services.c revision 845ca30fe9691f1bab7cfbf30b6d11c944eb4abd
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 *	     James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 *	Support for enhanced MLS infrastructure.
10 *	Support for context based audit filters.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 *	Added conditional policy language extensions
15 *
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
17 *
18 *      Added support for NetLabel
19 *      Added support for the policy capability bitmap
20 *
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 *  Added validation of kernel classes and permissions
24 *
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 *  Added support for bounds domain and audit messaged on masked permissions
28 *
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 *  Added support for runtime switching of the policy type
32 *
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 *	This program is free software; you can redistribute it and/or modify
39 *	it under the terms of the GNU General Public License as published by
40 *	the Free Software Foundation, version 2.
41 */
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include <linux/spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/sched.h>
50#include <linux/audit.h>
51#include <linux/mutex.h>
52#include <linux/selinux.h>
53#include <linux/flex_array.h>
54#include <net/netlabel.h>
55
56#include "flask.h"
57#include "avc.h"
58#include "avc_ss.h"
59#include "security.h"
60#include "context.h"
61#include "policydb.h"
62#include "sidtab.h"
63#include "services.h"
64#include "conditional.h"
65#include "mls.h"
66#include "objsec.h"
67#include "netlabel.h"
68#include "xfrm.h"
69#include "ebitmap.h"
70#include "audit.h"
71
72extern void selnl_notify_policyload(u32 seqno);
73
74int selinux_policycap_netpeer;
75int selinux_policycap_openperm;
76
77static DEFINE_RWLOCK(policy_rwlock);
78
79static struct sidtab sidtab;
80struct policydb policydb;
81int ss_initialized;
82
83/*
84 * The largest sequence number that has been used when
85 * providing an access decision to the access vector cache.
86 * The sequence number only changes when a policy change
87 * occurs.
88 */
89static u32 latest_granting;
90
91/* Forward declaration. */
92static int context_struct_to_string(struct context *context, char **scontext,
93				    u32 *scontext_len);
94
95static void context_struct_compute_av(struct context *scontext,
96				      struct context *tcontext,
97				      u16 tclass,
98				      struct av_decision *avd);
99
100struct selinux_mapping {
101	u16 value; /* policy value */
102	unsigned num_perms;
103	u32 perms[sizeof(u32) * 8];
104};
105
106static struct selinux_mapping *current_mapping;
107static u16 current_mapping_size;
108
109static int selinux_set_mapping(struct policydb *pol,
110			       struct security_class_mapping *map,
111			       struct selinux_mapping **out_map_p,
112			       u16 *out_map_size)
113{
114	struct selinux_mapping *out_map = NULL;
115	size_t size = sizeof(struct selinux_mapping);
116	u16 i, j;
117	unsigned k;
118	bool print_unknown_handle = false;
119
120	/* Find number of classes in the input mapping */
121	if (!map)
122		return -EINVAL;
123	i = 0;
124	while (map[i].name)
125		i++;
126
127	/* Allocate space for the class records, plus one for class zero */
128	out_map = kcalloc(++i, size, GFP_ATOMIC);
129	if (!out_map)
130		return -ENOMEM;
131
132	/* Store the raw class and permission values */
133	j = 0;
134	while (map[j].name) {
135		struct security_class_mapping *p_in = map + (j++);
136		struct selinux_mapping *p_out = out_map + j;
137
138		/* An empty class string skips ahead */
139		if (!strcmp(p_in->name, "")) {
140			p_out->num_perms = 0;
141			continue;
142		}
143
144		p_out->value = string_to_security_class(pol, p_in->name);
145		if (!p_out->value) {
146			printk(KERN_INFO
147			       "SELinux:  Class %s not defined in policy.\n",
148			       p_in->name);
149			if (pol->reject_unknown)
150				goto err;
151			p_out->num_perms = 0;
152			print_unknown_handle = true;
153			continue;
154		}
155
156		k = 0;
157		while (p_in->perms && p_in->perms[k]) {
158			/* An empty permission string skips ahead */
159			if (!*p_in->perms[k]) {
160				k++;
161				continue;
162			}
163			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
164							    p_in->perms[k]);
165			if (!p_out->perms[k]) {
166				printk(KERN_INFO
167				       "SELinux:  Permission %s in class %s not defined in policy.\n",
168				       p_in->perms[k], p_in->name);
169				if (pol->reject_unknown)
170					goto err;
171				print_unknown_handle = true;
172			}
173
174			k++;
175		}
176		p_out->num_perms = k;
177	}
178
179	if (print_unknown_handle)
180		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
181		       pol->allow_unknown ? "allowed" : "denied");
182
183	*out_map_p = out_map;
184	*out_map_size = i;
185	return 0;
186err:
187	kfree(out_map);
188	return -EINVAL;
189}
190
191/*
192 * Get real, policy values from mapped values
193 */
194
195static u16 unmap_class(u16 tclass)
196{
197	if (tclass < current_mapping_size)
198		return current_mapping[tclass].value;
199
200	return tclass;
201}
202
203static void map_decision(u16 tclass, struct av_decision *avd,
204			 int allow_unknown)
205{
206	if (tclass < current_mapping_size) {
207		unsigned i, n = current_mapping[tclass].num_perms;
208		u32 result;
209
210		for (i = 0, result = 0; i < n; i++) {
211			if (avd->allowed & current_mapping[tclass].perms[i])
212				result |= 1<<i;
213			if (allow_unknown && !current_mapping[tclass].perms[i])
214				result |= 1<<i;
215		}
216		avd->allowed = result;
217
218		for (i = 0, result = 0; i < n; i++)
219			if (avd->auditallow & current_mapping[tclass].perms[i])
220				result |= 1<<i;
221		avd->auditallow = result;
222
223		for (i = 0, result = 0; i < n; i++) {
224			if (avd->auditdeny & current_mapping[tclass].perms[i])
225				result |= 1<<i;
226			if (!allow_unknown && !current_mapping[tclass].perms[i])
227				result |= 1<<i;
228		}
229		/*
230		 * In case the kernel has a bug and requests a permission
231		 * between num_perms and the maximum permission number, we
232		 * should audit that denial
233		 */
234		for (; i < (sizeof(u32)*8); i++)
235			result |= 1<<i;
236		avd->auditdeny = result;
237	}
238}
239
240int security_mls_enabled(void)
241{
242	return policydb.mls_enabled;
243}
244
245/*
246 * Return the boolean value of a constraint expression
247 * when it is applied to the specified source and target
248 * security contexts.
249 *
250 * xcontext is a special beast...  It is used by the validatetrans rules
251 * only.  For these rules, scontext is the context before the transition,
252 * tcontext is the context after the transition, and xcontext is the context
253 * of the process performing the transition.  All other callers of
254 * constraint_expr_eval should pass in NULL for xcontext.
255 */
256static int constraint_expr_eval(struct context *scontext,
257				struct context *tcontext,
258				struct context *xcontext,
259				struct constraint_expr *cexpr)
260{
261	u32 val1, val2;
262	struct context *c;
263	struct role_datum *r1, *r2;
264	struct mls_level *l1, *l2;
265	struct constraint_expr *e;
266	int s[CEXPR_MAXDEPTH];
267	int sp = -1;
268
269	for (e = cexpr; e; e = e->next) {
270		switch (e->expr_type) {
271		case CEXPR_NOT:
272			BUG_ON(sp < 0);
273			s[sp] = !s[sp];
274			break;
275		case CEXPR_AND:
276			BUG_ON(sp < 1);
277			sp--;
278			s[sp] &= s[sp + 1];
279			break;
280		case CEXPR_OR:
281			BUG_ON(sp < 1);
282			sp--;
283			s[sp] |= s[sp + 1];
284			break;
285		case CEXPR_ATTR:
286			if (sp == (CEXPR_MAXDEPTH - 1))
287				return 0;
288			switch (e->attr) {
289			case CEXPR_USER:
290				val1 = scontext->user;
291				val2 = tcontext->user;
292				break;
293			case CEXPR_TYPE:
294				val1 = scontext->type;
295				val2 = tcontext->type;
296				break;
297			case CEXPR_ROLE:
298				val1 = scontext->role;
299				val2 = tcontext->role;
300				r1 = policydb.role_val_to_struct[val1 - 1];
301				r2 = policydb.role_val_to_struct[val2 - 1];
302				switch (e->op) {
303				case CEXPR_DOM:
304					s[++sp] = ebitmap_get_bit(&r1->dominates,
305								  val2 - 1);
306					continue;
307				case CEXPR_DOMBY:
308					s[++sp] = ebitmap_get_bit(&r2->dominates,
309								  val1 - 1);
310					continue;
311				case CEXPR_INCOMP:
312					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
313								    val2 - 1) &&
314						   !ebitmap_get_bit(&r2->dominates,
315								    val1 - 1));
316					continue;
317				default:
318					break;
319				}
320				break;
321			case CEXPR_L1L2:
322				l1 = &(scontext->range.level[0]);
323				l2 = &(tcontext->range.level[0]);
324				goto mls_ops;
325			case CEXPR_L1H2:
326				l1 = &(scontext->range.level[0]);
327				l2 = &(tcontext->range.level[1]);
328				goto mls_ops;
329			case CEXPR_H1L2:
330				l1 = &(scontext->range.level[1]);
331				l2 = &(tcontext->range.level[0]);
332				goto mls_ops;
333			case CEXPR_H1H2:
334				l1 = &(scontext->range.level[1]);
335				l2 = &(tcontext->range.level[1]);
336				goto mls_ops;
337			case CEXPR_L1H1:
338				l1 = &(scontext->range.level[0]);
339				l2 = &(scontext->range.level[1]);
340				goto mls_ops;
341			case CEXPR_L2H2:
342				l1 = &(tcontext->range.level[0]);
343				l2 = &(tcontext->range.level[1]);
344				goto mls_ops;
345mls_ops:
346			switch (e->op) {
347			case CEXPR_EQ:
348				s[++sp] = mls_level_eq(l1, l2);
349				continue;
350			case CEXPR_NEQ:
351				s[++sp] = !mls_level_eq(l1, l2);
352				continue;
353			case CEXPR_DOM:
354				s[++sp] = mls_level_dom(l1, l2);
355				continue;
356			case CEXPR_DOMBY:
357				s[++sp] = mls_level_dom(l2, l1);
358				continue;
359			case CEXPR_INCOMP:
360				s[++sp] = mls_level_incomp(l2, l1);
361				continue;
362			default:
363				BUG();
364				return 0;
365			}
366			break;
367			default:
368				BUG();
369				return 0;
370			}
371
372			switch (e->op) {
373			case CEXPR_EQ:
374				s[++sp] = (val1 == val2);
375				break;
376			case CEXPR_NEQ:
377				s[++sp] = (val1 != val2);
378				break;
379			default:
380				BUG();
381				return 0;
382			}
383			break;
384		case CEXPR_NAMES:
385			if (sp == (CEXPR_MAXDEPTH-1))
386				return 0;
387			c = scontext;
388			if (e->attr & CEXPR_TARGET)
389				c = tcontext;
390			else if (e->attr & CEXPR_XTARGET) {
391				c = xcontext;
392				if (!c) {
393					BUG();
394					return 0;
395				}
396			}
397			if (e->attr & CEXPR_USER)
398				val1 = c->user;
399			else if (e->attr & CEXPR_ROLE)
400				val1 = c->role;
401			else if (e->attr & CEXPR_TYPE)
402				val1 = c->type;
403			else {
404				BUG();
405				return 0;
406			}
407
408			switch (e->op) {
409			case CEXPR_EQ:
410				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
411				break;
412			case CEXPR_NEQ:
413				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
414				break;
415			default:
416				BUG();
417				return 0;
418			}
419			break;
420		default:
421			BUG();
422			return 0;
423		}
424	}
425
426	BUG_ON(sp != 0);
427	return s[0];
428}
429
430/*
431 * security_dump_masked_av - dumps masked permissions during
432 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
433 */
434static int dump_masked_av_helper(void *k, void *d, void *args)
435{
436	struct perm_datum *pdatum = d;
437	char **permission_names = args;
438
439	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
440
441	permission_names[pdatum->value - 1] = (char *)k;
442
443	return 0;
444}
445
446static void security_dump_masked_av(struct context *scontext,
447				    struct context *tcontext,
448				    u16 tclass,
449				    u32 permissions,
450				    const char *reason)
451{
452	struct common_datum *common_dat;
453	struct class_datum *tclass_dat;
454	struct audit_buffer *ab;
455	char *tclass_name;
456	char *scontext_name = NULL;
457	char *tcontext_name = NULL;
458	char *permission_names[32];
459	int index;
460	u32 length;
461	bool need_comma = false;
462
463	if (!permissions)
464		return;
465
466	tclass_name = policydb.p_class_val_to_name[tclass - 1];
467	tclass_dat = policydb.class_val_to_struct[tclass - 1];
468	common_dat = tclass_dat->comdatum;
469
470	/* init permission_names */
471	if (common_dat &&
472	    hashtab_map(common_dat->permissions.table,
473			dump_masked_av_helper, permission_names) < 0)
474		goto out;
475
476	if (hashtab_map(tclass_dat->permissions.table,
477			dump_masked_av_helper, permission_names) < 0)
478		goto out;
479
480	/* get scontext/tcontext in text form */
481	if (context_struct_to_string(scontext,
482				     &scontext_name, &length) < 0)
483		goto out;
484
485	if (context_struct_to_string(tcontext,
486				     &tcontext_name, &length) < 0)
487		goto out;
488
489	/* audit a message */
490	ab = audit_log_start(current->audit_context,
491			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
492	if (!ab)
493		goto out;
494
495	audit_log_format(ab, "op=security_compute_av reason=%s "
496			 "scontext=%s tcontext=%s tclass=%s perms=",
497			 reason, scontext_name, tcontext_name, tclass_name);
498
499	for (index = 0; index < 32; index++) {
500		u32 mask = (1 << index);
501
502		if ((mask & permissions) == 0)
503			continue;
504
505		audit_log_format(ab, "%s%s",
506				 need_comma ? "," : "",
507				 permission_names[index]
508				 ? permission_names[index] : "????");
509		need_comma = true;
510	}
511	audit_log_end(ab);
512out:
513	/* release scontext/tcontext */
514	kfree(tcontext_name);
515	kfree(scontext_name);
516
517	return;
518}
519
520/*
521 * security_boundary_permission - drops violated permissions
522 * on boundary constraint.
