services.c revision 811f3799279e567aa354c649ce22688d949ac7a9
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 *	     James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 *	Support for enhanced MLS infrastructure.
10 *	Support for context based audit filters.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 *	Added conditional policy language extensions
15 *
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
17 *
18 *      Added support for NetLabel
19 *      Added support for the policy capability bitmap
20 *
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 *  Added validation of kernel classes and permissions
24 *
25 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29 *	This program is free software; you can redistribute it and/or modify
30 *	it under the terms of the GNU General Public License as published by
31 *	the Free Software Foundation, version 2.
32 */
33#include <linux/kernel.h>
34#include <linux/slab.h>
35#include <linux/string.h>
36#include <linux/spinlock.h>
37#include <linux/rcupdate.h>
38#include <linux/errno.h>
39#include <linux/in.h>
40#include <linux/sched.h>
41#include <linux/audit.h>
42#include <linux/mutex.h>
43#include <linux/selinux.h>
44#include <net/netlabel.h>
45
46#include "flask.h"
47#include "avc.h"
48#include "avc_ss.h"
49#include "security.h"
50#include "context.h"
51#include "policydb.h"
52#include "sidtab.h"
53#include "services.h"
54#include "conditional.h"
55#include "mls.h"
56#include "objsec.h"
57#include "netlabel.h"
58#include "xfrm.h"
59#include "ebitmap.h"
60#include "audit.h"
61
62extern void selnl_notify_policyload(u32 seqno);
63unsigned int policydb_loaded_version;
64
65int selinux_policycap_netpeer;
66int selinux_policycap_openperm;
67
68/*
69 * This is declared in avc.c
70 */
71extern const struct selinux_class_perm selinux_class_perm;
72
73static DEFINE_RWLOCK(policy_rwlock);
74
75static struct sidtab sidtab;
76struct policydb policydb;
77int ss_initialized;
78
79/*
80 * The largest sequence number that has been used when
81 * providing an access decision to the access vector cache.
82 * The sequence number only changes when a policy change
83 * occurs.
84 */
85static u32 latest_granting;
86
87/* Forward declaration. */
88static int context_struct_to_string(struct context *context, char **scontext,
89				    u32 *scontext_len);
90
91/*
92 * Return the boolean value of a constraint expression
93 * when it is applied to the specified source and target
94 * security contexts.
95 *
96 * xcontext is a special beast...  It is used by the validatetrans rules
97 * only.  For these rules, scontext is the context before the transition,
98 * tcontext is the context after the transition, and xcontext is the context
99 * of the process performing the transition.  All other callers of
100 * constraint_expr_eval should pass in NULL for xcontext.
101 */
102static int constraint_expr_eval(struct context *scontext,
103				struct context *tcontext,
104				struct context *xcontext,
105				struct constraint_expr *cexpr)
106{
107	u32 val1, val2;
108	struct context *c;
109	struct role_datum *r1, *r2;
110	struct mls_level *l1, *l2;
111	struct constraint_expr *e;
112	int s[CEXPR_MAXDEPTH];
113	int sp = -1;
114
115	for (e = cexpr; e; e = e->next) {
116		switch (e->expr_type) {
117		case CEXPR_NOT:
118			BUG_ON(sp < 0);
119			s[sp] = !s[sp];
120			break;
121		case CEXPR_AND:
122			BUG_ON(sp < 1);
123			sp--;
124			s[sp] &= s[sp+1];
125			break;
126		case CEXPR_OR:
127			BUG_ON(sp < 1);
128			sp--;
129			s[sp] |= s[sp+1];
130			break;
131		case CEXPR_ATTR:
132			if (sp == (CEXPR_MAXDEPTH-1))
133				return 0;
134			switch (e->attr) {
135			case CEXPR_USER:
136				val1 = scontext->user;
137				val2 = tcontext->user;
138				break;
139			case CEXPR_TYPE:
140				val1 = scontext->type;
141				val2 = tcontext->type;
142				break;
143			case CEXPR_ROLE:
144				val1 = scontext->role;
145				val2 = tcontext->role;
146				r1 = policydb.role_val_to_struct[val1 - 1];
147				r2 = policydb.role_val_to_struct[val2 - 1];
148				switch (e->op) {
149				case CEXPR_DOM:
150					s[++sp] = ebitmap_get_bit(&r1->dominates,
151								  val2 - 1);
152					continue;
153				case CEXPR_DOMBY:
154					s[++sp] = ebitmap_get_bit(&r2->dominates,
155								  val1 - 1);
156					continue;
157				case CEXPR_INCOMP:
158					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
159								    val2 - 1) &&
160						   !ebitmap_get_bit(&r2->dominates,
161								    val1 - 1));
162					continue;
163				default:
164					break;
165				}
166				break;
167			case CEXPR_L1L2:
168				l1 = &(scontext->range.level[0]);
169				l2 = &(tcontext->range.level[0]);
170				goto mls_ops;
171			case CEXPR_L1H2:
172				l1 = &(scontext->range.level[0]);
173				l2 = &(tcontext->range.level[1]);
174				goto mls_ops;
175			case CEXPR_H1L2:
176				l1 = &(scontext->range.level[1]);
177				l2 = &(tcontext->range.level[0]);
178				goto mls_ops;
179			case CEXPR_H1H2:
180				l1 = &(scontext->range.level[1]);
181				l2 = &(tcontext->range.level[1]);
182				goto mls_ops;
183			case CEXPR_L1H1:
184				l1 = &(scontext->range.level[0]);
185				l2 = &(scontext->range.level[1]);
186				goto mls_ops;
187			case CEXPR_L2H2:
188				l1 = &(tcontext->range.level[0]);
189				l2 = &(tcontext->range.level[1]);
190				goto mls_ops;
191mls_ops:
192			switch (e->op) {
193			case CEXPR_EQ:
194				s[++sp] = mls_level_eq(l1, l2);
195				continue;
196			case CEXPR_NEQ:
197				s[++sp] = !mls_level_eq(l1, l2);
198				continue;
199			case CEXPR_DOM:
200				s[++sp] = mls_level_dom(l1, l2);
201				continue;
202			case CEXPR_DOMBY:
203				s[++sp] = mls_level_dom(l2, l1);
204				continue;
205			case CEXPR_INCOMP:
206				s[++sp] = mls_level_incomp(l2, l1);
207				continue;
208			default:
209				BUG();
210				return 0;
211			}
212			break;
213			default:
214				BUG();
215				return 0;
216			}
217
218			switch (e->op) {
219			case CEXPR_EQ:
220				s[++sp] = (val1 == val2);
221				break;
222			case CEXPR_NEQ:
223				s[++sp] = (val1 != val2);
224				break;
225			default:
226				BUG();
227				return 0;
228			}
229			break;
230		case CEXPR_NAMES:
231			if (sp == (CEXPR_MAXDEPTH-1))
232				return 0;
233			c = scontext;
234			if (e->attr & CEXPR_TARGET)
235				c = tcontext;
236			else if (e->attr & CEXPR_XTARGET) {
237				c = xcontext;
238				if (!c) {
239					BUG();
240					return 0;
241				}
242			}
243			if (e->attr & CEXPR_USER)
244				val1 = c->user;
245			else if (e->attr & CEXPR_ROLE)
246				val1 = c->role;
247			else if (e->attr & CEXPR_TYPE)
248				val1 = c->type;
249			else {
250				BUG();
251				return 0;
252			}
253
254			switch (e->op) {
255			case CEXPR_EQ:
256				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
257				break;
258			case CEXPR_NEQ:
259				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
260				break;
261			default:
262				BUG();
263				return 0;
264			}
265			break;
266		default:
267			BUG();
268			return 0;
269		}
270	}
271
272	BUG_ON(sp != 0);
273	return s[0];
274}
275
276/*
277 * Compute access vectors based on a context structure pair for
278 * the permissions in a particular class.
279 */
280static int context_struct_compute_av(struct context *scontext,
281				     struct context *tcontext,
282				     u16 tclass,
283				     u32 requested,
284				     struct av_decision *avd)
285{
286	struct constraint_node *constraint;
287	struct role_allow *ra;
288	struct avtab_key avkey;
289	struct avtab_node *node;
290	struct class_datum *tclass_datum;
291	struct ebitmap *sattr, *tattr;
292	struct ebitmap_node *snode, *tnode;
293	const struct selinux_class_perm *kdefs = &selinux_class_perm;
294	unsigned int i, j;
295
296	/*
297	 * Remap extended Netlink classes for old policy versions.
298	 * Do this here rather than socket_type_to_security_class()
299	 * in case a newer policy version is loaded, allowing sockets
300	 * to remain in the correct class.
301	 */
302	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
303		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
304		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
305			tclass = SECCLASS_NETLINK_SOCKET;
306
307	/*
308	 * Initialize the access vectors to the default values.
309	 */
310	avd->allowed = 0;
311	avd->decided = 0xffffffff;
312	avd->auditallow = 0;
313	avd->auditdeny = 0xffffffff;
314	avd->seqno = latest_granting;
315
316	/*
317	 * Check for all the invalid cases.
318	 * - tclass 0
319	 * - tclass > policy and > kernel
320	 * - tclass > policy but is a userspace class
321	 * - tclass > policy but we do not allow unknowns
322	 */
323	if (unlikely(!tclass))
324		goto inval_class;
325	if (unlikely(tclass > policydb.p_classes.nprim))
326		if (tclass > kdefs->cts_len ||
327		    !kdefs->class_to_string[tclass] ||
328		    !policydb.allow_unknown)
329			goto inval_class;
330
331	/*
332	 * Kernel class and we allow unknown so pad the allow decision
333	 * the pad will be all 1 for unknown classes.
334	 */
335	if (tclass <= kdefs->cts_len && policydb.allow_unknown)
336		avd->allowed = policydb.undefined_perms[tclass - 1];
337
338	/*
339	 * Not in policy. Since decision is completed (all 1 or all 0) return.
340	 */
341	if (unlikely(tclass > policydb.p_classes.nprim))
342		return 0;
343
344	tclass_datum = policydb.class_val_to_struct[tclass - 1];
345
346	/*
347	 * If a specific type enforcement rule was defined for
348	 * this permission check, then use it.
