,
535 * something must be dropped. It's not clear what will happen if we allow
536 * "too many" connections, but when dealing with network-facing software,
537 * we have to code defensively. Here we do that by imposing hard limits.
538 *
539 * There's no point in trying to do random drop here for DoS
540 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
541 * attacker can easily beat that.
542 *
543 * The only somewhat efficient mechanism would be if drop old
544 * connections from the same IP first. But right now we don't even
545 * record the client IP in svc_sock.
546 *
547 * single-threaded services that expect a lot of clients will probably
548 * need to set sv_maxconn to override the default value which is based
549 * on the number of threads
550 */
551static void svc_check_conn_limits(struct svc_serv *serv)
552{
553	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
554				(serv->sv_nrthreads+3) * 20;
555
556	if (serv->sv_tmpcnt > limit) {
557		struct svc_xprt *xprt = NULL;
558		spin_lock_bh(&serv->sv_lock);
559		if (!list_empty(&serv->sv_tempsocks)) {
560			if (net_ratelimit()) {
561				/* Try to help the admin */
562				printk(KERN_NOTICE "%s: too many open  "
563				       "connections, consider increasing %s\n",
564				       serv->sv_name, serv->sv_maxconn ?
565				       "the max number of connections." :
566				       "the number of threads.");
567			}
568			/*
569			 * Always select the oldest connection. It's not fair,
570			 * but so is life
571			 */
572			xprt = list_entry(serv->sv_tempsocks.prev,
573					  struct svc_xprt,
574					  xpt_list);
575			set_bit(XPT_CLOSE, &xprt->xpt_flags);
576			svc_xprt_get(xprt);
577		}
578		spin_unlock_bh(&serv->sv_lock);
579
580		if (xprt) {
581			svc_xprt_enqueue(xprt);
582			svc_xprt_put(xprt);
583		}
584	}
585}
586
587/*
588 * Receive the next request on any transport.  This code is carefully
589 * organised not to touch any cachelines in the shared svc_serv
590 * structure, only cachelines in the local svc_pool.
591 */
592int svc_recv(struct svc_rqst *rqstp, long timeout)
593{
594	struct svc_xprt		*xprt = NULL;
595	struct svc_serv		*serv = rqstp->rq_server;
596	struct svc_pool		*pool = rqstp->rq_pool;
597	int			len, i;
598	int			pages;
599	struct xdr_buf		*arg;
600	DECLARE_WAITQUEUE(wait, current);
601	long			time_left;
602
603	dprintk("svc: server %p waiting for data (to = %ld)\n",
604		rqstp, timeout);
605
606	if (rqstp->rq_xprt)
607		printk(KERN_ERR
608			"svc_recv: service %p, transport not NULL!\n",
609			 rqstp);
610	if (waitqueue_active(&rqstp->rq_wait))
611		printk(KERN_ERR
612			"svc_recv: service %p, wait queue active!\n",
613			 rqstp);
614
615	/* now allocate needed pages.  If we get a failure, sleep briefly */
616	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
617	for (i = 0; i < pages ; i++)
618		while (rqstp->rq_pages[i] == NULL) {
619			struct page *p = alloc_page(GFP_KERNEL);
620			if (!p) {
621				set_current_state(TASK_INTERRUPTIBLE);
622				if (signalled() || kthread_should_stop()) {
623					set_current_state(TASK_RUNNING);
624					return -EINTR;
625				}
626				schedule_timeout(msecs_to_jiffies(500));
627			}
628			rqstp->rq_pages[i] = p;
629		}
630	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
631	BUG_ON(pages >= RPCSVC_MAXPAGES);
632
633	/* Make arg->head point to first page and arg->pages point to rest */
634	arg = &rqstp->rq_arg;
635	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
636	arg->head[0].iov_len = PAGE_SIZE;
637	arg->pages = rqstp->rq_pages + 1;
638	arg->page_base = 0;
639	/* save at least one page for response */
640	arg->page_len = (pages-2)*PAGE_SIZE;
641	arg->len = (pages-1)*PAGE_SIZE;
642	arg->tail[0].iov_len = 0;
643
644	try_to_freeze();
645	cond_resched();
646	if (signalled() || kthread_should_stop())
647		return -EINTR;
648
649	/* Normally we will wait up to 5 seconds for any required
650	 * cache information to be provided.