523 */
524static void type_attribute_bounds_av(struct context *scontext,
525				     struct context *tcontext,
526				     u16 tclass,
527				     struct av_decision *avd)
528{
529	struct context lo_scontext;
530	struct context lo_tcontext;
531	struct av_decision lo_avd;
532	struct type_datum *source
533		= policydb.type_val_to_struct[scontext->type - 1];
534	struct type_datum *target
535		= policydb.type_val_to_struct[tcontext->type - 1];
536	u32 masked = 0;
537
538	if (source->bounds) {
539		memset(&lo_avd, 0, sizeof(lo_avd));
540
541		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
542		lo_scontext.type = source->bounds;
543
544		context_struct_compute_av(&lo_scontext,
545					  tcontext,
546					  tclass,
547					  &lo_avd);
548		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
549			return;		/* no masked permission */
550		masked = ~lo_avd.allowed & avd->allowed;
551	}
552
553	if (target->bounds) {
554		memset(&lo_avd, 0, sizeof(lo_avd));
555
556		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
557		lo_tcontext.type = target->bounds;
558
559		context_struct_compute_av(scontext,
560					  &lo_tcontext,
561					  tclass,
562					  &lo_avd);
563		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
564			return;		/* no masked permission */
565		masked = ~lo_avd.allowed & avd->allowed;
566	}
567
568	if (source->bounds && target->bounds) {
569		memset(&lo_avd, 0, sizeof(lo_avd));
570		/*
571		 * lo_scontext and lo_tcontext are already
572		 * set up.
573		 */
574
575		context_struct_compute_av(&lo_scontext,
576					  &lo_tcontext,
577					  tclass,
578					  &lo_avd);
579		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
580			return;		/* no masked permission */
581		masked = ~lo_avd.allowed & avd->allowed;
582	}
583
584	if (masked) {
585		/* mask violated permissions */
586		avd->allowed &= ~masked;
587
588		/* audit masked permissions */
589		security_dump_masked_av(scontext, tcontext,
590					tclass, masked, "bounds");
591	}
592}
593
594/*
595 * Compute access vectors based on a context structure pair for
596 * the permissions in a particular class.
597 */
598static void context_struct_compute_av(struct context *scontext,
599				      struct context *tcontext,
600				      u16 tclass,
601				      struct av_decision *avd)
602{
603	struct constraint_node *constraint;
604	struct role_allow *ra;
605	struct avtab_key avkey;
606	struct avtab_node *node;
607	struct class_datum *tclass_datum;
608	struct ebitmap *sattr, *tattr;
609	struct ebitmap_node *snode, *tnode;
610	unsigned int i, j;
611
612	avd->allowed = 0;
613	avd->auditallow = 0;
614	avd->auditdeny = 0xffffffff;
615
616	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
617		if (printk_ratelimit())
618			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
619		return;
620	}
621
622	tclass_datum = policydb.class_val_to_struct[tclass - 1];
623
624	/*
625	 * If a specific type enforcement rule was defined for
626	 * this permission check, then use it.
627	 */
628	avkey.target_class = tclass;
629	avkey.specified = AVTAB_AV;
630	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
631	BUG_ON(!sattr);
632	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
633	BUG_ON(!tattr);
634	ebitmap_for_each_positive_bit(sattr, snode, i) {
635		ebitmap_for_each_positive_bit(tattr, tnode, j) {
636			avkey.source_type = i + 1;
637			avkey.target_type = j + 1;
638			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
639			     node;
640			     node = avtab_search_node_next(node, avkey.specified)) {
641				if (node->key.specified == AVTAB_ALLOWED)
642					avd->allowed |= node->datum.data;
643				else if (node->key.specified == AVTAB_AUDITALLOW)
644					avd->auditallow |= node->datum.data;
645				else if (node->key.specified == AVTAB_AUDITDENY)
646					avd->auditdeny &= node->datum.data;
647			}
648
649			/* Check conditional av table for additional permissions */
650			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
651
652		}
653	}
654
655	/*
656	 * Remove any permissions prohibited by a constraint (this includes
657	 * the MLS policy).
658	 */
659	constraint = tclass_datum->constraints;
660	while (constraint) {
661		if ((constraint->permissions & (avd->allowed)) &&
662		    !constraint_expr_eval(scontext, tcontext, NULL,
663					  constraint->expr)) {
664			avd->allowed &= ~(constraint->permissions);
665		}
666		constraint = constraint->next;
667	}
668
669	/*
670	 * If checking process transition permission and the
671	 * role is changing, then check the (current_role, new_role)
672	 * pair.
673	 */
674	if (tclass == policydb.process_class &&
675	    (avd->allowed & policydb.process_trans_perms) &&
676	    scontext->role != tcontext->role) {
677		for (ra = policydb.role_allow; ra; ra = ra->next) {
678			if (scontext->role == ra->role &&
679			    tcontext->role == ra->new_role)
680				break;
681		}
682		if (!ra)
683			avd->allowed &= ~policydb.process_trans_perms;
684	}
685
686	/*
687	 * If the given source and target types have boundary
688	 * constraint, lazy checks have to mask any violated
689	 * permission and notice it to userspace via audit.
690	 */
691	type_attribute_bounds_av(scontext, tcontext,
692				 tclass, avd);
693}
694
695static int security_validtrans_handle_fail(struct context *ocontext,
696					   struct context *ncontext,
697					   struct context *tcontext,
698					   u16 tclass)
699{
700	char *o = NULL, *n = NULL, *t = NULL;
701	u32 olen, nlen, tlen;
702
703	if (context_struct_to_string(ocontext, &o, &olen) < 0)
704		goto out;
705	if (context_struct_to_string(ncontext, &n, &nlen) < 0)
706		goto out;
707	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
708		goto out;
709	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
710		  "security_validate_transition:  denied for"
711		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
712		  o, n, t, policydb.p_class_val_to_name[tclass-1]);
713out:
714	kfree(o);
715	kfree(n);
716	kfree(t);
717
718	if (!selinux_enforcing)
719		return 0;
720	return -EPERM;
721}
722
723int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
724				 u16 orig_tclass)
725{
726	struct context *ocontext;
727	struct context *ncontext;
728	struct context *tcontext;
729	struct class_datum *tclass_datum;
730	struct constraint_node *constraint;
731	u16 tclass;
732	int rc = 0;
733
734	if (!ss_initialized)
735		return 0;
736
737	read_lock(&policy_rwlock);
738
739	tclass = unmap_class(orig_tclass);
740
741	if (!tclass || tclass > policydb.p_classes.nprim) {
742		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
743			__func__, tclass);
744		rc = -EINVAL;
745		goto out;
746	}
747	tclass_datum = policydb.class_val_to_struct[tclass - 1];
748
749	ocontext = sidtab_search(&sidtab, oldsid);
750	if (!ocontext) {
751		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
752			__func__, oldsid);
753		rc = -EINVAL;
754		goto out;
755	}
756
757	ncontext = sidtab_search(&sidtab, newsid);
758	if (!ncontext) {
759		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
760			__func__, newsid);
761		rc = -EINVAL;
762		goto out;
763	}
764
765	tcontext = sidtab_search(&sidtab, tasksid);
766	if (!tcontext) {
767		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
768			__func__, tasksid);
769		rc = -EINVAL;
770		goto out;
771	}
772
773	constraint = tclass_datum->validatetrans;
774	while (constraint) {
775		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
776					  constraint->expr)) {
777			rc = security_validtrans_handle_fail(ocontext, ncontext,
778							     tcontext, tclass);
779			goto out;
780		}
781		constraint = constraint->next;
782	}
783
784out:
785	read_unlock(&policy_rwlock);
786	return rc;
787}
788
789/*
790 * security_bounded_transition - check whether the given
791 * transition is directed to bounded, or not.
792 * It returns 0, if @newsid is bounded by @oldsid.
793 * Otherwise, it returns error code.