349	 */
350	avkey.target_class = tclass;
351	avkey.specified = AVTAB_AV;
352	sattr = &policydb.type_attr_map[scontext->type - 1];
353	tattr = &policydb.type_attr_map[tcontext->type - 1];
354	ebitmap_for_each_positive_bit(sattr, snode, i) {
355		ebitmap_for_each_positive_bit(tattr, tnode, j) {
356			avkey.source_type = i + 1;
357			avkey.target_type = j + 1;
358			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
359			     node != NULL;
360			     node = avtab_search_node_next(node, avkey.specified)) {
361				if (node->key.specified == AVTAB_ALLOWED)
362					avd->allowed |= node->datum.data;
363				else if (node->key.specified == AVTAB_AUDITALLOW)
364					avd->auditallow |= node->datum.data;
365				else if (node->key.specified == AVTAB_AUDITDENY)
366					avd->auditdeny &= node->datum.data;
367			}
368
369			/* Check conditional av table for additional permissions */
370			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
371
372		}
373	}
374
375	/*
376	 * Remove any permissions prohibited by a constraint (this includes
377	 * the MLS policy).
378	 */
379	constraint = tclass_datum->constraints;
380	while (constraint) {
381		if ((constraint->permissions & (avd->allowed)) &&
382		    !constraint_expr_eval(scontext, tcontext, NULL,
383					  constraint->expr)) {
384			avd->allowed = (avd->allowed) & ~(constraint->permissions);
385		}
386		constraint = constraint->next;
387	}
388
389	/*
390	 * If checking process transition permission and the
391	 * role is changing, then check the (current_role, new_role)
392	 * pair.
393	 */
394	if (tclass == SECCLASS_PROCESS &&
395	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
396	    scontext->role != tcontext->role) {
397		for (ra = policydb.role_allow; ra; ra = ra->next) {
398			if (scontext->role == ra->role &&
399			    tcontext->role == ra->new_role)
400				break;
401		}
402		if (!ra)
403			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
404							PROCESS__DYNTRANSITION);
405	}
406
407	return 0;
408
409inval_class:
410	if (!tclass || tclass > kdefs->cts_len ||
411	    !kdefs->class_to_string[tclass]) {
412		if (printk_ratelimit())
413			printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
414			       __func__, tclass);
415		return -EINVAL;
416	}
417
418	/*
419	 * Known to the kernel, but not to the policy.
420	 * Handle as a denial (allowed is 0).
421	 */
422	return 0;
423}
424
425/*
426 * Given a sid find if the type has the permissive flag set
427 */
428int security_permissive_sid(u32 sid)
429{
430	struct context *context;
431	u32 type;
432	int rc;
433
434	read_lock(&policy_rwlock);
435
436	context = sidtab_search(&sidtab, sid);
437	BUG_ON(!context);
438
439	type = context->type;
440	/*
441	 * we are intentionally using type here, not type-1, the 0th bit may
442	 * someday indicate that we are globally setting permissive in policy.
443	 */
444	rc = ebitmap_get_bit(&policydb.permissive_map, type);
445
446	read_unlock(&policy_rwlock);
447	return rc;
448}
449
450static int security_validtrans_handle_fail(struct context *ocontext,
451					   struct context *ncontext,
452					   struct context *tcontext,
453					   u16 tclass)
454{
455	char *o = NULL, *n = NULL, *t = NULL;
456	u32 olen, nlen, tlen;
457
458	if (context_struct_to_string(ocontext, &o, &olen) < 0)
459		goto out;
460	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
461		goto out;
462	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
463		goto out;
464	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
465		  "security_validate_transition:  denied for"
466		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
467		  o, n, t, policydb.p_class_val_to_name[tclass-1]);
468out:
469	kfree(o);
470	kfree(n);
471	kfree(t);
472
473	if (!selinux_enforcing)
474		return 0;
475	return -EPERM;
476}
477
478int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
479				 u16 tclass)
480{
481	struct context *ocontext;
482	struct context *ncontext;
483	struct context *tcontext;
484	struct class_datum *tclass_datum;
485	struct constraint_node *constraint;
486	int rc = 0;
487
488	if (!ss_initialized)
489		return 0;
490
491	read_lock(&policy_rwlock);
492
493	/*
494	 * Remap extended Netlink classes for old policy versions.
495	 * Do this here rather than socket_type_to_security_class()
496	 * in case a newer policy version is loaded, allowing sockets
497	 * to remain in the correct class.
498	 */
499	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
500		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
501		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
502			tclass = SECCLASS_NETLINK_SOCKET;
503
504	if (!tclass || tclass > policydb.p_classes.nprim) {
505		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
506			__func__, tclass);
507		rc = -EINVAL;
508		goto out;
509	}
510	tclass_datum = policydb.class_val_to_struct[tclass - 1];
511
512	ocontext = sidtab_search(&sidtab, oldsid);
513	if (!ocontext) {
514		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
515			__func__, oldsid);
516		rc = -EINVAL;
517		goto out;
518	}
519
520	ncontext = sidtab_search(&sidtab, newsid);
521	if (!ncontext) {
522		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
523			__func__, newsid);
524		rc = -EINVAL;
525		goto out;
526	}
527
528	tcontext = sidtab_search(&sidtab, tasksid);
529	if (!tcontext) {
530		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
531			__func__, tasksid);
532		rc = -EINVAL;
533		goto out;
534	}
535
536	constraint = tclass_datum->validatetrans;
537	while (constraint) {
538		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
539					  constraint->expr)) {
540			rc = security_validtrans_handle_fail(ocontext, ncontext,
541							     tcontext, tclass);
542			goto out;
543		}
544		constraint = constraint->next;
545	}
546
547out:
548	read_unlock(&policy_rwlock);
549	return rc;
550}
551
552/**
553 * security_compute_av - Compute access vector decisions.
554 * @ssid: source security identifier
555 * @tsid: target security identifier
556 * @tclass: target security class
557 * @requested: requested permissions
558 * @avd: access vector decisions
559 *
560 * Compute a set of access vector decisions based on the
561 * SID pair (@ssid, @tsid) for the permissions in @tclass.
562 * Return -%EINVAL if any of the parameters are invalid or %0
563 * if the access vector decisions were computed successfully.
564 */
565int security_compute_av(u32 ssid,
566			u32 tsid,
567			u16 tclass,
568			u32 requested,
569			struct av_decision *avd)
570{
571	struct context *scontext = NULL, *tcontext = NULL;
572	int rc = 0;
573
574	if (!ss_initialized) {
575		avd->allowed = 0xffffffff;
576		avd->decided = 0xffffffff;
577		avd->auditallow = 0;
578		avd->auditdeny = 0xffffffff;
579		avd->seqno = latest_granting;
580		return 0;
581	}
582
583	read_lock(&policy_rwlock);
584
585	scontext = sidtab_search(&sidtab, ssid);
586	if (!scontext) {
587		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
588		       __func__, ssid);
589		rc = -EINVAL;
590		goto out;
591	}
592	tcontext = sidtab_search(&sidtab, tsid);
593	if (!tcontext) {
594		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
595		       __func__, tsid);
596		rc = -EINVAL;
597		goto out;
598	}
599
600	rc = context_struct_compute_av(scontext, tcontext, tclass,
601				       requested, avd);
602out:
603	read_unlock(&policy_rwlock);
604	return rc;
605}
606
607/*
608 * Write the security context string representation of
609 * the context structure `context' into a dynamically
610 * allocated string of the correct size.  Set `*scontext'
611 * to point to this string and set `*scontext_len' to
612 * the length of the string.
613 */
614static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
615{
616	char *scontextp;
617
618	*scontext = NULL;
619	*scontext_len = 0;
620
621	if (context->len) {
622		*scontext_len = context->len;
623		*scontext = kstrdup(context->str, GFP_ATOMIC);
624		if (!(*scontext))
625			return -ENOMEM;
626		return 0;
627	}
628
629	/* Compute the size of the context. */
630	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
631	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
632	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
633	*scontext_len += mls_compute_context_len(context);
634
635	/* Allocate space for the context; caller must free this space. */
636	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
637	if (!scontextp)
638		return -ENOMEM;
639	*scontext = scontextp;
640
641	/*
642	 * Copy the user name, role name and type name into the context.
643	 */
644	sprintf(scontextp, "%s:%s:%s",
645		policydb.p_user_val_to_name[context->user - 1],
646		policydb.p_role_val_to_name[context->role - 1],
647		policydb.p_type_val_to_name[context->type - 1]);
648	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
649		     1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
650		     1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
651
652	mls_sid_to_context(context, &scontextp);
653
654	*scontextp = 0;
655
656	return 0;
657}
658
659#include "initial_sid_to_string.h"
660
661const char *security_get_initial_sid_context(u32 sid)
662{
663	if (unlikely(sid > SECINITSID_NUM))
664		return NULL;
665	return initial_sid_to_string[sid];
666}
667
668static int security_sid_to_context_core(u32 sid, char **scontext,
669					u32 *scontext_len, int force)
670{
671	struct context *context;
672	int rc = 0;
673
674	*scontext = NULL;
675	*scontext_len  = 0;
676
677	if (!ss_initialized) {
678		if (sid <= SECINITSID_NUM) {
679			char *scontextp;
680
681			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
682			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
683			if (!scontextp) {
684				rc = -ENOMEM;
685				goto out;
686			}
687			strcpy(scontextp, initial_sid_to_string[sid]);
688			*scontext = scontextp;
689			goto out;
690		}
691		printk(KERN_ERR "SELinux: %s:  called before initial "
692		       "load_policy on unknown SID %d\n", __func__, sid);
693		rc = -EINVAL;
694		goto out;
695	}
696	read_lock(&policy_rwlock);
697	if (force)
698		context = sidtab_search_force(&sidtab, sid);
699	else
700		context = sidtab_search(&sidtab, sid);
701	if (!context) {
702		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
703			__func__, sid);
704		rc = -EINVAL;
705		goto out_unlock;
706	}
707	rc = context_struct_to_string(context, scontext, scontext_len);
708out_unlock:
709	read_unlock(&policy_rwlock);
710out:
711	return rc;
712
713}
714
715/**
716 * security_sid_to_context - Obtain a context for a given SID.
717 * @sid: security identifier, SID
718 * @scontext: security context
719 * @scontext_len: length in bytes
720 *
721 * Write the string representation of the context associated with @sid
722 * into a dynamically allocated string of the correct size.  Set @scontext
723 * to point to this string and set @scontext_len to the length of the string.
724 */
725int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
726{
727	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
728}
729
730int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
731{
732	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
733}
734
735/*
736 * Caveat:  Mutates scontext.
