services.c revision 85cd6da53a8073d3f4503f56e4ea6cddccbb1c7f
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 *	     James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 *	Support for enhanced MLS infrastructure.
10 *	Support for context based audit filters.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 *	Added conditional policy language extensions
15 *
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
17 *
18 *      Added support for NetLabel
19 *      Added support for the policy capability bitmap
20 *
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 *  Added validation of kernel classes and permissions
24 *
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 *  Added support for bounds domain and audit messaged on masked permissions
28 *
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 *  Added support for runtime switching of the policy type
32 *
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 *	This program is free software; you can redistribute it and/or modify
39 *	it under the terms of the GNU General Public License as published by
40 *	the Free Software Foundation, version 2.
41 */
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include <linux/spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/sched.h>
50#include <linux/audit.h>
51#include <linux/mutex.h>
52#include <linux/selinux.h>
53#include <linux/flex_array.h>
54#include <linux/vmalloc.h>
55#include <net/netlabel.h>
56
57#include "flask.h"
58#include "avc.h"
59#include "avc_ss.h"
60#include "security.h"
61#include "context.h"
62#include "policydb.h"
63#include "sidtab.h"
64#include "services.h"
65#include "conditional.h"
66#include "mls.h"
67#include "objsec.h"
68#include "netlabel.h"
69#include "xfrm.h"
70#include "ebitmap.h"
71#include "audit.h"
72
73extern void selnl_notify_policyload(u32 seqno);
74
75int selinux_policycap_netpeer;
76int selinux_policycap_openperm;
77
78static DEFINE_RWLOCK(policy_rwlock);
79
80static struct sidtab sidtab;
81struct policydb policydb;
82int ss_initialized;
83
84/*
85 * The largest sequence number that has been used when
86 * providing an access decision to the access vector cache.
87 * The sequence number only changes when a policy change
88 * occurs.
89 */
90static u32 latest_granting;
91
92/* Forward declaration. */
93static int context_struct_to_string(struct context *context, char **scontext,
94				    u32 *scontext_len);
95
96static void context_struct_compute_av(struct context *scontext,
97				      struct context *tcontext,
98				      u16 tclass,
99				      struct av_decision *avd);
100
101struct selinux_mapping {
102	u16 value; /* policy value */
103	unsigned num_perms;
104	u32 perms[sizeof(u32) * 8];
105};
106
107static struct selinux_mapping *current_mapping;
108static u16 current_mapping_size;
109
110static int selinux_set_mapping(struct policydb *pol,
111			       struct security_class_mapping *map,
112			       struct selinux_mapping **out_map_p,
113			       u16 *out_map_size)
114{
115	struct selinux_mapping *out_map = NULL;
116	size_t size = sizeof(struct selinux_mapping);
117	u16 i, j;
118	unsigned k;
119	bool print_unknown_handle = false;
120
121	/* Find number of classes in the input mapping */
122	if (!map)
123		return -EINVAL;
124	i = 0;
125	while (map[i].name)
126		i++;
127
128	/* Allocate space for the class records, plus one for class zero */
129	out_map = kcalloc(++i, size, GFP_ATOMIC);
130	if (!out_map)
131		return -ENOMEM;
132
133	/* Store the raw class and permission values */
134	j = 0;
135	while (map[j].name) {
136		struct security_class_mapping *p_in = map + (j++);
137		struct selinux_mapping *p_out = out_map + j;
138
139		/* An empty class string skips ahead */
140		if (!strcmp(p_in->name, "")) {
141			p_out->num_perms = 0;
142			continue;
143		}
144
145		p_out->value = string_to_security_class(pol, p_in->name);
146		if (!p_out->value) {
147			printk(KERN_INFO
148			       "SELinux:  Class %s not defined in policy.\n",
149			       p_in->name);
150			if (pol->reject_unknown)
151				goto err;
152			p_out->num_perms = 0;
153			print_unknown_handle = true;
154			continue;
155		}
156
157		k = 0;
158		while (p_in->perms && p_in->perms[k]) {
159			/* An empty permission string skips ahead */
160			if (!*p_in->perms[k]) {
161				k++;
162				continue;
163			}
164			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
165							    p_in->perms[k]);
166			if (!p_out->perms[k]) {
167				printk(KERN_INFO
168				       "SELinux:  Permission %s in class %s not defined in policy.\n",
169				       p_in->perms[k], p_in->name);
170				if (pol->reject_unknown)
171					goto err;
172				print_unknown_handle = true;
173			}
174
175			k++;
176		}
177		p_out->num_perms = k;
178	}
179
180	if (print_unknown_handle)
181		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182		       pol->allow_unknown ? "allowed" : "denied");
183
184	*out_map_p = out_map;
185	*out_map_size = i;
186	return 0;
187err:
188	kfree(out_map);
189	return -EINVAL;
190}
191
192/*
193 * Get real, policy values from mapped values
194 */
195
196static u16 unmap_class(u16 tclass)
197{
198	if (tclass < current_mapping_size)
199		return current_mapping[tclass].value;
200
201	return tclass;
202}
203
204/*
205 * Get kernel value for class from its policy value
206 */
207static u16 map_class(u16 pol_value)
208{
209	u16 i;
210
211	for (i = 1; i < current_mapping_size; i++) {
212		if (current_mapping[i].value == pol_value)
213			return i;
214	}
215
216	return SECCLASS_NULL;
217}
218
219static void map_decision(u16 tclass, struct av_decision *avd,
220			 int allow_unknown)
221{
222	if (tclass < current_mapping_size) {
223		unsigned i, n = current_mapping[tclass].num_perms;
224		u32 result;
225
226		for (i = 0, result = 0; i < n; i++) {
227			if (avd->allowed & current_mapping[tclass].perms[i])
228				result |= 1<<i;
229			if (allow_unknown && !current_mapping[tclass].perms[i])
230				result |= 1<<i;
231		}
232		avd->allowed = result;
233
234		for (i = 0, result = 0; i < n; i++)
235			if (avd->auditallow & current_mapping[tclass].perms[i])
236				result |= 1<<i;
237		avd->auditallow = result;
238
239		for (i = 0, result = 0; i < n; i++) {
240			if (avd->auditdeny & current_mapping[tclass].perms[i])
241				result |= 1<<i;
242			if (!allow_unknown && !current_mapping[tclass].perms[i])
243				result |= 1<<i;
244		}
245		/*
246		 * In case the kernel has a bug and requests a permission
247		 * between num_perms and the maximum permission number, we
248		 * should audit that denial
249		 */
250		for (; i < (sizeof(u32)*8); i++)
251			result |= 1<<i;
252		avd->auditdeny = result;
253	}
254}
255
256int security_mls_enabled(void)
257{
258	return policydb.mls_enabled;
259}
260
261/*
262 * Return the boolean value of a constraint expression
263 * when it is applied to the specified source and target
264 * security contexts.
265 *
266 * xcontext is a special beast...  It is used by the validatetrans rules
267 * only.  For these rules, scontext is the context before the transition,
268 * tcontext is the context after the transition, and xcontext is the context
269 * of the process performing the transition.  All other callers of
270 * constraint_expr_eval should pass in NULL for xcontext.