651	 */
652	rqstp->rq_chandle.thread_wait = 5*HZ;
653
654	spin_lock_bh(&pool->sp_lock);
655	xprt = svc_xprt_dequeue(pool);
656	if (xprt) {
657		rqstp->rq_xprt = xprt;
658		svc_xprt_get(xprt);
659		rqstp->rq_reserved = serv->sv_max_mesg;
660		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
661
662		/* As there is a shortage of threads and this request
663		 * had to be queued, don't allow the thread to wait so
664		 * long for cache updates.
665		 */
666		rqstp->rq_chandle.thread_wait = 1*HZ;
667	} else {
668		/* No data pending. Go to sleep */
669		svc_thread_enqueue(pool, rqstp);
670
671		/*
672		 * We have to be able to interrupt this wait
673		 * to bring down the daemons ...
674		 */
675		set_current_state(TASK_INTERRUPTIBLE);
676
677		/*
678		 * checking kthread_should_stop() here allows us to avoid
679		 * locking and signalling when stopping kthreads that call
680		 * svc_recv. If the thread has already been woken up, then
681		 * we can exit here without sleeping. If not, then it
682		 * it'll be woken up quickly during the schedule_timeout
683		 */
684		if (kthread_should_stop()) {
685			set_current_state(TASK_RUNNING);
686			spin_unlock_bh(&pool->sp_lock);
687			return -EINTR;
688		}
689
690		add_wait_queue(&rqstp->rq_wait, &wait);
691		spin_unlock_bh(&pool->sp_lock);
692
693		time_left = schedule_timeout(timeout);
694
695		try_to_freeze();
696
697		spin_lock_bh(&pool->sp_lock);
698		remove_wait_queue(&rqstp->rq_wait, &wait);
699		if (!time_left)
700			pool->sp_stats.threads_timedout++;
701
702		xprt = rqstp->rq_xprt;
703		if (!xprt) {
704			svc_thread_dequeue(pool, rqstp);
705			spin_unlock_bh(&pool->sp_lock);
706			dprintk("svc: server %p, no data yet\n", rqstp);
707			if (signalled() || kthread_should_stop())
708				return -EINTR;
709			else
710				return -EAGAIN;
711		}
712	}
713	spin_unlock_bh(&pool->sp_lock);
714
715	len = 0;
716	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
717		dprintk("svc_recv: found XPT_CLOSE\n");
718		svc_delete_xprt(xprt);
719		/* Leave XPT_BUSY set on the dead xprt: */
720		goto out;
721	}
722	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
723		struct svc_xprt *newxpt;
724		newxpt = xprt->xpt_ops->xpo_accept(xprt);
725		if (newxpt) {
726			/*
727			 * We know this module_get will succeed because the
728			 * listener holds a reference too
729			 */
730			__module_get(newxpt->xpt_class->xcl_owner);
731			svc_check_conn_limits(xprt->xpt_server);
732			spin_lock_bh(&serv->sv_lock);
733			set_bit(XPT_TEMP, &newxpt->xpt_flags);
734			list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
735			serv->sv_tmpcnt++;
736			if (serv->sv_temptimer.function == NULL) {
737				/* setup timer to age temp transports */
738				setup_timer(&serv->sv_temptimer,
739					    svc_age_temp_xprts,
740					    (unsigned long)serv);
741				mod_timer(&serv->sv_temptimer,
742					  jiffies + svc_conn_age_period * HZ);
743			}
744			spin_unlock_bh(&serv->sv_lock);
745			svc_xprt_received(newxpt);
746		}
747	} else {
748		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
749			rqstp, pool->sp_id, xprt,
750			atomic_read(&xprt->xpt_ref.refcount));
751		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
752		if (rqstp->rq_deferred)
753			len = svc_deferred_recv(rqstp);
754		else