737 */
738static int string_to_context_struct(struct policydb *pol,
739				    struct sidtab *sidtabp,
740				    char *scontext,
741				    u32 scontext_len,
742				    struct context *ctx,
743				    u32 def_sid)
744{
745	struct role_datum *role;
746	struct type_datum *typdatum;
747	struct user_datum *usrdatum;
748	char *scontextp, *p, oldc;
749	int rc = 0;
750
751	context_init(ctx);
752
753	/* Parse the security context. */
754
755	rc = -EINVAL;
756	scontextp = (char *) scontext;
757
758	/* Extract the user. */
759	p = scontextp;
760	while (*p && *p != ':')
761		p++;
762
763	if (*p == 0)
764		goto out;
765
766	*p++ = 0;
767
768	usrdatum = hashtab_search(pol->p_users.table, scontextp);
769	if (!usrdatum)
770		goto out;
771
772	ctx->user = usrdatum->value;
773
774	/* Extract role. */
775	scontextp = p;
776	while (*p && *p != ':')
777		p++;
778
779	if (*p == 0)
780		goto out;
781
782	*p++ = 0;
783
784	role = hashtab_search(pol->p_roles.table, scontextp);
785	if (!role)
786		goto out;
787	ctx->role = role->value;
788
789	/* Extract type. */
790	scontextp = p;
791	while (*p && *p != ':')
792		p++;
793	oldc = *p;
794	*p++ = 0;
795
796	typdatum = hashtab_search(pol->p_types.table, scontextp);
797	if (!typdatum)
798		goto out;
799
800	ctx->type = typdatum->value;
801
802	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
803	if (rc)
804		goto out;
805
806	if ((p - scontext) < scontext_len) {
807		rc = -EINVAL;
808		goto out;
809	}
810
811	/* Check the validity of the new context. */
812	if (!policydb_context_isvalid(pol, ctx)) {
813		rc = -EINVAL;
814		context_destroy(ctx);
815		goto out;
816	}
817	rc = 0;
818out:
819	return rc;
820}
821
822static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
823					u32 *sid, u32 def_sid, gfp_t gfp_flags,
824					int force)
825{
826	char *scontext2, *str = NULL;
827	struct context context;
828	int rc = 0;
829
830	if (!ss_initialized) {
831		int i;
832
833		for (i = 1; i < SECINITSID_NUM; i++) {
834			if (!strcmp(initial_sid_to_string[i], scontext)) {
835				*sid = i;
836				return 0;
837			}
838		}
839		*sid = SECINITSID_KERNEL;
840		return 0;
841	}
842	*sid = SECSID_NULL;
843
844	/* Copy the string so that we can modify the copy as we parse it. */
845	scontext2 = kmalloc(scontext_len+1, gfp_flags);
846	if (!scontext2)
847		return -ENOMEM;
848	memcpy(scontext2, scontext, scontext_len);
849	scontext2[scontext_len] = 0;
850
851	if (force) {
852		/* Save another copy for storing in uninterpreted form */
853		str = kstrdup(scontext2, gfp_flags);
854		if (!str) {
855			kfree(scontext2);
856			return -ENOMEM;
857		}
858	}
859
860	read_lock(&policy_rwlock);
861	rc = string_to_context_struct(&policydb, &sidtab,
862				      scontext2, scontext_len,
863				      &context, def_sid);
864	if (rc == -EINVAL && force) {
865		context.str = str;
866		context.len = scontext_len;
867		str = NULL;
868	} else if (rc)
869		goto out;
870	rc = sidtab_context_to_sid(&sidtab, &context, sid);
871	if (rc)
872		context_destroy(&context);
873out:
874	read_unlock(&policy_rwlock);
875	kfree(scontext2);
876	kfree(str);
877	return rc;
878}
879
880/**
881 * security_context_to_sid - Obtain a SID for a given security context.
882 * @scontext: security context
883 * @scontext_len: length in bytes
884 * @sid: security identifier, SID
885 *
886 * Obtains a SID associated with the security context that
887 * has the string representation specified by @scontext.
888 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
889 * memory is available, or 0 on success.
890 */
891int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
892{
893	return security_context_to_sid_core(scontext, scontext_len,
894					    sid, SECSID_NULL, GFP_KERNEL, 0);
895}
896
897/**
898 * security_context_to_sid_default - Obtain a SID for a given security context,
899 * falling back to specified default if needed.
900 *
901 * @scontext: security context
902 * @scontext_len: length in bytes
903 * @sid: security identifier, SID
904 * @def_sid: default SID to assign on error
905 *
906 * Obtains a SID associated with the security context that
907 * has the string representation specified by @scontext.
908 * The default SID is passed to the MLS layer to be used to allow
909 * kernel labeling of the MLS field if the MLS field is not present
910 * (for upgrading to MLS without full relabel).
911 * Implicitly forces adding of the context even if it cannot be mapped yet.
912 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
913 * memory is available, or 0 on success.
914 */
915int security_context_to_sid_default(const char *scontext, u32 scontext_len,
916				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
917{
918	return security_context_to_sid_core(scontext, scontext_len,
919					    sid, def_sid, gfp_flags, 1);
920}
921
922int security_context_to_sid_force(const char *scontext, u32 scontext_len,
923				  u32 *sid)
924{
925	return security_context_to_sid_core(scontext, scontext_len,
926					    sid, SECSID_NULL, GFP_KERNEL, 1);
927}
928
929static int compute_sid_handle_invalid_context(
930	struct context *scontext,
931	struct context *tcontext,
932	u16 tclass,
933	struct context *newcontext)
934{
935	char *s = NULL, *t = NULL, *n = NULL;
936	u32 slen, tlen, nlen;
937
938	if (context_struct_to_string(scontext, &s, &slen) < 0)
939		goto out;
940	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
941		goto out;
942	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
943		goto out;
944	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
945		  "security_compute_sid:  invalid context %s"
946		  " for scontext=%s"
947		  " tcontext=%s"
948		  " tclass=%s",
949		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
950out:
951	kfree(s);
952	kfree(t);
953	kfree(n);
954	if (!selinux_enforcing)
955		return 0;
956	return -EACCES;
957}
958
959static int security_compute_sid(u32 ssid,
960				u32 tsid,
961				u16 tclass,
962				u32 specified,
963				u32 *out_sid)
964{
965	struct context *scontext = NULL, *tcontext = NULL, newcontext;
966	struct role_trans *roletr = NULL;
967	struct avtab_key avkey;
968	struct avtab_datum *avdatum;
969	struct avtab_node *node;
970	int rc = 0;
971
972	if (!ss_initialized) {
973		switch (tclass) {
974		case SECCLASS_PROCESS:
975			*out_sid = ssid;
976			break;
977		default:
978			*out_sid = tsid;
979			break;
980		}
981		goto out;
982	}
983
984	context_init(&newcontext);
985
986	read_lock(&policy_rwlock);
987
988	scontext = sidtab_search(&sidtab, ssid);
989	if (!scontext) {
990		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
991		       __func__, ssid);
992		rc = -EINVAL;
993		goto out_unlock;
994	}
995	tcontext = sidtab_search(&sidtab, tsid);
996	if (!tcontext) {
997		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
998		       __func__, tsid);
999		rc = -EINVAL;
1000		goto out_unlock;
1001	}
1002
1003	/* Set the user identity. */
1004	switch (specified) {
1005	case AVTAB_TRANSITION:
1006	case AVTAB_CHANGE:
1007		/* Use the process user identity. */
1008		newcontext.user = scontext->user;
1009		break;
1010	case AVTAB_MEMBER:
1011		/* Use the related object owner. */
1012		newcontext.user = tcontext->user;
1013		break;
1014	}
1015
1016	/* Set the role and type to default values. */
1017	switch (tclass) {
1018	case SECCLASS_PROCESS:
1019		/* Use the current role and type of process. */
1020		newcontext.role = scontext->role;
1021		newcontext.type = scontext->type;
1022		break;
1023	default:
1024		/* Use the well-defined object role. */
1025		newcontext.role = OBJECT_R_VAL;
1026		/* Use the type of the related object. */
1027		newcontext.type = tcontext->type;
1028	}
1029
1030	/* Look for a type transition/member/change rule. */
1031	avkey.source_type = scontext->type;
1032	avkey.target_type = tcontext->type;
1033	avkey.target_class = tclass;
1034	avkey.specified = specified;
1035	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1036
1037	/* If no permanent rule, also check for enabled conditional rules */
1038	if (!avdatum) {
1039		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1040		for (; node != NULL; node = avtab_search_node_next(node, specified)) {
1041			if (node->key.specified & AVTAB_ENABLED) {
1042				avdatum = &node->datum;
1043				break;
1044			}
1045		}
1046	}
1047
1048	if (avdatum) {
1049		/* Use the type from the type transition/member/change rule. */
1050		newcontext.type = avdatum->data;
1051	}
1052
1053	/* Check for class-specific changes. */
1054	switch (tclass) {
1055	case SECCLASS_PROCESS:
1056		if (specified & AVTAB_TRANSITION) {
1057			/* Look for a role transition rule. */
1058			for (roletr = policydb.role_tr; roletr;
1059			     roletr = roletr->next) {
1060				if (roletr->role == scontext->role &&
1061				    roletr->type == tcontext->type) {
1062					/* Use the role transition rule. */
1063					newcontext.role = roletr->new_role;
1064					break;
1065				}
1066			}
1067		}
1068		break;
1069	default:
1070		break;
1071	}
1072
1073	/* Set the MLS attributes.
1074	   This is done last because it may allocate memory. */
1075	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1076	if (rc)
1077		goto out_unlock;
1078
1079	/* Check the validity of the context. */
1080	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1081		rc = compute_sid_handle_invalid_context(scontext,
1082							tcontext,
1083							tclass,
1084							&newcontext);
1085		if (rc)
1086			goto out_unlock;
1087	}
1088	/* Obtain the sid for the context. */
1089	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1090out_unlock:
1091	read_unlock(&policy_rwlock);
1092	context_destroy(&newcontext);
1093out:
1094	return rc;
1095}
1096
1097/**
1098 * security_transition_sid - Compute the SID for a new subject/object.
1099 * @ssid: source security identifier
1100 * @tsid: target security identifier
1101 * @tclass: target security class
1102 * @out_sid: security identifier for new subject/object
1103 *
1104 * Compute a SID to use for labeling a new subject or object in the
1105 * class @tclass based on a SID pair (@ssid, @tsid).