271 */
272static int constraint_expr_eval(struct context *scontext,
273				struct context *tcontext,
274				struct context *xcontext,
275				struct constraint_expr *cexpr)
276{
277	u32 val1, val2;
278	struct context *c;
279	struct role_datum *r1, *r2;
280	struct mls_level *l1, *l2;
281	struct constraint_expr *e;
282	int s[CEXPR_MAXDEPTH];
283	int sp = -1;
284
285	for (e = cexpr; e; e = e->next) {
286		switch (e->expr_type) {
287		case CEXPR_NOT:
288			BUG_ON(sp < 0);
289			s[sp] = !s[sp];
290			break;
291		case CEXPR_AND:
292			BUG_ON(sp < 1);
293			sp--;
294			s[sp] &= s[sp + 1];
295			break;
296		case CEXPR_OR:
297			BUG_ON(sp < 1);
298			sp--;
299			s[sp] |= s[sp + 1];
300			break;
301		case CEXPR_ATTR:
302			if (sp == (CEXPR_MAXDEPTH - 1))
303				return 0;
304			switch (e->attr) {
305			case CEXPR_USER:
306				val1 = scontext->user;
307				val2 = tcontext->user;
308				break;
309			case CEXPR_TYPE:
310				val1 = scontext->type;
311				val2 = tcontext->type;
312				break;
313			case CEXPR_ROLE:
314				val1 = scontext->role;
315				val2 = tcontext->role;
316				r1 = policydb.role_val_to_struct[val1 - 1];
317				r2 = policydb.role_val_to_struct[val2 - 1];
318				switch (e->op) {
319				case CEXPR_DOM:
320					s[++sp] = ebitmap_get_bit(&r1->dominates,
321								  val2 - 1);
322					continue;
323				case CEXPR_DOMBY:
324					s[++sp] = ebitmap_get_bit(&r2->dominates,
325								  val1 - 1);
326					continue;
327				case CEXPR_INCOMP:
328					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
329								    val2 - 1) &&
330						   !ebitmap_get_bit(&r2->dominates,
331								    val1 - 1));
332					continue;
333				default:
334					break;
335				}
336				break;
337			case CEXPR_L1L2:
338				l1 = &(scontext->range.level[0]);
339				l2 = &(tcontext->range.level[0]);
340				goto mls_ops;
341			case CEXPR_L1H2:
342				l1 = &(scontext->range.level[0]);
343				l2 = &(tcontext->range.level[1]);
344				goto mls_ops;
345			case CEXPR_H1L2:
346				l1 = &(scontext->range.level[1]);
347				l2 = &(tcontext->range.level[0]);
348				goto mls_ops;
349			case CEXPR_H1H2:
350				l1 = &(scontext->range.level[1]);
351				l2 = &(tcontext->range.level[1]);
352				goto mls_ops;
353			case CEXPR_L1H1:
354				l1 = &(scontext->range.level[0]);
355				l2 = &(scontext->range.level[1]);
356				goto mls_ops;
357			case CEXPR_L2H2:
358				l1 = &(tcontext->range.level[0]);
359				l2 = &(tcontext->range.level[1]);
360				goto mls_ops;
361mls_ops:
362			switch (e->op) {
363			case CEXPR_EQ:
364				s[++sp] = mls_level_eq(l1, l2);
365				continue;
366			case CEXPR_NEQ:
367				s[++sp] = !mls_level_eq(l1, l2);
368				continue;
369			case CEXPR_DOM:
370				s[++sp] = mls_level_dom(l1, l2);
371				continue;
372			case CEXPR_DOMBY:
373				s[++sp] = mls_level_dom(l2, l1);
374				continue;
375			case CEXPR_INCOMP:
376				s[++sp] = mls_level_incomp(l2, l1);
377				continue;
378			default:
379				BUG();
380				return 0;
381			}
382			break;
383			default:
384				BUG();
385				return 0;
386			}
387
388			switch (e->op) {
389			case CEXPR_EQ:
390				s[++sp] = (val1 == val2);
391				break;
392			case CEXPR_NEQ:
393				s[++sp] = (val1 != val2);
394				break;
395			default:
396				BUG();
397				return 0;
398			}
399			break;
400		case CEXPR_NAMES:
401			if (sp == (CEXPR_MAXDEPTH-1))
402				return 0;
403			c = scontext;
404			if (e->attr & CEXPR_TARGET)
405				c = tcontext;
406			else if (e->attr & CEXPR_XTARGET) {
407				c = xcontext;
408				if (!c) {
409					BUG();
410					return 0;
411				}
412			}
413			if (e->attr & CEXPR_USER)
414				val1 = c->user;
415			else if (e->attr & CEXPR_ROLE)
416				val1 = c->role;
417			else if (e->attr & CEXPR_TYPE)
418				val1 = c->type;
419			else {
420				BUG();
421				return 0;
422			}
423
424			switch (e->op) {
425			case CEXPR_EQ:
426				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
427				break;
428			case CEXPR_NEQ:
429				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
430				break;
431			default:
432				BUG();
433				return 0;
434			}
435			break;
436		default:
437			BUG();
438			return 0;
439		}
440	}
441
442	BUG_ON(sp != 0);
443	return s[0];
444}
445
446/*
447 * security_dump_masked_av - dumps masked permissions during
448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
449 */
450static int dump_masked_av_helper(void *k, void *d, void *args)
451{
452	struct perm_datum *pdatum = d;
453	char **permission_names = args;
454
455	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
456
457	permission_names[pdatum->value - 1] = (char *)k;
458
459	return 0;
460}
461
462static void security_dump_masked_av(struct context *scontext,
463				    struct context *tcontext,
464				    u16 tclass,
465				    u32 permissions,
466				    const char *reason)
467{
468	struct common_datum *common_dat;
469	struct class_datum *tclass_dat;
470	struct audit_buffer *ab;
471	char *tclass_name;
472	char *scontext_name = NULL;
473	char *tcontext_name = NULL;
474	char *permission_names[32];
475	int index;
476	u32 length;
477	bool need_comma = false;
478
479	if (!permissions)
480		return;
481
482	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
483	tclass_dat = policydb.class_val_to_struct[tclass - 1];
484	common_dat = tclass_dat->comdatum;
485
486	/* init permission_names */
487	if (common_dat &&
488	    hashtab_map(common_dat->permissions.table,
489			dump_masked_av_helper, permission_names) < 0)
490		goto out;
491
492	if (hashtab_map(tclass_dat->permissions.table,
493			dump_masked_av_helper, permission_names) < 0)
494		goto out;
495
496	/* get scontext/tcontext in text form */
497	if (context_struct_to_string(scontext,
498				     &scontext_name, &length) < 0)
499		goto out;
500
501	if (context_struct_to_string(tcontext,
502				     &tcontext_name, &length) < 0)
503		goto out;
504
505	/* audit a message */
506	ab = audit_log_start(current->audit_context,
507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
508	if (!ab)
509		goto out;
510
511	audit_log_format(ab, "op=security_compute_av reason=%s "
512			 "scontext=%s tcontext=%s tclass=%s perms=",
513			 reason, scontext_name, tcontext_name, tclass_name);
514
515	for (index = 0; index < 32; index++) {
516		u32 mask = (1 << index);
517
518		if ((mask & permissions) == 0)
519			continue;
520
521		audit_log_format(ab, "%s%s",
522				 need_comma ? "," : "",
523				 permission_names[index]
524				 ? permission_names[index] : "????");
525		need_comma = true;
526	}
527	audit_log_end(ab);
528out:
529	/* release scontext/tcontext */
530	kfree(tcontext_name);
531	kfree(scontext_name);
532
533	return;
534}
535
536/*
537 * security_boundary_permission - drops violated permissions
538 * on boundary constraint.
