1/* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/poison.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/security.h>
18#include <linux/workqueue.h>
19#include <linux/random.h>
20#include <linux/err.h>
21#include "internal.h"
22
23struct kmem_cache *key_jar;
24struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25DEFINE_SPINLOCK(key_serial_lock);
26
27struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28DEFINE_SPINLOCK(key_user_lock);
29
30unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34
35static LIST_HEAD(key_types_list);
36static DECLARE_RWSEM(key_types_sem);
37
38/* We serialise key instantiation and link */
39DEFINE_MUTEX(key_construction_mutex);
40
41#ifdef KEY_DEBUGGING
42void __key_check(const struct key *key)
43{
44	printk("__key_check: key %p {%08x} should be {%08x}\n",
45	       key, key->magic, KEY_DEBUG_MAGIC);
46	BUG();
47}
48#endif
49
50/*
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
53 */
54struct key_user *key_user_lookup(kuid_t uid)
55{
56	struct key_user *candidate = NULL, *user;
57	struct rb_node *parent = NULL;
58	struct rb_node **p;
59
60try_again:
61	p = &key_user_tree.rb_node;
62	spin_lock(&key_user_lock);
63
64	/* search the tree for a user record with a matching UID */
65	while (*p) {
66		parent = *p;
67		user = rb_entry(parent, struct key_user, node);
68
69		if (uid_lt(uid, user->uid))
70			p = &(*p)->rb_left;
71		else if (uid_gt(uid, user->uid))
72			p = &(*p)->rb_right;
73		else
74			goto found;
75	}
76
77	/* if we get here, we failed to find a match in the tree */
78	if (!candidate) {
79		/* allocate a candidate user record if we don't already have
80		 * one */
81		spin_unlock(&key_user_lock);
82
83		user = NULL;
84		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85		if (unlikely(!candidate))
86			goto out;
87
88		/* the allocation may have scheduled, so we need to repeat the
89		 * search lest someone else added the record whilst we were
90		 * asleep */
91		goto try_again;
92	}
93
94	/* if we get here, then the user record still hadn't appeared on the
95	 * second pass - so we use the candidate record */
96	atomic_set(&candidate->usage, 1);
97	atomic_set(&candidate->nkeys, 0);
98	atomic_set(&candidate->nikeys, 0);
99	candidate->uid = uid;
100	candidate->qnkeys = 0;
101	candidate->qnbytes = 0;
102	spin_lock_init(&candidate->lock);
103	mutex_init(&candidate->cons_lock);
104
105	rb_link_node(&candidate->node, parent, p);
106	rb_insert_color(&candidate->node, &key_user_tree);
107	spin_unlock(&key_user_lock);
108	user = candidate;
109	goto out;
110
111	/* okay - we found a user record for this UID */
112found:
113	atomic_inc(&user->usage);
114	spin_unlock(&key_user_lock);
115	kfree(candidate);
116out:
117	return user;
118}
119
120/*
121 * Dispose of a user structure
122 */
123void key_user_put(struct key_user *user)
124{
125	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126		rb_erase(&user->node, &key_user_tree);
127		spin_unlock(&key_user_lock);
128
129		kfree(user);
130	}
131}
132
133/*
134 * Allocate a serial number for a key.  These are assigned randomly to avoid
135 * security issues through covert channel problems.