1106 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1107 * if insufficient memory is available, or %0 if the new SID was
1108 * computed successfully.
1109 */
1110int security_transition_sid(u32 ssid,
1111			    u32 tsid,
1112			    u16 tclass,
1113			    u32 *out_sid)
1114{
1115	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1116}
1117
1118/**
1119 * security_member_sid - Compute the SID for member selection.
1120 * @ssid: source security identifier
1121 * @tsid: target security identifier
1122 * @tclass: target security class
1123 * @out_sid: security identifier for selected member
1124 *
1125 * Compute a SID to use when selecting a member of a polyinstantiated
1126 * object of class @tclass based on a SID pair (@ssid, @tsid).
1127 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1128 * if insufficient memory is available, or %0 if the SID was
1129 * computed successfully.
1130 */
1131int security_member_sid(u32 ssid,
1132			u32 tsid,
1133			u16 tclass,
1134			u32 *out_sid)
1135{
1136	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1137}
1138
1139/**
1140 * security_change_sid - Compute the SID for object relabeling.
1141 * @ssid: source security identifier
1142 * @tsid: target security identifier
1143 * @tclass: target security class
1144 * @out_sid: security identifier for selected member
1145 *
1146 * Compute a SID to use for relabeling an object of class @tclass
1147 * based on a SID pair (@ssid, @tsid).
1148 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1149 * if insufficient memory is available, or %0 if the SID was
1150 * computed successfully.
1151 */
1152int security_change_sid(u32 ssid,
1153			u32 tsid,
1154			u16 tclass,
1155			u32 *out_sid)
1156{
1157	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1158}
1159
1160/*
1161 * Verify that each kernel class that is defined in the
1162 * policy is correct
1163 */
1164static int validate_classes(struct policydb *p)
1165{
1166	int i, j;
1167	struct class_datum *cladatum;
1168	struct perm_datum *perdatum;
1169	u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1170	u16 class_val;
1171	const struct selinux_class_perm *kdefs = &selinux_class_perm;
1172	const char *def_class, *def_perm, *pol_class;
1173	struct symtab *perms;
1174	bool print_unknown_handle = 0;
1175
1176	if (p->allow_unknown) {
1177		u32 num_classes = kdefs->cts_len;
1178		p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
1179		if (!p->undefined_perms)
1180			return -ENOMEM;
1181	}
1182
1183	for (i = 1; i < kdefs->cts_len; i++) {
1184		def_class = kdefs->class_to_string[i];
1185		if (!def_class)
1186			continue;
1187		if (i > p->p_classes.nprim) {
1188			printk(KERN_INFO
1189			       "SELinux:  class %s not defined in policy\n",
1190			       def_class);
1191			if (p->reject_unknown)
1192				return -EINVAL;
1193			if (p->allow_unknown)
1194				p->undefined_perms[i-1] = ~0U;
1195			print_unknown_handle = 1;
1196			continue;
1197		}
1198		pol_class = p->p_class_val_to_name[i-1];
1199		if (strcmp(pol_class, def_class)) {
1200			printk(KERN_ERR
1201			       "SELinux:  class %d is incorrect, found %s but should be %s\n",
1202			       i, pol_class, def_class);
1203			return -EINVAL;
1204		}
1205	}
1206	for (i = 0; i < kdefs->av_pts_len; i++) {
1207		class_val = kdefs->av_perm_to_string[i].tclass;
1208		perm_val = kdefs->av_perm_to_string[i].value;
1209		def_perm = kdefs->av_perm_to_string[i].name;
1210		if (class_val > p->p_classes.nprim)
1211			continue;
1212		pol_class = p->p_class_val_to_name[class_val-1];
1213		cladatum = hashtab_search(p->p_classes.table, pol_class);
1214		BUG_ON(!cladatum);
1215		perms = &cladatum->permissions;
1216		nprim = 1 << (perms->nprim - 1);
1217		if (perm_val > nprim) {
1218			printk(KERN_INFO
1219			       "SELinux:  permission %s in class %s not defined in policy\n",
1220			       def_perm, pol_class);
1221			if (p->reject_unknown)
1222				return -EINVAL;
1223			if (p->allow_unknown)
1224				p->undefined_perms[class_val-1] |= perm_val;
1225			print_unknown_handle = 1;
1226			continue;
1227		}
1228		perdatum = hashtab_search(perms->table, def_perm);
1229		if (perdatum == NULL) {
1230			printk(KERN_ERR
1231			       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1232			       def_perm, pol_class);
1233			return -EINVAL;
1234		}
1235		pol_val = 1 << (perdatum->value - 1);
1236		if (pol_val != perm_val) {
1237			printk(KERN_ERR
1238			       "SELinux:  permission %s in class %s has incorrect value\n",
1239			       def_perm, pol_class);
1240			return -EINVAL;
1241		}
1242	}
1243	for (i = 0; i < kdefs->av_inherit_len; i++) {
1244		class_val = kdefs->av_inherit[i].tclass;
1245		if (class_val > p->p_classes.nprim)
1246			continue;
1247		pol_class = p->p_class_val_to_name[class_val-1];
1248		cladatum = hashtab_search(p->p_classes.table, pol_class);
1249		BUG_ON(!cladatum);
1250		if (!cladatum->comdatum) {
1251			printk(KERN_ERR
1252			       "SELinux:  class %s should have an inherits clause but does not\n",
1253			       pol_class);
1254			return -EINVAL;
1255		}
1256		tmp = kdefs->av_inherit[i].common_base;
1257		common_pts_len = 0;
1258		while (!(tmp & 0x01)) {
1259			common_pts_len++;
1260			tmp >>= 1;
1261		}
1262		perms = &cladatum->comdatum->permissions;
1263		for (j = 0; j < common_pts_len; j++) {
1264			def_perm = kdefs->av_inherit[i].common_pts[j];
1265			if (j >= perms->nprim) {
1266				printk(KERN_INFO
1267				       "SELinux:  permission %s in class %s not defined in policy\n",
1268				       def_perm, pol_class);
1269				if (p->reject_unknown)
1270					return -EINVAL;
1271				if (p->allow_unknown)
1272					p->undefined_perms[class_val-1] |= (1 << j);
1273				print_unknown_handle = 1;
1274				continue;
1275			}
1276			perdatum = hashtab_search(perms->table, def_perm);
1277			if (perdatum == NULL) {
1278				printk(KERN_ERR
1279				       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1280				       def_perm, pol_class);
1281				return -EINVAL;
1282			}
1283			if (perdatum->value != j + 1) {
1284				printk(KERN_ERR
1285				       "SELinux:  permission %s in class %s has incorrect value\n",
1286				       def_perm, pol_class);
1287				return -EINVAL;
1288			}
1289		}
1290	}
1291	if (print_unknown_handle)
1292		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
1293			(security_get_allow_unknown() ? "allowed" : "denied"));
1294	return 0;
1295}
1296
1297/* Clone the SID into the new SID table. */
1298static int clone_sid(u32 sid,
1299		     struct context *context,
1300		     void *arg)
1301{
1302	struct sidtab *s = arg;
1303
1304	return sidtab_insert(s, sid, context);
1305}
1306
1307static inline int convert_context_handle_invalid_context(struct context *context)
1308{
1309	int rc = 0;
1310
1311	if (selinux_enforcing) {
1312		rc = -EINVAL;
1313	} else {
1314		char *s;
1315		u32 len;
1316
1317		if (!context_struct_to_string(context, &s, &len)) {
1318			printk(KERN_WARNING
1319		       "SELinux:  Context %s would be invalid if enforcing\n",
1320			       s);
1321			kfree(s);
1322		}
1323	}
1324	return rc;
1325}
1326
1327struct convert_context_args {
1328	struct policydb *oldp;
1329	struct policydb *newp;
1330};
1331
1332/*
1333 * Convert the values in the security context
1334 * structure `c' from the values specified
1335 * in the policy `p->oldp' to the values specified
1336 * in the policy `p->newp'.  Verify that the
1337 * context is valid under the new policy.
1338 */
1339static int convert_context(u32 key,
1340			   struct context *c,
1341			   void *p)
1342{
1343	struct convert_context_args *args;
1344	struct context oldc;
1345	struct role_datum *role;
1346	struct type_datum *typdatum;
1347	struct user_datum *usrdatum;
1348	char *s;
1349	u32 len;
1350	int rc;
1351
1352	args = p;
1353
1354	if (c->str) {
1355		struct context ctx;
1356		s = kstrdup(c->str, GFP_KERNEL);
1357		if (!s) {
1358			rc = -ENOMEM;
1359			goto out;
1360		}
1361		rc = string_to_context_struct(args->newp, NULL, s,
1362					      c->len, &ctx, SECSID_NULL);
1363		kfree(s);
1364		if (!rc) {
1365			printk(KERN_INFO
1366		       "SELinux:  Context %s became valid (mapped).\n",
1367			       c->str);
1368			/* Replace string with mapped representation. */
1369			kfree(c->str);
1370			memcpy(c, &ctx, sizeof(*c));
1371			goto out;
1372		} else if (rc == -EINVAL) {
1373			/* Retain string representation for later mapping. */
1374			rc = 0;
1375			goto out;
1376		} else {
1377			/* Other error condition, e.g. ENOMEM. */
1378			printk(KERN_ERR
1379		       "SELinux:   Unable to map context %s, rc = %d.\n",
1380			       c->str, -rc);
1381			goto out;
1382		}
1383	}
1384
1385	rc = context_cpy(&oldc, c);
1386	if (rc)
1387		goto out;
1388
1389	rc = -EINVAL;
1390
1391	/* Convert the user. */
1392	usrdatum = hashtab_search(args->newp->p_users.table,
1393				  args->oldp->p_user_val_to_name[c->user - 1]);
1394	if (!usrdatum)
1395		goto bad;
1396	c->user = usrdatum->value;
1397
1398	/* Convert the role. */
1399	role = hashtab_search(args->newp->p_roles.table,
1400			      args->oldp->p_role_val_to_name[c->role - 1]);
1401	if (!role)
1402		goto bad;
1403	c->role = role->value;
1404
1405	/* Convert the type. */
1406	typdatum = hashtab_search(args->newp->p_types.table,
1407				  args->oldp->p_type_val_to_name[c->type - 1]);
1408	if (!typdatum)
1409		goto bad;
1410	c->type = typdatum->value;
1411
1412	rc = mls_convert_context(args->oldp, args->newp, c);
1413	if (rc)
1414		goto bad;
1415
1416	/* Check the validity of the new context. */
1417	if (!policydb_context_isvalid(args->newp, c)) {
1418		rc = convert_context_handle_invalid_context(&oldc);
1419		if (rc)
1420			goto bad;
1421	}
1422
1423	context_destroy(&oldc);
1424	rc = 0;
1425out:
1426	return rc;
1427bad:
1428	/* Map old representation to string and save it. */
1429	if (context_struct_to_string(&oldc, &s, &len))
1430		return -ENOMEM;
1431	context_destroy(&oldc);
1432	context_destroy(c);
1433	c->str = s;
1434	c->len = len;
1435	printk(KERN_INFO
1436	       "SELinux:  Context %s became invalid (unmapped).\n",
1437	       c->str);
1438	rc = 0;
1439	goto out;
1440}
1441
1442static void security_load_policycaps(void)
1443{
1444	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1445						  POLICYDB_CAPABILITY_NETPEER);
1446	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1447						  POLICYDB_CAPABILITY_OPENPERM);
1448}
1449
1450extern void selinux_complete_init(void);
1451static int security_preserve_bools(struct policydb *p);
1452
1453/**
1454 * security_load_policy - Load a security policy configuration.