794 *
795 * @oldsid : current security identifier
796 * @newsid : destinated security identifier
797 */
798int security_bounded_transition(u32 old_sid, u32 new_sid)
799{
800	struct context *old_context, *new_context;
801	struct type_datum *type;
802	int index;
803	int rc = -EINVAL;
804
805	read_lock(&policy_rwlock);
806
807	old_context = sidtab_search(&sidtab, old_sid);
808	if (!old_context) {
809		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
810		       __func__, old_sid);
811		goto out;
812	}
813
814	new_context = sidtab_search(&sidtab, new_sid);
815	if (!new_context) {
816		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
817		       __func__, new_sid);
818		goto out;
819	}
820
821	/* type/domain unchanged */
822	if (old_context->type == new_context->type) {
823		rc = 0;
824		goto out;
825	}
826
827	index = new_context->type;
828	while (true) {
829		type = policydb.type_val_to_struct[index - 1];
830		BUG_ON(!type);
831
832		/* not bounded anymore */
833		if (!type->bounds) {
834			rc = -EPERM;
835			break;
836		}
837
838		/* @newsid is bounded by @oldsid */
839		if (type->bounds == old_context->type) {
840			rc = 0;
841			break;
842		}
843		index = type->bounds;
844	}
845
846	if (rc) {
847		char *old_name = NULL;
848		char *new_name = NULL;
849		u32 length;
850
851		if (!context_struct_to_string(old_context,
852					      &old_name, &length) &&
853		    !context_struct_to_string(new_context,
854					      &new_name, &length)) {
855			audit_log(current->audit_context,
856				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
857				  "op=security_bounded_transition "
858				  "result=denied "
859				  "oldcontext=%s newcontext=%s",
860				  old_name, new_name);
861		}
862		kfree(new_name);
863		kfree(old_name);
864	}
865out:
866	read_unlock(&policy_rwlock);
867
868	return rc;
869}
870
871static void avd_init(struct av_decision *avd)
872{
873	avd->allowed = 0;
874	avd->auditallow = 0;
875	avd->auditdeny = 0xffffffff;
876	avd->seqno = latest_granting;
877	avd->flags = 0;
878}
879
880
881/**
882 * security_compute_av - Compute access vector decisions.
883 * @ssid: source security identifier
884 * @tsid: target security identifier
885 * @tclass: target security class
886 * @avd: access vector decisions
887 *
888 * Compute a set of access vector decisions based on the
889 * SID pair (@ssid, @tsid) for the permissions in @tclass.
890 */
891void security_compute_av(u32 ssid,
892			 u32 tsid,
893			 u16 orig_tclass,
894			 struct av_decision *avd)
895{
896	u16 tclass;
897	struct context *scontext = NULL, *tcontext = NULL;
898
899	read_lock(&policy_rwlock);
900	avd_init(avd);
901	if (!ss_initialized)
902		goto allow;
903
904	scontext = sidtab_search(&sidtab, ssid);
905	if (!scontext) {
906		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
907		       __func__, ssid);
908		goto out;
909	}
910
911	/* permissive domain? */
912	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
913		avd->flags |= AVD_FLAGS_PERMISSIVE;
914
915	tcontext = sidtab_search(&sidtab, tsid);
916	if (!tcontext) {
917		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
918		       __func__, tsid);
919		goto out;
920	}
921
922	tclass = unmap_class(orig_tclass);
923	if (unlikely(orig_tclass && !tclass)) {
924		if (policydb.allow_unknown)
925			goto allow;
926		goto out;
927	}
928	context_struct_compute_av(scontext, tcontext, tclass, avd);
929	map_decision(orig_tclass, avd, policydb.allow_unknown);
930out:
931	read_unlock(&policy_rwlock);
932	return;
933allow:
934	avd->allowed = 0xffffffff;
935	goto out;
936}
937
938void security_compute_av_user(u32 ssid,
939			      u32 tsid,
940			      u16 tclass,
941			      struct av_decision *avd)
942{
943	struct context *scontext = NULL, *tcontext = NULL;
944
945	read_lock(&policy_rwlock);
946	avd_init(avd);
947	if (!ss_initialized)
948		goto allow;
949
950	scontext = sidtab_search(&sidtab, ssid);
951	if (!scontext) {
952		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
953		       __func__, ssid);
954		goto out;
955	}
956
957	/* permissive domain? */
958	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
959		avd->flags |= AVD_FLAGS_PERMISSIVE;
960
961	tcontext = sidtab_search(&sidtab, tsid);
962	if (!tcontext) {
963		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
964		       __func__, tsid);
965		goto out;
966	}
967
968	if (unlikely(!tclass)) {
969		if (policydb.allow_unknown)
970			goto allow;
971		goto out;
972	}
973
974	context_struct_compute_av(scontext, tcontext, tclass, avd);
975 out:
976	read_unlock(&policy_rwlock);
977	return;
978allow:
979	avd->allowed = 0xffffffff;
980	goto out;
981}
982
983/*
984 * Write the security context string representation of
985 * the context structure `context' into a dynamically
986 * allocated string of the correct size.  Set `*scontext'
987 * to point to this string and set `*scontext_len' to
988 * the length of the string.
989 */
990static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
991{
992	char *scontextp;
993
994	if (scontext)
995		*scontext = NULL;
996	*scontext_len = 0;
997
998	if (context->len) {
999		*scontext_len = context->len;
1000		*scontext = kstrdup(context->str, GFP_ATOMIC);
1001		if (!(*scontext))
1002			return -ENOMEM;
1003		return 0;
1004	}
1005
1006	/* Compute the size of the context. */
1007	*scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
1008	*scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
1009	*scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
1010	*scontext_len += mls_compute_context_len(context);
1011
1012	if (!scontext)
1013		return 0;
1014
1015	/* Allocate space for the context; caller must free this space. */
1016	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1017	if (!scontextp)
1018		return -ENOMEM;
1019	*scontext = scontextp;
1020
1021	/*
1022	 * Copy the user name, role name and type name into the context.
1023	 */
1024	sprintf(scontextp, "%s:%s:%s",
1025		policydb.p_user_val_to_name[context->user - 1],
1026		policydb.p_role_val_to_name[context->role - 1],
1027		policydb.p_type_val_to_name[context->type - 1]);
1028	scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
1029		     1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
1030		     1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
1031
1032	mls_sid_to_context(context, &scontextp);
1033
1034	*scontextp = 0;
1035
1036	return 0;
1037}
1038
1039#include "initial_sid_to_string.h"
1040
1041const char *security_get_initial_sid_context(u32 sid)
1042{
1043	if (unlikely(sid > SECINITSID_NUM))
1044		return NULL;
1045	return initial_sid_to_string[sid];
1046}
1047
1048static int security_sid_to_context_core(u32 sid, char **scontext,
1049					u32 *scontext_len, int force)
1050{
1051	struct context *context;
1052	int rc = 0;
1053
1054	if (scontext)
1055		*scontext = NULL;
1056	*scontext_len  = 0;
1057
1058	if (!ss_initialized) {
1059		if (sid <= SECINITSID_NUM) {
1060			char *scontextp;
1061
1062			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1063			if (!scontext)
1064				goto out;
1065			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1066			if (!scontextp) {
1067				rc = -ENOMEM;
1068				goto out;
1069			}
1070			strcpy(scontextp, initial_sid_to_string[sid]);
1071			*scontext = scontextp;
1072			goto out;
1073		}
1074		printk(KERN_ERR "SELinux: %s:  called before initial "
1075		       "load_policy on unknown SID %d\n", __func__, sid);
1076		rc = -EINVAL;
1077		goto out;
1078	}
1079	read_lock(&policy_rwlock);
1080	if (force)
1081		context = sidtab_search_force(&sidtab, sid);
1082	else
1083		context = sidtab_search(&sidtab, sid);
1084	if (!context) {
1085		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1086			__func__, sid);
1087		rc = -EINVAL;
1088		goto out_unlock;
1089	}
1090	rc = context_struct_to_string(context, scontext, scontext_len);
1091out_unlock:
1092	read_unlock(&policy_rwlock);
1093out:
1094	return rc;
1095
1096}
1097
1098/**
1099 * security_sid_to_context - Obtain a context for a given SID.
1100 * @sid: security identifier, SID
1101 * @scontext: security context
1102 * @scontext_len: length in bytes
1103 *
1104 * Write the string representation of the context associated with @sid
1105 * into a dynamically allocated string of the correct size.  Set @scontext
1106 * to point to this string and set @scontext_len to the length of the string.
1107 */
1108int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1109{
1110	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1111}
1112
1113int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1114{
1115	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1116}
1117
1118/*
1119 * Caveat:  Mutates scontext.
1120 */
1121static int string_to_context_struct(struct policydb *pol,
1122				    struct sidtab *sidtabp,
1123				    char *scontext,
1124				    u32 scontext_len,
1125				    struct context *ctx,
1126				    u32 def_sid)
1127{
1128	struct role_datum *role;
1129	struct type_datum *typdatum;
1130	struct user_datum *usrdatum;
1131	char *scontextp, *p, oldc;
1132	int rc = 0;
1133
1134	context_init(ctx);
1135
1136	/* Parse the security context. */
1137
1138	rc = -EINVAL;
1139	scontextp = (char *) scontext;
1140
1141	/* Extract the user. */
1142	p = scontextp;
1143	while (*p && *p != ':')
1144		p++;
1145
1146	if (*p == 0)
1147		goto out;
1148
1149	*p++ = 0;
1150
1151	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1152	if (!usrdatum)
1153		goto out;
1154
1155	ctx->user = usrdatum->value;
1156
1157	/* Extract role. */
1158	scontextp = p;
1159	while (*p && *p != ':')
1160		p++;
1161
1162	if (*p == 0)
1163		goto out;
1164
1165	*p++ = 0;
1166
1167	role = hashtab_search(pol->p_roles.table, scontextp);
1168	if (!role)
1169		goto out;
1170	ctx->role = role->value;
1171
1172	/* Extract type. */
1173	scontextp = p;
1174	while (*p && *p != ':')
1175		p++;
1176	oldc = *p;
1177	*p++ = 0;
1178
1179	typdatum = hashtab_search(pol->p_types.table, scontextp);
1180	if (!typdatum || typdatum->attribute)
1181		goto out;
1182
1183	ctx->type = typdatum->value;
1184
1185	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1186	if (rc)
1187		goto out;
1188
1189	if ((p - scontext) < scontext_len) {
1190		rc = -EINVAL;
1191		goto out;
1192	}
1193
1194	/* Check the validity of the new context. */
1195	if (!policydb_context_isvalid(pol, ctx)) {
1196		rc = -EINVAL;
1197		goto out;
1198	}
1199	rc = 0;
1200out:
1201	if (rc)
1202		context_destroy(ctx);
1203	return rc;
1204}
1205
1206static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1207					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1208					int force)
1209{
1210	char *scontext2, *str = NULL;
1211	struct context context;
1212	int rc = 0;
1213
1214	if (!ss_initialized) {
1215		int i;
1216
1217		for (i = 1; i < SECINITSID_NUM; i++) {
1218			if (!strcmp(initial_sid_to_string[i], scontext)) {
1219				*sid = i;
1220				return 0;
1221			}
1222		}
1223		*sid = SECINITSID_KERNEL;
1224		return 0;
1225	}
1226	*sid = SECSID_NULL;
1227
1228	/* Copy the string so that we can modify the copy as we parse it. */
1229	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1230	if (!scontext2)
1231		return -ENOMEM;
1232	memcpy(scontext2, scontext, scontext_len);
1233	scontext2[scontext_len] = 0;
1234
1235	if (force) {
1236		/* Save another copy for storing in uninterpreted form */
1237		str = kstrdup(scontext2, gfp_flags);
1238		if (!str) {
1239			kfree(scontext2);
1240			return -ENOMEM;
1241		}
1242	}
1243
1244	read_lock(&policy_rwlock);
1245	rc = string_to_context_struct(&policydb, &sidtab,
1246				      scontext2, scontext_len,
1247				      &context, def_sid);
1248	if (rc == -EINVAL && force) {
1249		context.str = str;
1250		context.len = scontext_len;
1251		str = NULL;
1252	} else if (rc)
1253		goto out;
1254	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1255	context_destroy(&context);
1256out:
1257	read_unlock(&policy_rwlock);
1258	kfree(scontext2);
1259	kfree(str);
1260	return rc;
1261}
1262
1263/**
1264 * security_context_to_sid - Obtain a SID for a given security context.