136 */
137static inline void key_alloc_serial(struct key *key)
138{
139	struct rb_node *parent, **p;
140	struct key *xkey;
141
142	/* propose a random serial number and look for a hole for it in the
143	 * serial number tree */
144	do {
145		get_random_bytes(&key->serial, sizeof(key->serial));
146
147		key->serial >>= 1; /* negative numbers are not permitted */
148	} while (key->serial < 3);
149
150	spin_lock(&key_serial_lock);
151
152attempt_insertion:
153	parent = NULL;
154	p = &key_serial_tree.rb_node;
155
156	while (*p) {
157		parent = *p;
158		xkey = rb_entry(parent, struct key, serial_node);
159
160		if (key->serial < xkey->serial)
161			p = &(*p)->rb_left;
162		else if (key->serial > xkey->serial)
163			p = &(*p)->rb_right;
164		else
165			goto serial_exists;
166	}
167
168	/* we've found a suitable hole - arrange for this key to occupy it */
169	rb_link_node(&key->serial_node, parent, p);
170	rb_insert_color(&key->serial_node, &key_serial_tree);
171
172	spin_unlock(&key_serial_lock);
173	return;
174
175	/* we found a key with the proposed serial number - walk the tree from
176	 * that point looking for the next unused serial number */
177serial_exists:
178	for (;;) {
179		key->serial++;
180		if (key->serial < 3) {
181			key->serial = 3;
182			goto attempt_insertion;
183		}
184
185		parent = rb_next(parent);
186		if (!parent)
187			goto attempt_insertion;
188
189		xkey = rb_entry(parent, struct key, serial_node);
190		if (key->serial < xkey->serial)
191			goto attempt_insertion;
192	}
193}
194
195/**
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 *
205 * Allocate a key of the specified type with the attributes given.  The key is
206 * returned in an uninstantiated state and the caller needs to instantiate the
207 * key before returning.
208 *
209 * The user's key count quota is updated to reflect the creation of the key and
210 * the user's key data quota has the default for the key type reserved.  The
211 * instantiation function should amend this as necessary.  If insufficient
212 * quota is available, -EDQUOT will be returned.
213 *
214 * The LSM security modules can prevent a key being created, in which case
215 * -EACCES will be returned.
216 *
217 * Returns a pointer to the new key if successful and an error code otherwise.
218 *
219 * Note that the caller needs to ensure the key type isn't uninstantiated.
220 * Internally this can be done by locking key_types_sem.  Externally, this can
221 * be done by either never unregistering the key type, or making sure
222 * key_alloc() calls don't race with module unloading.
223 */
224struct key *key_alloc(struct key_type *type, const char *desc,
225		      kuid_t uid, kgid_t gid, const struct cred *cred,
226		      key_perm_t perm, unsigned long flags)
227{
228	struct key_user *user = NULL;
229	struct key *key;
230	size_t desclen, quotalen;
231	int ret;
232
233	key = ERR_PTR(-EINVAL);
234	if (!desc || !*desc)
235		goto error;
236
237	if (type->vet_description) {
238		ret = type->vet_description(desc);
239		if (ret < 0) {
240			key = ERR_PTR(ret);
241			goto error;
242		}
243	}
244
245	desclen = strlen(desc);
246	quotalen = desclen + 1 + type->def_datalen;
247
248	/* get hold of the key tracking for this user */
249	user = key_user_lookup(uid);
250	if (!user)
251		goto no_memory_1;
252
253	/* check that the user's quota permits allocation of another key and
254	 * its description */
255	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257			key_quota_root_maxkeys : key_quota_maxkeys;
258		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259			key_quota_root_maxbytes : key_quota_maxbytes;
260
261		spin_lock(&user->lock);
262		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263			if (user->qnkeys + 1 >= maxkeys ||
264			    user->qnbytes + quotalen >= maxbytes ||
265			    user->qnbytes + quotalen < user->qnbytes)
266				goto no_quota;
267		}
268
269		user->qnkeys++;
270		user->qnbytes += quotalen;
271		spin_unlock(&user->lock);
272	}
273
274	/* allocate and initialise the key and its description */
275	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
276	if (!key)
277		goto no_memory_2;
278
279	if (desc) {
280		key->index_key.desc_len = desclen;
281		key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
282		if (!key->description)
283			goto no_memory_3;
284	}
285
286	atomic_set(&key->usage, 1);
287	init_rwsem(&key->sem);
288	lockdep_set_class(&key->sem, &type->lock_class);
289	key->index_key.type = type;
290	key->user = user;
291	key->quotalen = quotalen;
292	key->datalen = type->def_datalen;
