services.c revision 81990fbdd18b9cfdc93dc221ff3250f81468aed8
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 *	     James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 *	Support for enhanced MLS infrastructure.
10 *	Support for context based audit filters.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 *	Added conditional policy language extensions
15 *
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
17 *
18 *      Added support for NetLabel
19 *      Added support for the policy capability bitmap
20 *
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 *  Added validation of kernel classes and permissions
24 *
25 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29 *	This program is free software; you can redistribute it and/or modify
30 *	it under the terms of the GNU General Public License as published by
31 *	the Free Software Foundation, version 2.
32 */
33#include <linux/kernel.h>
34#include <linux/slab.h>
35#include <linux/string.h>
36#include <linux/spinlock.h>
37#include <linux/rcupdate.h>
38#include <linux/errno.h>
39#include <linux/in.h>
40#include <linux/sched.h>
41#include <linux/audit.h>
42#include <linux/mutex.h>
43#include <linux/selinux.h>
44#include <net/netlabel.h>
45
46#include "flask.h"
47#include "avc.h"
48#include "avc_ss.h"
49#include "security.h"
50#include "context.h"
51#include "policydb.h"
52#include "sidtab.h"
53#include "services.h"
54#include "conditional.h"
55#include "mls.h"
56#include "objsec.h"
57#include "netlabel.h"
58#include "xfrm.h"
59#include "ebitmap.h"
60#include "audit.h"
61
62extern void selnl_notify_policyload(u32 seqno);
63unsigned int policydb_loaded_version;
64
65int selinux_policycap_netpeer;
66int selinux_policycap_openperm;
67
68/*
69 * This is declared in avc.c
70 */
71extern const struct selinux_class_perm selinux_class_perm;
72
73static DEFINE_RWLOCK(policy_rwlock);
74
75static struct sidtab sidtab;
76struct policydb policydb;
77int ss_initialized;
78
79/*
80 * The largest sequence number that has been used when
81 * providing an access decision to the access vector cache.
82 * The sequence number only changes when a policy change
83 * occurs.
84 */
85static u32 latest_granting;
86
87/* Forward declaration. */
88static int context_struct_to_string(struct context *context, char **scontext,
89				    u32 *scontext_len);
90
91static int context_struct_compute_av(struct context *scontext,
92				     struct context *tcontext,
93				     u16 tclass,
94				     u32 requested,
95				     struct av_decision *avd);
96/*
97 * Return the boolean value of a constraint expression
98 * when it is applied to the specified source and target
99 * security contexts.
100 *
101 * xcontext is a special beast...  It is used by the validatetrans rules
102 * only.  For these rules, scontext is the context before the transition,
103 * tcontext is the context after the transition, and xcontext is the context
104 * of the process performing the transition.  All other callers of
105 * constraint_expr_eval should pass in NULL for xcontext.
106 */
107static int constraint_expr_eval(struct context *scontext,
108				struct context *tcontext,
109				struct context *xcontext,
110				struct constraint_expr *cexpr)
111{
112	u32 val1, val2;
113	struct context *c;
114	struct role_datum *r1, *r2;
115	struct mls_level *l1, *l2;
116	struct constraint_expr *e;
117	int s[CEXPR_MAXDEPTH];
118	int sp = -1;
119
120	for (e = cexpr; e; e = e->next) {
121		switch (e->expr_type) {
122		case CEXPR_NOT:
123			BUG_ON(sp < 0);
124			s[sp] = !s[sp];
125			break;
126		case CEXPR_AND:
127			BUG_ON(sp < 1);
128			sp--;
129			s[sp] &= s[sp+1];
130			break;
131		case CEXPR_OR:
132			BUG_ON(sp < 1);
133			sp--;
134			s[sp] |= s[sp+1];
135			break;
136		case CEXPR_ATTR:
137			if (sp == (CEXPR_MAXDEPTH-1))
138				return 0;
139			switch (e->attr) {
140			case CEXPR_USER:
141				val1 = scontext->user;
142				val2 = tcontext->user;
143				break;
144			case CEXPR_TYPE:
145				val1 = scontext->type;
146				val2 = tcontext->type;
147				break;
148			case CEXPR_ROLE:
149				val1 = scontext->role;
150				val2 = tcontext->role;
151				r1 = policydb.role_val_to_struct[val1 - 1];
152				r2 = policydb.role_val_to_struct[val2 - 1];
153				switch (e->op) {
154				case CEXPR_DOM:
155					s[++sp] = ebitmap_get_bit(&r1->dominates,
156								  val2 - 1);
157					continue;
158				case CEXPR_DOMBY:
159					s[++sp] = ebitmap_get_bit(&r2->dominates,
160								  val1 - 1);
161					continue;
162				case CEXPR_INCOMP:
163					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
164								    val2 - 1) &&
165						   !ebitmap_get_bit(&r2->dominates,
166								    val1 - 1));
167					continue;
168				default:
169					break;
170				}
171				break;
172			case CEXPR_L1L2:
173				l1 = &(scontext->range.level[0]);
174				l2 = &(tcontext->range.level[0]);
175				goto mls_ops;
176			case CEXPR_L1H2:
177				l1 = &(scontext->range.level[0]);
178				l2 = &(tcontext->range.level[1]);
179				goto mls_ops;
180			case CEXPR_H1L2:
181				l1 = &(scontext->range.level[1]);
182				l2 = &(tcontext->range.level[0]);
183				goto mls_ops;
184			case CEXPR_H1H2:
185				l1 = &(scontext->range.level[1]);
186				l2 = &(tcontext->range.level[1]);
187				goto mls_ops;
188			case CEXPR_L1H1:
189				l1 = &(scontext->range.level[0]);
190				l2 = &(scontext->range.level[1]);
191				goto mls_ops;
192			case CEXPR_L2H2:
193				l1 = &(tcontext->range.level[0]);
194				l2 = &(tcontext->range.level[1]);
195				goto mls_ops;
196mls_ops:
197			switch (e->op) {
198			case CEXPR_EQ:
199				s[++sp] = mls_level_eq(l1, l2);
200				continue;
201			case CEXPR_NEQ:
202				s[++sp] = !mls_level_eq(l1, l2);
203				continue;
204			case CEXPR_DOM:
205				s[++sp] = mls_level_dom(l1, l2);
206				continue;
207			case CEXPR_DOMBY:
208				s[++sp] = mls_level_dom(l2, l1);
209				continue;
210			case CEXPR_INCOMP:
211				s[++sp] = mls_level_incomp(l2, l1);
212				continue;
213			default:
214				BUG();
215				return 0;
216			}
217			break;
218			default:
219				BUG();
220				return 0;
221			}
222
223			switch (e->op) {
224			case CEXPR_EQ:
225				s[++sp] = (val1 == val2);
226				break;
227			case CEXPR_NEQ:
228				s[++sp] = (val1 != val2);
229				break;
230			default:
231				BUG();
232				return 0;
233			}
234			break;
235		case CEXPR_NAMES:
236			if (sp == (CEXPR_MAXDEPTH-1))
237				return 0;
238			c = scontext;
239			if (e->attr & CEXPR_TARGET)
240				c = tcontext;
241			else if (e->attr & CEXPR_XTARGET) {
242				c = xcontext;
243				if (!c) {
244					BUG();
245					return 0;
246				}
247			}
248			if (e->attr & CEXPR_USER)
249				val1 = c->user;
250			else if (e->attr & CEXPR_ROLE)
251				val1 = c->role;
252			else if (e->attr & CEXPR_TYPE)
253				val1 = c->type;
254			else {
255				BUG();
256				return 0;
257			}
258
259			switch (e->op) {
260			case CEXPR_EQ:
261				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
262				break;
263			case CEXPR_NEQ:
264				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
265				break;
266			default:
267				BUG();
268				return 0;
269			}
270			break;
271		default:
272			BUG();
273			return 0;
274		}
275	}
276
277	BUG_ON(sp != 0);
278	return s[0];
279}
280
281/*
282 * security_boundary_permission - drops violated permissions
283 * on boundary constraint.
284 */
285static void type_attribute_bounds_av(struct context *scontext,
286				     struct context *tcontext,
287				     u16 tclass,
288				     u32 requested,
289				     struct av_decision *avd)
290{
291	struct context lo_scontext;
292	struct context lo_tcontext;
293	struct av_decision lo_avd;
294	struct type_datum *source
295		= policydb.type_val_to_struct[scontext->type - 1];
296	struct type_datum *target
297		= policydb.type_val_to_struct[tcontext->type - 1];
298	u32 masked = 0;
299
300	if (source->bounds) {
301		memset(&lo_avd, 0, sizeof(lo_avd));
302
303		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
304		lo_scontext.type = source->bounds;
305
306		context_struct_compute_av(&lo_scontext,
307					  tcontext,
308					  tclass,
309					  requested,
310					  &lo_avd);
311		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
312			return;		/* no masked permission */
313		masked = ~lo_avd.allowed & avd->allowed;
314	}
315
316	if (target->bounds) {
317		memset(&lo_avd, 0, sizeof(lo_avd));
318
319		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
320		lo_tcontext.type = target->bounds;
321
322		context_struct_compute_av(scontext,
323					  &lo_tcontext,
324					  tclass,
325					  requested,
326					  &lo_avd);
327		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
328			return;		/* no masked permission */
329		masked = ~lo_avd.allowed & avd->allowed;
330	}
331
332	if (source->bounds && target->bounds) {
333		memset(&lo_avd, 0, sizeof(lo_avd));
334		/*
335		 * lo_scontext and lo_tcontext are already
336		 * set up.
337		 */
338
339		context_struct_compute_av(&lo_scontext,
340					  &lo_tcontext,
341					  tclass,
342					  requested,
343					  &lo_avd);
344		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
345			return;		/* no masked permission */
346		masked = ~lo_avd.allowed & avd->allowed;
347	}
348
349	if (masked) {
350		struct audit_buffer *ab;
351		char *stype_name
352			= policydb.p_type_val_to_name[source->value - 1];
353		char *ttype_name
354			= policydb.p_type_val_to_name[target->value - 1];
355		char *tclass_name
356			= policydb.p_class_val_to_name[tclass - 1];
357
358		/* mask violated permissions */
359		avd->allowed &= ~masked;
360
361		/* notice to userspace via audit message */
362		ab = audit_log_start(current->audit_context,
363				     GFP_ATOMIC, AUDIT_SELINUX_ERR);
364		if (!ab)
365			return;
366
367		audit_log_format(ab, "av boundary violation: "
368				 "source=%s target=%s tclass=%s",
369				 stype_name, ttype_name, tclass_name);
370		avc_dump_av(ab, tclass, masked);
371		audit_log_end(ab);
372	}
373}
374
375/*
376 * Compute access vectors based on a context structure pair for
377 * the permissions in a particular class.