1455 * @data: binary policy data
1456 * @len: length of data in bytes
1457 *
1458 * Load a new set of security policy configuration data,
1459 * validate it and convert the SID table as necessary.
1460 * This function will flush the access vector cache after
1461 * loading the new policy.
1462 */
1463int security_load_policy(void *data, size_t len)
1464{
1465	struct policydb oldpolicydb, newpolicydb;
1466	struct sidtab oldsidtab, newsidtab;
1467	struct convert_context_args args;
1468	u32 seqno;
1469	int rc = 0;
1470	struct policy_file file = { data, len }, *fp = &file;
1471
1472	if (!ss_initialized) {
1473		avtab_cache_init();
1474		if (policydb_read(&policydb, fp)) {
1475			avtab_cache_destroy();
1476			return -EINVAL;
1477		}
1478		if (policydb_load_isids(&policydb, &sidtab)) {
1479			policydb_destroy(&policydb);
1480			avtab_cache_destroy();
1481			return -EINVAL;
1482		}
1483		/* Verify that the kernel defined classes are correct. */
1484		if (validate_classes(&policydb)) {
1485			printk(KERN_ERR
1486			       "SELinux:  the definition of a class is incorrect\n");
1487			sidtab_destroy(&sidtab);
1488			policydb_destroy(&policydb);
1489			avtab_cache_destroy();
1490			return -EINVAL;
1491		}
1492		security_load_policycaps();
1493		policydb_loaded_version = policydb.policyvers;
1494		ss_initialized = 1;
1495		seqno = ++latest_granting;
1496		selinux_complete_init();
1497		avc_ss_reset(seqno);
1498		selnl_notify_policyload(seqno);
1499		selinux_netlbl_cache_invalidate();
1500		selinux_xfrm_notify_policyload();
1501		return 0;
1502	}
1503
1504#if 0
1505	sidtab_hash_eval(&sidtab, "sids");
1506#endif
1507
1508	if (policydb_read(&newpolicydb, fp))
1509		return -EINVAL;
1510
1511	if (sidtab_init(&newsidtab)) {
1512		policydb_destroy(&newpolicydb);
1513		return -ENOMEM;
1514	}
1515
1516	/* Verify that the kernel defined classes are correct. */
1517	if (validate_classes(&newpolicydb)) {
1518		printk(KERN_ERR
1519		       "SELinux:  the definition of a class is incorrect\n");
1520		rc = -EINVAL;
1521		goto err;
1522	}
1523
1524	rc = security_preserve_bools(&newpolicydb);
1525	if (rc) {
1526		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1527		goto err;
1528	}
1529
1530	/* Clone the SID table. */
1531	sidtab_shutdown(&sidtab);
1532	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1533		rc = -ENOMEM;
1534		goto err;
1535	}
1536
1537	/*
1538	 * Convert the internal representations of contexts
1539	 * in the new SID table.
1540	 */
1541	args.oldp = &policydb;
1542	args.newp = &newpolicydb;
1543	rc = sidtab_map(&newsidtab, convert_context, &args);
1544	if (rc)
1545		goto err;
1546
1547	/* Save the old policydb and SID table to free later. */
1548	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1549	sidtab_set(&oldsidtab, &sidtab);
1550
1551	/* Install the new policydb and SID table. */
1552	write_lock_irq(&policy_rwlock);
1553	memcpy(&policydb, &newpolicydb, sizeof policydb);
1554	sidtab_set(&sidtab, &newsidtab);
1555	security_load_policycaps();
1556	seqno = ++latest_granting;
1557	policydb_loaded_version = policydb.policyvers;
1558	write_unlock_irq(&policy_rwlock);
1559
1560	/* Free the old policydb and SID table. */
1561	policydb_destroy(&oldpolicydb);
1562	sidtab_destroy(&oldsidtab);
1563
1564	avc_ss_reset(seqno);
1565	selnl_notify_policyload(seqno);
1566	selinux_netlbl_cache_invalidate();
1567	selinux_xfrm_notify_policyload();
1568
1569	return 0;
1570
1571err:
1572	sidtab_destroy(&newsidtab);
1573	policydb_destroy(&newpolicydb);
1574	return rc;
1575
1576}
1577
1578/**
1579 * security_port_sid - Obtain the SID for a port.
1580 * @protocol: protocol number
1581 * @port: port number
1582 * @out_sid: security identifier
1583 */
1584int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1585{
1586	struct ocontext *c;
1587	int rc = 0;
1588
1589	read_lock(&policy_rwlock);
1590
1591	c = policydb.ocontexts[OCON_PORT];
1592	while (c) {
1593		if (c->u.port.protocol == protocol &&
1594		    c->u.port.low_port <= port &&
1595		    c->u.port.high_port >= port)
1596			break;
1597		c = c->next;
1598	}
1599
1600	if (c) {
1601		if (!c->sid[0]) {
1602			rc = sidtab_context_to_sid(&sidtab,
1603						   &c->context[0],
1604						   &c->sid[0]);
1605			if (rc)
1606				goto out;
1607		}
1608		*out_sid = c->sid[0];
1609	} else {
1610		*out_sid = SECINITSID_PORT;
1611	}
1612
1613out:
1614	read_unlock(&policy_rwlock);
1615	return rc;
1616}
1617
1618/**
1619 * security_netif_sid - Obtain the SID for a network interface.
1620 * @name: interface name
1621 * @if_sid: interface SID
1622 */
1623int security_netif_sid(char *name, u32 *if_sid)
1624{
1625	int rc = 0;
1626	struct ocontext *c;
1627
1628	read_lock(&policy_rwlock);
1629
1630	c = policydb.ocontexts[OCON_NETIF];
1631	while (c) {
1632		if (strcmp(name, c->u.name) == 0)
1633			break;
1634		c = c->next;
1635	}
1636
1637	if (c) {
1638		if (!c->sid[0] || !c->sid[1]) {
1639			rc = sidtab_context_to_sid(&sidtab,
1640						  &c->context[0],
1641						  &c->sid[0]);
1642			if (rc)
1643				goto out;
1644			rc = sidtab_context_to_sid(&sidtab,
1645						   &c->context[1],
1646						   &c->sid[1]);
1647			if (rc)
1648				goto out;
1649		}
1650		*if_sid = c->sid[0];
1651	} else
1652		*if_sid = SECINITSID_NETIF;
1653
1654out:
1655	read_unlock(&policy_rwlock);
1656	return rc;
1657}
1658
1659static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1660{
1661	int i, fail = 0;
1662
1663	for (i = 0; i < 4; i++)
1664		if (addr[i] != (input[i] & mask[i])) {
1665			fail = 1;
1666			break;
1667		}
1668
1669	return !fail;
1670}
1671
1672/**
1673 * security_node_sid - Obtain the SID for a node (host).
1674 * @domain: communication domain aka address family
1675 * @addrp: address
1676 * @addrlen: address length in bytes
1677 * @out_sid: security identifier
1678 */
1679int security_node_sid(u16 domain,
1680		      void *addrp,
1681		      u32 addrlen,
1682		      u32 *out_sid)
1683{
1684	int rc = 0;
1685	struct ocontext *c;
1686
1687	read_lock(&policy_rwlock);
1688
1689	switch (domain) {
1690	case AF_INET: {
1691		u32 addr;
1692
1693		if (addrlen != sizeof(u32)) {
1694			rc = -EINVAL;
1695			goto out;
1696		}
1697
1698		addr = *((u32 *)addrp);
1699
1700		c = policydb.ocontexts[OCON_NODE];
1701		while (c) {
1702			if (c->u.node.addr == (addr & c->u.node.mask))
1703				break;
1704			c = c->next;
1705		}
1706		break;
1707	}
1708
1709	case AF_INET6:
1710		if (addrlen != sizeof(u64) * 2) {
1711			rc = -EINVAL;
1712			goto out;
1713		}
1714		c = policydb.ocontexts[OCON_NODE6];
1715		while (c) {
1716			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1717						c->u.node6.mask))
1718				break;
1719			c = c->next;
1720		}
1721		break;
1722
1723	default:
1724		*out_sid = SECINITSID_NODE;
1725		goto out;
1726	}
1727
1728	if (c) {
1729		if (!c->sid[0]) {
1730			rc = sidtab_context_to_sid(&sidtab,
1731						   &c->context[0],
1732						   &c->sid[0]);
1733			if (rc)
1734				goto out;
1735		}
1736		*out_sid = c->sid[0];
1737	} else {
1738		*out_sid = SECINITSID_NODE;
1739	}
1740
1741out:
1742	read_unlock(&policy_rwlock);
1743	return rc;
1744}
1745
1746#define SIDS_NEL 25
1747
1748/**
1749 * security_get_user_sids - Obtain reachable SIDs for a user.
1750 * @fromsid: starting SID
1751 * @username: username
1752 * @sids: array of reachable SIDs for user
1753 * @nel: number of elements in @sids
1754 *
1755 * Generate the set of SIDs for legal security contexts
1756 * for a given user that can be reached by @fromsid.
1757 * Set *@sids to point to a dynamically allocated
1758 * array containing the set of SIDs.  Set *@nel to the
1759 * number of elements in the array.