539 */
540static void type_attribute_bounds_av(struct context *scontext,
541				     struct context *tcontext,
542				     u16 tclass,
543				     struct av_decision *avd)
544{
545	struct context lo_scontext;
546	struct context lo_tcontext;
547	struct av_decision lo_avd;
548	struct type_datum *source;
549	struct type_datum *target;
550	u32 masked = 0;
551
552	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
553				    scontext->type - 1);
554	BUG_ON(!source);
555
556	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
557				    tcontext->type - 1);
558	BUG_ON(!target);
559
560	if (source->bounds) {
561		memset(&lo_avd, 0, sizeof(lo_avd));
562
563		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
564		lo_scontext.type = source->bounds;
565
566		context_struct_compute_av(&lo_scontext,
567					  tcontext,
568					  tclass,
569					  &lo_avd);
570		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
571			return;		/* no masked permission */
572		masked = ~lo_avd.allowed & avd->allowed;
573	}
574
575	if (target->bounds) {
576		memset(&lo_avd, 0, sizeof(lo_avd));
577
578		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
579		lo_tcontext.type = target->bounds;
580
581		context_struct_compute_av(scontext,
582					  &lo_tcontext,
583					  tclass,
584					  &lo_avd);
585		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
586			return;		/* no masked permission */
587		masked = ~lo_avd.allowed & avd->allowed;
588	}
589
590	if (source->bounds && target->bounds) {
591		memset(&lo_avd, 0, sizeof(lo_avd));
592		/*
593		 * lo_scontext and lo_tcontext are already
594		 * set up.
595		 */
596
597		context_struct_compute_av(&lo_scontext,
598					  &lo_tcontext,
599					  tclass,
600					  &lo_avd);
601		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
602			return;		/* no masked permission */
603		masked = ~lo_avd.allowed & avd->allowed;
604	}
605
606	if (masked) {
607		/* mask violated permissions */
608		avd->allowed &= ~masked;
609
610		/* audit masked permissions */
611		security_dump_masked_av(scontext, tcontext,
612					tclass, masked, "bounds");
613	}
614}
615
616/*
617 * Compute access vectors based on a context structure pair for
618 * the permissions in a particular class.
619 */
620static void context_struct_compute_av(struct context *scontext,
621				      struct context *tcontext,
622				      u16 tclass,
623				      struct av_decision *avd)
624{
625	struct constraint_node *constraint;
626	struct role_allow *ra;
627	struct avtab_key avkey;
628	struct avtab_node *node;
629	struct class_datum *tclass_datum;
630	struct ebitmap *sattr, *tattr;
631	struct ebitmap_node *snode, *tnode;
632	unsigned int i, j;
633
634	avd->allowed = 0;
635	avd->auditallow = 0;
636	avd->auditdeny = 0xffffffff;
637
638	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
639		if (printk_ratelimit())
640			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
641		return;
642	}
643
644	tclass_datum = policydb.class_val_to_struct[tclass - 1];
645
646	/*
647	 * If a specific type enforcement rule was defined for
648	 * this permission check, then use it.
649	 */
650	avkey.target_class = tclass;
651	avkey.specified = AVTAB_AV;
652	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
653	BUG_ON(!sattr);
654	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
655	BUG_ON(!tattr);
656	ebitmap_for_each_positive_bit(sattr, snode, i) {
657		ebitmap_for_each_positive_bit(tattr, tnode, j) {
658			avkey.source_type = i + 1;
659			avkey.target_type = j + 1;
660			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
661			     node;
662			     node = avtab_search_node_next(node, avkey.specified)) {
663				if (node->key.specified == AVTAB_ALLOWED)
664					avd->allowed |= node->datum.data;
665				else if (node->key.specified == AVTAB_AUDITALLOW)
666					avd->auditallow |= node->datum.data;
667				else if (node->key.specified == AVTAB_AUDITDENY)
668					avd->auditdeny &= node->datum.data;
669			}
670
671			/* Check conditional av table for additional permissions */
672			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
673
674		}
675	}
676
677	/*
678	 * Remove any permissions prohibited by a constraint (this includes
679	 * the MLS policy).
680	 */
681	constraint = tclass_datum->constraints;
682	while (constraint) {
683		if ((constraint->permissions & (avd->allowed)) &&
684		    !constraint_expr_eval(scontext, tcontext, NULL,
685					  constraint->expr)) {
686			avd->allowed &= ~(constraint->permissions);
687		}
688		constraint = constraint->next;
689	}
690
691	/*
692	 * If checking process transition permission and the
693	 * role is changing, then check the (current_role, new_role)
694	 * pair.
695	 */
696	if (tclass == policydb.process_class &&
697	    (avd->allowed & policydb.process_trans_perms) &&
698	    scontext->role != tcontext->role) {
699		for (ra = policydb.role_allow; ra; ra = ra->next) {
700			if (scontext->role == ra->role &&
701			    tcontext->role == ra->new_role)
702				break;
703		}
704		if (!ra)
705			avd->allowed &= ~policydb.process_trans_perms;
706	}
707
708	/*
709	 * If the given source and target types have boundary
710	 * constraint, lazy checks have to mask any violated
711	 * permission and notice it to userspace via audit.
712	 */
713	type_attribute_bounds_av(scontext, tcontext,
714				 tclass, avd);
715}
716
717static int security_validtrans_handle_fail(struct context *ocontext,
718					   struct context *ncontext,
719					   struct context *tcontext,
720					   u16 tclass)
721{
722	char *o = NULL, *n = NULL, *t = NULL;
723	u32 olen, nlen, tlen;
724
725	if (context_struct_to_string(ocontext, &o, &olen))
726		goto out;
727	if (context_struct_to_string(ncontext, &n, &nlen))
728		goto out;
729	if (context_struct_to_string(tcontext, &t, &tlen))
730		goto out;
731	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
732		  "security_validate_transition:  denied for"
733		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
734		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
735out:
736	kfree(o);
737	kfree(n);
738	kfree(t);
739
740	if (!selinux_enforcing)
741		return 0;
742	return -EPERM;
743}
744
745int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
746				 u16 orig_tclass)
747{
748	struct context *ocontext;
749	struct context *ncontext;
750	struct context *tcontext;
751	struct class_datum *tclass_datum;
752	struct constraint_node *constraint;
753	u16 tclass;
754	int rc = 0;
755
756	if (!ss_initialized)
757		return 0;
758
759	read_lock(&policy_rwlock);
760
761	tclass = unmap_class(orig_tclass);
762
763	if (!tclass || tclass > policydb.p_classes.nprim) {
764		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
765			__func__, tclass);
766		rc = -EINVAL;
767		goto out;
768	}
769	tclass_datum = policydb.class_val_to_struct[tclass - 1];
770
771	ocontext = sidtab_search(&sidtab, oldsid);
772	if (!ocontext) {
773		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
774			__func__, oldsid);
775		rc = -EINVAL;
776		goto out;
777	}
778
779	ncontext = sidtab_search(&sidtab, newsid);
780	if (!ncontext) {
781		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
782			__func__, newsid);
783		rc = -EINVAL;
784		goto out;
785	}
786
787	tcontext = sidtab_search(&sidtab, tasksid);
788	if (!tcontext) {
789		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
790			__func__, tasksid);
791		rc = -EINVAL;
792		goto out;
793	}
794
795	constraint = tclass_datum->validatetrans;
796	while (constraint) {
797		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
798					  constraint->expr)) {
799			rc = security_validtrans_handle_fail(ocontext, ncontext,
800							     tcontext, tclass);
801			goto out;
802		}
803		constraint = constraint->next;
804	}
805
806out:
807	read_unlock(&policy_rwlock);
808	return rc;
809}
810
811/*
812 * security_bounded_transition - check whether the given
813 * transition is directed to bounded, or not.
814 * It returns 0, if @newsid is bounded by @oldsid.
815 * Otherwise, it returns error code.