378 */
379static int context_struct_compute_av(struct context *scontext,
380				     struct context *tcontext,
381				     u16 tclass,
382				     u32 requested,
383				     struct av_decision *avd)
384{
385	struct constraint_node *constraint;
386	struct role_allow *ra;
387	struct avtab_key avkey;
388	struct avtab_node *node;
389	struct class_datum *tclass_datum;
390	struct ebitmap *sattr, *tattr;
391	struct ebitmap_node *snode, *tnode;
392	const struct selinux_class_perm *kdefs = &selinux_class_perm;
393	unsigned int i, j;
394
395	/*
396	 * Remap extended Netlink classes for old policy versions.
397	 * Do this here rather than socket_type_to_security_class()
398	 * in case a newer policy version is loaded, allowing sockets
399	 * to remain in the correct class.
400	 */
401	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
402		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
403		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
404			tclass = SECCLASS_NETLINK_SOCKET;
405
406	/*
407	 * Initialize the access vectors to the default values.
408	 */
409	avd->allowed = 0;
410	avd->decided = 0xffffffff;
411	avd->auditallow = 0;
412	avd->auditdeny = 0xffffffff;
413	avd->seqno = latest_granting;
414
415	/*
416	 * Check for all the invalid cases.
417	 * - tclass 0
418	 * - tclass > policy and > kernel
419	 * - tclass > policy but is a userspace class
420	 * - tclass > policy but we do not allow unknowns
421	 */
422	if (unlikely(!tclass))
423		goto inval_class;
424	if (unlikely(tclass > policydb.p_classes.nprim))
425		if (tclass > kdefs->cts_len ||
426		    !kdefs->class_to_string[tclass] ||
427		    !policydb.allow_unknown)
428			goto inval_class;
429
430	/*
431	 * Kernel class and we allow unknown so pad the allow decision
432	 * the pad will be all 1 for unknown classes.
433	 */
434	if (tclass <= kdefs->cts_len && policydb.allow_unknown)
435		avd->allowed = policydb.undefined_perms[tclass - 1];
436
437	/*
438	 * Not in policy. Since decision is completed (all 1 or all 0) return.
439	 */
440	if (unlikely(tclass > policydb.p_classes.nprim))
441		return 0;
442
443	tclass_datum = policydb.class_val_to_struct[tclass - 1];
444
445	/*
446	 * If a specific type enforcement rule was defined for
447	 * this permission check, then use it.
448	 */
449	avkey.target_class = tclass;
450	avkey.specified = AVTAB_AV;
451	sattr = &policydb.type_attr_map[scontext->type - 1];
452	tattr = &policydb.type_attr_map[tcontext->type - 1];
453	ebitmap_for_each_positive_bit(sattr, snode, i) {
454		ebitmap_for_each_positive_bit(tattr, tnode, j) {
455			avkey.source_type = i + 1;
456			avkey.target_type = j + 1;
457			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
458			     node;
459			     node = avtab_search_node_next(node, avkey.specified)) {
460				if (node->key.specified == AVTAB_ALLOWED)
461					avd->allowed |= node->datum.data;
462				else if (node->key.specified == AVTAB_AUDITALLOW)
463					avd->auditallow |= node->datum.data;
464				else if (node->key.specified == AVTAB_AUDITDENY)
465					avd->auditdeny &= node->datum.data;
466			}
467
468			/* Check conditional av table for additional permissions */
469			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
470
471		}
472	}
473
474	/*
475	 * Remove any permissions prohibited by a constraint (this includes
476	 * the MLS policy).
477	 */
478	constraint = tclass_datum->constraints;
479	while (constraint) {
480		if ((constraint->permissions & (avd->allowed)) &&
481		    !constraint_expr_eval(scontext, tcontext, NULL,
482					  constraint->expr)) {
483			avd->allowed = (avd->allowed) & ~(constraint->permissions);
484		}
485		constraint = constraint->next;
486	}
487
488	/*
489	 * If checking process transition permission and the
490	 * role is changing, then check the (current_role, new_role)
491	 * pair.
492	 */
493	if (tclass == SECCLASS_PROCESS &&
494	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
495	    scontext->role != tcontext->role) {
496		for (ra = policydb.role_allow; ra; ra = ra->next) {
497			if (scontext->role == ra->role &&
498			    tcontext->role == ra->new_role)
499				break;
500		}
501		if (!ra)
502			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
503							PROCESS__DYNTRANSITION);
504	}
505
506	/*
507	 * If the given source and target types have boundary
508	 * constraint, lazy checks have to mask any violated
509	 * permission and notice it to userspace via audit.
510	 */
511	type_attribute_bounds_av(scontext, tcontext,
512				 tclass, requested, avd);
513
514	return 0;
515
516inval_class:
517	if (!tclass || tclass > kdefs->cts_len ||
518	    !kdefs->class_to_string[tclass]) {
519		if (printk_ratelimit())
520			printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
521			       __func__, tclass);
522		return -EINVAL;
523	}
524
525	/*
526	 * Known to the kernel, but not to the policy.
527	 * Handle as a denial (allowed is 0).
528	 */
529	return 0;
530}
531
532/*
533 * Given a sid find if the type has the permissive flag set
534 */
535int security_permissive_sid(u32 sid)
536{
537	struct context *context;
538	u32 type;
539	int rc;
540
541	read_lock(&policy_rwlock);
542
543	context = sidtab_search(&sidtab, sid);
544	BUG_ON(!context);
545
546	type = context->type;
547	/*
548	 * we are intentionally using type here, not type-1, the 0th bit may
549	 * someday indicate that we are globally setting permissive in policy.
550	 */
551	rc = ebitmap_get_bit(&policydb.permissive_map, type);
552
553	read_unlock(&policy_rwlock);
554	return rc;
555}
556
557static int security_validtrans_handle_fail(struct context *ocontext,
558					   struct context *ncontext,
559					   struct context *tcontext,
560					   u16 tclass)
561{
562	char *o = NULL, *n = NULL, *t = NULL;
563	u32 olen, nlen, tlen;
564
565	if (context_struct_to_string(ocontext, &o, &olen) < 0)
566		goto out;
567	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
568		goto out;
569	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
570		goto out;
571	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
572		  "security_validate_transition:  denied for"
573		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
574		  o, n, t, policydb.p_class_val_to_name[tclass-1]);
575out:
576	kfree(o);
577	kfree(n);
578	kfree(t);
579
580	if (!selinux_enforcing)
581		return 0;
582	return -EPERM;
583}
584
585int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
586				 u16 tclass)
587{
588	struct context *ocontext;
589	struct context *ncontext;
590	struct context *tcontext;
591	struct class_datum *tclass_datum;
592	struct constraint_node *constraint;
593	int rc = 0;
594
595	if (!ss_initialized)
596		return 0;
597
598	read_lock(&policy_rwlock);
599
600	/*
601	 * Remap extended Netlink classes for old policy versions.
602	 * Do this here rather than socket_type_to_security_class()
603	 * in case a newer policy version is loaded, allowing sockets
604	 * to remain in the correct class.
605	 */
606	if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
607		if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
608		    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
609			tclass = SECCLASS_NETLINK_SOCKET;
610
611	if (!tclass || tclass > policydb.p_classes.nprim) {
612		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
613			__func__, tclass);
614		rc = -EINVAL;
615		goto out;
616	}
617	tclass_datum = policydb.class_val_to_struct[tclass - 1];
618
619	ocontext = sidtab_search(&sidtab, oldsid);
620	if (!ocontext) {
621		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
622			__func__, oldsid);
623		rc = -EINVAL;
624		goto out;
625	}
626
627	ncontext = sidtab_search(&sidtab, newsid);
628	if (!ncontext) {
629		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
630			__func__, newsid);
631		rc = -EINVAL;
632		goto out;
633	}
634
635	tcontext = sidtab_search(&sidtab, tasksid);
636	if (!tcontext) {
637		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
638			__func__, tasksid);
639		rc = -EINVAL;
640		goto out;
641	}
642
643	constraint = tclass_datum->validatetrans;
644	while (constraint) {
645		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
646					  constraint->expr)) {
647			rc = security_validtrans_handle_fail(ocontext, ncontext,
648							     tcontext, tclass);
649			goto out;
650		}
651		constraint = constraint->next;
652	}
653
654out:
655	read_unlock(&policy_rwlock);
656	return rc;
657}
658
659/*
660 * security_bounded_transition - check whether the given
661 * transition is directed to bounded, or not.
662 * It returns 0, if @newsid is bounded by @oldsid.
663 * Otherwise, it returns error code.
664 *
665 * @oldsid : current security identifier
666 * @newsid : destinated security identifier
667 */
668int security_bounded_transition(u32 old_sid, u32 new_sid)
669{
670	struct context *old_context, *new_context;
671	struct type_datum *type;
672	int index;
673	int rc = -EINVAL;
674
675	read_lock(&policy_rwlock);
676
677	old_context = sidtab_search(&sidtab, old_sid);
678	if (!old_context) {
679		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
680		       __func__, old_sid);
681		goto out;
682	}
683
684	new_context = sidtab_search(&sidtab, new_sid);
685	if (!new_context) {
686		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
687		       __func__, new_sid);
688		goto out;
689	}
690
691	/* type/domain unchaned */
692	if (old_context->type == new_context->type) {
693		rc = 0;
694		goto out;
695	}
696
697	index = new_context->type;
698	while (true) {
699		type = policydb.type_val_to_struct[index - 1];
700		BUG_ON(!type);
701
702		/* not bounded anymore */
703		if (!type->bounds) {
704			rc = -EPERM;
705			break;
706		}
707
708		/* @newsid is bounded by @oldsid */
709		if (type->bounds == old_context->type) {
710			rc = 0;
711			break;
712		}
713		index = type->bounds;
714	}
715out:
716	read_unlock(&policy_rwlock);
717
718	return rc;
719}
720
721
722/**
723 * security_compute_av - Compute access vector decisions.
724 * @ssid: source security identifier
725 * @tsid: target security identifier
726 * @tclass: target security class
727 * @requested: requested permissions
728 * @avd: access vector decisions
729 *
730 * Compute a set of access vector decisions based on the
731 * SID pair (@ssid, @tsid) for the permissions in @tclass.
732 * Return -%EINVAL if any of the parameters are invalid or %0
733 * if the access vector decisions were computed successfully.
734 */
735int security_compute_av(u32 ssid,
736			u32 tsid,
737			u16 tclass,
738			u32 requested,
739			struct av_decision *avd)
740{
741	struct context *scontext = NULL, *tcontext = NULL;
742	int rc = 0;
743
744	if (!ss_initialized) {
745		avd->allowed = 0xffffffff;
746		avd->decided = 0xffffffff;
747		avd->auditallow = 0;
748		avd->auditdeny = 0xffffffff;
749		avd->seqno = latest_granting;
750		return 0;
751	}
752
753	read_lock(&policy_rwlock);
754
755	scontext = sidtab_search(&sidtab, ssid);
756	if (!scontext) {
757		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
758		       __func__, ssid);
759		rc = -EINVAL;
760		goto out;
761	}
762	tcontext = sidtab_search(&sidtab, tsid);
763	if (!tcontext) {
764		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
765		       __func__, tsid);
766		rc = -EINVAL;
767		goto out;
768	}
769
770	rc = context_struct_compute_av(scontext, tcontext, tclass,
771				       requested, avd);
772out:
773	read_unlock(&policy_rwlock);
774	return rc;
775}
776
777/*
778 * Write the security context string representation of
779 * the context structure `context' into a dynamically
780 * allocated string of the correct size.  Set `*scontext'
781 * to point to this string and set `*scontext_len' to
782 * the length of the string.