293	key->uid = uid;
294	key->gid = gid;
295	key->perm = perm;
296
297	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
298		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
299	if (flags & KEY_ALLOC_TRUSTED)
300		key->flags |= 1 << KEY_FLAG_TRUSTED;
301
302#ifdef KEY_DEBUGGING
303	key->magic = KEY_DEBUG_MAGIC;
304#endif
305
306	/* let the security module know about the key */
307	ret = security_key_alloc(key, cred, flags);
308	if (ret < 0)
309		goto security_error;
310
311	/* publish the key by giving it a serial number */
312	atomic_inc(&user->nkeys);
313	key_alloc_serial(key);
314
315error:
316	return key;
317
318security_error:
319	kfree(key->description);
320	kmem_cache_free(key_jar, key);
321	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
322		spin_lock(&user->lock);
323		user->qnkeys--;
324		user->qnbytes -= quotalen;
325		spin_unlock(&user->lock);
326	}
327	key_user_put(user);
328	key = ERR_PTR(ret);
329	goto error;
330
331no_memory_3:
332	kmem_cache_free(key_jar, key);
333no_memory_2:
334	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
335		spin_lock(&user->lock);
336		user->qnkeys--;
337		user->qnbytes -= quotalen;
338		spin_unlock(&user->lock);
339	}
340	key_user_put(user);
341no_memory_1:
342	key = ERR_PTR(-ENOMEM);
343	goto error;
344
345no_quota:
346	spin_unlock(&user->lock);
347	key_user_put(user);
348	key = ERR_PTR(-EDQUOT);
349	goto error;
350}
351EXPORT_SYMBOL(key_alloc);
352
353/**
354 * key_payload_reserve - Adjust data quota reservation for the key's payload
355 * @key: The key to make the reservation for.
356 * @datalen: The amount of data payload the caller now wants.
357 *
358 * Adjust the amount of the owning user's key data quota that a key reserves.
359 * If the amount is increased, then -EDQUOT may be returned if there isn't
360 * enough free quota available.
361 *
362 * If successful, 0 is returned.
363 */
364int key_payload_reserve(struct key *key, size_t datalen)
365{
366	int delta = (int)datalen - key->datalen;
367	int ret = 0;
368
369	key_check(key);
370
371	/* contemplate the quota adjustment */
372	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
373		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
374			key_quota_root_maxbytes : key_quota_maxbytes;
375
376		spin_lock(&key->user->lock);
377
378		if (delta > 0 &&
379		    (key->user->qnbytes + delta >= maxbytes ||
380		     key->user->qnbytes + delta < key->user->qnbytes)) {
381			ret = -EDQUOT;
382		}
383		else {
384			key->user->qnbytes += delta;
385			key->quotalen += delta;
386		}
387		spin_unlock(&key->user->lock);
388	}
389
390	/* change the recorded data length if that didn't generate an error */
391	if (ret == 0)
392		key->datalen = datalen;
393
394	return ret;
395}
396EXPORT_SYMBOL(key_payload_reserve);
397
398/*
399 * Instantiate a key and link it into the target keyring atomically.  Must be
400 * called with the target keyring's semaphore writelocked.  The target key's
401 * semaphore need not be locked as instantiation is serialised by
402 * key_construction_mutex.
403 */
404static int __key_instantiate_and_link(struct key *key,
405				      struct key_preparsed_payload *prep,
406				      struct key *keyring,
407				      struct key *authkey,
408				      struct assoc_array_edit **_edit)
409{
410	int ret, awaken;
411
412	key_check(key);
413	key_check(keyring);
414
415	awaken = 0;
416	ret = -EBUSY;
417
418	mutex_lock(&key_construction_mutex);
419
420	/* can't instantiate twice */
421	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
422		/* instantiate the key */
423		ret = key->type->instantiate(key, prep);
424
425		if (ret == 0) {
426			/* mark the key as being instantiated */
427			atomic_inc(&key->user->nikeys);
428			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
429
430			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
431				awaken = 1;
432
433			/* and link it into the destination keyring */
434			if (keyring)
435				__key_link(key, _edit);
436
437			/* disable the authorisation key */
438			if (authkey)
439				key_revoke(authkey);
440
441			if (prep->expiry != TIME_T_MAX) {
442				key->expiry = prep->expiry;
443				key_schedule_gc(prep->expiry + key_gc_delay);
444			}
445		}
446	}
447
448	mutex_unlock(&key_construction_mutex);
449
450	/* wake up anyone waiting for a key to be constructed */
451	if (awaken)
452		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
453
454	return ret;
455}
456
457/**
458 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
459 * @key: The key to instantiate.