816 *
817 * @oldsid : current security identifier
818 * @newsid : destinated security identifier
819 */
820int security_bounded_transition(u32 old_sid, u32 new_sid)
821{
822	struct context *old_context, *new_context;
823	struct type_datum *type;
824	int index;
825	int rc;
826
827	read_lock(&policy_rwlock);
828
829	rc = -EINVAL;
830	old_context = sidtab_search(&sidtab, old_sid);
831	if (!old_context) {
832		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
833		       __func__, old_sid);
834		goto out;
835	}
836
837	rc = -EINVAL;
838	new_context = sidtab_search(&sidtab, new_sid);
839	if (!new_context) {
840		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
841		       __func__, new_sid);
842		goto out;
843	}
844
845	rc = 0;
846	/* type/domain unchanged */
847	if (old_context->type == new_context->type)
848		goto out;
849
850	index = new_context->type;
851	while (true) {
852		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
853					  index - 1);
854		BUG_ON(!type);
855
856		/* not bounded anymore */
857		rc = -EPERM;
858		if (!type->bounds)
859			break;
860
861		/* @newsid is bounded by @oldsid */
862		rc = 0;
863		if (type->bounds == old_context->type)
864			break;
865
866		index = type->bounds;
867	}
868
869	if (rc) {
870		char *old_name = NULL;
871		char *new_name = NULL;
872		u32 length;
873
874		if (!context_struct_to_string(old_context,
875					      &old_name, &length) &&
876		    !context_struct_to_string(new_context,
877					      &new_name, &length)) {
878			audit_log(current->audit_context,
879				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
880				  "op=security_bounded_transition "
881				  "result=denied "
882				  "oldcontext=%s newcontext=%s",
883				  old_name, new_name);
884		}
885		kfree(new_name);
886		kfree(old_name);
887	}
888out:
889	read_unlock(&policy_rwlock);
890
891	return rc;
892}
893
894static void avd_init(struct av_decision *avd)
895{
896	avd->allowed = 0;
897	avd->auditallow = 0;
898	avd->auditdeny = 0xffffffff;
899	avd->seqno = latest_granting;
900	avd->flags = 0;
901}
902
903
904/**
905 * security_compute_av - Compute access vector decisions.
906 * @ssid: source security identifier
907 * @tsid: target security identifier
908 * @tclass: target security class
909 * @avd: access vector decisions
910 *
911 * Compute a set of access vector decisions based on the
912 * SID pair (@ssid, @tsid) for the permissions in @tclass.
913 */
914void security_compute_av(u32 ssid,
915			 u32 tsid,
916			 u16 orig_tclass,
917			 struct av_decision *avd)
918{
919	u16 tclass;
920	struct context *scontext = NULL, *tcontext = NULL;
921
922	read_lock(&policy_rwlock);
923	avd_init(avd);
924	if (!ss_initialized)
925		goto allow;
926
927	scontext = sidtab_search(&sidtab, ssid);
928	if (!scontext) {
929		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
930		       __func__, ssid);
931		goto out;
932	}
933
934	/* permissive domain? */
935	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
936		avd->flags |= AVD_FLAGS_PERMISSIVE;
937
938	tcontext = sidtab_search(&sidtab, tsid);
939	if (!tcontext) {
940		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
941		       __func__, tsid);
942		goto out;
943	}
944
945	tclass = unmap_class(orig_tclass);
946	if (unlikely(orig_tclass && !tclass)) {
947		if (policydb.allow_unknown)
948			goto allow;
949		goto out;
950	}
951	context_struct_compute_av(scontext, tcontext, tclass, avd);
952	map_decision(orig_tclass, avd, policydb.allow_unknown);
953out:
954	read_unlock(&policy_rwlock);
955	return;
956allow:
957	avd->allowed = 0xffffffff;
958	goto out;
959}
960
961void security_compute_av_user(u32 ssid,
962			      u32 tsid,
963			      u16 tclass,
964			      struct av_decision *avd)
965{
966	struct context *scontext = NULL, *tcontext = NULL;
967
968	read_lock(&policy_rwlock);
969	avd_init(avd);
970	if (!ss_initialized)
971		goto allow;
972
973	scontext = sidtab_search(&sidtab, ssid);
974	if (!scontext) {
975		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
976		       __func__, ssid);
977		goto out;
978	}
979
980	/* permissive domain? */
981	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
982		avd->flags |= AVD_FLAGS_PERMISSIVE;
983
984	tcontext = sidtab_search(&sidtab, tsid);
985	if (!tcontext) {
986		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
987		       __func__, tsid);
988		goto out;
989	}
990
991	if (unlikely(!tclass)) {
992		if (policydb.allow_unknown)
993			goto allow;
994		goto out;
995	}
996
997	context_struct_compute_av(scontext, tcontext, tclass, avd);
998 out:
999	read_unlock(&policy_rwlock);
1000	return;
1001allow:
1002	avd->allowed = 0xffffffff;
1003	goto out;
1004}
1005
1006/*
1007 * Write the security context string representation of
1008 * the context structure `context' into a dynamically
1009 * allocated string of the correct size.  Set `*scontext'
1010 * to point to this string and set `*scontext_len' to
1011 * the length of the string.
1012 */
1013static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1014{
1015	char *scontextp;
1016
1017	if (scontext)
1018		*scontext = NULL;
1019	*scontext_len = 0;
1020
1021	if (context->len) {
1022		*scontext_len = context->len;
1023		*scontext = kstrdup(context->str, GFP_ATOMIC);
1024		if (!(*scontext))
1025			return -ENOMEM;
1026		return 0;
1027	}
1028
1029	/* Compute the size of the context. */
1030	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033	*scontext_len += mls_compute_context_len(context);
1034
1035	if (!scontext)
1036		return 0;
1037
1038	/* Allocate space for the context; caller must free this space. */
1039	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040	if (!scontextp)
1041		return -ENOMEM;
1042	*scontext = scontextp;
1043
1044	/*
1045	 * Copy the user name, role name and type name into the context.
1046	 */
1047	sprintf(scontextp, "%s:%s:%s",
1048		sym_name(&policydb, SYM_USERS, context->user - 1),
1049		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055	mls_sid_to_context(context, &scontextp);
1056
1057	*scontextp = 0;
1058
1059	return 0;
1060}
1061
1062#include "initial_sid_to_string.h"
1063
1064const char *security_get_initial_sid_context(u32 sid)
1065{
1066	if (unlikely(sid > SECINITSID_NUM))
1067		return NULL;
1068	return initial_sid_to_string[sid];
1069}
1070
1071static int security_sid_to_context_core(u32 sid, char **scontext,
1072					u32 *scontext_len, int force)
1073{
1074	struct context *context;
1075	int rc = 0;
1076
1077	if (scontext)
1078		*scontext = NULL;
1079	*scontext_len  = 0;
1080
1081	if (!ss_initialized) {
1082		if (sid <= SECINITSID_NUM) {
1083			char *scontextp;
1084
1085			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086			if (!scontext)
1087				goto out;
1088			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089			if (!scontextp) {
1090				rc = -ENOMEM;
1091				goto out;
1092			}
1093			strcpy(scontextp, initial_sid_to_string[sid]);
1094			*scontext = scontextp;
1095			goto out;
1096		}
1097		printk(KERN_ERR "SELinux: %s:  called before initial "
1098		       "load_policy on unknown SID %d\n", __func__, sid);
1099		rc = -EINVAL;
1100		goto out;
1101	}
1102	read_lock(&policy_rwlock);
1103	if (force)
1104		context = sidtab_search_force(&sidtab, sid);
1105	else
1106		context = sidtab_search(&sidtab, sid);
1107	if (!context) {
1108		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109			__func__, sid);
1110		rc = -EINVAL;
1111		goto out_unlock;
1112	}
1113	rc = context_struct_to_string(context, scontext, scontext_len);
1114out_unlock:
1115	read_unlock(&policy_rwlock);
1116out:
1117	return rc;
1118
1119}
1120
1121/**
1122 * security_sid_to_context - Obtain a context for a given SID.