755			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
756		dprintk("svc: got len=%d\n", len);
757	}
758	svc_xprt_received(xprt);
759
760	/* No data, incomplete (TCP) read, or accept() */
761	if (len == 0 || len == -EAGAIN)
762		goto out;
763
764	clear_bit(XPT_OLD, &xprt->xpt_flags);
765
766	rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
767	rqstp->rq_chandle.defer = svc_defer;
768
769	if (serv->sv_stats)
770		serv->sv_stats->netcnt++;
771	return len;
772out:
773	rqstp->rq_res.len = 0;
774	svc_xprt_release(rqstp);
775	return -EAGAIN;
776}
777EXPORT_SYMBOL_GPL(svc_recv);
778
779/*
780 * Drop request
781 */
782void svc_drop(struct svc_rqst *rqstp)
783{
784	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
785	svc_xprt_release(rqstp);
786}
787EXPORT_SYMBOL_GPL(svc_drop);
788
789/*
790 * Return reply to client.
791 */
792int svc_send(struct svc_rqst *rqstp)
793{
794	struct svc_xprt	*xprt;
795	int		len;
796	struct xdr_buf	*xb;
797
798	xprt = rqstp->rq_xprt;
799	if (!xprt)
800		return -EFAULT;
801
802	/* release the receive skb before sending the reply */
803	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
804
805	/* calculate over-all length */
806	xb = &rqstp->rq_res;
807	xb->len = xb->head[0].iov_len +
808		xb->page_len +
809		xb->tail[0].iov_len;
810
811	/* Grab mutex to serialize outgoing data. */
812	mutex_lock(&xprt->xpt_mutex);
813	if (test_bit(XPT_DEAD, &xprt->xpt_flags))
814		len = -ENOTCONN;
815	else
816		len = xprt->xpt_ops->xpo_sendto(rqstp);
817	mutex_unlock(&xprt->xpt_mutex);
818	rpc_wake_up(&xprt->xpt_bc_pending);
819	svc_xprt_release(rqstp);
820
821	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
822		return 0;
823	return len;
824}
825
826/*
827 * Timer function to close old temporary transports, using
828 * a mark-and-sweep algorithm.
829 */
830static void svc_age_temp_xprts(unsigned long closure)
831{
832	struct svc_serv *serv = (struct svc_serv *)closure;
833	struct svc_xprt *xprt;
834	struct list_head *le, *next;
835	LIST_HEAD(to_be_aged);
836
837	dprintk("svc_age_temp_xprts\n");
838
839	if (!spin_trylock_bh(&serv->sv_lock)) {
840		/* busy, try again 1 sec later */
841		dprintk("svc_age_temp_xprts: busy\n");
842		mod_timer(&serv->sv_temptimer, jiffies + HZ);
843		return;
844	}
845
846	list_for_each_safe(le, next, &serv->sv_tempsocks) {
847		xprt = list_entry(le, struct svc_xprt, xpt_list);
848
849		/* First time through, just mark it OLD. Second time
850		 * through, close it. */
851		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
852			continue;
853		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
854		    test_bit(XPT_BUSY, &xprt->xpt_flags))
855			continue;
856		svc_xprt_get(xprt);
857		list_move(le, &to_be_aged);
858		set_bit(XPT_CLOSE, &xprt->xpt_flags);
859		set_bit(XPT_DETACHED, &xprt->xpt_flags);
860	}
861	spin_unlock_bh(&serv->sv_lock);
862
863	while (!list_empty(&to_be_aged)) {
864		le = to_be_aged.next;
865		/* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
866		list_del_init(le);
867		xprt = list_entry(le, struct svc_xprt, xpt_list);
868
869		dprintk("queuing xprt %p for closing\n", xprt);
870
871		/* a thread will dequeue and close it soon */
872		svc_xprt_enqueue(xprt);
873		svc_xprt_put(xprt);
874	}
875
876	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
877}
878