1760 */
1761
1762int security_get_user_sids(u32 fromsid,
1763			   char *username,
1764			   u32 **sids,
1765			   u32 *nel)
1766{
1767	struct context *fromcon, usercon;
1768	u32 *mysids = NULL, *mysids2, sid;
1769	u32 mynel = 0, maxnel = SIDS_NEL;
1770	struct user_datum *user;
1771	struct role_datum *role;
1772	struct ebitmap_node *rnode, *tnode;
1773	int rc = 0, i, j;
1774
1775	*sids = NULL;
1776	*nel = 0;
1777
1778	if (!ss_initialized)
1779		goto out;
1780
1781	read_lock(&policy_rwlock);
1782
1783	context_init(&usercon);
1784
1785	fromcon = sidtab_search(&sidtab, fromsid);
1786	if (!fromcon) {
1787		rc = -EINVAL;
1788		goto out_unlock;
1789	}
1790
1791	user = hashtab_search(policydb.p_users.table, username);
1792	if (!user) {
1793		rc = -EINVAL;
1794		goto out_unlock;
1795	}
1796	usercon.user = user->value;
1797
1798	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1799	if (!mysids) {
1800		rc = -ENOMEM;
1801		goto out_unlock;
1802	}
1803
1804	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1805		role = policydb.role_val_to_struct[i];
1806		usercon.role = i+1;
1807		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
1808			usercon.type = j+1;
1809
1810			if (mls_setup_user_range(fromcon, user, &usercon))
1811				continue;
1812
1813			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1814			if (rc)
1815				goto out_unlock;
1816			if (mynel < maxnel) {
1817				mysids[mynel++] = sid;
1818			} else {
1819				maxnel += SIDS_NEL;
1820				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1821				if (!mysids2) {
1822					rc = -ENOMEM;
1823					goto out_unlock;
1824				}
1825				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1826				kfree(mysids);
1827				mysids = mysids2;
1828				mysids[mynel++] = sid;
1829			}
1830		}
1831	}
1832
1833out_unlock:
1834	read_unlock(&policy_rwlock);
1835	if (rc || !mynel) {
1836		kfree(mysids);
1837		goto out;
1838	}
1839
1840	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
1841	if (!mysids2) {
1842		rc = -ENOMEM;
1843		kfree(mysids);
1844		goto out;
1845	}
1846	for (i = 0, j = 0; i < mynel; i++) {
1847		rc = avc_has_perm_noaudit(fromsid, mysids[i],
1848					  SECCLASS_PROCESS,
1849					  PROCESS__TRANSITION, AVC_STRICT,
1850					  NULL);
1851		if (!rc)
1852			mysids2[j++] = mysids[i];
1853		cond_resched();
1854	}
1855	rc = 0;
1856	kfree(mysids);
1857	*sids = mysids2;
1858	*nel = j;
1859out:
1860	return rc;
1861}
1862
1863/**
1864 * security_genfs_sid - Obtain a SID for a file in a filesystem
1865 * @fstype: filesystem type
1866 * @path: path from root of mount
1867 * @sclass: file security class
1868 * @sid: SID for path
1869 *
1870 * Obtain a SID to use for a file in a filesystem that
1871 * cannot support xattr or use a fixed labeling behavior like
1872 * transition SIDs or task SIDs.
1873 */
1874int security_genfs_sid(const char *fstype,
1875		       char *path,
1876		       u16 sclass,
1877		       u32 *sid)
1878{
1879	int len;
1880	struct genfs *genfs;
1881	struct ocontext *c;
1882	int rc = 0, cmp = 0;
1883
1884	while (path[0] == '/' && path[1] == '/')
1885		path++;
1886
1887	read_lock(&policy_rwlock);
1888
1889	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1890		cmp = strcmp(fstype, genfs->fstype);
1891		if (cmp <= 0)
1892			break;
1893	}
1894
1895	if (!genfs || cmp) {
1896		*sid = SECINITSID_UNLABELED;
1897		rc = -ENOENT;
1898		goto out;
1899	}
1900
1901	for (c = genfs->head; c; c = c->next) {
1902		len = strlen(c->u.name);
1903		if ((!c->v.sclass || sclass == c->v.sclass) &&
1904		    (strncmp(c->u.name, path, len) == 0))
1905			break;
1906	}
1907
1908	if (!c) {
1909		*sid = SECINITSID_UNLABELED;
1910		rc = -ENOENT;
1911		goto out;
1912	}
1913
1914	if (!c->sid[0]) {
1915		rc = sidtab_context_to_sid(&sidtab,
1916					   &c->context[0],
1917					   &c->sid[0]);
1918		if (rc)
1919			goto out;
1920	}
1921
1922	*sid = c->sid[0];
1923out:
1924	read_unlock(&policy_rwlock);
1925	return rc;
1926}
1927
1928/**
1929 * security_fs_use - Determine how to handle labeling for a filesystem.
1930 * @fstype: filesystem type
1931 * @behavior: labeling behavior
1932 * @sid: SID for filesystem (superblock)
1933 */
1934int security_fs_use(
1935	const char *fstype,
1936	unsigned int *behavior,
1937	u32 *sid,
1938	bool can_xattr)
1939{
1940	int rc = 0;
1941	struct ocontext *c;
1942
1943	read_lock(&policy_rwlock);
1944
1945	c = policydb.ocontexts[OCON_FSUSE];
1946	while (c) {
1947		if (strcmp(fstype, c->u.name) == 0)
1948			break;
1949		c = c->next;
1950	}
1951
1952	/* look for labeling behavior defined in policy */
1953	if (c) {
1954		*behavior = c->v.behavior;
1955		if (!c->sid[0]) {
1956			rc = sidtab_context_to_sid(&sidtab,
1957						   &c->context[0],
1958						   &c->sid[0]);
1959			if (rc)
1960				goto out;
1961		}
1962		*sid = c->sid[0];
1963		goto out;
1964	}
1965
1966	/* labeling behavior not in policy, use xattrs if possible */
1967	if (can_xattr) {
1968		*behavior = SECURITY_FS_USE_XATTR;
1969		*sid = SECINITSID_FS;
1970		goto out;
1971	}
1972
1973	/* no behavior in policy and can't use xattrs, try GENFS */
1974	rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1975	if (rc) {
1976		*behavior = SECURITY_FS_USE_NONE;
1977		rc = 0;
1978	} else {
1979		*behavior = SECURITY_FS_USE_GENFS;
1980	}
1981
1982out:
1983	read_unlock(&policy_rwlock);
1984	return rc;
1985}
1986
1987int security_get_bools(int *len, char ***names, int **values)
1988{
1989	int i, rc = -ENOMEM;
1990
1991	read_lock(&policy_rwlock);
1992	*names = NULL;
1993	*values = NULL;
1994
1995	*len = policydb.p_bools.nprim;
1996	if (!*len) {
1997		rc = 0;
1998		goto out;
1999	}
2000
2001       *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2002	if (!*names)
2003		goto err;
2004
2005       *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2006	if (!*values)
2007		goto err;
2008
2009	for (i = 0; i < *len; i++) {
2010		size_t name_len;
2011		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2012		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2013	       (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2014		if (!(*names)[i])
2015			goto err;
2016		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2017		(*names)[i][name_len - 1] = 0;
2018	}
2019	rc = 0;
2020out:
2021	read_unlock(&policy_rwlock);
2022	return rc;
2023err:
2024	if (*names) {
2025		for (i = 0; i < *len; i++)
2026			kfree((*names)[i]);
2027	}
2028	kfree(*values);
2029	goto out;
2030}
2031
2032
2033int security_set_bools(int len, int *values)
2034{
2035	int i, rc = 0;
2036	int lenp, seqno = 0;
2037	struct cond_node *cur;
2038
2039	write_lock_irq(&policy_rwlock);
2040
2041	lenp = policydb.p_bools.nprim;
2042	if (len != lenp) {
2043		rc = -EFAULT;
2044		goto out;
2045	}
2046
2047	for (i = 0; i < len; i++) {
2048		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2049			audit_log(current->audit_context, GFP_ATOMIC,
2050				AUDIT_MAC_CONFIG_CHANGE,
2051				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2052				policydb.p_bool_val_to_name[i],
2053				!!values[i],
2054				policydb.bool_val_to_struct[i]->state,
2055				audit_get_loginuid(current),
2056				audit_get_sessionid(current));
2057		}
2058		if (values[i])
2059			policydb.bool_val_to_struct[i]->state = 1;
2060		else
2061			policydb.bool_val_to_struct[i]->state = 0;
2062	}
2063
2064	for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
2065		rc = evaluate_cond_node(&policydb, cur);
2066		if (rc)
2067			goto out;
2068	}
2069
2070	seqno = ++latest_granting;
2071
2072out:
2073	write_unlock_irq(&policy_rwlock);
2074	if (!rc) {
2075		avc_ss_reset(seqno);
2076		selnl_notify_policyload(seqno);
2077		selinux_xfrm_notify_policyload();
2078	}
2079	return rc;
2080}
2081
2082int security_get_bool_value(int bool)
2083{
2084	int rc = 0;
2085	int len;
2086
2087	read_lock(&policy_rwlock);
2088
2089	len = policydb.p_bools.nprim;
2090	if (bool >= len) {
2091		rc = -EFAULT;
2092		goto out;
2093	}
2094
2095	rc = policydb.bool_val_to_struct[bool]->state;
2096out:
2097	read_unlock(&policy_rwlock);
2098	return rc;
2099}
2100
2101static int security_preserve_bools(struct policydb *p)
2102{
2103	int rc, nbools = 0, *bvalues = NULL, i;
2104	char **bnames = NULL;
2105	struct cond_bool_datum *booldatum;
2106	struct cond_node *cur;
2107
2108	rc = security_get_bools(&nbools, &bnames, &bvalues);
2109	if (rc)
2110		goto out;
2111	for (i = 0; i < nbools; i++) {
2112		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2113		if (booldatum)
2114			booldatum->state = bvalues[i];
2115	}
2116	for (cur = p->cond_list; cur != NULL; cur = cur->next) {
2117		rc = evaluate_cond_node(p, cur);
2118		if (rc)
2119			goto out;
2120	}
2121
2122out:
2123	if (bnames) {
2124		for (i = 0; i < nbools; i++)
2125			kfree(bnames[i]);
2126	}
2127	kfree(bnames);
2128	kfree(bvalues);
2129	return rc;
2130}
2131
2132/*
2133 * security_sid_mls_copy() - computes a new sid based on the given
2134 * sid and the mls portion of mls_sid.