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1126 *
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size.  Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1130 */
1131int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1132{
1133	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1134}
1135
1136int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1137{
1138	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1139}
1140
1141/*
1142 * Caveat:  Mutates scontext.
1143 */
1144static int string_to_context_struct(struct policydb *pol,
1145				    struct sidtab *sidtabp,
1146				    char *scontext,
1147				    u32 scontext_len,
1148				    struct context *ctx,
1149				    u32 def_sid)
1150{
1151	struct role_datum *role;
1152	struct type_datum *typdatum;
1153	struct user_datum *usrdatum;
1154	char *scontextp, *p, oldc;
1155	int rc = 0;
1156
1157	context_init(ctx);
1158
1159	/* Parse the security context. */
1160
1161	rc = -EINVAL;
1162	scontextp = (char *) scontext;
1163
1164	/* Extract the user. */
1165	p = scontextp;
1166	while (*p && *p != ':')
1167		p++;
1168
1169	if (*p == 0)
1170		goto out;
1171
1172	*p++ = 0;
1173
1174	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175	if (!usrdatum)
1176		goto out;
1177
1178	ctx->user = usrdatum->value;
1179
1180	/* Extract role. */
1181	scontextp = p;
1182	while (*p && *p != ':')
1183		p++;
1184
1185	if (*p == 0)
1186		goto out;
1187
1188	*p++ = 0;
1189
1190	role = hashtab_search(pol->p_roles.table, scontextp);
1191	if (!role)
1192		goto out;
1193	ctx->role = role->value;
1194
1195	/* Extract type. */
1196	scontextp = p;
1197	while (*p && *p != ':')
1198		p++;
1199	oldc = *p;
1200	*p++ = 0;
1201
1202	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203	if (!typdatum || typdatum->attribute)
1204		goto out;
1205
1206	ctx->type = typdatum->value;
1207
1208	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209	if (rc)
1210		goto out;
1211
1212	rc = -EINVAL;
1213	if ((p - scontext) < scontext_len)
1214		goto out;
1215
1216	/* Check the validity of the new context. */
1217	if (!policydb_context_isvalid(pol, ctx))
1218		goto out;
1219	rc = 0;
1220out:
1221	if (rc)
1222		context_destroy(ctx);
1223	return rc;
1224}
1225
1226static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228					int force)
1229{
1230	char *scontext2, *str = NULL;
1231	struct context context;
1232	int rc = 0;
1233
1234	if (!ss_initialized) {
1235		int i;
1236
1237		for (i = 1; i < SECINITSID_NUM; i++) {
1238			if (!strcmp(initial_sid_to_string[i], scontext)) {
1239				*sid = i;
1240				return 0;
1241			}
1242		}
1243		*sid = SECINITSID_KERNEL;
1244		return 0;
1245	}
1246	*sid = SECSID_NULL;
1247
1248	/* Copy the string so that we can modify the copy as we parse it. */
1249	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250	if (!scontext2)
1251		return -ENOMEM;
1252	memcpy(scontext2, scontext, scontext_len);
1253	scontext2[scontext_len] = 0;
1254
1255	if (force) {
1256		/* Save another copy for storing in uninterpreted form */
1257		rc = -ENOMEM;
1258		str = kstrdup(scontext2, gfp_flags);
1259		if (!str)
1260			goto out;
1261	}
1262
1263	read_lock(&policy_rwlock);
1264	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265				      scontext_len, &context, def_sid);
1266	if (rc == -EINVAL && force) {
1267		context.str = str;
1268		context.len = scontext_len;
1269		str = NULL;
1270	} else if (rc)
1271		goto out_unlock;
1272	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273	context_destroy(&context);
1274out_unlock:
1275	read_unlock(&policy_rwlock);
1276out:
1277	kfree(scontext2);
1278	kfree(str);
1279	return rc;
1280}
1281
1282/**
1283 * security_context_to_sid - Obtain a SID for a given security context.
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
1287 *
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1292 */
1293int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1294{
1295	return security_context_to_sid_core(scontext, scontext_len,
1296					    sid, SECSID_NULL, GFP_KERNEL, 0);
1297}
1298
1299/**
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1302 *
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
1307 *
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1316 */
1317int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319{
1320	return security_context_to_sid_core(scontext, scontext_len,
1321					    sid, def_sid, gfp_flags, 1);
1322}
1323
1324int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325				  u32 *sid)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329}
1330
1331static int compute_sid_handle_invalid_context(
1332	struct context *scontext,
1333	struct context *tcontext,
1334	u16 tclass,
1335	struct context *newcontext)
1336{
1337	char *s = NULL, *t = NULL, *n = NULL;
1338	u32 slen, tlen, nlen;
1339
1340	if (context_struct_to_string(scontext, &s, &slen))
1341		goto out;
1342	if (context_struct_to_string(tcontext, &t, &tlen))
1343		goto out;
1344	if (context_struct_to_string(newcontext, &n, &nlen))
1345		goto out;
1346	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347		  "security_compute_sid:  invalid context %s"
1348		  " for scontext=%s"
1349		  " tcontext=%s"
1350		  " tclass=%s",
1351		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352out:
1353	kfree(s);
1354	kfree(t);
1355	kfree(n);
1356	if (!selinux_enforcing)
1357		return 0;
1358	return -EACCES;
1359}
1360
1361static void filename_compute_type(struct policydb *p, struct context *newcontext,
1362				  u32 scon, u32 tcon, u16 tclass,
1363				  const struct qstr *qstr)
1364{
1365	struct filename_trans *ft;
1366	for (ft = p->filename_trans; ft; ft = ft->next) {
1367		if (ft->stype == scon &&
1368		    ft->ttype == tcon &&
1369		    ft->tclass == tclass &&
1370		    !strcmp(ft->name, qstr->name)) {
1371			newcontext->type = ft->otype;
1372			return;
1373		}
1374	}
1375}
1376
1377static int security_compute_sid(u32 ssid,
1378				u32 tsid,
1379				u16 orig_tclass,
1380				u32 specified,
1381				const struct qstr *qstr,
1382				u32 *out_sid,
1383				bool kern)
1384{
1385	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1386	struct role_trans *roletr = NULL;
1387	struct avtab_key avkey;
1388	struct avtab_datum *avdatum;
1389	struct avtab_node *node;
1390	u16 tclass;
1391	int rc = 0;
1392	bool sock;
1393
1394	if (!ss_initialized) {
1395		switch (orig_tclass) {
1396		case SECCLASS_PROCESS: /* kernel value */
1397			*out_sid = ssid;
1398			break;
1399		default:
1400			*out_sid = tsid;
1401			break;
1402		}
1403		goto out;
1404	}
1405
1406	context_init(&newcontext);
1407
1408	read_lock(&policy_rwlock);
1409
1410	if (kern) {
1411		tclass = unmap_class(orig_tclass);
1412		sock = security_is_socket_class(orig_tclass);
1413	} else {
1414		tclass = orig_tclass;
1415		sock = security_is_socket_class(map_class(tclass));
1416	}
1417
1418	scontext = sidtab_search(&sidtab, ssid);
1419	if (!scontext) {
1420		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1421		       __func__, ssid);
1422		rc = -EINVAL;
1423		goto out_unlock;
1424	}
1425	tcontext = sidtab_search(&sidtab, tsid);
1426	if (!tcontext) {
1427		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1428		       __func__, tsid);
1429		rc = -EINVAL;
1430		goto out_unlock;
1431	}
1432
1433	/* Set the user identity. */
1434	switch (specified) {
1435	case AVTAB_TRANSITION:
1436	case AVTAB_CHANGE:
1437		/* Use the process user identity. */
1438		newcontext.user = scontext->user;
1439		break;
1440	case AVTAB_MEMBER:
1441		/* Use the related object owner. */
1442		newcontext.user = tcontext->user;
1443		break;
1444	}
1445
1446	/* Set the role and type to default values. */
1447	if ((tclass == policydb.process_class) || (sock == true)) {
1448		/* Use the current role and type of process. */
1449		newcontext.role = scontext->role;
1450		newcontext.type = scontext->type;
1451	} else {
1452		/* Use the well-defined object role. */
1453		newcontext.role = OBJECT_R_VAL;
1454		/* Use the type of the related object. */
1455		newcontext.type = tcontext->type;
1456	}
1457
1458	/* Look for a type transition/member/change rule. */
1459	avkey.source_type = scontext->type;
1460	avkey.target_type = tcontext->type;
1461	avkey.target_class = tclass;
1462	avkey.specified = specified;
1463	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1464
1465	/* If no permanent rule, also check for enabled conditional rules */
1466	if (!avdatum) {
1467		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1468		for (; node; node = avtab_search_node_next(node, specified)) {
1469			if (node->key.specified & AVTAB_ENABLED) {
1470				avdatum = &node->datum;
1471				break;
1472			}
1473		}
1474	}
1475
1476	if (avdatum) {
1477		/* Use the type from the type transition/member/change rule. */
1478		newcontext.type = avdatum->data;
1479	}
1480
1481	/* if we have a qstr this is a file trans check so check those rules */
1482	if (qstr)
1483		filename_compute_type(&policydb, &newcontext, scontext->type,
1484				      tcontext->type, tclass, qstr);
1485
1486	/* Check for class-specific changes. */
1487	if  (tclass == policydb.process_class) {
1488		if (specified & AVTAB_TRANSITION) {
1489			/* Look for a role transition rule. */
1490			for (roletr = policydb.role_tr; roletr;
1491			     roletr = roletr->next) {
1492				if (roletr->role == scontext->role &&
1493				    roletr->type == tcontext->type) {
1494					/* Use the role transition rule. */
1495					newcontext.role = roletr->new_role;
1496					break;
1497				}
1498			}
1499		}
1500	}
1501
1502	/* Set the MLS attributes.