879static void call_xpt_users(struct svc_xprt *xprt)
880{
881	struct svc_xpt_user *u;
882
883	spin_lock(&xprt->xpt_lock);
884	while (!list_empty(&xprt->xpt_users)) {
885		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
886		list_del(&u->list);
887		u->callback(u);
888	}
889	spin_unlock(&xprt->xpt_lock);
890}
891
892/*
893 * Remove a dead transport
894 */
895void svc_delete_xprt(struct svc_xprt *xprt)
896{
897	struct svc_serv	*serv = xprt->xpt_server;
898	struct svc_deferred_req *dr;
899
900	/* Only do this once */
901	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
902		BUG();
903
904	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
905	xprt->xpt_ops->xpo_detach(xprt);
906
907	spin_lock_bh(&serv->sv_lock);
908	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
909		list_del_init(&xprt->xpt_list);
910	/*
911	 * We used to delete the transport from whichever list
912	 * it's sk_xprt.xpt_ready node was on, but we don't actually
913	 * need to.  This is because the only time we're called
914	 * while still attached to a queue, the queue itself
915	 * is about to be destroyed (in svc_destroy).
916	 */
917	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
918		serv->sv_tmpcnt--;
919	spin_unlock_bh(&serv->sv_lock);
920
921	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
922		kfree(dr);
923
924	call_xpt_users(xprt);
925	svc_xprt_put(xprt);
926}
927
928void svc_close_xprt(struct svc_xprt *xprt)
929{
930	set_bit(XPT_CLOSE, &xprt->xpt_flags);
931	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
932		/* someone else will have to effect the close */
933		return;
934
935	svc_delete_xprt(xprt);
936}
937EXPORT_SYMBOL_GPL(svc_close_xprt);
938
939void svc_close_all(struct list_head *xprt_list)
940{
941	struct svc_xprt *xprt;
942	struct svc_xprt *tmp;
943
944	/*
945	 * The server is shutting down, and no more threads are running.
946	 * svc_xprt_enqueue() might still be running, but at worst it
947	 * will re-add the xprt to sp_sockets, which will soon get
948	 * freed.  So we don't bother with any more locking, and don't
949	 * leave the close to the (nonexistent) server threads:
950	 */
951	list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
952		set_bit(XPT_CLOSE, &xprt->xpt_flags);
953		svc_delete_xprt(xprt);
954	}
955}
956
957/*
958 * Handle defer and revisit of requests
959 */
960
961static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
962{
963	struct svc_deferred_req *dr =
964		container_of(dreq, struct svc_deferred_req, handle);
965	struct svc_xprt *xprt = dr->xprt;
966
967	spin_lock(&xprt->xpt_lock);
968	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
969	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
970		spin_unlock(&xprt->xpt_lock);
971		dprintk("revisit canceled\n");
972		svc_xprt_put(xprt);
973		kfree(dr);
974		return;
975	}
976	dprintk("revisit queued\n");
977	dr->xprt = NULL;
978	list_add(&dr->handle.recent, &xprt->xpt_deferred);
979	spin_unlock(&xprt->xpt_lock);
980	svc_xprt_enqueue(xprt);
981	svc_xprt_put(xprt);
982}
983
984/*
985 * Save the request off for later processing. The request buffer looks
986 * like this:
987 *
988 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
989 *
990 * This code can only handle requests that consist of an xprt-header
991 * and rpc-header.