460 * @data: The data to use to instantiate the keyring.
461 * @datalen: The length of @data.
462 * @keyring: Keyring to create a link in on success (or NULL).
463 * @authkey: The authorisation token permitting instantiation.
464 *
465 * Instantiate a key that's in the uninstantiated state using the provided data
466 * and, if successful, link it in to the destination keyring if one is
467 * supplied.
468 *
469 * If successful, 0 is returned, the authorisation token is revoked and anyone
470 * waiting for the key is woken up.  If the key was already instantiated,
471 * -EBUSY will be returned.
472 */
473int key_instantiate_and_link(struct key *key,
474			     const void *data,
475			     size_t datalen,
476			     struct key *keyring,
477			     struct key *authkey)
478{
479	struct key_preparsed_payload prep;
480	struct assoc_array_edit *edit;
481	int ret;
482
483	memset(&prep, 0, sizeof(prep));
484	prep.data = data;
485	prep.datalen = datalen;
486	prep.quotalen = key->type->def_datalen;
487	prep.expiry = TIME_T_MAX;
488	if (key->type->preparse) {
489		ret = key->type->preparse(&prep);
490		if (ret < 0)
491			goto error;
492	}
493
494	if (keyring) {
495		ret = __key_link_begin(keyring, &key->index_key, &edit);
496		if (ret < 0)
497			goto error;
498	}
499
500	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
501
502	if (keyring)
503		__key_link_end(keyring, &key->index_key, edit);
504
505error:
506	if (key->type->preparse)
507		key->type->free_preparse(&prep);
508	return ret;
509}
510
511EXPORT_SYMBOL(key_instantiate_and_link);
512
513/**
514 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
515 * @key: The key to instantiate.
516 * @timeout: The timeout on the negative key.
517 * @error: The error to return when the key is hit.
518 * @keyring: Keyring to create a link in on success (or NULL).
519 * @authkey: The authorisation token permitting instantiation.
520 *
521 * Negatively instantiate a key that's in the uninstantiated state and, if
522 * successful, set its timeout and stored error and link it in to the
523 * destination keyring if one is supplied.  The key and any links to the key
524 * will be automatically garbage collected after the timeout expires.
525 *
526 * Negative keys are used to rate limit repeated request_key() calls by causing
527 * them to return the stored error code (typically ENOKEY) until the negative
528 * key expires.
529 *
530 * If successful, 0 is returned, the authorisation token is revoked and anyone
531 * waiting for the key is woken up.  If the key was already instantiated,
532 * -EBUSY will be returned.
533 */
534int key_reject_and_link(struct key *key,
535			unsigned timeout,
536			unsigned error,
537			struct key *keyring,
538			struct key *authkey)
539{
540	struct assoc_array_edit *edit;
541	struct timespec now;
542	int ret, awaken, link_ret = 0;
543
544	key_check(key);
545	key_check(keyring);
546
547	awaken = 0;
548	ret = -EBUSY;
549
550	if (keyring)
551		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
552
553	mutex_lock(&key_construction_mutex);
554
555	/* can't instantiate twice */
556	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
557		/* mark the key as being negatively instantiated */
558		atomic_inc(&key->user->nikeys);
559		key->type_data.reject_error = -error;
560		smp_wmb();
561		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
562		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
563		now = current_kernel_time();
564		key->expiry = now.tv_sec + timeout;
565		key_schedule_gc(key->expiry + key_gc_delay);
566
567		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
568			awaken = 1;
569
570		ret = 0;
571
572		/* and link it into the destination keyring */
573		if (keyring && link_ret == 0)
574			__key_link(key, &edit);
575
576		/* disable the authorisation key */
577		if (authkey)
578			key_revoke(authkey);
579	}
580
581	mutex_unlock(&key_construction_mutex);
582
583	if (keyring)
584		__key_link_end(keyring, &key->index_key, edit);
585
586	/* wake up anyone waiting for a key to be constructed */
587	if (awaken)
588		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
589
590	return ret == 0 ? link_ret : ret;
591}
592EXPORT_SYMBOL(key_reject_and_link);
593
594/**
595 * key_put - Discard a reference to a key.