1503	   This is done last because it may allocate memory. */
1504	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1505			     &newcontext, sock);
1506	if (rc)
1507		goto out_unlock;
1508
1509	/* Check the validity of the context. */
1510	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1511		rc = compute_sid_handle_invalid_context(scontext,
1512							tcontext,
1513							tclass,
1514							&newcontext);
1515		if (rc)
1516			goto out_unlock;
1517	}
1518	/* Obtain the sid for the context. */
1519	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1520out_unlock:
1521	read_unlock(&policy_rwlock);
1522	context_destroy(&newcontext);
1523out:
1524	return rc;
1525}
1526
1527/**
1528 * security_transition_sid - Compute the SID for a new subject/object.
1529 * @ssid: source security identifier
1530 * @tsid: target security identifier
1531 * @tclass: target security class
1532 * @out_sid: security identifier for new subject/object
1533 *
1534 * Compute a SID to use for labeling a new subject or object in the
1535 * class @tclass based on a SID pair (@ssid, @tsid).
1536 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1537 * if insufficient memory is available, or %0 if the new SID was
1538 * computed successfully.
1539 */
1540int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1541			    const struct qstr *qstr, u32 *out_sid)
1542{
1543	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1544				    qstr, out_sid, true);
1545}
1546
1547int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass, u32 *out_sid)
1548{
1549	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1550				    NULL, out_sid, false);
1551}
1552
1553/**
1554 * security_member_sid - Compute the SID for member selection.
1555 * @ssid: source security identifier
1556 * @tsid: target security identifier
1557 * @tclass: target security class
1558 * @out_sid: security identifier for selected member
1559 *
1560 * Compute a SID to use when selecting a member of a polyinstantiated
1561 * object of class @tclass based on a SID pair (@ssid, @tsid).
1562 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1563 * if insufficient memory is available, or %0 if the SID was
1564 * computed successfully.
1565 */
1566int security_member_sid(u32 ssid,
1567			u32 tsid,
1568			u16 tclass,
1569			u32 *out_sid)
1570{
1571	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1572				    out_sid, false);
1573}
1574
1575/**
1576 * security_change_sid - Compute the SID for object relabeling.
1577 * @ssid: source security identifier
1578 * @tsid: target security identifier
1579 * @tclass: target security class
1580 * @out_sid: security identifier for selected member
1581 *
1582 * Compute a SID to use for relabeling an object of class @tclass
1583 * based on a SID pair (@ssid, @tsid).
1584 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1585 * if insufficient memory is available, or %0 if the SID was
1586 * computed successfully.
1587 */
1588int security_change_sid(u32 ssid,
1589			u32 tsid,
1590			u16 tclass,
1591			u32 *out_sid)
1592{
1593	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1594				    out_sid, false);
1595}
1596
1597/* Clone the SID into the new SID table. */
1598static int clone_sid(u32 sid,
1599		     struct context *context,
1600		     void *arg)
1601{
1602	struct sidtab *s = arg;
1603
1604	if (sid > SECINITSID_NUM)
1605		return sidtab_insert(s, sid, context);
1606	else
1607		return 0;
1608}
1609
1610static inline int convert_context_handle_invalid_context(struct context *context)
1611{
1612	char *s;
1613	u32 len;
1614
1615	if (selinux_enforcing)
1616		return -EINVAL;
1617
1618	if (!context_struct_to_string(context, &s, &len)) {
1619		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1620		kfree(s);
1621	}
1622	return 0;
1623}
1624
1625struct convert_context_args {
1626	struct policydb *oldp;
1627	struct policydb *newp;
1628};
1629
1630/*
1631 * Convert the values in the security context
1632 * structure `c' from the values specified
1633 * in the policy `p->oldp' to the values specified
1634 * in the policy `p->newp'.  Verify that the
1635 * context is valid under the new policy.
1636 */
1637static int convert_context(u32 key,
1638			   struct context *c,
1639			   void *p)
1640{
1641	struct convert_context_args *args;
1642	struct context oldc;
1643	struct ocontext *oc;
1644	struct mls_range *range;
1645	struct role_datum *role;
1646	struct type_datum *typdatum;
1647	struct user_datum *usrdatum;
1648	char *s;
1649	u32 len;
1650	int rc = 0;
1651
1652	if (key <= SECINITSID_NUM)
1653		goto out;
1654
1655	args = p;
1656
1657	if (c->str) {
1658		struct context ctx;
1659
1660		rc = -ENOMEM;
1661		s = kstrdup(c->str, GFP_KERNEL);
1662		if (!s)
1663			goto out;
1664
1665		rc = string_to_context_struct(args->newp, NULL, s,
1666					      c->len, &ctx, SECSID_NULL);
1667		kfree(s);
1668		if (!rc) {
1669			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1670			       c->str);
1671			/* Replace string with mapped representation. */
1672			kfree(c->str);
1673			memcpy(c, &ctx, sizeof(*c));
1674			goto out;
1675		} else if (rc == -EINVAL) {
1676			/* Retain string representation for later mapping. */
1677			rc = 0;
1678			goto out;
1679		} else {
1680			/* Other error condition, e.g. ENOMEM. */
1681			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1682			       c->str, -rc);
1683			goto out;
1684		}
1685	}
1686
1687	rc = context_cpy(&oldc, c);
1688	if (rc)
1689		goto out;
1690
1691	/* Convert the user. */
1692	rc = -EINVAL;
1693	usrdatum = hashtab_search(args->newp->p_users.table,
1694				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1695	if (!usrdatum)
1696		goto bad;
1697	c->user = usrdatum->value;
1698
1699	/* Convert the role. */
1700	rc = -EINVAL;
1701	role = hashtab_search(args->newp->p_roles.table,
1702			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1703	if (!role)
1704		goto bad;
1705	c->role = role->value;
1706
1707	/* Convert the type. */
1708	rc = -EINVAL;
1709	typdatum = hashtab_search(args->newp->p_types.table,
1710				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1711	if (!typdatum)
1712		goto bad;
1713	c->type = typdatum->value;
1714
1715	/* Convert the MLS fields if dealing with MLS policies */
1716	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1717		rc = mls_convert_context(args->oldp, args->newp, c);
1718		if (rc)
1719			goto bad;
1720	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1721		/*
1722		 * Switching between MLS and non-MLS policy:
1723		 * free any storage used by the MLS fields in the
1724		 * context for all existing entries in the sidtab.