1265 * @scontext: security context
1266 * @scontext_len: length in bytes
1267 * @sid: security identifier, SID
1268 *
1269 * Obtains a SID associated with the security context that
1270 * has the string representation specified by @scontext.
1271 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1272 * memory is available, or 0 on success.
1273 */
1274int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1275{
1276	return security_context_to_sid_core(scontext, scontext_len,
1277					    sid, SECSID_NULL, GFP_KERNEL, 0);
1278}
1279
1280/**
1281 * security_context_to_sid_default - Obtain a SID for a given security context,
1282 * falling back to specified default if needed.
1283 *
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
1287 * @def_sid: default SID to assign on error
1288 *
1289 * Obtains a SID associated with the security context that
1290 * has the string representation specified by @scontext.
1291 * The default SID is passed to the MLS layer to be used to allow
1292 * kernel labeling of the MLS field if the MLS field is not present
1293 * (for upgrading to MLS without full relabel).
1294 * Implicitly forces adding of the context even if it cannot be mapped yet.
1295 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1296 * memory is available, or 0 on success.
1297 */
1298int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1299				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1300{
1301	return security_context_to_sid_core(scontext, scontext_len,
1302					    sid, def_sid, gfp_flags, 1);
1303}
1304
1305int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1306				  u32 *sid)
1307{
1308	return security_context_to_sid_core(scontext, scontext_len,
1309					    sid, SECSID_NULL, GFP_KERNEL, 1);
1310}
1311
1312static int compute_sid_handle_invalid_context(
1313	struct context *scontext,
1314	struct context *tcontext,
1315	u16 tclass,
1316	struct context *newcontext)
1317{
1318	char *s = NULL, *t = NULL, *n = NULL;
1319	u32 slen, tlen, nlen;
1320
1321	if (context_struct_to_string(scontext, &s, &slen) < 0)
1322		goto out;
1323	if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1324		goto out;
1325	if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1326		goto out;
1327	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1328		  "security_compute_sid:  invalid context %s"
1329		  " for scontext=%s"
1330		  " tcontext=%s"
1331		  " tclass=%s",
1332		  n, s, t, policydb.p_class_val_to_name[tclass-1]);
1333out:
1334	kfree(s);
1335	kfree(t);
1336	kfree(n);
1337	if (!selinux_enforcing)
1338		return 0;
1339	return -EACCES;
1340}
1341
1342static int security_compute_sid(u32 ssid,
1343				u32 tsid,
1344				u16 orig_tclass,
1345				u32 specified,
1346				u32 *out_sid,
1347				bool kern)
1348{
1349	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1350	struct role_trans *roletr = NULL;
1351	struct avtab_key avkey;
1352	struct avtab_datum *avdatum;
1353	struct avtab_node *node;
1354	u16 tclass;
1355	int rc = 0;
1356
1357	if (!ss_initialized) {
1358		switch (orig_tclass) {
1359		case SECCLASS_PROCESS: /* kernel value */
1360			*out_sid = ssid;
1361			break;
1362		default:
1363			*out_sid = tsid;
1364			break;
1365		}
1366		goto out;
1367	}
1368
1369	context_init(&newcontext);
1370
1371	read_lock(&policy_rwlock);
1372
1373	if (kern)
1374		tclass = unmap_class(orig_tclass);
1375	else
1376		tclass = orig_tclass;
1377
1378	scontext = sidtab_search(&sidtab, ssid);
1379	if (!scontext) {
1380		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1381		       __func__, ssid);
1382		rc = -EINVAL;
1383		goto out_unlock;
1384	}
1385	tcontext = sidtab_search(&sidtab, tsid);
1386	if (!tcontext) {
1387		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1388		       __func__, tsid);
1389		rc = -EINVAL;
1390		goto out_unlock;
1391	}
1392
1393	/* Set the user identity. */
1394	switch (specified) {
1395	case AVTAB_TRANSITION:
1396	case AVTAB_CHANGE:
1397		/* Use the process user identity. */
1398		newcontext.user = scontext->user;
1399		break;
1400	case AVTAB_MEMBER:
1401		/* Use the related object owner. */
1402		newcontext.user = tcontext->user;
1403		break;
1404	}
1405
1406	/* Set the role and type to default values. */
1407	if (tclass == policydb.process_class) {
1408		/* Use the current role and type of process. */
1409		newcontext.role = scontext->role;
1410		newcontext.type = scontext->type;
1411	} else {
1412		/* Use the well-defined object role. */
1413		newcontext.role = OBJECT_R_VAL;
1414		/* Use the type of the related object. */
1415		newcontext.type = tcontext->type;
1416	}
1417
1418	/* Look for a type transition/member/change rule. */
1419	avkey.source_type = scontext->type;
1420	avkey.target_type = tcontext->type;
1421	avkey.target_class = tclass;
1422	avkey.specified = specified;
1423	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1424
1425	/* If no permanent rule, also check for enabled conditional rules */
1426	if (!avdatum) {
1427		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1428		for (; node; node = avtab_search_node_next(node, specified)) {
1429			if (node->key.specified & AVTAB_ENABLED) {
1430				avdatum = &node->datum;
1431				break;
1432			}
1433		}
1434	}
1435
1436	if (avdatum) {
1437		/* Use the type from the type transition/member/change rule. */
1438		newcontext.type = avdatum->data;
1439	}
1440
1441	/* Check for class-specific changes. */
1442	if  (tclass == policydb.process_class) {
1443		if (specified & AVTAB_TRANSITION) {
1444			/* Look for a role transition rule. */
1445			for (roletr = policydb.role_tr; roletr;
1446			     roletr = roletr->next) {
1447				if (roletr->role == scontext->role &&
1448				    roletr->type == tcontext->type) {
1449					/* Use the role transition rule. */
1450					newcontext.role = roletr->new_role;
1451					break;
1452				}
1453			}
1454		}
1455	}
1456
1457	/* Set the MLS attributes.
1458	   This is done last because it may allocate memory. */
1459	rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1460	if (rc)
1461		goto out_unlock;
1462
1463	/* Check the validity of the context. */
1464	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1465		rc = compute_sid_handle_invalid_context(scontext,
1466							tcontext,
1467							tclass,
1468							&newcontext);
1469		if (rc)
1470			goto out_unlock;
1471	}
1472	/* Obtain the sid for the context. */
1473	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1474out_unlock:
1475	read_unlock(&policy_rwlock);
1476	context_destroy(&newcontext);
1477out:
1478	return rc;
1479}
1480
1481/**
1482 * security_transition_sid - Compute the SID for a new subject/object.
1483 * @ssid: source security identifier
1484 * @tsid: target security identifier
1485 * @tclass: target security class
1486 * @out_sid: security identifier for new subject/object
1487 *
1488 * Compute a SID to use for labeling a new subject or object in the
1489 * class @tclass based on a SID pair (@ssid, @tsid).
1490 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1491 * if insufficient memory is available, or %0 if the new SID was
1492 * computed successfully.
1493 */
1494int security_transition_sid(u32 ssid,
1495			    u32 tsid,
1496			    u16 tclass,
1497			    u32 *out_sid)
1498{
1499	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1500				    out_sid, true);
1501}
1502
1503int security_transition_sid_user(u32 ssid,
1504				 u32 tsid,
1505				 u16 tclass,
1506				 u32 *out_sid)
1507{
1508	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1509				    out_sid, false);
1510}
1511
1512/**
1513 * security_member_sid - Compute the SID for member selection.
1514 * @ssid: source security identifier
1515 * @tsid: target security identifier
1516 * @tclass: target security class
1517 * @out_sid: security identifier for selected member
1518 *
1519 * Compute a SID to use when selecting a member of a polyinstantiated
1520 * object of class @tclass based on a SID pair (@ssid, @tsid).
1521 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1522 * if insufficient memory is available, or %0 if the SID was
1523 * computed successfully.
1524 */
1525int security_member_sid(u32 ssid,
1526			u32 tsid,
1527			u16 tclass,
1528			u32 *out_sid)
1529{
1530	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid,
1531				    false);
1532}
1533
1534/**
1535 * security_change_sid - Compute the SID for object relabeling.
1536 * @ssid: source security identifier
1537 * @tsid: target security identifier
1538 * @tclass: target security class
1539 * @out_sid: security identifier for selected member
1540 *
1541 * Compute a SID to use for relabeling an object of class @tclass
1542 * based on a SID pair (@ssid, @tsid).
1543 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1544 * if insufficient memory is available, or %0 if the SID was
1545 * computed successfully.
1546 */
1547int security_change_sid(u32 ssid,
1548			u32 tsid,
1549			u16 tclass,
1550			u32 *out_sid)
1551{
1552	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid,
1553				    false);
1554}
1555
1556/* Clone the SID into the new SID table. */
1557static int clone_sid(u32 sid,
1558		     struct context *context,
1559		     void *arg)
1560{
1561	struct sidtab *s = arg;
1562
1563	if (sid > SECINITSID_NUM)
1564		return sidtab_insert(s, sid, context);
1565	else
1566		return 0;
1567}
1568
1569static inline int convert_context_handle_invalid_context(struct context *context)
1570{
1571	int rc = 0;
1572
1573	if (selinux_enforcing) {
1574		rc = -EINVAL;
1575	} else {
1576		char *s;
1577		u32 len;
1578
1579		if (!context_struct_to_string(context, &s, &len)) {
1580			printk(KERN_WARNING
1581		       "SELinux:  Context %s would be invalid if enforcing\n",
1582			       s);
1583			kfree(s);
1584		}
1585	}
1586	return rc;
1587}
1588
1589struct convert_context_args {
1590	struct policydb *oldp;
1591	struct policydb *newp;
1592};
1593
1594/*
1595 * Convert the values in the security context
1596 * structure `c' from the values specified
1597 * in the policy `p->oldp' to the values specified
1598 * in the policy `p->newp'.  Verify that the
1599 * context is valid under the new policy.