783 */
784static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
785{
786	char *scontextp;
787
788	*scontext = NULL;
789	*scontext_len = 0;
790
791	if (context->len) {
792		*scontext_len = context->len;
793		*scontext = kstrdup(context->str, GFP_ATOMIC);
794		if (!(*scontext))
795			return -ENOMEM;
796		return 0;
797	}
798
799	/* Compute the size of the context. */
800	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
801	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
802	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
803	*scontext_len += mls_compute_context_len(context);
804
805	/* Allocate space for the context; caller must free this space. */
806	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
807	if (!scontextp)
808		return -ENOMEM;
809	*scontext = scontextp;
810
811	/*
812	 * Copy the user name, role name and type name into the context.
813	 */
814	sprintf(scontextp, "%s:%s:%s",
815		policydb.p_user_val_to_name[context->user - 1],
816		policydb.p_role_val_to_name[context->role - 1],
817		policydb.p_type_val_to_name[context->type - 1]);
818	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
819		     1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
820		     1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
821
822	mls_sid_to_context(context, &scontextp);
823
824	*scontextp = 0;
825
826	return 0;
827}
828
829#include "initial_sid_to_string.h"
830
831const char *security_get_initial_sid_context(u32 sid)
832{
833	if (unlikely(sid > SECINITSID_NUM))
834		return NULL;
835	return initial_sid_to_string[sid];
836}
837
838static int security_sid_to_context_core(u32 sid, char **scontext,
839					u32 *scontext_len, int force)
840{
841	struct context *context;
842	int rc = 0;
843
844	*scontext = NULL;
845	*scontext_len  = 0;
846
847	if (!ss_initialized) {
848		if (sid <= SECINITSID_NUM) {
849			char *scontextp;
850
851			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
852			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
853			if (!scontextp) {
854				rc = -ENOMEM;
855				goto out;
856			}
857			strcpy(scontextp, initial_sid_to_string[sid]);
858			*scontext = scontextp;
859			goto out;
860		}
861		printk(KERN_ERR "SELinux: %s:  called before initial "
862		       "load_policy on unknown SID %d\n", __func__, sid);
863		rc = -EINVAL;
864		goto out;
865	}
866	read_lock(&policy_rwlock);
867	if (force)
868		context = sidtab_search_force(&sidtab, sid);
869	else
870		context = sidtab_search(&sidtab, sid);
871	if (!context) {
872		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
873			__func__, sid);
874		rc = -EINVAL;
875		goto out_unlock;
876	}
877	rc = context_struct_to_string(context, scontext, scontext_len);
878out_unlock:
879	read_unlock(&policy_rwlock);
880out:
881	return rc;
882
883}
884
885/**
886 * security_sid_to_context - Obtain a context for a given SID.
887 * @sid: security identifier, SID
888 * @scontext: security context
889 * @scontext_len: length in bytes
890 *
891 * Write the string representation of the context associated with @sid
892 * into a dynamically allocated string of the correct size.  Set @scontext
893 * to point to this string and set @scontext_len to the length of the string.
894 */
895int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
896{
897	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
898}
899
900int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
901{
902	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
903}
904
905/*
906 * Caveat:  Mutates scontext.
907 */
908static int string_to_context_struct(struct policydb *pol,
909				    struct sidtab *sidtabp,
910				    char *scontext,
911				    u32 scontext_len,
912				    struct context *ctx,
913				    u32 def_sid)
914{
915	struct role_datum *role;
916	struct type_datum *typdatum;
917	struct user_datum *usrdatum;
918	char *scontextp, *p, oldc;
919	int rc = 0;
920
921	context_init(ctx);
922
923	/* Parse the security context. */
924
925	rc = -EINVAL;
926	scontextp = (char *) scontext;
927
928	/* Extract the user. */
929	p = scontextp;
930	while (*p && *p != ':')
931		p++;
932
933	if (*p == 0)
934		goto out;
935
936	*p++ = 0;
937
938	usrdatum = hashtab_search(pol->p_users.table, scontextp);
939	if (!usrdatum)
940		goto out;
941
942	ctx->user = usrdatum->value;
943
944	/* Extract role. */
945	scontextp = p;
946	while (*p && *p != ':')
947		p++;
948
949	if (*p == 0)
950		goto out;
951
952	*p++ = 0;
953
954	role = hashtab_search(pol->p_roles.table, scontextp);
955	if (!role)
956		goto out;
957	ctx->role = role->value;
958
959	/* Extract type. */
960	scontextp = p;
961	while (*p && *p != ':')
962		p++;
963	oldc = *p;
964	*p++ = 0;
965
966	typdatum = hashtab_search(pol->p_types.table, scontextp);
967	if (!typdatum || typdatum->attribute)
968		goto out;
969
970	ctx->type = typdatum->value;
971
972	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
973	if (rc)
974		goto out;
975
976	if ((p - scontext) < scontext_len) {
977		rc = -EINVAL;
978		goto out;
979	}
980
981	/* Check the validity of the new context. */
982	if (!policydb_context_isvalid(pol, ctx)) {
983		rc = -EINVAL;
984		goto out;
985	}
986	rc = 0;
987out:
988	if (rc)
989		context_destroy(ctx);
990	return rc;
991}
992
993static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
994					u32 *sid, u32 def_sid, gfp_t gfp_flags,
995					int force)
996{
997	char *scontext2, *str = NULL;
998	struct context context;
999	int rc = 0;
1000
1001	if (!ss_initialized) {
1002		int i;
1003
1004		for (i = 1; i < SECINITSID_NUM; i++) {
1005			if (!strcmp(initial_sid_to_string[i], scontext)) {
1006				*sid = i;
1007				return 0;
1008			}
1009		}
1010		*sid = SECINITSID_KERNEL;
1011		return 0;
1012	}
1013	*sid = SECSID_NULL;
1014
1015	/* Copy the string so that we can modify the copy as we parse it. */
1016	scontext2 = kmalloc(scontext_len+1, gfp_flags);
1017	if (!scontext2)
1018		return -ENOMEM;
1019	memcpy(scontext2, scontext, scontext_len);
1020	scontext2[scontext_len] = 0;
1021
1022	if (force) {
1023		/* Save another copy for storing in uninterpreted form */
1024		str = kstrdup(scontext2, gfp_flags);
1025		if (!str) {
1026			kfree(scontext2);
1027			return -ENOMEM;
1028		}
1029	}
1030
1031	read_lock(&policy_rwlock);
1032	rc = string_to_context_struct(&policydb, &sidtab,
1033				      scontext2, scontext_len,
1034				      &context, def_sid);
1035	if (rc == -EINVAL && force) {
1036		context.str = str;
1037		context.len = scontext_len;
1038		str = NULL;
1039	} else if (rc)
1040		goto out;
1041	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1042	context_destroy(&context);
1043out:
1044	read_unlock(&policy_rwlock);
1045	kfree(scontext2);
1046	kfree(str);
1047	return rc;
1048}
1049
1050/**
1051 * security_context_to_sid - Obtain a SID for a given security context.
1052 * @scontext: security context
1053 * @scontext_len: length in bytes
1054 * @sid: security identifier, SID
1055 *
1056 * Obtains a SID associated with the security context that
1057 * has the string representation specified by @scontext.
1058 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1059 * memory is available, or 0 on success.
1060 */
1061int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1062{
1063	return security_context_to_sid_core(scontext, scontext_len,
1064					    sid, SECSID_NULL, GFP_KERNEL, 0);
1065}
1066
1067/**
1068 * security_context_to_sid_default - Obtain a SID for a given security context,
1069 * falling back to specified default if needed.
1070 *
1071 * @scontext: security context
1072 * @scontext_len: length in bytes
1073 * @sid: security identifier, SID
1074 * @def_sid: default SID to assign on error
1075 *
1076 * Obtains a SID associated with the security context that
1077 * has the string representation specified by @scontext.
1078 * The default SID is passed to the MLS layer to be used to allow
1079 * kernel labeling of the MLS field if the MLS field is not present
1080 * (for upgrading to MLS without full relabel).
1081 * Implicitly forces adding of the context even if it cannot be mapped yet.
1082 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1083 * memory is available, or 0 on success.