1725		 */
1726		mls_context_destroy(c);
1727	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1728		/*
1729		 * Switching between non-MLS and MLS policy:
1730		 * ensure that the MLS fields of the context for all
1731		 * existing entries in the sidtab are filled in with a
1732		 * suitable default value, likely taken from one of the
1733		 * initial SIDs.
1734		 */
1735		oc = args->newp->ocontexts[OCON_ISID];
1736		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1737			oc = oc->next;
1738		rc = -EINVAL;
1739		if (!oc) {
1740			printk(KERN_ERR "SELinux:  unable to look up"
1741				" the initial SIDs list\n");
1742			goto bad;
1743		}
1744		range = &oc->context[0].range;
1745		rc = mls_range_set(c, range);
1746		if (rc)
1747			goto bad;
1748	}
1749
1750	/* Check the validity of the new context. */
1751	if (!policydb_context_isvalid(args->newp, c)) {
1752		rc = convert_context_handle_invalid_context(&oldc);
1753		if (rc)
1754			goto bad;
1755	}
1756
1757	context_destroy(&oldc);
1758
1759	rc = 0;
1760out:
1761	return rc;
1762bad:
1763	/* Map old representation to string and save it. */
1764	rc = context_struct_to_string(&oldc, &s, &len);
1765	if (rc)
1766		return rc;
1767	context_destroy(&oldc);
1768	context_destroy(c);
1769	c->str = s;
1770	c->len = len;
1771	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1772	       c->str);
1773	rc = 0;
1774	goto out;
1775}
1776
1777static void security_load_policycaps(void)
1778{
1779	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1780						  POLICYDB_CAPABILITY_NETPEER);
1781	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1782						  POLICYDB_CAPABILITY_OPENPERM);
1783}
1784
1785extern void selinux_complete_init(void);
1786static int security_preserve_bools(struct policydb *p);
1787
1788/**
1789 * security_load_policy - Load a security policy configuration.
1790 * @data: binary policy data
1791 * @len: length of data in bytes
1792 *
1793 * Load a new set of security policy configuration data,
1794 * validate it and convert the SID table as necessary.
1795 * This function will flush the access vector cache after
1796 * loading the new policy.
1797 */
1798int security_load_policy(void *data, size_t len)
1799{
1800	struct policydb oldpolicydb, newpolicydb;
1801	struct sidtab oldsidtab, newsidtab;
1802	struct selinux_mapping *oldmap, *map = NULL;
1803	struct convert_context_args args;
1804	u32 seqno;
1805	u16 map_size;
1806	int rc = 0;
1807	struct policy_file file = { data, len }, *fp = &file;
1808
1809	if (!ss_initialized) {
1810		avtab_cache_init();
1811		rc = policydb_read(&policydb, fp);
1812		if (rc) {
1813			avtab_cache_destroy();
1814			return rc;
1815		}
1816
1817		policydb.len = len;
1818		rc = selinux_set_mapping(&policydb, secclass_map,
1819					 &current_mapping,
1820					 &current_mapping_size);
1821		if (rc) {
1822			policydb_destroy(&policydb);
1823			avtab_cache_destroy();
1824			return rc;
1825		}
1826
1827		rc = policydb_load_isids(&policydb, &sidtab);
1828		if (rc) {
1829			policydb_destroy(&policydb);
1830			avtab_cache_destroy();
1831			return rc;
1832		}
1833
1834		security_load_policycaps();
1835		ss_initialized = 1;
1836		seqno = ++latest_granting;
1837		selinux_complete_init();
1838		avc_ss_reset(seqno);
1839		selnl_notify_policyload(seqno);
1840		selinux_status_update_policyload(seqno);
1841		selinux_netlbl_cache_invalidate();
1842		selinux_xfrm_notify_policyload();
1843		return 0;
1844	}
1845
1846#if 0
1847	sidtab_hash_eval(&sidtab, "sids");
1848#endif
1849
1850	rc = policydb_read(&newpolicydb, fp);
1851	if (rc)
1852		return rc;
1853
1854	newpolicydb.len = len;
1855	/* If switching between different policy types, log MLS status */
1856	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1857		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1858	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1859		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1860
1861	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1862	if (rc) {
1863		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1864		policydb_destroy(&newpolicydb);
1865		return rc;
1866	}
1867
1868	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1869	if (rc)
1870		goto err;
1871
1872	rc = security_preserve_bools(&newpolicydb);
1873	if (rc) {
1874		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1875		goto err;
1876	}
1877
1878	/* Clone the SID table. */
1879	sidtab_shutdown(&sidtab);
1880
1881	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1882	if (rc)
1883		goto err;
1884
1885	/*
1886	 * Convert the internal representations of contexts
1887	 * in the new SID table.
1888	 */
1889	args.oldp = &policydb;
1890	args.newp = &newpolicydb;
1891	rc = sidtab_map(&newsidtab, convert_context, &args);
1892	if (rc) {
1893		printk(KERN_ERR "SELinux:  unable to convert the internal"
1894			" representation of contexts in the new SID"
1895			" table\n");
1896		goto err;
1897	}
1898
1899	/* Save the old policydb and SID table to free later. */
1900	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1901	sidtab_set(&oldsidtab, &sidtab);
1902
1903	/* Install the new policydb and SID table. */
1904	write_lock_irq(&policy_rwlock);
1905	memcpy(&policydb, &newpolicydb, sizeof policydb);
1906	sidtab_set(&sidtab, &newsidtab);
1907	security_load_policycaps();
1908	oldmap = current_mapping;
1909	current_mapping = map;
1910	current_mapping_size = map_size;
1911	seqno = ++latest_granting;
1912	write_unlock_irq(&policy_rwlock);
1913
1914	/* Free the old policydb and SID table. */
1915	policydb_destroy(&oldpolicydb);
1916	sidtab_destroy(&oldsidtab);
1917	kfree(oldmap);
1918
1919	avc_ss_reset(seqno);
1920	selnl_notify_policyload(seqno);
1921	selinux_status_update_policyload(seqno);
1922	selinux_netlbl_cache_invalidate();
1923	selinux_xfrm_notify_policyload();
1924
1925	return 0;
1926
1927err:
1928	kfree(map);
1929	sidtab_destroy(&newsidtab);
1930	policydb_destroy(&newpolicydb);
1931	return rc;
1932
1933}
1934
1935size_t security_policydb_len(void)
1936{
1937	size_t len;
1938
1939	read_lock(&policy_rwlock);
1940	len = policydb.len;
1941	read_unlock(&policy_rwlock);
1942
1943	return len;
1944}
1945
1946/**
1947 * security_port_sid - Obtain the SID for a port.