596 * @key: The key to discard a reference from.
597 *
598 * Discard a reference to a key, and when all the references are gone, we
599 * schedule the cleanup task to come and pull it out of the tree in process
600 * context at some later time.
601 */
602void key_put(struct key *key)
603{
604	if (key) {
605		key_check(key);
606
607		if (atomic_dec_and_test(&key->usage))
608			schedule_work(&key_gc_work);
609	}
610}
611EXPORT_SYMBOL(key_put);
612
613/*
614 * Find a key by its serial number.
615 */
616struct key *key_lookup(key_serial_t id)
617{
618	struct rb_node *n;
619	struct key *key;
620
621	spin_lock(&key_serial_lock);
622
623	/* search the tree for the specified key */
624	n = key_serial_tree.rb_node;
625	while (n) {
626		key = rb_entry(n, struct key, serial_node);
627
628		if (id < key->serial)
629			n = n->rb_left;
630		else if (id > key->serial)
631			n = n->rb_right;
632		else
633			goto found;
634	}
635
636not_found:
637	key = ERR_PTR(-ENOKEY);
638	goto error;
639
640found:
641	/* pretend it doesn't exist if it is awaiting deletion */
642	if (atomic_read(&key->usage) == 0)
643		goto not_found;
644
645	/* this races with key_put(), but that doesn't matter since key_put()
646	 * doesn't actually change the key
647	 */
648	__key_get(key);
649
650error:
651	spin_unlock(&key_serial_lock);
652	return key;
653}
654
655/*
656 * Find and lock the specified key type against removal.
657 *
658 * We return with the sem read-locked if successful.  If the type wasn't
659 * available -ENOKEY is returned instead.
660 */
661struct key_type *key_type_lookup(const char *type)
662{
663	struct key_type *ktype;
664
665	down_read(&key_types_sem);
666
667	/* look up the key type to see if it's one of the registered kernel
668	 * types */
669	list_for_each_entry(ktype, &key_types_list, link) {
670		if (strcmp(ktype->name, type) == 0)
671			goto found_kernel_type;
672	}
673
674	up_read(&key_types_sem);
675	ktype = ERR_PTR(-ENOKEY);
676
677found_kernel_type:
678	return ktype;
679}
680
681void key_set_timeout(struct key *key, unsigned timeout)
682{
683	struct timespec now;
684	time_t expiry = 0;
685
686	/* make the changes with the locks held to prevent races */
687	down_write(&key->sem);
688
689	if (timeout > 0) {
690		now = current_kernel_time();
691		expiry = now.tv_sec + timeout;
692	}
693
694	key->expiry = expiry;
695	key_schedule_gc(key->expiry + key_gc_delay);
696
697	up_write(&key->sem);
698}
699EXPORT_SYMBOL_GPL(key_set_timeout);
700
701/*
702 * Unlock a key type locked by key_type_lookup().
703 */
704void key_type_put(struct key_type *ktype)
705{
706	up_read(&key_types_sem);
707}
708
709/*
710 * Attempt to update an existing key.
711 *
712 * The key is given to us with an incremented refcount that we need to discard
713 * if we get an error.
714 */
715static inline key_ref_t __key_update(key_ref_t key_ref,
716				     struct key_preparsed_payload *prep)
717{
718	struct key *key = key_ref_to_ptr(key_ref);
719	int ret;
720
721	/* need write permission on the key to update it */
722	ret = key_permission(key_ref, KEY_NEED_WRITE);
723	if (ret < 0)
724		goto error;
725
726	ret = -EEXIST;
727	if (!key->type->update)
728		goto error;
729
730	down_write(&key->sem);
731
732	ret = key->type->update(key, prep);
733	if (ret == 0)
734		/* updating a negative key instantiates it */
735		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
736
737	up_write(&key->sem);
738
739	if (ret < 0)
740		goto error;
741out:
742	return key_ref;
743
744error:
745	key_put(key);
746	key_ref = ERR_PTR(ret);
747	goto out;
748}
749
750/**
751 * key_create_or_update - Update or create and instantiate a key.