1600 */
1601static int convert_context(u32 key,
1602			   struct context *c,
1603			   void *p)
1604{
1605	struct convert_context_args *args;
1606	struct context oldc;
1607	struct ocontext *oc;
1608	struct mls_range *range;
1609	struct role_datum *role;
1610	struct type_datum *typdatum;
1611	struct user_datum *usrdatum;
1612	char *s;
1613	u32 len;
1614	int rc = 0;
1615
1616	if (key <= SECINITSID_NUM)
1617		goto out;
1618
1619	args = p;
1620
1621	if (c->str) {
1622		struct context ctx;
1623		s = kstrdup(c->str, GFP_KERNEL);
1624		if (!s) {
1625			rc = -ENOMEM;
1626			goto out;
1627		}
1628		rc = string_to_context_struct(args->newp, NULL, s,
1629					      c->len, &ctx, SECSID_NULL);
1630		kfree(s);
1631		if (!rc) {
1632			printk(KERN_INFO
1633		       "SELinux:  Context %s became valid (mapped).\n",
1634			       c->str);
1635			/* Replace string with mapped representation. */
1636			kfree(c->str);
1637			memcpy(c, &ctx, sizeof(*c));
1638			goto out;
1639		} else if (rc == -EINVAL) {
1640			/* Retain string representation for later mapping. */
1641			rc = 0;
1642			goto out;
1643		} else {
1644			/* Other error condition, e.g. ENOMEM. */
1645			printk(KERN_ERR
1646		       "SELinux:   Unable to map context %s, rc = %d.\n",
1647			       c->str, -rc);
1648			goto out;
1649		}
1650	}
1651
1652	rc = context_cpy(&oldc, c);
1653	if (rc)
1654		goto out;
1655
1656	rc = -EINVAL;
1657
1658	/* Convert the user. */
1659	usrdatum = hashtab_search(args->newp->p_users.table,
1660				  args->oldp->p_user_val_to_name[c->user - 1]);
1661	if (!usrdatum)
1662		goto bad;
1663	c->user = usrdatum->value;
1664
1665	/* Convert the role. */
1666	role = hashtab_search(args->newp->p_roles.table,
1667			      args->oldp->p_role_val_to_name[c->role - 1]);
1668	if (!role)
1669		goto bad;
1670	c->role = role->value;
1671
1672	/* Convert the type. */
1673	typdatum = hashtab_search(args->newp->p_types.table,
1674				  args->oldp->p_type_val_to_name[c->type - 1]);
1675	if (!typdatum)
1676		goto bad;
1677	c->type = typdatum->value;
1678
1679	/* Convert the MLS fields if dealing with MLS policies */
1680	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1681		rc = mls_convert_context(args->oldp, args->newp, c);
1682		if (rc)
1683			goto bad;
1684	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1685		/*
1686		 * Switching between MLS and non-MLS policy:
1687		 * free any storage used by the MLS fields in the
1688		 * context for all existing entries in the sidtab.
1689		 */
1690		mls_context_destroy(c);
1691	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1692		/*
1693		 * Switching between non-MLS and MLS policy:
1694		 * ensure that the MLS fields of the context for all
1695		 * existing entries in the sidtab are filled in with a
1696		 * suitable default value, likely taken from one of the
1697		 * initial SIDs.
1698		 */
1699		oc = args->newp->ocontexts[OCON_ISID];
1700		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1701			oc = oc->next;
1702		if (!oc) {
1703			printk(KERN_ERR "SELinux:  unable to look up"
1704				" the initial SIDs list\n");
1705			goto bad;
1706		}
1707		range = &oc->context[0].range;
1708		rc = mls_range_set(c, range);
1709		if (rc)
1710			goto bad;
1711	}
1712
1713	/* Check the validity of the new context. */
1714	if (!policydb_context_isvalid(args->newp, c)) {
1715		rc = convert_context_handle_invalid_context(&oldc);
1716		if (rc)
1717			goto bad;
1718	}
1719
1720	context_destroy(&oldc);
1721	rc = 0;
1722out:
1723	return rc;
1724bad:
1725	/* Map old representation to string and save it. */
1726	if (context_struct_to_string(&oldc, &s, &len))
1727		return -ENOMEM;
1728	context_destroy(&oldc);
1729	context_destroy(c);
1730	c->str = s;
1731	c->len = len;
1732	printk(KERN_INFO
1733	       "SELinux:  Context %s became invalid (unmapped).\n",
1734	       c->str);
1735	rc = 0;
1736	goto out;
1737}
1738
1739static void security_load_policycaps(void)
1740{
1741	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1742						  POLICYDB_CAPABILITY_NETPEER);
1743	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1744						  POLICYDB_CAPABILITY_OPENPERM);
1745}
1746
1747extern void selinux_complete_init(void);
1748static int security_preserve_bools(struct policydb *p);
1749
1750/**
1751 * security_load_policy - Load a security policy configuration.
1752 * @data: binary policy data
1753 * @len: length of data in bytes
1754 *
1755 * Load a new set of security policy configuration data,
1756 * validate it and convert the SID table as necessary.
1757 * This function will flush the access vector cache after
1758 * loading the new policy.
1759 */
1760int security_load_policy(void *data, size_t len)
1761{
1762	struct policydb oldpolicydb, newpolicydb;
1763	struct sidtab oldsidtab, newsidtab;
1764	struct selinux_mapping *oldmap, *map = NULL;
1765	struct convert_context_args args;
1766	u32 seqno;
1767	u16 map_size;
1768	int rc = 0;
1769	struct policy_file file = { data, len }, *fp = &file;
1770
1771	if (!ss_initialized) {
1772		avtab_cache_init();
1773		rc = policydb_read(&policydb, fp);
1774		if (rc) {
1775			avtab_cache_destroy();
1776			return rc;
1777		}
1778
1779		policydb.len = len;
1780		rc = selinux_set_mapping(&policydb, secclass_map,
1781					 &current_mapping,
1782					 &current_mapping_size);
1783		if (rc) {
1784			policydb_destroy(&policydb);
1785			avtab_cache_destroy();
1786			return rc;
1787		}
1788
1789		rc = policydb_load_isids(&policydb, &sidtab);
1790		if (rc) {
1791			policydb_destroy(&policydb);
1792			avtab_cache_destroy();
1793			return rc;
1794		}
1795
1796		security_load_policycaps();
1797		ss_initialized = 1;
1798		seqno = ++latest_granting;
1799		selinux_complete_init();
1800		avc_ss_reset(seqno);
1801		selnl_notify_policyload(seqno);
1802		selinux_status_update_policyload(seqno);
1803		selinux_netlbl_cache_invalidate();
1804		selinux_xfrm_notify_policyload();
1805		return 0;
1806	}
1807
1808#if 0
1809	sidtab_hash_eval(&sidtab, "sids");
1810#endif
1811
1812	rc = policydb_read(&newpolicydb, fp);
1813	if (rc)
1814		return rc;
1815
1816	newpolicydb.len = len;
1817	/* If switching between different policy types, log MLS status */
1818	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1819		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1820	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1821		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1822
1823	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1824	if (rc) {
1825		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1826		policydb_destroy(&newpolicydb);
1827		return rc;
1828	}
1829
1830	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1831	if (rc)
1832		goto err;
1833
1834	rc = security_preserve_bools(&newpolicydb);
1835	if (rc) {
1836		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1837		goto err;
1838	}
1839
1840	/* Clone the SID table. */
1841	sidtab_shutdown(&sidtab);
1842
1843	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1844	if (rc)
1845		goto err;
1846
1847	/*
1848	 * Convert the internal representations of contexts
1849	 * in the new SID table.
1850	 */
1851	args.oldp = &policydb;
1852	args.newp = &newpolicydb;
1853	rc = sidtab_map(&newsidtab, convert_context, &args);
1854	if (rc) {
1855		printk(KERN_ERR "SELinux:  unable to convert the internal"
1856			" representation of contexts in the new SID"
1857			" table\n");
1858		goto err;
1859	}
1860
1861	/* Save the old policydb and SID table to free later. */
1862	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1863	sidtab_set(&oldsidtab, &sidtab);
1864
1865	/* Install the new policydb and SID table. */
1866	write_lock_irq(&policy_rwlock);
1867	memcpy(&policydb, &newpolicydb, sizeof policydb);
1868	sidtab_set(&sidtab, &newsidtab);
1869	security_load_policycaps();
1870	oldmap = current_mapping;
1871	current_mapping = map;
1872	current_mapping_size = map_size;
1873	seqno = ++latest_granting;
1874	write_unlock_irq(&policy_rwlock);
1875
1876	/* Free the old policydb and SID table. */
1877	policydb_destroy(&oldpolicydb);
1878	sidtab_destroy(&oldsidtab);
1879	kfree(oldmap);
1880
1881	avc_ss_reset(seqno);
1882	selnl_notify_policyload(seqno);
1883	selinux_status_update_policyload(seqno);
1884	selinux_netlbl_cache_invalidate();
1885	selinux_xfrm_notify_policyload();
1886
1887	return 0;
1888
1889err:
1890	kfree(map);
1891	sidtab_destroy(&newsidtab);
1892	policydb_destroy(&newpolicydb);
1893	return rc;
1894
1895}
1896
1897size_t security_policydb_len(void)
1898{
1899	size_t len;
1900
1901	read_lock(&policy_rwlock);
1902	len = policydb.len;
1903	read_unlock(&policy_rwlock);
1904
1905	return len;
1906}
1907
1908/**
1909 * security_port_sid - Obtain the SID for a port.
1910 * @protocol: protocol number
1911 * @port: port number
1912 * @out_sid: security identifier
1913 */
1914int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1915{
1916	struct ocontext *c;
1917	int rc = 0;
1918
1919	read_lock(&policy_rwlock);
1920
1921	c = policydb.ocontexts[OCON_PORT];
1922	while (c) {
1923		if (c->u.port.protocol == protocol &&
1924		    c->u.port.low_port <= port &&
1925		    c->u.port.high_port >= port)
1926			break;
1927		c = c->next;
1928	}
1929
1930	if (c) {
1931		if (!c->sid[0]) {
1932			rc = sidtab_context_to_sid(&sidtab,
1933						   &c->context[0],
1934						   &c->sid[0]);
1935			if (rc)
1936				goto out;
1937		}
1938		*out_sid = c->sid[0];
1939	} else {
1940		*out_sid = SECINITSID_PORT;
1941	}
1942
1943out:
1944	read_unlock(&policy_rwlock);
1945	return rc;
1946}
1947
1948/**
1949 * security_netif_sid - Obtain the SID for a network interface.
1950 * @name: interface name
1951 * @if_sid: interface SID
1952 */
1953int security_netif_sid(char *name, u32 *if_sid)
1954{
1955	int rc = 0;
1956	struct ocontext *c;
1957
1958	read_lock(&policy_rwlock);
1959
1960	c = policydb.ocontexts[OCON_NETIF];
1961	while (c) {
1962		if (strcmp(name, c->u.name) == 0)
1963			break;
1964		c = c->next;
1965	}
1966
1967	if (c) {
1968		if (!c->sid[0] || !c->sid[1]) {
1969			rc = sidtab_context_to_sid(&sidtab,
1970						  &c->context[0],
1971						  &c->sid[0]);
1972			if (rc)
1973				goto out;
1974			rc = sidtab_context_to_sid(&sidtab,
1975						   &c->context[1],
1976						   &c->sid[1]);
1977			if (rc)
1978				goto out;
1979		}
1980		*if_sid = c->sid[0];
1981	} else
1982		*if_sid = SECINITSID_NETIF;
1983
1984out:
1985	read_unlock(&policy_rwlock);
1986	return rc;
1987}
1988
1989static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1990{
1991	int i, fail = 0;
1992
1993	for (i = 0; i < 4; i++)
1994		if (addr[i] != (input[i] & mask[i])) {
1995			fail = 1;
1996			break;
1997		}
1998
1999	return !fail;
2000}
2001
2002/**
2003 * security_node_sid - Obtain the SID for a node (host).