2135 */
2136int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2137{
2138	struct context *context1;
2139	struct context *context2;
2140	struct context newcon;
2141	char *s;
2142	u32 len;
2143	int rc = 0;
2144
2145	if (!ss_initialized || !selinux_mls_enabled) {
2146		*new_sid = sid;
2147		goto out;
2148	}
2149
2150	context_init(&newcon);
2151
2152	read_lock(&policy_rwlock);
2153	context1 = sidtab_search(&sidtab, sid);
2154	if (!context1) {
2155		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2156			__func__, sid);
2157		rc = -EINVAL;
2158		goto out_unlock;
2159	}
2160
2161	context2 = sidtab_search(&sidtab, mls_sid);
2162	if (!context2) {
2163		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2164			__func__, mls_sid);
2165		rc = -EINVAL;
2166		goto out_unlock;
2167	}
2168
2169	newcon.user = context1->user;
2170	newcon.role = context1->role;
2171	newcon.type = context1->type;
2172	rc = mls_context_cpy(&newcon, context2);
2173	if (rc)
2174		goto out_unlock;
2175
2176	/* Check the validity of the new context. */
2177	if (!policydb_context_isvalid(&policydb, &newcon)) {
2178		rc = convert_context_handle_invalid_context(&newcon);
2179		if (rc)
2180			goto bad;
2181	}
2182
2183	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2184	goto out_unlock;
2185
2186bad:
2187	if (!context_struct_to_string(&newcon, &s, &len)) {
2188		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2189			  "security_sid_mls_copy: invalid context %s", s);
2190		kfree(s);
2191	}
2192
2193out_unlock:
2194	read_unlock(&policy_rwlock);
2195	context_destroy(&newcon);
2196out:
2197	return rc;
2198}
2199
2200/**
2201 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2202 * @nlbl_sid: NetLabel SID
2203 * @nlbl_type: NetLabel labeling protocol type
2204 * @xfrm_sid: XFRM SID
2205 *
2206 * Description:
2207 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2208 * resolved into a single SID it is returned via @peer_sid and the function
2209 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2210 * returns a negative value.  A table summarizing the behavior is below:
2211 *
2212 *                                 | function return |      @sid
2213 *   ------------------------------+-----------------+-----------------
2214 *   no peer labels                |        0        |    SECSID_NULL
2215 *   single peer label             |        0        |    <peer_label>
2216 *   multiple, consistent labels   |        0        |    <peer_label>
2217 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2218 *
2219 */
2220int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2221				 u32 xfrm_sid,
2222				 u32 *peer_sid)
2223{
2224	int rc;
2225	struct context *nlbl_ctx;
2226	struct context *xfrm_ctx;
2227
2228	/* handle the common (which also happens to be the set of easy) cases
2229	 * right away, these two if statements catch everything involving a
2230	 * single or absent peer SID/label */
2231	if (xfrm_sid == SECSID_NULL) {
2232		*peer_sid = nlbl_sid;
2233		return 0;
2234	}
2235	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2236	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2237	 * is present */
2238	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2239		*peer_sid = xfrm_sid;
2240		return 0;
2241	}
2242
2243	/* we don't need to check ss_initialized here since the only way both
2244	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2245	 * security server was initialized and ss_initialized was true */
2246	if (!selinux_mls_enabled) {
2247		*peer_sid = SECSID_NULL;
2248		return 0;
2249	}
2250
2251	read_lock(&policy_rwlock);
2252
2253	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2254	if (!nlbl_ctx) {
2255		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2256		       __func__, nlbl_sid);
2257		rc = -EINVAL;
2258		goto out_slowpath;
2259	}
2260	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2261	if (!xfrm_ctx) {
2262		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2263		       __func__, xfrm_sid);
2264		rc = -EINVAL;
2265		goto out_slowpath;
2266	}
2267	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2268
2269out_slowpath:
2270	read_unlock(&policy_rwlock);
2271	if (rc == 0)
2272		/* at present NetLabel SIDs/labels really only carry MLS
2273		 * information so if the MLS portion of the NetLabel SID
2274		 * matches the MLS portion of the labeled XFRM SID/label
2275		 * then pass along the XFRM SID as it is the most
2276		 * expressive */
2277		*peer_sid = xfrm_sid;
2278	else
2279		*peer_sid = SECSID_NULL;
2280	return rc;
2281}
2282
2283static int get_classes_callback(void *k, void *d, void *args)
2284{
2285	struct class_datum *datum = d;
2286	char *name = k, **classes = args;
2287	int value = datum->value - 1;
2288
2289	classes[value] = kstrdup(name, GFP_ATOMIC);
2290	if (!classes[value])
2291		return -ENOMEM;
2292
2293	return 0;
2294}
2295
2296int security_get_classes(char ***classes, int *nclasses)
2297{
2298	int rc = -ENOMEM;
2299
2300	read_lock(&policy_rwlock);
2301
2302	*nclasses = policydb.p_classes.nprim;
2303	*classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2304	if (!*classes)
2305		goto out;
2306
2307	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2308			*classes);
2309	if (rc < 0) {
2310		int i;
2311		for (i = 0; i < *nclasses; i++)
2312			kfree((*classes)[i]);
2313		kfree(*classes);
2314	}
2315
2316out:
2317	read_unlock(&policy_rwlock);
2318	return rc;
2319}
2320
2321static int get_permissions_callback(void *k, void *d, void *args)
2322{
2323	struct perm_datum *datum = d;
2324	char *name = k, **perms = args;
2325	int value = datum->value - 1;
2326
2327	perms[value] = kstrdup(name, GFP_ATOMIC);
2328	if (!perms[value])
2329		return -ENOMEM;
2330
2331	return 0;
2332}
2333
2334int security_get_permissions(char *class, char ***perms, int *nperms)
2335{
2336	int rc = -ENOMEM, i;
2337	struct class_datum *match;
2338
2339	read_lock(&policy_rwlock);
2340
2341	match = hashtab_search(policydb.p_classes.table, class);
2342	if (!match) {
2343		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2344			__func__, class);
2345		rc = -EINVAL;
2346		goto out;
2347	}
2348
2349	*nperms = match->permissions.nprim;
2350	*perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2351	if (!*perms)
2352		goto out;
2353
2354	if (match->comdatum) {
2355		rc = hashtab_map(match->comdatum->permissions.table,
2356				get_permissions_callback, *perms);
2357		if (rc < 0)
2358			goto err;
2359	}
2360
2361	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2362			*perms);
2363	if (rc < 0)
2364		goto err;
2365
2366out:
2367	read_unlock(&policy_rwlock);
2368	return rc;
2369
2370err:
2371	read_unlock(&policy_rwlock);
2372	for (i = 0; i < *nperms; i++)
2373		kfree((*perms)[i]);
2374	kfree(*perms);
2375	return rc;
2376}
2377
2378int security_get_reject_unknown(void)
2379{
2380	return policydb.reject_unknown;
2381}
2382
2383int security_get_allow_unknown(void)
2384{
2385	return policydb.allow_unknown;
2386}
2387
2388/**
2389 * security_policycap_supported - Check for a specific policy capability
2390 * @req_cap: capability
2391 *
2392 * Description:
2393 * This function queries the currently loaded policy to see if it supports the
2394 * capability specified by @req_cap.  Returns true (1) if the capability is
2395 * supported, false (0) if it isn't supported.