992 */
993static struct cache_deferred_req *svc_defer(struct cache_req *req)
994{
995	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
996	struct svc_deferred_req *dr;
997
998	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
999		return NULL; /* if more than a page, give up FIXME */
1000	if (rqstp->rq_deferred) {
1001		dr = rqstp->rq_deferred;
1002		rqstp->rq_deferred = NULL;
1003	} else {
1004		size_t skip;
1005		size_t size;
1006		/* FIXME maybe discard if size too large */
1007		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1008		dr = kmalloc(size, GFP_KERNEL);
1009		if (dr == NULL)
1010			return NULL;
1011
1012		dr->handle.owner = rqstp->rq_server;
1013		dr->prot = rqstp->rq_prot;
1014		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1015		dr->addrlen = rqstp->rq_addrlen;
1016		dr->daddr = rqstp->rq_daddr;
1017		dr->argslen = rqstp->rq_arg.len >> 2;
1018		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1019
1020		/* back up head to the start of the buffer and copy */
1021		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1022		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1023		       dr->argslen << 2);
1024	}
1025	svc_xprt_get(rqstp->rq_xprt);
1026	dr->xprt = rqstp->rq_xprt;
1027
1028	dr->handle.revisit = svc_revisit;
1029	return &dr->handle;
1030}
1031
1032/*
1033 * recv data from a deferred request into an active one
1034 */
1035static int svc_deferred_recv(struct svc_rqst *rqstp)
1036{
1037	struct svc_deferred_req *dr = rqstp->rq_deferred;
1038
1039	/* setup iov_base past transport header */
1040	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1041	/* The iov_len does not include the transport header bytes */
1042	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1043	rqstp->rq_arg.page_len = 0;
1044	/* The rq_arg.len includes the transport header bytes */
1045	rqstp->rq_arg.len     = dr->argslen<<2;
1046	rqstp->rq_prot        = dr->prot;
1047	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1048	rqstp->rq_addrlen     = dr->addrlen;
1049	/* Save off transport header len in case we get deferred again */
1050	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1051	rqstp->rq_daddr       = dr->daddr;
1052	rqstp->rq_respages    = rqstp->rq_pages;
1053	return (dr->argslen<<2) - dr->xprt_hlen;
1054}
1055
1056
1057static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1058{
1059	struct svc_deferred_req *dr = NULL;
1060
1061	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1062		return NULL;
1063	spin_lock(&xprt->xpt_lock);
1064	if (!list_empty(&xprt->xpt_deferred)) {
1065		dr = list_entry(xprt->xpt_deferred.next,
1066				struct svc_deferred_req,
1067				handle.recent);
1068		list_del_init(&dr->handle.recent);
1069	} else
1070		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1071	spin_unlock(&xprt->xpt_lock);
1072	return dr;
1073}
1074
1075/**
1076 * svc_find_xprt - find an RPC transport instance
1077 * @serv: pointer to svc_serv to search
1078 * @xcl_name: C string containing transport's class name
1079 * @af: Address family of transport's local address
1080 * @port: transport's IP port number
1081 *
1082 * Return the transport instance pointer for the endpoint accepting
1083 * connections/peer traffic from the specified transport class,
1084 * address family and port.
1085 *
1086 * Specifying 0 for the address family or port is effectively a
1087 * wild-card, and will result in matching the first transport in the
1088 * service's list that has a matching class name.