2004 * @domain: communication domain aka address family
2005 * @addrp: address
2006 * @addrlen: address length in bytes
2007 * @out_sid: security identifier
2008 */
2009int security_node_sid(u16 domain,
2010		      void *addrp,
2011		      u32 addrlen,
2012		      u32 *out_sid)
2013{
2014	int rc = 0;
2015	struct ocontext *c;
2016
2017	read_lock(&policy_rwlock);
2018
2019	switch (domain) {
2020	case AF_INET: {
2021		u32 addr;
2022
2023		if (addrlen != sizeof(u32)) {
2024			rc = -EINVAL;
2025			goto out;
2026		}
2027
2028		addr = *((u32 *)addrp);
2029
2030		c = policydb.ocontexts[OCON_NODE];
2031		while (c) {
2032			if (c->u.node.addr == (addr & c->u.node.mask))
2033				break;
2034			c = c->next;
2035		}
2036		break;
2037	}
2038
2039	case AF_INET6:
2040		if (addrlen != sizeof(u64) * 2) {
2041			rc = -EINVAL;
2042			goto out;
2043		}
2044		c = policydb.ocontexts[OCON_NODE6];
2045		while (c) {
2046			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2047						c->u.node6.mask))
2048				break;
2049			c = c->next;
2050		}
2051		break;
2052
2053	default:
2054		*out_sid = SECINITSID_NODE;
2055		goto out;
2056	}
2057
2058	if (c) {
2059		if (!c->sid[0]) {
2060			rc = sidtab_context_to_sid(&sidtab,
2061						   &c->context[0],
2062						   &c->sid[0]);
2063			if (rc)
2064				goto out;
2065		}
2066		*out_sid = c->sid[0];
2067	} else {
2068		*out_sid = SECINITSID_NODE;
2069	}
2070
2071out:
2072	read_unlock(&policy_rwlock);
2073	return rc;
2074}
2075
2076#define SIDS_NEL 25
2077
2078/**
2079 * security_get_user_sids - Obtain reachable SIDs for a user.
2080 * @fromsid: starting SID
2081 * @username: username
2082 * @sids: array of reachable SIDs for user
2083 * @nel: number of elements in @sids
2084 *
2085 * Generate the set of SIDs for legal security contexts
2086 * for a given user that can be reached by @fromsid.
2087 * Set *@sids to point to a dynamically allocated
2088 * array containing the set of SIDs.  Set *@nel to the
2089 * number of elements in the array.
2090 */
2091
2092int security_get_user_sids(u32 fromsid,
2093			   char *username,
2094			   u32 **sids,
2095			   u32 *nel)
2096{
2097	struct context *fromcon, usercon;
2098	u32 *mysids = NULL, *mysids2, sid;
2099	u32 mynel = 0, maxnel = SIDS_NEL;
2100	struct user_datum *user;
2101	struct role_datum *role;
2102	struct ebitmap_node *rnode, *tnode;
2103	int rc = 0, i, j;
2104
2105	*sids = NULL;
2106	*nel = 0;
2107
2108	if (!ss_initialized)
2109		goto out;
2110
2111	read_lock(&policy_rwlock);
2112
2113	context_init(&usercon);
2114
2115	fromcon = sidtab_search(&sidtab, fromsid);
2116	if (!fromcon) {
2117		rc = -EINVAL;
2118		goto out_unlock;
2119	}
2120
2121	user = hashtab_search(policydb.p_users.table, username);
2122	if (!user) {
2123		rc = -EINVAL;
2124		goto out_unlock;
2125	}
2126	usercon.user = user->value;
2127
2128	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2129	if (!mysids) {
2130		rc = -ENOMEM;
2131		goto out_unlock;
2132	}
2133
2134	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2135		role = policydb.role_val_to_struct[i];
2136		usercon.role = i + 1;
2137		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2138			usercon.type = j + 1;
2139
2140			if (mls_setup_user_range(fromcon, user, &usercon))
2141				continue;
2142
2143			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2144			if (rc)
2145				goto out_unlock;
2146			if (mynel < maxnel) {
2147				mysids[mynel++] = sid;
2148			} else {
2149				maxnel += SIDS_NEL;
2150				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2151				if (!mysids2) {
2152					rc = -ENOMEM;
2153					goto out_unlock;
2154				}
2155				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2156				kfree(mysids);
2157				mysids = mysids2;
2158				mysids[mynel++] = sid;
2159			}
2160		}
2161	}
2162
2163out_unlock:
2164	read_unlock(&policy_rwlock);
2165	if (rc || !mynel) {
2166		kfree(mysids);
2167		goto out;
2168	}
2169
2170	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2171	if (!mysids2) {
2172		rc = -ENOMEM;
2173		kfree(mysids);
2174		goto out;
2175	}
2176	for (i = 0, j = 0; i < mynel; i++) {
2177		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2178					  SECCLASS_PROCESS, /* kernel value */
2179					  PROCESS__TRANSITION, AVC_STRICT,
2180					  NULL);
2181		if (!rc)
2182			mysids2[j++] = mysids[i];
2183		cond_resched();
2184	}
2185	rc = 0;
2186	kfree(mysids);
2187	*sids = mysids2;
2188	*nel = j;
2189out:
2190	return rc;
2191}
2192
2193/**
2194 * security_genfs_sid - Obtain a SID for a file in a filesystem
2195 * @fstype: filesystem type
2196 * @path: path from root of mount
2197 * @sclass: file security class
2198 * @sid: SID for path
2199 *
2200 * Obtain a SID to use for a file in a filesystem that
2201 * cannot support xattr or use a fixed labeling behavior like
2202 * transition SIDs or task SIDs.
2203 */
2204int security_genfs_sid(const char *fstype,
2205		       char *path,
2206		       u16 orig_sclass,
2207		       u32 *sid)
2208{
2209	int len;
2210	u16 sclass;
2211	struct genfs *genfs;
2212	struct ocontext *c;
2213	int rc = 0, cmp = 0;
2214
2215	while (path[0] == '/' && path[1] == '/')
2216		path++;
2217
2218	read_lock(&policy_rwlock);
2219
2220	sclass = unmap_class(orig_sclass);
2221
2222	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2223		cmp = strcmp(fstype, genfs->fstype);
2224		if (cmp <= 0)
2225			break;
2226	}
2227
2228	if (!genfs || cmp) {
2229		*sid = SECINITSID_UNLABELED;
2230		rc = -ENOENT;
2231		goto out;
2232	}
2233
2234	for (c = genfs->head; c; c = c->next) {
2235		len = strlen(c->u.name);
2236		if ((!c->v.sclass || sclass == c->v.sclass) &&
2237		    (strncmp(c->u.name, path, len) == 0))
2238			break;
2239	}
2240
2241	if (!c) {
2242		*sid = SECINITSID_UNLABELED;
2243		rc = -ENOENT;
2244		goto out;
2245	}
2246
2247	if (!c->sid[0]) {
2248		rc = sidtab_context_to_sid(&sidtab,
2249					   &c->context[0],
2250					   &c->sid[0]);
2251		if (rc)
2252			goto out;
2253	}
2254
2255	*sid = c->sid[0];
2256out:
2257	read_unlock(&policy_rwlock);
2258	return rc;
2259}
2260
2261/**
2262 * security_fs_use - Determine how to handle labeling for a filesystem.
2263 * @fstype: filesystem type
2264 * @behavior: labeling behavior
2265 * @sid: SID for filesystem (superblock)
2266 */
2267int security_fs_use(
2268	const char *fstype,
2269	unsigned int *behavior,
2270	u32 *sid)
2271{
2272	int rc = 0;
2273	struct ocontext *c;
2274
2275	read_lock(&policy_rwlock);
2276
2277	c = policydb.ocontexts[OCON_FSUSE];
2278	while (c) {
2279		if (strcmp(fstype, c->u.name) == 0)
2280			break;
2281		c = c->next;
2282	}
2283
2284	if (c) {
2285		*behavior = c->v.behavior;
2286		if (!c->sid[0]) {
2287			rc = sidtab_context_to_sid(&sidtab,
2288						   &c->context[0],
2289						   &c->sid[0]);
2290			if (rc)
2291				goto out;
2292		}
2293		*sid = c->sid[0];
2294	} else {
2295		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2296		if (rc) {
2297			*behavior = SECURITY_FS_USE_NONE;
2298			rc = 0;
2299		} else {
2300			*behavior = SECURITY_FS_USE_GENFS;
2301		}
2302	}
2303
2304out:
2305	read_unlock(&policy_rwlock);
2306	return rc;
2307}
2308
2309int security_get_bools(int *len, char ***names, int **values)
2310{
2311	int i, rc = -ENOMEM;
2312
2313	read_lock(&policy_rwlock);
2314	*names = NULL;
2315	*values = NULL;
2316
2317	*len = policydb.p_bools.nprim;
2318	if (!*len) {
2319		rc = 0;
2320		goto out;
2321	}
2322
2323       *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2324	if (!*names)
2325		goto err;
2326
2327       *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2328	if (!*values)
2329		goto err;
2330
2331	for (i = 0; i < *len; i++) {
2332		size_t name_len;
2333		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2334		name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
2335	       (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2336		if (!(*names)[i])
2337			goto err;
2338		strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2339		(*names)[i][name_len - 1] = 0;
2340	}
2341	rc = 0;
2342out:
2343	read_unlock(&policy_rwlock);
2344	return rc;
2345err:
2346	if (*names) {
2347		for (i = 0; i < *len; i++)
2348			kfree((*names)[i]);
2349	}
2350	kfree(*values);
2351	goto out;
2352}
2353
2354
2355int security_set_bools(int len, int *values)
2356{
2357	int i, rc = 0;
2358	int lenp, seqno = 0;
2359	struct cond_node *cur;
2360
2361	write_lock_irq(&policy_rwlock);
2362
2363	lenp = policydb.p_bools.nprim;
2364	if (len != lenp) {
2365		rc = -EFAULT;
2366		goto out;
2367	}
2368
2369	for (i = 0; i < len; i++) {
2370		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2371			audit_log(current->audit_context, GFP_ATOMIC,
2372				AUDIT_MAC_CONFIG_CHANGE,
2373				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2374				policydb.p_bool_val_to_name[i],
2375				!!values[i],
2376				policydb.bool_val_to_struct[i]->state,
2377				audit_get_loginuid(current),
2378				audit_get_sessionid(current));
2379		}
2380		if (values[i])
2381			policydb.bool_val_to_struct[i]->state = 1;
2382		else
2383			policydb.bool_val_to_struct[i]->state = 0;
2384	}
2385
2386	for (cur = policydb.cond_list; cur; cur = cur->next) {
2387		rc = evaluate_cond_node(&policydb, cur);
2388		if (rc)
2389			goto out;
2390	}
2391
2392	seqno = ++latest_granting;
2393
2394out:
2395	write_unlock_irq(&policy_rwlock);
2396	if (!rc) {
2397		avc_ss_reset(seqno);
2398		selnl_notify_policyload(seqno);
2399		selinux_status_update_policyload(seqno);
2400		selinux_xfrm_notify_policyload();
2401	}
2402	return rc;
2403}
2404
2405int security_get_bool_value(int bool)
2406{
2407	int rc = 0;
2408	int len;
2409
2410	read_lock(&policy_rwlock);
2411
2412	len = policydb.p_bools.nprim;
2413	if (bool >= len) {
2414		rc = -EFAULT;
2415		goto out;
2416	}
2417
2418	rc = policydb.bool_val_to_struct[bool]->state;
2419out:
2420	read_unlock(&policy_rwlock);
2421	return rc;
2422}
2423
2424static int security_preserve_bools(struct policydb *p)
2425{
2426	int rc, nbools = 0, *bvalues = NULL, i;
2427	char **bnames = NULL;
2428	struct cond_bool_datum *booldatum;
2429	struct cond_node *cur;
2430
2431	rc = security_get_bools(&nbools, &bnames, &bvalues);
2432	if (rc)
2433		goto out;
2434	for (i = 0; i < nbools; i++) {
2435		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2436		if (booldatum)
2437			booldatum->state = bvalues[i];
2438	}
2439	for (cur = p->cond_list; cur; cur = cur->next) {
2440		rc = evaluate_cond_node(p, cur);
2441		if (rc)
2442			goto out;
2443	}
2444
2445out:
2446	if (bnames) {
2447		for (i = 0; i < nbools; i++)
2448			kfree(bnames[i]);
2449	}
2450	kfree(bnames);
2451	kfree(bvalues);
2452	return rc;
2453}
2454
2455/*
2456 * security_sid_mls_copy() - computes a new sid based on the given
2457 * sid and the mls portion of mls_sid.