1084 */
1085int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1086				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1087{
1088	return security_context_to_sid_core(scontext, scontext_len,
1089					    sid, def_sid, gfp_flags, 1);
1090}
1091
1092int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1093				  u32 *sid)
1094{
1095	return security_context_to_sid_core(scontext, scontext_len,
1096					    sid, SECSID_NULL, GFP_KERNEL, 1);
1097}
1098
1099static int compute_sid_handle_invalid_context(
1100	struct context *scontext,
1101	struct context *tcontext,
1102	u16 tclass,
1103	struct context *newcontext)
1104{
1105	char *s = NULL, *t = NULL, *n = NULL;
1106	u32 slen, tlen, nlen;
1107
1108	if (context_struct_to_string(scontext, &s, &slen) < 0)
1109		goto out;
1110	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1111		goto out;
1112	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1113		goto out;
1114	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1115		  "security_compute_sid:  invalid context %s"
1116		  " for scontext=%s"
1117		  " tcontext=%s"
1118		  " tclass=%s",
1119		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
1120out:
1121	kfree(s);
1122	kfree(t);
1123	kfree(n);
1124	if (!selinux_enforcing)
1125		return 0;
1126	return -EACCES;
1127}
1128
1129static int security_compute_sid(u32 ssid,
1130				u32 tsid,
1131				u16 tclass,
1132				u32 specified,
1133				u32 *out_sid)
1134{
1135	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1136	struct role_trans *roletr = NULL;
1137	struct avtab_key avkey;
1138	struct avtab_datum *avdatum;
1139	struct avtab_node *node;
1140	int rc = 0;
1141
1142	if (!ss_initialized) {
1143		switch (tclass) {
1144		case SECCLASS_PROCESS:
1145			*out_sid = ssid;
1146			break;
1147		default:
1148			*out_sid = tsid;
1149			break;
1150		}
1151		goto out;
1152	}
1153
1154	context_init(&newcontext);
1155
1156	read_lock(&policy_rwlock);
1157
1158	scontext = sidtab_search(&sidtab, ssid);
1159	if (!scontext) {
1160		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1161		       __func__, ssid);
1162		rc = -EINVAL;
1163		goto out_unlock;
1164	}
1165	tcontext = sidtab_search(&sidtab, tsid);
1166	if (!tcontext) {
1167		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1168		       __func__, tsid);
1169		rc = -EINVAL;
1170		goto out_unlock;
1171	}
1172
1173	/* Set the user identity. */
1174	switch (specified) {
1175	case AVTAB_TRANSITION:
1176	case AVTAB_CHANGE:
1177		/* Use the process user identity. */
1178		newcontext.user = scontext->user;
1179		break;
1180	case AVTAB_MEMBER:
1181		/* Use the related object owner. */
1182		newcontext.user = tcontext->user;
1183		break;
1184	}
1185
1186	/* Set the role and type to default values. */
1187	switch (tclass) {
1188	case SECCLASS_PROCESS:
1189		/* Use the current role and type of process. */
1190		newcontext.role = scontext->role;
1191		newcontext.type = scontext->type;
1192		break;
1193	default:
1194		/* Use the well-defined object role. */
1195		newcontext.role = OBJECT_R_VAL;
1196		/* Use the type of the related object. */
1197		newcontext.type = tcontext->type;
1198	}
1199
1200	/* Look for a type transition/member/change rule. */
1201	avkey.source_type = scontext->type;
1202	avkey.target_type = tcontext->type;
1203	avkey.target_class = tclass;
1204	avkey.specified = specified;
1205	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1206
1207	/* If no permanent rule, also check for enabled conditional rules */
1208	if (!avdatum) {
1209		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1210		for (; node; node = avtab_search_node_next(node, specified)) {
1211			if (node->key.specified & AVTAB_ENABLED) {
1212				avdatum = &node->datum;
1213				break;
1214			}
1215		}
1216	}
1217
1218	if (avdatum) {
1219		/* Use the type from the type transition/member/change rule. */
1220		newcontext.type = avdatum->data;
1221	}
1222
1223	/* Check for class-specific changes. */
1224	switch (tclass) {
1225	case SECCLASS_PROCESS:
1226		if (specified & AVTAB_TRANSITION) {
1227			/* Look for a role transition rule. */
1228			for (roletr = policydb.role_tr; roletr;
1229			     roletr = roletr->next) {
1230				if (roletr->role == scontext->role &&
1231				    roletr->type == tcontext->type) {
1232					/* Use the role transition rule. */
1233					newcontext.role = roletr->new_role;
1234					break;
1235				}
1236			}
1237		}
1238		break;
1239	default:
1240		break;
1241	}
1242
1243	/* Set the MLS attributes.
1244	   This is done last because it may allocate memory. */
1245	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1246	if (rc)
1247		goto out_unlock;
1248
1249	/* Check the validity of the context. */
1250	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1251		rc = compute_sid_handle_invalid_context(scontext,
1252							tcontext,
1253							tclass,
1254							&newcontext);
1255		if (rc)
1256			goto out_unlock;
1257	}
1258	/* Obtain the sid for the context. */
1259	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1260out_unlock:
1261	read_unlock(&policy_rwlock);
1262	context_destroy(&newcontext);
1263out:
1264	return rc;
1265}
1266
1267/**
1268 * security_transition_sid - Compute the SID for a new subject/object.
1269 * @ssid: source security identifier
1270 * @tsid: target security identifier
1271 * @tclass: target security class
1272 * @out_sid: security identifier for new subject/object
1273 *
1274 * Compute a SID to use for labeling a new subject or object in the
1275 * class @tclass based on a SID pair (@ssid, @tsid).
1276 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1277 * if insufficient memory is available, or %0 if the new SID was
1278 * computed successfully.
1279 */
1280int security_transition_sid(u32 ssid,
1281			    u32 tsid,
1282			    u16 tclass,
1283			    u32 *out_sid)
1284{
1285	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1286}
1287
1288/**
1289 * security_member_sid - Compute the SID for member selection.
1290 * @ssid: source security identifier
1291 * @tsid: target security identifier
1292 * @tclass: target security class
1293 * @out_sid: security identifier for selected member
1294 *
1295 * Compute a SID to use when selecting a member of a polyinstantiated
1296 * object of class @tclass based on a SID pair (@ssid, @tsid).
1297 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1298 * if insufficient memory is available, or %0 if the SID was
1299 * computed successfully.
1300 */
1301int security_member_sid(u32 ssid,
1302			u32 tsid,
1303			u16 tclass,
1304			u32 *out_sid)
1305{
1306	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1307}
1308
1309/**
1310 * security_change_sid - Compute the SID for object relabeling.
1311 * @ssid: source security identifier
1312 * @tsid: target security identifier
1313 * @tclass: target security class
1314 * @out_sid: security identifier for selected member
1315 *
1316 * Compute a SID to use for relabeling an object of class @tclass
1317 * based on a SID pair (@ssid, @tsid).
1318 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1319 * if insufficient memory is available, or %0 if the SID was
1320 * computed successfully.
1321 */
1322int security_change_sid(u32 ssid,
1323			u32 tsid,
1324			u16 tclass,
1325			u32 *out_sid)
1326{
1327	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1328}
1329
1330/*
1331 * Verify that each kernel class that is defined in the
1332 * policy is correct
1333 */
1334static int validate_classes(struct policydb *p)
1335{
1336	int i, j;
1337	struct class_datum *cladatum;
1338	struct perm_datum *perdatum;
1339	u32 nprim, tmp, common_pts_len, perm_val, pol_val;
1340	u16 class_val;
1341	const struct selinux_class_perm *kdefs = &selinux_class_perm;
1342	const char *def_class, *def_perm, *pol_class;
1343	struct symtab *perms;
1344	bool print_unknown_handle = 0;
1345
1346	if (p->allow_unknown) {
1347		u32 num_classes = kdefs->cts_len;
1348		p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
1349		if (!p->undefined_perms)
1350			return -ENOMEM;
1351	}
1352
1353	for (i = 1; i < kdefs->cts_len; i++) {
1354		def_class = kdefs->class_to_string[i];
1355		if (!def_class)
1356			continue;
1357		if (i > p->p_classes.nprim) {
1358			printk(KERN_INFO
1359			       "SELinux:  class %s not defined in policy\n",
1360			       def_class);
1361			if (p->reject_unknown)
1362				return -EINVAL;
1363			if (p->allow_unknown)
1364				p->undefined_perms[i-1] = ~0U;
1365			print_unknown_handle = 1;
1366			continue;
1367		}
1368		pol_class = p->p_class_val_to_name[i-1];
1369		if (strcmp(pol_class, def_class)) {
1370			printk(KERN_ERR
1371			       "SELinux:  class %d is incorrect, found %s but should be %s\n",
1372			       i, pol_class, def_class);
1373			return -EINVAL;
1374		}
1375	}
1376	for (i = 0; i < kdefs->av_pts_len; i++) {
1377		class_val = kdefs->av_perm_to_string[i].tclass;
1378		perm_val = kdefs->av_perm_to_string[i].value;
1379		def_perm = kdefs->av_perm_to_string[i].name;
1380		if (class_val > p->p_classes.nprim)
1381			continue;
1382		pol_class = p->p_class_val_to_name[class_val-1];
1383		cladatum = hashtab_search(p->p_classes.table, pol_class);
1384		BUG_ON(!cladatum);
1385		perms = &cladatum->permissions;
1386		nprim = 1 << (perms->nprim - 1);
1387		if (perm_val > nprim) {
1388			printk(KERN_INFO
1389			       "SELinux:  permission %s in class %s not defined in policy\n",
1390			       def_perm, pol_class);
1391			if (p->reject_unknown)
1392				return -EINVAL;
1393			if (p->allow_unknown)
1394				p->undefined_perms[class_val-1] |= perm_val;
1395			print_unknown_handle = 1;
1396			continue;
1397		}
1398		perdatum = hashtab_search(perms->table, def_perm);
1399		if (perdatum == NULL) {
1400			printk(KERN_ERR
1401			       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1402			       def_perm, pol_class);
1403			return -EINVAL;
1404		}
1405		pol_val = 1 << (perdatum->value - 1);
1406		if (pol_val != perm_val) {
1407			printk(KERN_ERR
1408			       "SELinux:  permission %s in class %s has incorrect value\n",
1409			       def_perm, pol_class);
1410			return -EINVAL;
1411		}
1412	}
1413	for (i = 0; i < kdefs->av_inherit_len; i++) {
1414		class_val = kdefs->av_inherit[i].tclass;
1415		if (class_val > p->p_classes.nprim)
1416			continue;
1417		pol_class = p->p_class_val_to_name[class_val-1];
1418		cladatum = hashtab_search(p->p_classes.table, pol_class);
1419		BUG_ON(!cladatum);
1420		if (!cladatum->comdatum) {
1421			printk(KERN_ERR
1422			       "SELinux:  class %s should have an inherits clause but does not\n",
1423			       pol_class);
1424			return -EINVAL;
1425		}
1426		tmp = kdefs->av_inherit[i].common_base;
1427		common_pts_len = 0;
1428		while (!(tmp & 0x01)) {
1429			common_pts_len++;
1430			tmp >>= 1;
1431		}
1432		perms = &cladatum->comdatum->permissions;
1433		for (j = 0; j < common_pts_len; j++) {
1434			def_perm = kdefs->av_inherit[i].common_pts[j];
1435			if (j >= perms->nprim) {
1436				printk(KERN_INFO
1437				       "SELinux:  permission %s in class %s not defined in policy\n",
1438				       def_perm, pol_class);
1439				if (p->reject_unknown)
1440					return -EINVAL;
1441				if (p->allow_unknown)
1442					p->undefined_perms[class_val-1] |= (1 << j);
1443				print_unknown_handle = 1;
1444				continue;
1445			}
1446			perdatum = hashtab_search(perms->table, def_perm);
1447			if (perdatum == NULL) {
1448				printk(KERN_ERR
1449				       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
1450				       def_perm, pol_class);
1451				return -EINVAL;
1452			}
1453			if (perdatum->value != j + 1) {
1454				printk(KERN_ERR
1455				       "SELinux:  permission %s in class %s has incorrect value\n",
1456				       def_perm, pol_class);
1457				return -EINVAL;
1458			}
1459		}
1460	}
1461	if (print_unknown_handle)
1462		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
1463			(security_get_allow_unknown() ? "allowed" : "denied"));
1464	return 0;
1465}
1466
1467/* Clone the SID into the new SID table. */
1468static int clone_sid(u32 sid,
1469		     struct context *context,
1470		     void *arg)
1471{
1472	struct sidtab *s = arg;
1473
1474	return sidtab_insert(s, sid, context);
1475}
1476
1477static inline int convert_context_handle_invalid_context(struct context *context)
1478{
1479	int rc = 0;
1480
1481	if (selinux_enforcing) {
1482		rc = -EINVAL;
1483	} else {
1484		char *s;
1485		u32 len;
1486
1487		if (!context_struct_to_string(context, &s, &len)) {
1488			printk(KERN_WARNING
1489		       "SELinux:  Context %s would be invalid if enforcing\n",
1490			       s);
1491			kfree(s);
1492		}
1493	}
1494	return rc;
1495}
1496
1497struct convert_context_args {
1498	struct policydb *oldp;
1499	struct policydb *newp;
1500};
1501
1502/*
1503 * Convert the values in the security context
1504 * structure `c' from the values specified
1505 * in the policy `p->oldp' to the values specified
1506 * in the policy `p->newp'.  Verify that the
1507 * context is valid under the new policy.