1089 */
1090struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1091			       const sa_family_t af, const unsigned short port)
1092{
1093	struct svc_xprt *xprt;
1094	struct svc_xprt *found = NULL;
1095
1096	/* Sanity check the args */
1097	if (serv == NULL || xcl_name == NULL)
1098		return found;
1099
1100	spin_lock_bh(&serv->sv_lock);
1101	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1102		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1103			continue;
1104		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1105			continue;
1106		if (port != 0 && port != svc_xprt_local_port(xprt))
1107			continue;
1108		found = xprt;
1109		svc_xprt_get(xprt);
1110		break;
1111	}
1112	spin_unlock_bh(&serv->sv_lock);
1113	return found;
1114}
1115EXPORT_SYMBOL_GPL(svc_find_xprt);
1116
1117static int svc_one_xprt_name(const struct svc_xprt *xprt,
1118			     char *pos, int remaining)
1119{
1120	int len;
1121
1122	len = snprintf(pos, remaining, "%s %u\n",
1123			xprt->xpt_class->xcl_name,
1124			svc_xprt_local_port(xprt));
1125	if (len >= remaining)
1126		return -ENAMETOOLONG;
1127	return len;
1128}
1129
1130/**
1131 * svc_xprt_names - format a buffer with a list of transport names
1132 * @serv: pointer to an RPC service
1133 * @buf: pointer to a buffer to be filled in
1134 * @buflen: length of buffer to be filled in
1135 *
1136 * Fills in @buf with a string containing a list of transport names,
1137 * each name terminated with '\n'.
1138 *
1139 * Returns positive length of the filled-in string on success; otherwise
1140 * a negative errno value is returned if an error occurs.
1141 */
1142int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1143{
1144	struct svc_xprt *xprt;
1145	int len, totlen;
1146	char *pos;
1147
1148	/* Sanity check args */
1149	if (!serv)
1150		return 0;
1151
1152	spin_lock_bh(&serv->sv_lock);
1153
1154	pos = buf;
1155	totlen = 0;
1156	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1157		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1158		if (len < 0) {
1159			*buf = '\0';
1160			totlen = len;
1161		}
1162		if (len <= 0)
1163			break;
1164
1165		pos += len;
1166		totlen += len;
1167	}
1168
1169	spin_unlock_bh(&serv->sv_lock);
1170	return totlen;
1171}
1172EXPORT_SYMBOL_GPL(svc_xprt_names);
1173
1174
1175/*----------------------------------------------------------------------------*/
1176
1177static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1178{
1179	unsigned int pidx = (unsigned int)*pos;
1180	struct svc_serv *serv = m->private;
1181
1182	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1183
1184	if (!pidx)
1185		return SEQ_START_TOKEN;
1186	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1187}
1188
1189static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1190{
1191	struct svc_pool *pool = p;
1192	struct svc_serv *serv = m->private;
1193
1194	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1195
1196	if (p == SEQ_START_TOKEN) {
1197		pool = &serv->sv_pools[0];
1198	} else {
1199		unsigned int pidx = (pool - &serv->sv_pools[0]);
1200		if (pidx < serv->sv_nrpools-1)
1201			pool = &serv->sv_pools[pidx+1];
1202		else
1203			pool = NULL;
1204	}
1205	++*pos;
1206	return pool;
1207}
1208
1209static void svc_pool_stats_stop(struct seq_file *m, void *p)
1210{
1211}
1212
1213static int svc_pool_stats_show(struct seq_file *m, void *p)
1214{
1215	struct svc_pool *pool = p;
1216
1217	if (p == SEQ_START_TOKEN) {
1218		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1219		return 0;
1220	}
1221
1222	seq_printf(m, "%u %lu %lu %lu %lu\n",
1223		pool->sp_id,
1224		pool->sp_stats.packets,
1225		pool->sp_stats.sockets_queued,
1226		pool->sp_stats.threads_woken,
1227		pool->sp_stats.threads_timedout);
1228
1229	return 0;
1230}
1231
1232static const struct seq_operations svc_pool_stats_seq_ops = {
1233	.start	= svc_pool_stats_start,
1234	.next	= svc_pool_stats_next,
1235	.stop	= svc_pool_stats_stop,
1236	.show	= svc_pool_stats_show,
1237};
1238
1239int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1240{
1241	int err;
1242
1243	err = seq_open(file, &svc_pool_stats_seq_ops);
1244	if (!err)
1245		((struct seq_file *) file->private_data)->private = serv;
1246	return err;
1247}
1248EXPORT_SYMBOL(svc_pool_stats_open);
1249
1250/*----------------------------------------------------------------------------*/
1251