752 * @keyring_ref: A pointer to the destination keyring with possession flag.
753 * @type: The type of key.
754 * @description: The searchable description for the key.
755 * @payload: The data to use to instantiate or update the key.
756 * @plen: The length of @payload.
757 * @perm: The permissions mask for a new key.
758 * @flags: The quota flags for a new key.
759 *
760 * Search the destination keyring for a key of the same description and if one
761 * is found, update it, otherwise create and instantiate a new one and create a
762 * link to it from that keyring.
763 *
764 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
765 * concocted.
766 *
767 * Returns a pointer to the new key if successful, -ENODEV if the key type
768 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
769 * caller isn't permitted to modify the keyring or the LSM did not permit
770 * creation of the key.
771 *
772 * On success, the possession flag from the keyring ref will be tacked on to
773 * the key ref before it is returned.
774 */
775key_ref_t key_create_or_update(key_ref_t keyring_ref,
776			       const char *type,
777			       const char *description,
778			       const void *payload,
779			       size_t plen,
780			       key_perm_t perm,
781			       unsigned long flags)
782{
783	struct keyring_index_key index_key = {
784		.description	= description,
785	};
786	struct key_preparsed_payload prep;
787	struct assoc_array_edit *edit;
788	const struct cred *cred = current_cred();
789	struct key *keyring, *key = NULL;
790	key_ref_t key_ref;
791	int ret;
792
793	/* look up the key type to see if it's one of the registered kernel
794	 * types */
795	index_key.type = key_type_lookup(type);
796	if (IS_ERR(index_key.type)) {
797		key_ref = ERR_PTR(-ENODEV);
798		goto error;
799	}
800
801	key_ref = ERR_PTR(-EINVAL);
802	if (!index_key.type->instantiate ||
803	    (!index_key.description && !index_key.type->preparse))
804		goto error_put_type;
805
806	keyring = key_ref_to_ptr(keyring_ref);
807
808	key_check(keyring);
809
810	key_ref = ERR_PTR(-ENOTDIR);
811	if (keyring->type != &key_type_keyring)
812		goto error_put_type;
813
814	memset(&prep, 0, sizeof(prep));
815	prep.data = payload;
816	prep.datalen = plen;
817	prep.quotalen = index_key.type->def_datalen;
818	prep.trusted = flags & KEY_ALLOC_TRUSTED;
819	prep.expiry = TIME_T_MAX;
820	if (index_key.type->preparse) {
821		ret = index_key.type->preparse(&prep);
822		if (ret < 0) {
823			key_ref = ERR_PTR(ret);
824			goto error_free_prep;
825		}
826		if (!index_key.description)
827			index_key.description = prep.description;
828		key_ref = ERR_PTR(-EINVAL);
829		if (!index_key.description)
830			goto error_free_prep;
831	}
832	index_key.desc_len = strlen(index_key.description);
833
834	key_ref = ERR_PTR(-EPERM);
835	if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
836		goto error_free_prep;
837	flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
838
839	ret = __key_link_begin(keyring, &index_key, &edit);
840	if (ret < 0) {
841		key_ref = ERR_PTR(ret);
842		goto error_free_prep;
843	}
844
845	/* if we're going to allocate a new key, we're going to have
846	 * to modify the keyring */
847	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
848	if (ret < 0) {
849		key_ref = ERR_PTR(ret);
850		goto error_link_end;
851	}
852
853	/* if it's possible to update this type of key, search for an existing
854	 * key of the same type and description in the destination keyring and
855	 * update that instead if possible
856	 */
857	if (index_key.type->update) {
858		key_ref = find_key_to_update(keyring_ref, &index_key);
859		if (key_ref)
860			goto found_matching_key;
861	}
862
863	/* if the client doesn't provide, decide on the permissions we want */
864	if (perm == KEY_PERM_UNDEF) {
865		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
866		perm |= KEY_USR_VIEW;
867
868		if (index_key.type->read)
869			perm |= KEY_POS_READ;
870
871		if (index_key.type == &key_type_keyring ||
872		    index_key.type->update)
873			perm |= KEY_POS_WRITE;
874	}
875
876	/* allocate a new key */
877	key = key_alloc(index_key.type, index_key.description,
878			cred->fsuid, cred->fsgid, cred, perm, flags);
879	if (IS_ERR(key)) {
880		key_ref = ERR_CAST(key);
881		goto error_link_end;
882	}
883
884	/* instantiate it and link it into the target keyring */
885	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
886	if (ret < 0) {
887		key_put(key);
888		key_ref = ERR_PTR(ret);
889		goto error_link_end;
890	}
891
892	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
893
894error_link_end:
895	__key_link_end(keyring, &index_key, edit);
896error_free_prep:
897	if (index_key.type->preparse)
898		index_key.type->free_preparse(&prep);
899error_put_type:
900	key_type_put(index_key.type);
901error:
902	return key_ref;
903
904 found_matching_key:
905	/* we found a matching key, so we're going to try to update it
906	 * - we can drop the locks first as we have the key pinned
907	 */
908	__key_link_end(keyring, &index_key, edit);
909
910	key_ref = __key_update(key_ref, &prep);
911	goto error_free_prep;
912}
913EXPORT_SYMBOL(key_create_or_update);
914
915/**
916 * key_update - Update a key's contents.