2458 */
2459int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2460{
2461	struct context *context1;
2462	struct context *context2;
2463	struct context newcon;
2464	char *s;
2465	u32 len;
2466	int rc = 0;
2467
2468	if (!ss_initialized || !policydb.mls_enabled) {
2469		*new_sid = sid;
2470		goto out;
2471	}
2472
2473	context_init(&newcon);
2474
2475	read_lock(&policy_rwlock);
2476	context1 = sidtab_search(&sidtab, sid);
2477	if (!context1) {
2478		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2479			__func__, sid);
2480		rc = -EINVAL;
2481		goto out_unlock;
2482	}
2483
2484	context2 = sidtab_search(&sidtab, mls_sid);
2485	if (!context2) {
2486		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2487			__func__, mls_sid);
2488		rc = -EINVAL;
2489		goto out_unlock;
2490	}
2491
2492	newcon.user = context1->user;
2493	newcon.role = context1->role;
2494	newcon.type = context1->type;
2495	rc = mls_context_cpy(&newcon, context2);
2496	if (rc)
2497		goto out_unlock;
2498
2499	/* Check the validity of the new context. */
2500	if (!policydb_context_isvalid(&policydb, &newcon)) {
2501		rc = convert_context_handle_invalid_context(&newcon);
2502		if (rc)
2503			goto bad;
2504	}
2505
2506	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2507	goto out_unlock;
2508
2509bad:
2510	if (!context_struct_to_string(&newcon, &s, &len)) {
2511		audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2512			  "security_sid_mls_copy: invalid context %s", s);
2513		kfree(s);
2514	}
2515
2516out_unlock:
2517	read_unlock(&policy_rwlock);
2518	context_destroy(&newcon);
2519out:
2520	return rc;
2521}
2522
2523/**
2524 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2525 * @nlbl_sid: NetLabel SID
2526 * @nlbl_type: NetLabel labeling protocol type
2527 * @xfrm_sid: XFRM SID
2528 *
2529 * Description:
2530 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2531 * resolved into a single SID it is returned via @peer_sid and the function
2532 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2533 * returns a negative value.  A table summarizing the behavior is below:
2534 *
2535 *                                 | function return |      @sid
2536 *   ------------------------------+-----------------+-----------------
2537 *   no peer labels                |        0        |    SECSID_NULL
2538 *   single peer label             |        0        |    <peer_label>
2539 *   multiple, consistent labels   |        0        |    <peer_label>
2540 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2541 *
2542 */
2543int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2544				 u32 xfrm_sid,
2545				 u32 *peer_sid)
2546{
2547	int rc;
2548	struct context *nlbl_ctx;
2549	struct context *xfrm_ctx;
2550
2551	/* handle the common (which also happens to be the set of easy) cases
2552	 * right away, these two if statements catch everything involving a
2553	 * single or absent peer SID/label */
2554	if (xfrm_sid == SECSID_NULL) {
2555		*peer_sid = nlbl_sid;
2556		return 0;
2557	}
2558	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2559	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2560	 * is present */
2561	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2562		*peer_sid = xfrm_sid;
2563		return 0;
2564	}
2565
2566	/* we don't need to check ss_initialized here since the only way both
2567	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2568	 * security server was initialized and ss_initialized was true */
2569	if (!policydb.mls_enabled) {
2570		*peer_sid = SECSID_NULL;
2571		return 0;
2572	}
2573
2574	read_lock(&policy_rwlock);
2575
2576	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2577	if (!nlbl_ctx) {
2578		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2579		       __func__, nlbl_sid);
2580		rc = -EINVAL;
2581		goto out_slowpath;
2582	}
2583	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2584	if (!xfrm_ctx) {
2585		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2586		       __func__, xfrm_sid);
2587		rc = -EINVAL;
2588		goto out_slowpath;
2589	}
2590	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2591
2592out_slowpath:
2593	read_unlock(&policy_rwlock);
2594	if (rc == 0)
2595		/* at present NetLabel SIDs/labels really only carry MLS
2596		 * information so if the MLS portion of the NetLabel SID
2597		 * matches the MLS portion of the labeled XFRM SID/label
2598		 * then pass along the XFRM SID as it is the most
2599		 * expressive */
2600		*peer_sid = xfrm_sid;
2601	else
2602		*peer_sid = SECSID_NULL;
2603	return rc;
2604}
2605
2606static int get_classes_callback(void *k, void *d, void *args)
2607{
2608	struct class_datum *datum = d;
2609	char *name = k, **classes = args;
2610	int value = datum->value - 1;
2611
2612	classes[value] = kstrdup(name, GFP_ATOMIC);
2613	if (!classes[value])
2614		return -ENOMEM;
2615
2616	return 0;
2617}
2618
2619int security_get_classes(char ***classes, int *nclasses)
2620{
2621	int rc = -ENOMEM;
2622
2623	read_lock(&policy_rwlock);
2624
2625	*nclasses = policydb.p_classes.nprim;
2626	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2627	if (!*classes)
2628		goto out;
2629
2630	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2631			*classes);
2632	if (rc < 0) {
2633		int i;
2634		for (i = 0; i < *nclasses; i++)
2635			kfree((*classes)[i]);
2636		kfree(*classes);
2637	}
2638
2639out:
2640	read_unlock(&policy_rwlock);
2641	return rc;
2642}
2643
2644static int get_permissions_callback(void *k, void *d, void *args)
2645{
2646	struct perm_datum *datum = d;
2647	char *name = k, **perms = args;
2648	int value = datum->value - 1;
2649
2650	perms[value] = kstrdup(name, GFP_ATOMIC);
2651	if (!perms[value])
2652		return -ENOMEM;
2653
2654	return 0;
2655}
2656
2657int security_get_permissions(char *class, char ***perms, int *nperms)
2658{
2659	int rc = -ENOMEM, i;
2660	struct class_datum *match;
2661
2662	read_lock(&policy_rwlock);
2663
2664	match = hashtab_search(policydb.p_classes.table, class);
2665	if (!match) {
2666		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2667			__func__, class);
2668		rc = -EINVAL;
2669		goto out;
2670	}
2671
2672	*nperms = match->permissions.nprim;
2673	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2674	if (!*perms)
2675		goto out;
2676
2677	if (match->comdatum) {
2678		rc = hashtab_map(match->comdatum->permissions.table,
2679				get_permissions_callback, *perms);
2680		if (rc < 0)
2681			goto err;
2682	}
2683
2684	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2685			*perms);
2686	if (rc < 0)
2687		goto err;
2688
2689out:
2690	read_unlock(&policy_rwlock);
2691	return rc;
2692
2693err:
2694	read_unlock(&policy_rwlock);
2695	for (i = 0; i < *nperms; i++)
2696		kfree((*perms)[i]);
2697	kfree(*perms);
2698	return rc;
2699}
2700
2701int security_get_reject_unknown(void)
2702{
2703	return policydb.reject_unknown;
2704}
2705
2706int security_get_allow_unknown(void)
2707{
2708	return policydb.allow_unknown;
2709}
2710
2711/**
2712 * security_policycap_supported - Check for a specific policy capability
2713 * @req_cap: capability
2714 *
2715 * Description:
2716 * This function queries the currently loaded policy to see if it supports the
2717 * capability specified by @req_cap.  Returns true (1) if the capability is
2718 * supported, false (0) if it isn't supported.