1508 */
1509static int convert_context(u32 key,
1510			   struct context *c,
1511			   void *p)
1512{
1513	struct convert_context_args *args;
1514	struct context oldc;
1515	struct role_datum *role;
1516	struct type_datum *typdatum;
1517	struct user_datum *usrdatum;
1518	char *s;
1519	u32 len;
1520	int rc;
1521
1522	args = p;
1523
1524	if (c->str) {
1525		struct context ctx;
1526		s = kstrdup(c->str, GFP_KERNEL);
1527		if (!s) {
1528			rc = -ENOMEM;
1529			goto out;
1530		}
1531		rc = string_to_context_struct(args->newp, NULL, s,
1532					      c->len, &ctx, SECSID_NULL);
1533		kfree(s);
1534		if (!rc) {
1535			printk(KERN_INFO
1536		       "SELinux:  Context %s became valid (mapped).\n",
1537			       c->str);
1538			/* Replace string with mapped representation. */
1539			kfree(c->str);
1540			memcpy(c, &ctx, sizeof(*c));
1541			goto out;
1542		} else if (rc == -EINVAL) {
1543			/* Retain string representation for later mapping. */
1544			rc = 0;
1545			goto out;
1546		} else {
1547			/* Other error condition, e.g. ENOMEM. */
1548			printk(KERN_ERR
1549		       "SELinux:   Unable to map context %s, rc = %d.\n",
1550			       c->str, -rc);
1551			goto out;
1552		}
1553	}
1554
1555	rc = context_cpy(&oldc, c);
1556	if (rc)
1557		goto out;
1558
1559	rc = -EINVAL;
1560
1561	/* Convert the user. */
1562	usrdatum = hashtab_search(args->newp->p_users.table,
1563				  args->oldp->p_user_val_to_name[c->user - 1]);
1564	if (!usrdatum)
1565		goto bad;
1566	c->user = usrdatum->value;
1567
1568	/* Convert the role. */
1569	role = hashtab_search(args->newp->p_roles.table,
1570			      args->oldp->p_role_val_to_name[c->role - 1]);
1571	if (!role)
1572		goto bad;
1573	c->role = role->value;
1574
1575	/* Convert the type. */
1576	typdatum = hashtab_search(args->newp->p_types.table,
1577				  args->oldp->p_type_val_to_name[c->type - 1]);
1578	if (!typdatum)
1579		goto bad;
1580	c->type = typdatum->value;
1581
1582	rc = mls_convert_context(args->oldp, args->newp, c);
1583	if (rc)
1584		goto bad;
1585
1586	/* Check the validity of the new context. */
1587	if (!policydb_context_isvalid(args->newp, c)) {
1588		rc = convert_context_handle_invalid_context(&oldc);
1589		if (rc)
1590			goto bad;
1591	}
1592
1593	context_destroy(&oldc);
1594	rc = 0;
1595out:
1596	return rc;
1597bad:
1598	/* Map old representation to string and save it. */
1599	if (context_struct_to_string(&oldc, &s, &len))
1600		return -ENOMEM;
1601	context_destroy(&oldc);
1602	context_destroy(c);
1603	c->str = s;
1604	c->len = len;
1605	printk(KERN_INFO
1606	       "SELinux:  Context %s became invalid (unmapped).\n",
1607	       c->str);
1608	rc = 0;
1609	goto out;
1610}
1611
1612static void security_load_policycaps(void)
1613{
1614	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1615						  POLICYDB_CAPABILITY_NETPEER);
1616	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1617						  POLICYDB_CAPABILITY_OPENPERM);
1618}
1619
1620extern void selinux_complete_init(void);
1621static int security_preserve_bools(struct policydb *p);
1622
1623/**
1624 * security_load_policy - Load a security policy configuration.
1625 * @data: binary policy data
1626 * @len: length of data in bytes
1627 *
1628 * Load a new set of security policy configuration data,
1629 * validate it and convert the SID table as necessary.
1630 * This function will flush the access vector cache after
1631 * loading the new policy.
1632 */
1633int security_load_policy(void *data, size_t len)
1634{
1635	struct policydb oldpolicydb, newpolicydb;
1636	struct sidtab oldsidtab, newsidtab;
1637	struct convert_context_args args;
1638	u32 seqno;
1639	int rc = 0;
1640	struct policy_file file = { data, len }, *fp = &file;
1641
1642	if (!ss_initialized) {
1643		avtab_cache_init();
1644		if (policydb_read(&policydb, fp)) {
1645			avtab_cache_destroy();
1646			return -EINVAL;
1647		}
1648		if (policydb_load_isids(&policydb, &sidtab)) {
1649			policydb_destroy(&policydb);
1650			avtab_cache_destroy();
1651			return -EINVAL;
1652		}
1653		/* Verify that the kernel defined classes are correct. */
1654		if (validate_classes(&policydb)) {
1655			printk(KERN_ERR
1656			       "SELinux:  the definition of a class is incorrect\n");
1657			sidtab_destroy(&sidtab);
1658			policydb_destroy(&policydb);
1659			avtab_cache_destroy();
1660			return -EINVAL;
1661		}
1662		security_load_policycaps();
1663		policydb_loaded_version = policydb.policyvers;
1664		ss_initialized = 1;
1665		seqno = ++latest_granting;
1666		selinux_complete_init();
1667		avc_ss_reset(seqno);
1668		selnl_notify_policyload(seqno);
1669		selinux_netlbl_cache_invalidate();
1670		selinux_xfrm_notify_policyload();
1671		return 0;
1672	}
1673
1674#if 0
1675	sidtab_hash_eval(&sidtab, "sids");
1676#endif
1677
1678	if (policydb_read(&newpolicydb, fp))
1679		return -EINVAL;
1680
1681	if (sidtab_init(&newsidtab)) {
1682		policydb_destroy(&newpolicydb);
1683		return -ENOMEM;
1684	}
1685
1686	/* Verify that the kernel defined classes are correct. */
1687	if (validate_classes(&newpolicydb)) {
1688		printk(KERN_ERR
1689		       "SELinux:  the definition of a class is incorrect\n");
1690		rc = -EINVAL;
1691		goto err;
1692	}
1693
1694	rc = security_preserve_bools(&newpolicydb);
1695	if (rc) {
1696		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1697		goto err;
1698	}
1699
1700	/* Clone the SID table. */
1701	sidtab_shutdown(&sidtab);
1702	if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1703		rc = -ENOMEM;
1704		goto err;
1705	}
1706
1707	/*
1708	 * Convert the internal representations of contexts
1709	 * in the new SID table.
1710	 */
1711	args.oldp = &policydb;
1712	args.newp = &newpolicydb;
1713	rc = sidtab_map(&newsidtab, convert_context, &args);
1714	if (rc)
1715		goto err;
1716
1717	/* Save the old policydb and SID table to free later. */
1718	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1719	sidtab_set(&oldsidtab, &sidtab);
1720
1721	/* Install the new policydb and SID table. */
1722	write_lock_irq(&policy_rwlock);
1723	memcpy(&policydb, &newpolicydb, sizeof policydb);
1724	sidtab_set(&sidtab, &newsidtab);
1725	security_load_policycaps();
1726	seqno = ++latest_granting;
1727	policydb_loaded_version = policydb.policyvers;
1728	write_unlock_irq(&policy_rwlock);
1729
1730	/* Free the old policydb and SID table. */
1731	policydb_destroy(&oldpolicydb);
1732	sidtab_destroy(&oldsidtab);
1733
1734	avc_ss_reset(seqno);
1735	selnl_notify_policyload(seqno);
1736	selinux_netlbl_cache_invalidate();
1737	selinux_xfrm_notify_policyload();
1738
1739	return 0;
1740
1741err:
1742	sidtab_destroy(&newsidtab);
1743	policydb_destroy(&newpolicydb);
1744	return rc;
1745
1746}
1747
1748/**
1749 * security_port_sid - Obtain the SID for a port.
1750 * @protocol: protocol number
1751 * @port: port number
1752 * @out_sid: security identifier
1753 */
1754int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1755{
1756	struct ocontext *c;
1757	int rc = 0;
1758
1759	read_lock(&policy_rwlock);
1760
1761	c = policydb.ocontexts[OCON_PORT];
1762	while (c) {
1763		if (c->u.port.protocol == protocol &&
1764		    c->u.port.low_port <= port &&
1765		    c->u.port.high_port >= port)
1766			break;
1767		c = c->next;
1768	}
1769
1770	if (c) {
1771		if (!c->sid[0]) {
1772			rc = sidtab_context_to_sid(&sidtab,
1773						   &c->context[0],
1774						   &c->sid[0]);
1775			if (rc)
1776				goto out;
1777		}
1778		*out_sid = c->sid[0];
1779	} else {
1780		*out_sid = SECINITSID_PORT;
1781	}
1782
1783out:
1784	read_unlock(&policy_rwlock);
1785	return rc;
1786}
1787
1788/**
1789 * security_netif_sid - Obtain the SID for a network interface.
1790 * @name: interface name
1791 * @if_sid: interface SID
1792 */
1793int security_netif_sid(char *name, u32 *if_sid)
1794{
1795	int rc = 0;
1796	struct ocontext *c;
1797
1798	read_lock(&policy_rwlock);
1799
1800	c = policydb.ocontexts[OCON_NETIF];
1801	while (c) {
1802		if (strcmp(name, c->u.name) == 0)
1803			break;
1804		c = c->next;
1805	}
1806
1807	if (c) {
1808		if (!c->sid[0] || !c->sid[1]) {
1809			rc = sidtab_context_to_sid(&sidtab,
1810						  &c->context[0],
1811						  &c->sid[0]);
1812			if (rc)
1813				goto out;
1814			rc = sidtab_context_to_sid(&sidtab,
1815						   &c->context[1],
1816						   &c->sid[1]);
1817			if (rc)
1818				goto out;
1819		}
1820		*if_sid = c->sid[0];
1821	} else
1822		*if_sid = SECINITSID_NETIF;
1823
1824out:
1825	read_unlock(&policy_rwlock);
1826	return rc;
1827}
1828
1829static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1830{
1831	int i, fail = 0;
1832
1833	for (i = 0; i < 4; i++)
1834		if (addr[i] != (input[i] & mask[i])) {
1835			fail = 1;
1836			break;
1837		}
1838
1839	return !fail;
1840}
1841
1842/**
1843 * security_node_sid - Obtain the SID for a node (host).