917 * @key_ref: The pointer (plus possession flag) to the key.
918 * @payload: The data to be used to update the key.
919 * @plen: The length of @payload.
920 *
921 * Attempt to update the contents of a key with the given payload data.  The
922 * caller must be granted Write permission on the key.  Negative keys can be
923 * instantiated by this method.
924 *
925 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
926 * type does not support updating.  The key type may return other errors.
927 */
928int key_update(key_ref_t key_ref, const void *payload, size_t plen)
929{
930	struct key_preparsed_payload prep;
931	struct key *key = key_ref_to_ptr(key_ref);
932	int ret;
933
934	key_check(key);
935
936	/* the key must be writable */
937	ret = key_permission(key_ref, KEY_NEED_WRITE);
938	if (ret < 0)
939		goto error;
940
941	/* attempt to update it if supported */
942	ret = -EOPNOTSUPP;
943	if (!key->type->update)
944		goto error;
945
946	memset(&prep, 0, sizeof(prep));
947	prep.data = payload;
948	prep.datalen = plen;
949	prep.quotalen = key->type->def_datalen;
950	prep.expiry = TIME_T_MAX;
951	if (key->type->preparse) {
952		ret = key->type->preparse(&prep);
953		if (ret < 0)
954			goto error;
955	}
956
957	down_write(&key->sem);
958
959	ret = key->type->update(key, &prep);
960	if (ret == 0)
961		/* updating a negative key instantiates it */
962		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
963
964	up_write(&key->sem);
965
966error:
967	if (key->type->preparse)
968		key->type->free_preparse(&prep);
969	return ret;
970}
971EXPORT_SYMBOL(key_update);
972
973/**
974 * key_revoke - Revoke a key.
975 * @key: The key to be revoked.
976 *
977 * Mark a key as being revoked and ask the type to free up its resources.  The
978 * revocation timeout is set and the key and all its links will be
979 * automatically garbage collected after key_gc_delay amount of time if they
980 * are not manually dealt with first.
981 */
982void key_revoke(struct key *key)
983{
984	struct timespec now;
985	time_t time;
986
987	key_check(key);
988
989	/* make sure no one's trying to change or use the key when we mark it
990	 * - we tell lockdep that we might nest because we might be revoking an
991	 *   authorisation key whilst holding the sem on a key we've just
992	 *   instantiated
993	 */
994	down_write_nested(&key->sem, 1);
995	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
996	    key->type->revoke)
997		key->type->revoke(key);
998
999	/* set the death time to no more than the expiry time */
1000	now = current_kernel_time();
1001	time = now.tv_sec;
1002	if (key->revoked_at == 0 || key->revoked_at > time) {
1003		key->revoked_at = time;
1004		key_schedule_gc(key->revoked_at + key_gc_delay);
1005	}
1006
1007	up_write(&key->sem);
1008}
1009EXPORT_SYMBOL(key_revoke);
1010
1011/**
1012 * key_invalidate - Invalidate a key.
1013 * @key: The key to be invalidated.