2719 *
2720 */
2721int security_policycap_supported(unsigned int req_cap)
2722{
2723	int rc;
2724
2725	read_lock(&policy_rwlock);
2726	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2727	read_unlock(&policy_rwlock);
2728
2729	return rc;
2730}
2731
2732struct selinux_audit_rule {
2733	u32 au_seqno;
2734	struct context au_ctxt;
2735};
2736
2737void selinux_audit_rule_free(void *vrule)
2738{
2739	struct selinux_audit_rule *rule = vrule;
2740
2741	if (rule) {
2742		context_destroy(&rule->au_ctxt);
2743		kfree(rule);
2744	}
2745}
2746
2747int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2748{
2749	struct selinux_audit_rule *tmprule;
2750	struct role_datum *roledatum;
2751	struct type_datum *typedatum;
2752	struct user_datum *userdatum;
2753	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2754	int rc = 0;
2755
2756	*rule = NULL;
2757
2758	if (!ss_initialized)
2759		return -EOPNOTSUPP;
2760
2761	switch (field) {
2762	case AUDIT_SUBJ_USER:
2763	case AUDIT_SUBJ_ROLE:
2764	case AUDIT_SUBJ_TYPE:
2765	case AUDIT_OBJ_USER:
2766	case AUDIT_OBJ_ROLE:
2767	case AUDIT_OBJ_TYPE:
2768		/* only 'equals' and 'not equals' fit user, role, and type */
2769		if (op != Audit_equal && op != Audit_not_equal)
2770			return -EINVAL;
2771		break;
2772	case AUDIT_SUBJ_SEN:
2773	case AUDIT_SUBJ_CLR:
2774	case AUDIT_OBJ_LEV_LOW:
2775	case AUDIT_OBJ_LEV_HIGH:
2776		/* we do not allow a range, indicated by the presense of '-' */
2777		if (strchr(rulestr, '-'))
2778			return -EINVAL;
2779		break;
2780	default:
2781		/* only the above fields are valid */
2782		return -EINVAL;
2783	}
2784
2785	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2786	if (!tmprule)
2787		return -ENOMEM;
2788
2789	context_init(&tmprule->au_ctxt);
2790
2791	read_lock(&policy_rwlock);
2792
2793	tmprule->au_seqno = latest_granting;
2794
2795	switch (field) {
2796	case AUDIT_SUBJ_USER:
2797	case AUDIT_OBJ_USER:
2798		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2799		if (!userdatum)
2800			rc = -EINVAL;
2801		else
2802			tmprule->au_ctxt.user = userdatum->value;
2803		break;
2804	case AUDIT_SUBJ_ROLE:
2805	case AUDIT_OBJ_ROLE:
2806		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2807		if (!roledatum)
2808			rc = -EINVAL;
2809		else
2810			tmprule->au_ctxt.role = roledatum->value;
2811		break;
2812	case AUDIT_SUBJ_TYPE:
2813	case AUDIT_OBJ_TYPE:
2814		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2815		if (!typedatum)
2816			rc = -EINVAL;
2817		else
2818			tmprule->au_ctxt.type = typedatum->value;
2819		break;
2820	case AUDIT_SUBJ_SEN:
2821	case AUDIT_SUBJ_CLR:
2822	case AUDIT_OBJ_LEV_LOW:
2823	case AUDIT_OBJ_LEV_HIGH:
2824		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2825		break;
2826	}
2827
2828	read_unlock(&policy_rwlock);
2829
2830	if (rc) {
2831		selinux_audit_rule_free(tmprule);
2832		tmprule = NULL;
2833	}
2834
2835	*rule = tmprule;
2836
2837	return rc;
2838}
2839
2840/* Check to see if the rule contains any selinux fields */
2841int selinux_audit_rule_known(struct audit_krule *rule)
2842{
2843	int i;
2844
2845	for (i = 0; i < rule->field_count; i++) {
2846		struct audit_field *f = &rule->fields[i];
2847		switch (f->type) {
2848		case AUDIT_SUBJ_USER:
2849		case AUDIT_SUBJ_ROLE:
2850		case AUDIT_SUBJ_TYPE:
2851		case AUDIT_SUBJ_SEN:
2852		case AUDIT_SUBJ_CLR:
2853		case AUDIT_OBJ_USER:
2854		case AUDIT_OBJ_ROLE:
2855		case AUDIT_OBJ_TYPE:
2856		case AUDIT_OBJ_LEV_LOW:
2857		case AUDIT_OBJ_LEV_HIGH:
2858			return 1;
2859		}
2860	}
2861
2862	return 0;
2863}
2864
2865int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2866			     struct audit_context *actx)
2867{
2868	struct context *ctxt;
2869	struct mls_level *level;
2870	struct selinux_audit_rule *rule = vrule;
2871	int match = 0;
2872
2873	if (!rule) {
2874		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2875			  "selinux_audit_rule_match: missing rule\n");
2876		return -ENOENT;
2877	}
2878
2879	read_lock(&policy_rwlock);
2880
2881	if (rule->au_seqno < latest_granting) {
2882		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2883			  "selinux_audit_rule_match: stale rule\n");
2884		match = -ESTALE;
2885		goto out;
2886	}
2887
2888	ctxt = sidtab_search(&sidtab, sid);
2889	if (!ctxt) {
2890		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2891			  "selinux_audit_rule_match: unrecognized SID %d\n",
2892			  sid);
2893		match = -ENOENT;
2894		goto out;
2895	}
2896
2897	/* a field/op pair that is not caught here will simply fall through
2898	   without a match */
2899	switch (field) {
2900	case AUDIT_SUBJ_USER:
2901	case AUDIT_OBJ_USER:
2902		switch (op) {
2903		case Audit_equal:
2904			match = (ctxt->user == rule->au_ctxt.user);
2905			break;
2906		case Audit_not_equal:
2907			match = (ctxt->user != rule->au_ctxt.user);
2908			break;
2909		}
2910		break;
2911	case AUDIT_SUBJ_ROLE:
2912	case AUDIT_OBJ_ROLE:
2913		switch (op) {
2914		case Audit_equal:
2915			match = (ctxt->role == rule->au_ctxt.role);
2916			break;
2917		case Audit_not_equal:
2918			match = (ctxt->role != rule->au_ctxt.role);
2919			break;
2920		}
2921		break;
2922	case AUDIT_SUBJ_TYPE:
2923	case AUDIT_OBJ_TYPE:
2924		switch (op) {
2925		case Audit_equal:
2926			match = (ctxt->type == rule->au_ctxt.type);
2927			break;
2928		case Audit_not_equal:
2929			match = (ctxt->type != rule->au_ctxt.type);
2930			break;
2931		}
2932		break;
2933	case AUDIT_SUBJ_SEN:
2934	case AUDIT_SUBJ_CLR:
2935	case AUDIT_OBJ_LEV_LOW:
2936	case AUDIT_OBJ_LEV_HIGH:
2937		level = ((field == AUDIT_SUBJ_SEN ||
2938			  field == AUDIT_OBJ_LEV_LOW) ?
2939			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2940		switch (op) {
2941		case Audit_equal:
2942			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2943					     level);
2944			break;
2945		case Audit_not_equal:
2946			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2947					      level);
2948			break;
2949		case Audit_lt:
2950			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2951					       level) &&
2952				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2953					       level));
2954			break;
2955		case Audit_le:
2956			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2957					      level);
2958			break;
2959		case Audit_gt:
2960			match = (mls_level_dom(level,
2961					      &rule->au_ctxt.range.level[0]) &&
2962				 !mls_level_eq(level,
2963					       &rule->au_ctxt.range.level[0]));
2964			break;
2965		case Audit_ge:
2966			match = mls_level_dom(level,
2967					      &rule->au_ctxt.range.level[0]);
2968			break;
2969		}
2970	}
2971
2972out:
2973	read_unlock(&policy_rwlock);
2974	return match;
2975}
2976
2977static int (*aurule_callback)(void) = audit_update_lsm_rules;
2978
2979static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
2980			       u16 class, u32 perms, u32 *retained)
2981{
2982	int err = 0;
2983
2984	if (event == AVC_CALLBACK_RESET && aurule_callback)
2985		err = aurule_callback();
2986	return err;
2987}
2988
2989static int __init aurule_init(void)
2990{
2991	int err;
2992
2993	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
2994			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
2995	if (err)
2996		panic("avc_add_callback() failed, error %d\n", err);
2997
2998	return err;
2999}
3000__initcall(aurule_init);
3001
3002#ifdef CONFIG_NETLABEL
3003/**
3004 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3005 * @secattr: the NetLabel packet security attributes
3006 * @sid: the SELinux SID
3007 *
3008 * Description:
3009 * Attempt to cache the context in @ctx, which was derived from the packet in
3010 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3011 * already been initialized.
3012 *
3013 */
3014static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3015				      u32 sid)
3016{
3017	u32 *sid_cache;
3018
3019	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3020	if (sid_cache == NULL)
3021		return;
3022	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3023	if (secattr->cache == NULL) {
3024		kfree(sid_cache);
3025		return;
3026	}
3027
3028	*sid_cache = sid;
3029	secattr->cache->free = kfree;
3030	secattr->cache->data = sid_cache;
3031	secattr->flags |= NETLBL_SECATTR_CACHE;
3032}
3033
3034/**
3035 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3036 * @secattr: the NetLabel packet security attributes
3037 * @sid: the SELinux SID
3038 *
3039 * Description:
3040 * Convert the given NetLabel security attributes in @secattr into a
3041 * SELinux SID.  If the @secattr field does not contain a full SELinux
3042 * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
3043 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3044 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3045 * conversion for future lookups.  Returns zero on success, negative values on
3046 * failure.
3047 *
3048 */
3049int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3050				   u32 *sid)
3051{
3052	int rc = -EIDRM;
3053	struct context *ctx;
3054	struct context ctx_new;
3055
3056	if (!ss_initialized) {
3057		*sid = SECSID_NULL;
3058		return 0;
3059	}
3060
3061	read_lock(&policy_rwlock);
3062
3063	if (secattr->flags & NETLBL_SECATTR_CACHE) {
3064		*sid = *(u32 *)secattr->cache->data;
3065		rc = 0;
3066	} else if (secattr->flags & NETLBL_SECATTR_SECID) {
3067		*sid = secattr->attr.secid;
3068		rc = 0;
3069	} else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3070		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3071		if (ctx == NULL)
3072			goto netlbl_secattr_to_sid_return;
3073
3074		context_init(&ctx_new);
3075		ctx_new.user = ctx->user;
3076		ctx_new.role = ctx->role;
3077		ctx_new.type = ctx->type;
3078		mls_import_netlbl_lvl(&ctx_new, secattr);
3079		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3080			if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3081						  secattr->attr.mls.cat) != 0)
3082				goto netlbl_secattr_to_sid_return;
3083			memcpy(&ctx_new.range.level[1].cat,
3084			       &ctx_new.range.level[0].cat,
3085			       sizeof(ctx_new.range.level[0].cat));
3086		}
3087		if (mls_context_isvalid(&policydb, &ctx_new) != 1)
3088			goto netlbl_secattr_to_sid_return_cleanup;
3089
3090		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3091		if (rc != 0)
3092			goto netlbl_secattr_to_sid_return_cleanup;
3093
3094		security_netlbl_cache_add(secattr, *sid);
3095
3096		ebitmap_destroy(&ctx_new.range.level[0].cat);
3097	} else {
3098		*sid = SECSID_NULL;
3099		rc = 0;
3100	}
3101
3102netlbl_secattr_to_sid_return:
3103	read_unlock(&policy_rwlock);
3104	return rc;
3105netlbl_secattr_to_sid_return_cleanup:
3106	ebitmap_destroy(&ctx_new.range.level[0].cat);
3107	goto netlbl_secattr_to_sid_return;
3108}
3109
3110/**
3111 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3112 * @sid: the SELinux SID
3113 * @secattr: the NetLabel packet security attributes
3114 *
3115 * Description:
3116 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3117 * Returns zero on success, negative values on failure.
3118 *
3119 */
3120int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3121{
3122	int rc;
3123	struct context *ctx;
3124
3125	if (!ss_initialized)
3126		return 0;
3127
3128	read_lock(&policy_rwlock);
3129	ctx = sidtab_search(&sidtab, sid);
3130	if (ctx == NULL) {
3131		rc = -ENOENT;
3132		goto netlbl_sid_to_secattr_failure;
3133	}
3134	secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
3135				  GFP_ATOMIC);
3136	if (secattr->domain == NULL) {
3137		rc = -ENOMEM;
3138		goto netlbl_sid_to_secattr_failure;
3139	}
3140	secattr->attr.secid = sid;
3141	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3142	mls_export_netlbl_lvl(ctx, secattr);
3143	rc = mls_export_netlbl_cat(ctx, secattr);
3144	if (rc != 0)
3145		goto netlbl_sid_to_secattr_failure;
3146	read_unlock(&policy_rwlock);
3147
3148	return 0;
3149
3150netlbl_sid_to_secattr_failure:
3151	read_unlock(&policy_rwlock);
3152	return rc;
3153}
3154#endif /* CONFIG_NETLABEL */
3155
3156/**
3157 * security_read_policy - read the policy.
3158 * @data: binary policy data
3159 * @len: length of data in bytes
3160 *
3161 */
3162int security_read_policy(void **data, ssize_t *len)
3163{
3164	int rc;
3165	struct policy_file fp;
3166
3167	if (!ss_initialized)
3168		return -EINVAL;
3169
3170	*len = security_policydb_len();
3171
3172	*data = vmalloc_user(*len);
3173	if (!*data)
3174		return -ENOMEM;
3175
3176	fp.data = *data;
3177	fp.len = *len;
3178
3179	read_lock(&policy_rwlock);
3180	rc = policydb_write(&policydb, &fp);
3181	read_unlock(&policy_rwlock);
3182
3183	if (rc)
3184		return rc;
3185
3186	*len = (unsigned long)fp.data - (unsigned long)*data;
3187	return 0;
3188
3189}
3190