1844 * @domain: communication domain aka address family
1845 * @addrp: address
1846 * @addrlen: address length in bytes
1847 * @out_sid: security identifier
1848 */
1849int security_node_sid(u16 domain,
1850		      void *addrp,
1851		      u32 addrlen,
1852		      u32 *out_sid)
1853{
1854	int rc = 0;
1855	struct ocontext *c;
1856
1857	read_lock(&policy_rwlock);
1858
1859	switch (domain) {
1860	case AF_INET: {
1861		u32 addr;
1862
1863		if (addrlen != sizeof(u32)) {
1864			rc = -EINVAL;
1865			goto out;
1866		}
1867
1868		addr = *((u32 *)addrp);
1869
1870		c = policydb.ocontexts[OCON_NODE];
1871		while (c) {
1872			if (c->u.node.addr == (addr & c->u.node.mask))
1873				break;
1874			c = c->next;
1875		}
1876		break;
1877	}
1878
1879	case AF_INET6:
1880		if (addrlen != sizeof(u64) * 2) {
1881			rc = -EINVAL;
1882			goto out;
1883		}
1884		c = policydb.ocontexts[OCON_NODE6];
1885		while (c) {
1886			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1887						c->u.node6.mask))
1888				break;
1889			c = c->next;
1890		}
1891		break;
1892
1893	default:
1894		*out_sid = SECINITSID_NODE;
1895		goto out;
1896	}
1897
1898	if (c) {
1899		if (!c->sid[0]) {
1900			rc = sidtab_context_to_sid(&sidtab,
1901						   &c->context[0],
1902						   &c->sid[0]);
1903			if (rc)
1904				goto out;
1905		}
1906		*out_sid = c->sid[0];
1907	} else {
1908		*out_sid = SECINITSID_NODE;
1909	}
1910
1911out:
1912	read_unlock(&policy_rwlock);
1913	return rc;
1914}
1915
1916#define SIDS_NEL 25
1917
1918/**
1919 * security_get_user_sids - Obtain reachable SIDs for a user.
1920 * @fromsid: starting SID
1921 * @username: username
1922 * @sids: array of reachable SIDs for user
1923 * @nel: number of elements in @sids
1924 *
1925 * Generate the set of SIDs for legal security contexts
1926 * for a given user that can be reached by @fromsid.
1927 * Set *@sids to point to a dynamically allocated
1928 * array containing the set of SIDs.  Set *@nel to the
1929 * number of elements in the array.
1930 */
1931
1932int security_get_user_sids(u32 fromsid,
1933			   char *username,
1934			   u32 **sids,
1935			   u32 *nel)
1936{
1937	struct context *fromcon, usercon;
1938	u32 *mysids = NULL, *mysids2, sid;
1939	u32 mynel = 0, maxnel = SIDS_NEL;
1940	struct user_datum *user;
1941	struct role_datum *role;
1942	struct ebitmap_node *rnode, *tnode;
1943	int rc = 0, i, j;
1944
1945	*sids = NULL;
1946	*nel = 0;
1947
1948	if (!ss_initialized)
1949		goto out;
1950
1951	read_lock(&policy_rwlock);
1952
1953	context_init(&usercon);
1954
1955	fromcon = sidtab_search(&sidtab, fromsid);
1956	if (!fromcon) {
1957		rc = -EINVAL;
1958		goto out_unlock;
1959	}
1960
1961	user = hashtab_search(policydb.p_users.table, username);
1962	if (!user) {
1963		rc = -EINVAL;
1964		goto out_unlock;
1965	}
1966	usercon.user = user->value;
1967
1968	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1969	if (!mysids) {
1970		rc = -ENOMEM;
1971		goto out_unlock;
1972	}
1973
1974	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1975		role = policydb.role_val_to_struct[i];
1976		usercon.role = i+1;
1977		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
1978			usercon.type = j+1;
1979
1980			if (mls_setup_user_range(fromcon, user, &usercon))
1981				continue;
1982
1983			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1984			if (rc)
1985				goto out_unlock;
1986			if (mynel < maxnel) {
1987				mysids[mynel++] = sid;
1988			} else {
1989				maxnel += SIDS_NEL;
1990				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1991				if (!mysids2) {
1992					rc = -ENOMEM;
1993					goto out_unlock;
1994				}
1995				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1996				kfree(mysids);
1997				mysids = mysids2;
1998				mysids[mynel++] = sid;
1999			}
2000		}
2001	}
2002
2003out_unlock:
2004	read_unlock(&policy_rwlock);
2005	if (rc || !mynel) {
2006		kfree(mysids);
2007		goto out;
2008	}
2009
2010	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2011	if (!mysids2) {
2012		rc = -ENOMEM;
2013		kfree(mysids);
2014		goto out;
2015	}
2016	for (i = 0, j = 0; i < mynel; i++) {
2017		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2018					  SECCLASS_PROCESS,
2019					  PROCESS__TRANSITION, AVC_STRICT,
2020					  NULL);
2021		if (!rc)
2022			mysids2[j++] = mysids[i];
2023		cond_resched();
2024	}
2025	rc = 0;
2026	kfree(mysids);
2027	*sids = mysids2;
2028	*nel = j;
2029out:
2030	return rc;
2031}
2032
2033/**
2034 * security_genfs_sid - Obtain a SID for a file in a filesystem
2035 * @fstype: filesystem type
2036 * @path: path from root of mount
2037 * @sclass: file security class
2038 * @sid: SID for path
2039 *
2040 * Obtain a SID to use for a file in a filesystem that
2041 * cannot support xattr or use a fixed labeling behavior like
2042 * transition SIDs or task SIDs.
2043 */
2044int security_genfs_sid(const char *fstype,
2045		       char *path,
2046		       u16 sclass,
2047		       u32 *sid)
2048{
2049	int len;
2050	struct genfs *genfs;
2051	struct ocontext *c;
2052	int rc = 0, cmp = 0;
2053
2054	while (path[0] == '/' && path[1] == '/')
2055		path++;
2056
2057	read_lock(&policy_rwlock);
2058
2059	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2060		cmp = strcmp(fstype, genfs->fstype);
2061		if (cmp <= 0)
2062			break;
2063	}
2064
2065	if (!genfs || cmp) {
2066		*sid = SECINITSID_UNLABELED;
2067		rc = -ENOENT;
2068		goto out;
2069	}
2070
2071	for (c = genfs->head; c; c = c->next) {
2072		len = strlen(c->u.name);
2073		if ((!c->v.sclass || sclass == c->v.sclass) &&
2074		    (strncmp(c->u.name, path, len) == 0))
2075			break;
2076	}
2077
2078	if (!c) {
2079		*sid = SECINITSID_UNLABELED;
2080		rc = -ENOENT;
2081		goto out;
2082	}
2083
2084	if (!c->sid[0]) {
2085		rc = sidtab_context_to_sid(&sidtab,
2086					   &c->context[0],
2087					   &c->sid[0]);
2088		if (rc)
2089			goto out;
2090	}
2091
2092	*sid = c->sid[0];
2093out:
2094	read_unlock(&policy_rwlock);
2095	return rc;
2096}
2097
2098/**
2099 * security_fs_use - Determine how to handle labeling for a filesystem.
2100 * @fstype: filesystem type
2101 * @behavior: labeling behavior
2102 * @sid: SID for filesystem (superblock)
2103 */
2104int security_fs_use(
2105	const char *fstype,
2106	unsigned int *behavior,
2107	u32 *sid)
2108{
2109	int rc = 0;
2110	struct ocontext *c;
2111
2112	read_lock(&policy_rwlock);
2113
2114	c = policydb.ocontexts[OCON_FSUSE];
2115	while (c) {
2116		if (strcmp(fstype, c->u.name) == 0)
2117			break;
2118		c = c->next;
2119	}
2120
2121	if (c) {
2122		*behavior = c->v.behavior;
2123		if (!c->sid[0]) {
2124			rc = sidtab_context_to_sid(&sidtab,
2125						   &c->context[0],
2126						   &c->sid[0]);
2127			if (rc)
2128				goto out;
2129		}
2130		*sid = c->sid[0];
2131	} else {
2132		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2133		if (rc) {
2134			*behavior = SECURITY_FS_USE_NONE;
2135			rc = 0;
2136		} else {
2137			*behavior = SECURITY_FS_USE_GENFS;
2138		}
2139	}
2140
2141out:
2142	read_unlock(&policy_rwlock);
2143	return rc;
2144}
2145
2146int security_get_bools(int *len, char ***names, int **values)
2147{
2148	int i, rc = -ENOMEM;
2149
2150	read_lock(&policy_rwlock);
2151	*names = NULL;
2152	*values = NULL;
2153
2154	*len = policydb.p_bools.nprim;
2155	if (!*len) {
2156		rc = 0;
2157		goto out;
2158	}
2159
2160       *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2161	if (!*names)
2162		goto err;
2163
2164       *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2165	if (!*values)
2166		goto err;
2167
2168	for (i = 0; i < *len; i++) {
2169		size_t name_len;
2170		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2171		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2172	       (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2173		if (!(*names)[i])
2174			goto err;
2175		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2176		(*names)[i][name_len - 1] = 0;
2177	}
2178	rc = 0;
2179out:
2180	read_unlock(&policy_rwlock);
2181	return rc;
2182err:
2183	if (*names) {
2184		for (i = 0; i < *len; i++)
2185			kfree((*names)[i]);
2186	}
2187	kfree(*values);
2188	goto out;
2189}
2190
2191
2192int security_set_bools(int len, int *values)
2193{
2194	int i, rc = 0;
2195	int lenp, seqno = 0;
2196	struct cond_node *cur;
2197
2198	write_lock_irq(&policy_rwlock);
2199
2200	lenp = policydb.p_bools.nprim;
2201	if (len != lenp) {
2202		rc = -EFAULT;
2203		goto out;
2204	}
2205
2206	for (i = 0; i < len; i++) {
2207		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2208			audit_log(current->audit_context, GFP_ATOMIC,
2209				AUDIT_MAC_CONFIG_CHANGE,
2210				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2211				policydb.p_bool_val_to_name[i],
2212				!!values[i],
2213				policydb.bool_val_to_struct[i]->state,
2214				audit_get_loginuid(current),
2215				audit_get_sessionid(current));
2216		}
2217		if (values[i])
2218			policydb.bool_val_to_struct[i]->state = 1;
2219		else
2220			policydb.bool_val_to_struct[i]->state = 0;
2221	}
2222
2223	for (cur = policydb.cond_list; cur; cur = cur->next) {
2224		rc = evaluate_cond_node(&policydb, cur);
2225		if (rc)
2226			goto out;
2227	}
2228
2229	seqno = ++latest_granting;
2230
2231out:
2232	write_unlock_irq(&policy_rwlock);
2233	if (!rc) {
2234		avc_ss_reset(seqno);
2235		selnl_notify_policyload(seqno);
2236		selinux_xfrm_notify_policyload();
2237	}
2238	return rc;
2239}
2240
2241int security_get_bool_value(int bool)
2242{
2243	int rc = 0;
2244	int len;
2245
2246	read_lock(&policy_rwlock);
2247
2248	len = policydb.p_bools.nprim;
2249	if (bool >= len) {
2250		rc = -EFAULT;
2251		goto out;
2252	}
2253
2254	rc = policydb.bool_val_to_struct[bool]->state;
2255out:
2256	read_unlock(&policy_rwlock);
2257	return rc;
2258}
2259
2260static int security_preserve_bools(struct policydb *p)
2261{
2262	int rc, nbools = 0, *bvalues = NULL, i;
2263	char **bnames = NULL;
2264	struct cond_bool_datum *booldatum;
2265	struct cond_node *cur;
2266
2267	rc = security_get_bools(&nbools, &bnames, &bvalues);
2268	if (rc)
2269		goto out;
2270	for (i = 0; i < nbools; i++) {
2271		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2272		if (booldatum)
2273			booldatum->state = bvalues[i];
2274	}
2275	for (cur = p->cond_list; cur; cur = cur->next) {
2276		rc = evaluate_cond_node(p, cur);
2277		if (rc)
2278			goto out;
2279	}
2280
2281out:
2282	if (bnames) {
2283		for (i = 0; i < nbools; i++)
2284			kfree(bnames[i]);
2285	}
2286	kfree(bnames);
2287	kfree(bvalues);
2288	return rc;
2289}
2290
2291/*
2292 * security_sid_mls_copy() - computes a new sid based on the given
2293 * sid and the mls portion of mls_sid.