1014 *
1015 * Mark a key as being invalidated and have it cleaned up immediately.  The key
1016 * is ignored by all searches and other operations from this point.
1017 */
1018void key_invalidate(struct key *key)
1019{
1020	kenter("%d", key_serial(key));
1021
1022	key_check(key);
1023
1024	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1025		down_write_nested(&key->sem, 1);
1026		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1027			key_schedule_gc_links();
1028		up_write(&key->sem);
1029	}
1030}
1031EXPORT_SYMBOL(key_invalidate);
1032
1033/**
1034 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1035 * @key: The key to be instantiated
1036 * @prep: The preparsed data to load.
1037 *
1038 * Instantiate a key from preparsed data.  We assume we can just copy the data
1039 * in directly and clear the old pointers.
1040 *
1041 * This can be pointed to directly by the key type instantiate op pointer.
1042 */
1043int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1044{
1045	int ret;
1046
1047	pr_devel("==>%s()\n", __func__);
1048
1049	ret = key_payload_reserve(key, prep->quotalen);
1050	if (ret == 0) {
1051		key->type_data.p[0] = prep->type_data[0];
1052		key->type_data.p[1] = prep->type_data[1];
1053		rcu_assign_keypointer(key, prep->payload[0]);
1054		key->payload.data2[1] = prep->payload[1];
1055		prep->type_data[0] = NULL;
1056		prep->type_data[1] = NULL;
1057		prep->payload[0] = NULL;
1058		prep->payload[1] = NULL;
1059	}
1060	pr_devel("<==%s() = %d\n", __func__, ret);
1061	return ret;
1062}
1063EXPORT_SYMBOL(generic_key_instantiate);
1064
1065/**
1066 * register_key_type - Register a type of key.
1067 * @ktype: The new key type.
1068 *
1069 * Register a new key type.
1070 *
1071 * Returns 0 on success or -EEXIST if a type of this name already exists.
1072 */
1073int register_key_type(struct key_type *ktype)
1074{
1075	struct key_type *p;
1076	int ret;
1077
1078	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1079
1080	ret = -EEXIST;
1081	down_write(&key_types_sem);
1082
1083	/* disallow key types with the same name */
1084	list_for_each_entry(p, &key_types_list, link) {
1085		if (strcmp(p->name, ktype->name) == 0)
1086			goto out;
1087	}
1088
1089	/* store the type */
1090	list_add(&ktype->link, &key_types_list);
1091
1092	pr_notice("Key type %s registered\n", ktype->name);
1093	ret = 0;
1094
1095out:
1096	up_write(&key_types_sem);
1097	return ret;
1098}
1099EXPORT_SYMBOL(register_key_type);
1100
1101/**
1102 * unregister_key_type - Unregister a type of key.
1103 * @ktype: The key type.
1104 *
1105 * Unregister a key type and mark all the extant keys of this type as dead.
1106 * Those keys of this type are then destroyed to get rid of their payloads and
1107 * they and their links will be garbage collected as soon as possible.
1108 */
1109void unregister_key_type(struct key_type *ktype)
1110{
1111	down_write(&key_types_sem);
1112	list_del_init(&ktype->link);
1113	downgrade_write(&key_types_sem);
1114	key_gc_keytype(ktype);
1115	pr_notice("Key type %s unregistered\n", ktype->name);
1116	up_read(&key_types_sem);
1117}
1118EXPORT_SYMBOL(unregister_key_type);
1119
1120/*
1121 * Initialise the key management state.
1122 */
1123void __init key_init(void)
1124{
1125	/* allocate a slab in which we can store keys */
1126	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1127			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1128
1129	/* add the special key types */
1130	list_add_tail(&key_type_keyring.link, &key_types_list);
1131	list_add_tail(&key_type_dead.link, &key_types_list);
1132	list_add_tail(&key_type_user.link, &key_types_list);
1133	list_add_tail(&key_type_logon.link, &key_types_list);
1134
1135	/* record the root user tracking */
1136	rb_link_node(&root_key_user.node,
1137		     NULL,
1138		     &key_user_tree.rb_node);
1139
1140	rb_insert_color(&root_key_user.node,
1141			&key_user_tree);
1142}
1143