2396 *
2397 */
2398int security_policycap_supported(unsigned int req_cap)
2399{
2400	int rc;
2401
2402	read_lock(&policy_rwlock);
2403	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2404	read_unlock(&policy_rwlock);
2405
2406	return rc;
2407}
2408
2409struct selinux_audit_rule {
2410	u32 au_seqno;
2411	struct context au_ctxt;
2412};
2413
2414void selinux_audit_rule_free(void *vrule)
2415{
2416	struct selinux_audit_rule *rule = vrule;
2417
2418	if (rule) {
2419		context_destroy(&rule->au_ctxt);
2420		kfree(rule);
2421	}
2422}
2423
2424int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2425{
2426	struct selinux_audit_rule *tmprule;
2427	struct role_datum *roledatum;
2428	struct type_datum *typedatum;
2429	struct user_datum *userdatum;
2430	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2431	int rc = 0;
2432
2433	*rule = NULL;
2434
2435	if (!ss_initialized)
2436		return -EOPNOTSUPP;
2437
2438	switch (field) {
2439	case AUDIT_SUBJ_USER:
2440	case AUDIT_SUBJ_ROLE:
2441	case AUDIT_SUBJ_TYPE:
2442	case AUDIT_OBJ_USER:
2443	case AUDIT_OBJ_ROLE:
2444	case AUDIT_OBJ_TYPE:
2445		/* only 'equals' and 'not equals' fit user, role, and type */
2446		if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
2447			return -EINVAL;
2448		break;
2449	case AUDIT_SUBJ_SEN:
2450	case AUDIT_SUBJ_CLR:
2451	case AUDIT_OBJ_LEV_LOW:
2452	case AUDIT_OBJ_LEV_HIGH:
2453		/* we do not allow a range, indicated by the presense of '-' */
2454		if (strchr(rulestr, '-'))
2455			return -EINVAL;
2456		break;
2457	default:
2458		/* only the above fields are valid */
2459		return -EINVAL;
2460	}
2461
2462	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2463	if (!tmprule)
2464		return -ENOMEM;
2465
2466	context_init(&tmprule->au_ctxt);
2467
2468	read_lock(&policy_rwlock);
2469
2470	tmprule->au_seqno = latest_granting;
2471
2472	switch (field) {
2473	case AUDIT_SUBJ_USER:
2474	case AUDIT_OBJ_USER:
2475		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2476		if (!userdatum)
2477			rc = -EINVAL;
2478		else
2479			tmprule->au_ctxt.user = userdatum->value;
2480		break;
2481	case AUDIT_SUBJ_ROLE:
2482	case AUDIT_OBJ_ROLE:
2483		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2484		if (!roledatum)
2485			rc = -EINVAL;
2486		else
2487			tmprule->au_ctxt.role = roledatum->value;
2488		break;
2489	case AUDIT_SUBJ_TYPE:
2490	case AUDIT_OBJ_TYPE:
2491		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2492		if (!typedatum)
2493			rc = -EINVAL;
2494		else
2495			tmprule->au_ctxt.type = typedatum->value;
2496		break;
2497	case AUDIT_SUBJ_SEN:
2498	case AUDIT_SUBJ_CLR:
2499	case AUDIT_OBJ_LEV_LOW:
2500	case AUDIT_OBJ_LEV_HIGH:
2501		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2502		break;
2503	}
2504
2505	read_unlock(&policy_rwlock);
2506
2507	if (rc) {
2508		selinux_audit_rule_free(tmprule);
2509		tmprule = NULL;
2510	}
2511
2512	*rule = tmprule;
2513
2514	return rc;
2515}
2516
2517/* Check to see if the rule contains any selinux fields */
2518int selinux_audit_rule_known(struct audit_krule *rule)
2519{
2520	int i;
2521
2522	for (i = 0; i < rule->field_count; i++) {
2523		struct audit_field *f = &rule->fields[i];
2524		switch (f->type) {
2525		case AUDIT_SUBJ_USER:
2526		case AUDIT_SUBJ_ROLE:
2527		case AUDIT_SUBJ_TYPE:
2528		case AUDIT_SUBJ_SEN:
2529		case AUDIT_SUBJ_CLR:
2530		case AUDIT_OBJ_USER:
2531		case AUDIT_OBJ_ROLE:
2532		case AUDIT_OBJ_TYPE:
2533		case AUDIT_OBJ_LEV_LOW:
2534		case AUDIT_OBJ_LEV_HIGH:
2535			return 1;
2536		}
2537	}
2538
2539	return 0;
2540}
2541
2542int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2543			     struct audit_context *actx)
2544{
2545	struct context *ctxt;
2546	struct mls_level *level;
2547	struct selinux_audit_rule *rule = vrule;
2548	int match = 0;
2549
2550	if (!rule) {
2551		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2552			  "selinux_audit_rule_match: missing rule\n");
2553		return -ENOENT;
2554	}
2555
2556	read_lock(&policy_rwlock);
2557
2558	if (rule->au_seqno < latest_granting) {
2559		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2560			  "selinux_audit_rule_match: stale rule\n");
2561		match = -ESTALE;
2562		goto out;
2563	}
2564
2565	ctxt = sidtab_search(&sidtab, sid);
2566	if (!ctxt) {
2567		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2568			  "selinux_audit_rule_match: unrecognized SID %d\n",
2569			  sid);
2570		match = -ENOENT;
2571		goto out;
2572	}
2573
2574	/* a field/op pair that is not caught here will simply fall through
2575	   without a match */
2576	switch (field) {
2577	case AUDIT_SUBJ_USER:
2578	case AUDIT_OBJ_USER:
2579		switch (op) {
2580		case AUDIT_EQUAL:
2581			match = (ctxt->user == rule->au_ctxt.user);
2582			break;
2583		case AUDIT_NOT_EQUAL:
2584			match = (ctxt->user != rule->au_ctxt.user);
2585			break;
2586		}
2587		break;
2588	case AUDIT_SUBJ_ROLE:
2589	case AUDIT_OBJ_ROLE:
2590		switch (op) {
2591		case AUDIT_EQUAL:
2592			match = (ctxt->role == rule->au_ctxt.role);
2593			break;
2594		case AUDIT_NOT_EQUAL:
2595			match = (ctxt->role != rule->au_ctxt.role);
2596			break;
2597		}
2598		break;
2599	case AUDIT_SUBJ_TYPE:
2600	case AUDIT_OBJ_TYPE:
2601		switch (op) {
2602		case AUDIT_EQUAL:
2603			match = (ctxt->type == rule->au_ctxt.type);
2604			break;
2605		case AUDIT_NOT_EQUAL:
2606			match = (ctxt->type != rule->au_ctxt.type);
2607			break;
2608		}
2609		break;
2610	case AUDIT_SUBJ_SEN:
2611	case AUDIT_SUBJ_CLR:
2612	case AUDIT_OBJ_LEV_LOW:
2613	case AUDIT_OBJ_LEV_HIGH:
2614		level = ((field == AUDIT_SUBJ_SEN ||
2615			  field == AUDIT_OBJ_LEV_LOW) ?
2616			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2617		switch (op) {
2618		case AUDIT_EQUAL:
2619			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2620					     level);
2621			break;
2622		case AUDIT_NOT_EQUAL:
2623			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2624					      level);
2625			break;
2626		case AUDIT_LESS_THAN:
2627			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2628					       level) &&
2629				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2630					       level));
2631			break;
2632		case AUDIT_LESS_THAN_OR_EQUAL:
2633			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2634					      level);
2635			break;
2636		case AUDIT_GREATER_THAN:
2637			match = (mls_level_dom(level,
2638					      &rule->au_ctxt.range.level[0]) &&
2639				 !mls_level_eq(level,
2640					       &rule->au_ctxt.range.level[0]));
2641			break;
2642		case AUDIT_GREATER_THAN_OR_EQUAL:
2643			match = mls_level_dom(level,
2644					      &rule->au_ctxt.range.level[0]);
2645			break;
2646		}
2647	}
2648
2649out:
2650	read_unlock(&policy_rwlock);
2651	return match;
2652}
2653
2654static int (*aurule_callback)(void) = audit_update_lsm_rules;
2655
2656static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2657			       u16 class, u32 perms, u32 *retained)
2658{
2659	int err = 0;
2660
2661	if (event == AVC_CALLBACK_RESET && aurule_callback)
2662		err = aurule_callback();
2663	return err;
2664}
2665
2666static int __init aurule_init(void)
2667{
2668	int err;
2669
2670	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2671			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2672	if (err)
2673		panic("avc_add_callback() failed, error %d\n", err);
2674
2675	return err;
2676}
2677__initcall(aurule_init);
2678
2679#ifdef CONFIG_NETLABEL
2680/**
2681 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2682 * @secattr: the NetLabel packet security attributes
2683 * @sid: the SELinux SID
2684 *
2685 * Description:
2686 * Attempt to cache the context in @ctx, which was derived from the packet in
2687 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
2688 * already been initialized.
2689 *
2690 */
2691static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2692				      u32 sid)
2693{
2694	u32 *sid_cache;
2695
2696	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2697	if (sid_cache == NULL)
2698		return;
2699	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2700	if (secattr->cache == NULL) {
2701		kfree(sid_cache);
2702		return;
2703	}
2704
2705	*sid_cache = sid;
2706	secattr->cache->free = kfree;
2707	secattr->cache->data = sid_cache;
2708	secattr->flags |= NETLBL_SECATTR_CACHE;
2709}
2710
2711/**
2712 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2713 * @secattr: the NetLabel packet security attributes
2714 * @sid: the SELinux SID
2715 *
2716 * Description:
2717 * Convert the given NetLabel security attributes in @secattr into a
2718 * SELinux SID.  If the @secattr field does not contain a full SELinux
2719 * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
2720 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2721 * allow the @secattr to be used by NetLabel to cache the secattr to SID
2722 * conversion for future lookups.  Returns zero on success, negative values on
2723 * failure.
2724 *
2725 */
2726int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2727				   u32 *sid)
2728{
2729	int rc = -EIDRM;
2730	struct context *ctx;
2731	struct context ctx_new;
2732
2733	if (!ss_initialized) {
2734		*sid = SECSID_NULL;
2735		return 0;
2736	}
2737
2738	read_lock(&policy_rwlock);
2739
2740	if (secattr->flags & NETLBL_SECATTR_CACHE) {
2741		*sid = *(u32 *)secattr->cache->data;
2742		rc = 0;
2743	} else if (secattr->flags & NETLBL_SECATTR_SECID) {
2744		*sid = secattr->attr.secid;
2745		rc = 0;
2746	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2747		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2748		if (ctx == NULL)
2749			goto netlbl_secattr_to_sid_return;
2750
2751		ctx_new.user = ctx->user;
2752		ctx_new.role = ctx->role;
2753		ctx_new.type = ctx->type;
2754		mls_import_netlbl_lvl(&ctx_new, secattr);
2755		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2756			if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2757						  secattr->attr.mls.cat) != 0)
2758				goto netlbl_secattr_to_sid_return;
2759			ctx_new.range.level[1].cat.highbit =
2760				ctx_new.range.level[0].cat.highbit;
2761			ctx_new.range.level[1].cat.node =
2762				ctx_new.range.level[0].cat.node;
2763		} else {
2764			ebitmap_init(&ctx_new.range.level[0].cat);
2765			ebitmap_init(&ctx_new.range.level[1].cat);
2766		}
2767		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2768			goto netlbl_secattr_to_sid_return_cleanup;
2769
2770		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2771		if (rc != 0)
2772			goto netlbl_secattr_to_sid_return_cleanup;
2773
2774		security_netlbl_cache_add(secattr, *sid);
2775
2776		ebitmap_destroy(&ctx_new.range.level[0].cat);
2777	} else {
2778		*sid = SECSID_NULL;
2779		rc = 0;
2780	}
2781
2782netlbl_secattr_to_sid_return:
2783	read_unlock(&policy_rwlock);
2784	return rc;
2785netlbl_secattr_to_sid_return_cleanup:
2786	ebitmap_destroy(&ctx_new.range.level[0].cat);
2787	goto netlbl_secattr_to_sid_return;
2788}
2789
2790/**
2791 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2792 * @sid: the SELinux SID
2793 * @secattr: the NetLabel packet security attributes
2794 *
2795 * Description:
2796 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2797 * Returns zero on success, negative values on failure.
2798 *
2799 */
2800int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2801{
2802	int rc = -ENOENT;
2803	struct context *ctx;
2804
2805	if (!ss_initialized)
2806		return 0;
2807
2808	read_lock(&policy_rwlock);
2809	ctx = sidtab_search(&sidtab, sid);
2810	if (ctx == NULL)
2811		goto netlbl_sid_to_secattr_failure;
2812	secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2813				  GFP_ATOMIC);
2814	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY;
2815	mls_export_netlbl_lvl(ctx, secattr);
2816	rc = mls_export_netlbl_cat(ctx, secattr);
2817	if (rc != 0)
2818		goto netlbl_sid_to_secattr_failure;
2819	read_unlock(&policy_rwlock);
2820
2821	return 0;
2822
2823netlbl_sid_to_secattr_failure:
2824	read_unlock(&policy_rwlock);
2825	return rc;
2826}
2827#endif /* CONFIG_NETLABEL */
2828