2294 */
2295int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2296{
2297	struct context *context1;
2298	struct context *context2;
2299	struct context newcon;
2300	char *s;
2301	u32 len;
2302	int rc = 0;
2303
2304	if (!ss_initialized || !selinux_mls_enabled) {
2305		*new_sid = sid;
2306		goto out;
2307	}
2308
2309	context_init(&newcon);
2310
2311	read_lock(&policy_rwlock);
2312	context1 = sidtab_search(&sidtab, sid);
2313	if (!context1) {
2314		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2315			__func__, sid);
2316		rc = -EINVAL;
2317		goto out_unlock;
2318	}
2319
2320	context2 = sidtab_search(&sidtab, mls_sid);
2321	if (!context2) {
2322		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2323			__func__, mls_sid);
2324		rc = -EINVAL;
2325		goto out_unlock;
2326	}
2327
2328	newcon.user = context1->user;
2329	newcon.role = context1->role;
2330	newcon.type = context1->type;
2331	rc = mls_context_cpy(&newcon, context2);
2332	if (rc)
2333		goto out_unlock;
2334
2335	/* Check the validity of the new context. */
2336	if (!policydb_context_isvalid(&policydb, &newcon)) {
2337		rc = convert_context_handle_invalid_context(&newcon);
2338		if (rc)
2339			goto bad;
2340	}
2341
2342	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2343	goto out_unlock;
2344
2345bad:
2346	if (!context_struct_to_string(&newcon, &s, &len)) {
2347		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2348			  "security_sid_mls_copy: invalid context %s", s);
2349		kfree(s);
2350	}
2351
2352out_unlock:
2353	read_unlock(&policy_rwlock);
2354	context_destroy(&newcon);
2355out:
2356	return rc;
2357}
2358
2359/**
2360 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2361 * @nlbl_sid: NetLabel SID
2362 * @nlbl_type: NetLabel labeling protocol type
2363 * @xfrm_sid: XFRM SID
2364 *
2365 * Description:
2366 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2367 * resolved into a single SID it is returned via @peer_sid and the function
2368 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2369 * returns a negative value.  A table summarizing the behavior is below:
2370 *
2371 *                                 | function return |      @sid
2372 *   ------------------------------+-----------------+-----------------
2373 *   no peer labels                |        0        |    SECSID_NULL
2374 *   single peer label             |        0        |    <peer_label>
2375 *   multiple, consistent labels   |        0        |    <peer_label>
2376 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2377 *
2378 */
2379int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2380				 u32 xfrm_sid,
2381				 u32 *peer_sid)
2382{
2383	int rc;
2384	struct context *nlbl_ctx;
2385	struct context *xfrm_ctx;
2386
2387	/* handle the common (which also happens to be the set of easy) cases
2388	 * right away, these two if statements catch everything involving a
2389	 * single or absent peer SID/label */
2390	if (xfrm_sid == SECSID_NULL) {
2391		*peer_sid = nlbl_sid;
2392		return 0;
2393	}
2394	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2395	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2396	 * is present */
2397	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2398		*peer_sid = xfrm_sid;
2399		return 0;
2400	}
2401
2402	/* we don't need to check ss_initialized here since the only way both
2403	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2404	 * security server was initialized and ss_initialized was true */
2405	if (!selinux_mls_enabled) {
2406		*peer_sid = SECSID_NULL;
2407		return 0;
2408	}
2409
2410	read_lock(&policy_rwlock);
2411
2412	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2413	if (!nlbl_ctx) {
2414		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2415		       __func__, nlbl_sid);
2416		rc = -EINVAL;
2417		goto out_slowpath;
2418	}
2419	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2420	if (!xfrm_ctx) {
2421		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2422		       __func__, xfrm_sid);
2423		rc = -EINVAL;
2424		goto out_slowpath;
2425	}
2426	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2427
2428out_slowpath:
2429	read_unlock(&policy_rwlock);
2430	if (rc == 0)
2431		/* at present NetLabel SIDs/labels really only carry MLS
2432		 * information so if the MLS portion of the NetLabel SID
2433		 * matches the MLS portion of the labeled XFRM SID/label
2434		 * then pass along the XFRM SID as it is the most
2435		 * expressive */
2436		*peer_sid = xfrm_sid;
2437	else
2438		*peer_sid = SECSID_NULL;
2439	return rc;
2440}
2441
2442static int get_classes_callback(void *k, void *d, void *args)
2443{
2444	struct class_datum *datum = d;
2445	char *name = k, **classes = args;
2446	int value = datum->value - 1;
2447
2448	classes[value] = kstrdup(name, GFP_ATOMIC);
2449	if (!classes[value])
2450		return -ENOMEM;
2451
2452	return 0;
2453}
2454
2455int security_get_classes(char ***classes, int *nclasses)
2456{
2457	int rc = -ENOMEM;
2458
2459	read_lock(&policy_rwlock);
2460
2461	*nclasses = policydb.p_classes.nprim;
2462	*classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
2463	if (!*classes)
2464		goto out;
2465
2466	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2467			*classes);
2468	if (rc < 0) {
2469		int i;
2470		for (i = 0; i < *nclasses; i++)
2471			kfree((*classes)[i]);
2472		kfree(*classes);
2473	}
2474
2475out:
2476	read_unlock(&policy_rwlock);
2477	return rc;
2478}
2479
2480static int get_permissions_callback(void *k, void *d, void *args)
2481{
2482	struct perm_datum *datum = d;
2483	char *name = k, **perms = args;
2484	int value = datum->value - 1;
2485
2486	perms[value] = kstrdup(name, GFP_ATOMIC);
2487	if (!perms[value])
2488		return -ENOMEM;
2489
2490	return 0;
2491}
2492
2493int security_get_permissions(char *class, char ***perms, int *nperms)
2494{
2495	int rc = -ENOMEM, i;
2496	struct class_datum *match;
2497
2498	read_lock(&policy_rwlock);
2499
2500	match = hashtab_search(policydb.p_classes.table, class);
2501	if (!match) {
2502		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2503			__func__, class);
2504		rc = -EINVAL;
2505		goto out;
2506	}
2507
2508	*nperms = match->permissions.nprim;
2509	*perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
2510	if (!*perms)
2511		goto out;
2512
2513	if (match->comdatum) {
2514		rc = hashtab_map(match->comdatum->permissions.table,
2515				get_permissions_callback, *perms);
2516		if (rc < 0)
2517			goto err;
2518	}
2519
2520	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2521			*perms);
2522	if (rc < 0)
2523		goto err;
2524
2525out:
2526	read_unlock(&policy_rwlock);
2527	return rc;
2528
2529err:
2530	read_unlock(&policy_rwlock);
2531	for (i = 0; i < *nperms; i++)
2532		kfree((*perms)[i]);
2533	kfree(*perms);
2534	return rc;
2535}
2536
2537int security_get_reject_unknown(void)
2538{
2539	return policydb.reject_unknown;
2540}
2541
2542int security_get_allow_unknown(void)
2543{
2544	return policydb.allow_unknown;
2545}
2546
2547/**
2548 * security_policycap_supported - Check for a specific policy capability
2549 * @req_cap: capability
2550 *
2551 * Description:
2552 * This function queries the currently loaded policy to see if it supports the
2553 * capability specified by @req_cap.  Returns true (1) if the capability is
2554 * supported, false (0) if it isn't supported.
2555 *
2556 */
2557int security_policycap_supported(unsigned int req_cap)
2558{
2559	int rc;
2560
2561	read_lock(&policy_rwlock);
2562	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2563	read_unlock(&policy_rwlock);
2564
2565	return rc;
2566}
2567
2568struct selinux_audit_rule {
2569	u32 au_seqno;
2570	struct context au_ctxt;
2571};
2572
2573void selinux_audit_rule_free(void *vrule)
2574{
2575	struct selinux_audit_rule *rule = vrule;
2576
2577	if (rule) {
2578		context_destroy(&rule->au_ctxt);
2579		kfree(rule);
2580	}
2581}
2582
2583int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2584{
2585	struct selinux_audit_rule *tmprule;
2586	struct role_datum *roledatum;
2587	struct type_datum *typedatum;
2588	struct user_datum *userdatum;
2589	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2590	int rc = 0;
2591
2592	*rule = NULL;
2593
2594	if (!ss_initialized)
2595		return -EOPNOTSUPP;
2596
2597	switch (field) {
2598	case AUDIT_SUBJ_USER:
2599	case AUDIT_SUBJ_ROLE:
2600	case AUDIT_SUBJ_TYPE:
2601	case AUDIT_OBJ_USER:
2602	case AUDIT_OBJ_ROLE:
2603	case AUDIT_OBJ_TYPE:
2604		/* only 'equals' and 'not equals' fit user, role, and type */
2605		if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
2606			return -EINVAL;
2607		break;
2608	case AUDIT_SUBJ_SEN:
2609	case AUDIT_SUBJ_CLR:
2610	case AUDIT_OBJ_LEV_LOW:
2611	case AUDIT_OBJ_LEV_HIGH:
2612		/* we do not allow a range, indicated by the presense of '-' */
2613		if (strchr(rulestr, '-'))
2614			return -EINVAL;
2615		break;
2616	default:
2617		/* only the above fields are valid */
2618		return -EINVAL;
2619	}
2620
2621	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2622	if (!tmprule)
2623		return -ENOMEM;
2624
2625	context_init(&tmprule->au_ctxt);
2626
2627	read_lock(&policy_rwlock);
2628
2629	tmprule->au_seqno = latest_granting;
2630
2631	switch (field) {
2632	case AUDIT_SUBJ_USER:
2633	case AUDIT_OBJ_USER:
2634		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2635		if (!userdatum)
2636			rc = -EINVAL;
2637		else
2638			tmprule->au_ctxt.user = userdatum->value;
2639		break;
2640	case AUDIT_SUBJ_ROLE:
2641	case AUDIT_OBJ_ROLE:
2642		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2643		if (!roledatum)
2644			rc = -EINVAL;
2645		else
2646			tmprule->au_ctxt.role = roledatum->value;
2647		break;
2648	case AUDIT_SUBJ_TYPE:
2649	case AUDIT_OBJ_TYPE:
2650		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2651		if (!typedatum)
2652			rc = -EINVAL;
2653		else
2654			tmprule->au_ctxt.type = typedatum->value;
2655		break;
2656	case AUDIT_SUBJ_SEN:
2657	case AUDIT_SUBJ_CLR:
2658	case AUDIT_OBJ_LEV_LOW:
2659	case AUDIT_OBJ_LEV_HIGH:
2660		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2661		break;
2662	}
2663
2664	read_unlock(&policy_rwlock);
2665
2666	if (rc) {
2667		selinux_audit_rule_free(tmprule);
2668		tmprule = NULL;
2669	}
2670
2671	*rule = tmprule;
2672
2673	return rc;
2674}
2675
2676/* Check to see if the rule contains any selinux fields */
2677int selinux_audit_rule_known(struct audit_krule *rule)
2678{
2679	int i;
2680
2681	for (i = 0; i < rule->field_count; i++) {
2682		struct audit_field *f = &rule->fields[i];
2683		switch (f->type) {
2684		case AUDIT_SUBJ_USER:
2685		case AUDIT_SUBJ_ROLE:
2686		case AUDIT_SUBJ_TYPE:
2687		case AUDIT_SUBJ_SEN:
2688		case AUDIT_SUBJ_CLR:
2689		case AUDIT_OBJ_USER:
2690		case AUDIT_OBJ_ROLE:
2691		case AUDIT_OBJ_TYPE:
2692		case AUDIT_OBJ_LEV_LOW:
2693		case AUDIT_OBJ_LEV_HIGH:
2694			return 1;
2695		}
2696	}
2697
2698	return 0;
2699}
2700
2701int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2702			     struct audit_context *actx)
2703{
2704	struct context *ctxt;
2705	struct mls_level *level;
2706	struct selinux_audit_rule *rule = vrule;
2707	int match = 0;
2708
2709	if (!rule) {
2710		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2711			  "selinux_audit_rule_match: missing rule\n");
2712		return -ENOENT;
2713	}
2714
2715	read_lock(&policy_rwlock);
2716
2717	if (rule->au_seqno < latest_granting) {
2718		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2719			  "selinux_audit_rule_match: stale rule\n");
2720		match = -ESTALE;
2721		goto out;
2722	}
2723
2724	ctxt = sidtab_search(&sidtab, sid);
2725	if (!ctxt) {
2726		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2727			  "selinux_audit_rule_match: unrecognized SID %d\n",
2728			  sid);
2729		match = -ENOENT;
2730		goto out;
2731	}
2732
2733	/* a field/op pair that is not caught here will simply fall through
2734	   without a match */
2735	switch (field) {
2736	case AUDIT_SUBJ_USER:
2737	case AUDIT_OBJ_USER:
2738		switch (op) {
2739		case AUDIT_EQUAL:
2740			match = (ctxt->user == rule->au_ctxt.user);
2741			break;
2742		case AUDIT_NOT_EQUAL:
2743			match = (ctxt->user != rule->au_ctxt.user);
2744			break;
2745		}
2746		break;
2747	case AUDIT_SUBJ_ROLE:
2748	case AUDIT_OBJ_ROLE:
2749		switch (op) {
2750		case AUDIT_EQUAL:
2751			match = (ctxt->role == rule->au_ctxt.role);
2752			break;
2753		case AUDIT_NOT_EQUAL:
2754			match = (ctxt->role != rule->au_ctxt.role);
2755			break;
2756		}
2757		break;
2758	case AUDIT_SUBJ_TYPE:
2759	case AUDIT_OBJ_TYPE:
2760		switch (op) {
2761		case AUDIT_EQUAL:
2762			match = (ctxt->type == rule->au_ctxt.type);
2763			break;
2764		case AUDIT_NOT_EQUAL:
2765			match = (ctxt->type != rule->au_ctxt.type);
2766			break;
2767		}
2768		break;
2769	case AUDIT_SUBJ_SEN:
2770	case AUDIT_SUBJ_CLR:
2771	case AUDIT_OBJ_LEV_LOW:
2772	case AUDIT_OBJ_LEV_HIGH:
2773		level = ((field == AUDIT_SUBJ_SEN ||
2774			  field == AUDIT_OBJ_LEV_LOW) ?
2775			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2776		switch (op) {
2777		case AUDIT_EQUAL:
2778			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2779					     level);
2780			break;
2781		case AUDIT_NOT_EQUAL:
2782			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2783					      level);
2784			break;
2785		case AUDIT_LESS_THAN:
2786			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2787					       level) &&
2788				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2789					       level));
2790			break;
2791		case AUDIT_LESS_THAN_OR_EQUAL:
2792			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2793					      level);
2794			break;
2795		case AUDIT_GREATER_THAN:
2796			match = (mls_level_dom(level,
2797					      &rule->au_ctxt.range.level[0]) &&
2798				 !mls_level_eq(level,
2799					       &rule->au_ctxt.range.level[0]));
2800			break;
2801		case AUDIT_GREATER_THAN_OR_EQUAL:
2802			match = mls_level_dom(level,
2803					      &rule->au_ctxt.range.level[0]);
2804			break;
2805		}
2806	}
2807
2808out:
2809	read_unlock(&policy_rwlock);
2810	return match;
2811}
2812
2813static int (*aurule_callback)(void) = audit_update_lsm_rules;
2814
2815static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2816			       u16 class, u32 perms, u32 *retained)
2817{
2818	int err = 0;
2819
2820	if (event == AVC_CALLBACK_RESET && aurule_callback)
2821		err = aurule_callback();
2822	return err;
2823}
2824
2825static int __init aurule_init(void)
2826{
2827	int err;
2828
2829	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2830			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2831	if (err)
2832		panic("avc_add_callback() failed, error %d\n", err);
2833
2834	return err;
2835}
2836__initcall(aurule_init);
2837
2838#ifdef CONFIG_NETLABEL
2839/**
2840 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2841 * @secattr: the NetLabel packet security attributes
2842 * @sid: the SELinux SID
2843 *
2844 * Description:
2845 * Attempt to cache the context in @ctx, which was derived from the packet in
2846 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
2847 * already been initialized.
2848 *
2849 */
2850static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
2851				      u32 sid)
2852{
2853	u32 *sid_cache;
2854
2855	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2856	if (sid_cache == NULL)
2857		return;
2858	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
2859	if (secattr->cache == NULL) {
2860		kfree(sid_cache);
2861		return;
2862	}
2863
2864	*sid_cache = sid;
2865	secattr->cache->free = kfree;
2866	secattr->cache->data = sid_cache;
2867	secattr->flags |= NETLBL_SECATTR_CACHE;
2868}
2869
2870/**
2871 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2872 * @secattr: the NetLabel packet security attributes
2873 * @sid: the SELinux SID
2874 *
2875 * Description:
2876 * Convert the given NetLabel security attributes in @secattr into a
2877 * SELinux SID.  If the @secattr field does not contain a full SELinux
2878 * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
2879 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2880 * allow the @secattr to be used by NetLabel to cache the secattr to SID
2881 * conversion for future lookups.  Returns zero on success, negative values on
2882 * failure.
2883 *
2884 */
2885int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
2886				   u32 *sid)
2887{
2888	int rc = -EIDRM;
2889	struct context *ctx;
2890	struct context ctx_new;
2891
2892	if (!ss_initialized) {
2893		*sid = SECSID_NULL;
2894		return 0;
2895	}
2896
2897	read_lock(&policy_rwlock);
2898
2899	if (secattr->flags & NETLBL_SECATTR_CACHE) {
2900		*sid = *(u32 *)secattr->cache->data;
2901		rc = 0;
2902	} else if (secattr->flags & NETLBL_SECATTR_SECID) {
2903		*sid = secattr->attr.secid;
2904		rc = 0;
2905	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
2906		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
2907		if (ctx == NULL)
2908			goto netlbl_secattr_to_sid_return;
2909
2910		context_init(&ctx_new);
2911		ctx_new.user = ctx->user;
2912		ctx_new.role = ctx->role;
2913		ctx_new.type = ctx->type;
2914		mls_import_netlbl_lvl(&ctx_new, secattr);
2915		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
2916			if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
2917						  secattr->attr.mls.cat) != 0)
2918				goto netlbl_secattr_to_sid_return;
2919			memcpy(&ctx_new.range.level[1].cat,
2920			       &ctx_new.range.level[0].cat,
2921			       sizeof(ctx_new.range.level[0].cat));
2922		}
2923		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
2924			goto netlbl_secattr_to_sid_return_cleanup;
2925
2926		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
2927		if (rc != 0)
2928			goto netlbl_secattr_to_sid_return_cleanup;
2929
2930		security_netlbl_cache_add(secattr, *sid);
2931
2932		ebitmap_destroy(&ctx_new.range.level[0].cat);
2933	} else {
2934		*sid = SECSID_NULL;
2935		rc = 0;
2936	}
2937
2938netlbl_secattr_to_sid_return:
2939	read_unlock(&policy_rwlock);
2940	return rc;
2941netlbl_secattr_to_sid_return_cleanup:
2942	ebitmap_destroy(&ctx_new.range.level[0].cat);
2943	goto netlbl_secattr_to_sid_return;
2944}
2945
2946/**
2947 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2948 * @sid: the SELinux SID
2949 * @secattr: the NetLabel packet security attributes
2950 *
2951 * Description:
2952 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2953 * Returns zero on success, negative values on failure.
2954 *
2955 */
2956int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
2957{
2958	int rc = -ENOENT;
2959	struct context *ctx;
2960
2961	if (!ss_initialized)
2962		return 0;
2963
2964	read_lock(&policy_rwlock);
2965	ctx = sidtab_search(&sidtab, sid);
2966	if (ctx == NULL)
2967		goto netlbl_sid_to_secattr_failure;
2968	secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
2969				  GFP_ATOMIC);
2970	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY;
2971	mls_export_netlbl_lvl(ctx, secattr);
2972	rc = mls_export_netlbl_cat(ctx, secattr);
2973	if (rc != 0)
2974		goto netlbl_sid_to_secattr_failure;
2975	read_unlock(&policy_rwlock);
2976
2977	return 0;
2978
2979netlbl_sid_to_secattr_failure:
2980	read_unlock(&policy_rwlock);
2981	return rc;
2982}
2983#endif /* CONFIG_NETLABEL */
2984