1948 * @protocol: protocol number
1949 * @port: port number
1950 * @out_sid: security identifier
1951 */
1952int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1953{
1954	struct ocontext *c;
1955	int rc = 0;
1956
1957	read_lock(&policy_rwlock);
1958
1959	c = policydb.ocontexts[OCON_PORT];
1960	while (c) {
1961		if (c->u.port.protocol == protocol &&
1962		    c->u.port.low_port <= port &&
1963		    c->u.port.high_port >= port)
1964			break;
1965		c = c->next;
1966	}
1967
1968	if (c) {
1969		if (!c->sid[0]) {
1970			rc = sidtab_context_to_sid(&sidtab,
1971						   &c->context[0],
1972						   &c->sid[0]);
1973			if (rc)
1974				goto out;
1975		}
1976		*out_sid = c->sid[0];
1977	} else {
1978		*out_sid = SECINITSID_PORT;
1979	}
1980
1981out:
1982	read_unlock(&policy_rwlock);
1983	return rc;
1984}
1985
1986/**
1987 * security_netif_sid - Obtain the SID for a network interface.
1988 * @name: interface name
1989 * @if_sid: interface SID
1990 */
1991int security_netif_sid(char *name, u32 *if_sid)
1992{
1993	int rc = 0;
1994	struct ocontext *c;
1995
1996	read_lock(&policy_rwlock);
1997
1998	c = policydb.ocontexts[OCON_NETIF];
1999	while (c) {
2000		if (strcmp(name, c->u.name) == 0)
2001			break;
2002		c = c->next;
2003	}
2004
2005	if (c) {
2006		if (!c->sid[0] || !c->sid[1]) {
2007			rc = sidtab_context_to_sid(&sidtab,
2008						  &c->context[0],
2009						  &c->sid[0]);
2010			if (rc)
2011				goto out;
2012			rc = sidtab_context_to_sid(&sidtab,
2013						   &c->context[1],
2014						   &c->sid[1]);
2015			if (rc)
2016				goto out;
2017		}
2018		*if_sid = c->sid[0];
2019	} else
2020		*if_sid = SECINITSID_NETIF;
2021
2022out:
2023	read_unlock(&policy_rwlock);
2024	return rc;
2025}
2026
2027static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2028{
2029	int i, fail = 0;
2030
2031	for (i = 0; i < 4; i++)
2032		if (addr[i] != (input[i] & mask[i])) {
2033			fail = 1;
2034			break;
2035		}
2036
2037	return !fail;
2038}
2039
2040/**
2041 * security_node_sid - Obtain the SID for a node (host).
2042 * @domain: communication domain aka address family
2043 * @addrp: address
2044 * @addrlen: address length in bytes
2045 * @out_sid: security identifier
2046 */
2047int security_node_sid(u16 domain,
2048		      void *addrp,
2049		      u32 addrlen,
2050		      u32 *out_sid)
2051{
2052	int rc;
2053	struct ocontext *c;
2054
2055	read_lock(&policy_rwlock);
2056
2057	switch (domain) {
2058	case AF_INET: {
2059		u32 addr;
2060
2061		rc = -EINVAL;
2062		if (addrlen != sizeof(u32))
2063			goto out;
2064
2065		addr = *((u32 *)addrp);
2066
2067		c = policydb.ocontexts[OCON_NODE];
2068		while (c) {
2069			if (c->u.node.addr == (addr & c->u.node.mask))
2070				break;
2071			c = c->next;
2072		}
2073		break;
2074	}
2075
2076	case AF_INET6:
2077		rc = -EINVAL;
2078		if (addrlen != sizeof(u64) * 2)
2079			goto out;
2080		c = policydb.ocontexts[OCON_NODE6];
2081		while (c) {
2082			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2083						c->u.node6.mask))
2084				break;
2085			c = c->next;
2086		}
2087		break;
2088
2089	default:
2090		rc = 0;
2091		*out_sid = SECINITSID_NODE;
2092		goto out;
2093	}
2094
2095	if (c) {
2096		if (!c->sid[0]) {
2097			rc = sidtab_context_to_sid(&sidtab,
2098						   &c->context[0],
2099						   &c->sid[0]);
2100			if (rc)
2101				goto out;
2102		}
2103		*out_sid = c->sid[0];
2104	} else {
2105		*out_sid = SECINITSID_NODE;
2106	}
2107
2108	rc = 0;
2109out:
2110	read_unlock(&policy_rwlock);
2111	return rc;
2112}
2113
2114#define SIDS_NEL 25
2115
2116/**
2117 * security_get_user_sids - Obtain reachable SIDs for a user.
2118 * @fromsid: starting SID
2119 * @username: username
2120 * @sids: array of reachable SIDs for user
2121 * @nel: number of elements in @sids
2122 *
2123 * Generate the set of SIDs for legal security contexts
2124 * for a given user that can be reached by @fromsid.
2125 * Set *@sids to point to a dynamically allocated
2126 * array containing the set of SIDs.  Set *@nel to the
2127 * number of elements in the array.
2128 */
2129
2130int security_get_user_sids(u32 fromsid,
2131			   char *username,
2132			   u32 **sids,
2133			   u32 *nel)
2134{
2135	struct context *fromcon, usercon;
2136	u32 *mysids = NULL, *mysids2, sid;
2137	u32 mynel = 0, maxnel = SIDS_NEL;
2138	struct user_datum *user;
2139	struct role_datum *role;
2140	struct ebitmap_node *rnode, *tnode;
2141	int rc = 0, i, j;
2142
2143	*sids = NULL;
2144	*nel = 0;
2145
2146	if (!ss_initialized)
2147		goto out;
2148
2149	read_lock(&policy_rwlock);
2150
2151	context_init(&usercon);
2152
2153	rc = -EINVAL;
2154	fromcon = sidtab_search(&sidtab, fromsid);
2155	if (!fromcon)
2156		goto out_unlock;
2157
2158	rc = -EINVAL;
2159	user = hashtab_search(policydb.p_users.table, username);
2160	if (!user)
2161		goto out_unlock;
2162
2163	usercon.user = user->value;
2164
2165	rc = -ENOMEM;
2166	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2167	if (!mysids)
2168		goto out_unlock;
2169
2170	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2171		role = policydb.role_val_to_struct[i];
2172		usercon.role = i + 1;
2173		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2174			usercon.type = j + 1;
2175
2176			if (mls_setup_user_range(fromcon, user, &usercon))
2177				continue;
2178
2179			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2180			if (rc)
2181				goto out_unlock;
2182			if (mynel < maxnel) {
2183				mysids[mynel++] = sid;
2184			} else {
2185				rc = -ENOMEM;
2186				maxnel += SIDS_NEL;
2187				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2188				if (!mysids2)
2189					goto out_unlock;
2190				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2191				kfree(mysids);
2192				mysids = mysids2;
2193				mysids[mynel++] = sid;
2194			}
2195		}
2196	}
2197	rc = 0;
2198out_unlock:
2199	read_unlock(&policy_rwlock);
2200	if (rc || !mynel) {
2201		kfree(mysids);
2202		goto out;
2203	}
2204
2205	rc = -ENOMEM;
2206	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2207	if (!mysids2) {
2208		kfree(mysids);
2209		goto out;
2210	}
2211	for (i = 0, j = 0; i < mynel; i++) {
2212		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2213					  SECCLASS_PROCESS, /* kernel value */
2214					  PROCESS__TRANSITION, AVC_STRICT,
2215					  NULL);
2216		if (!rc)
2217			mysids2[j++] = mysids[i];
2218		cond_resched();
2219	}
2220	rc = 0;
2221	kfree(mysids);
2222	*sids = mysids2;
2223	*nel = j;
2224out:
2225	return rc;
2226}
2227
2228/**
2229 * security_genfs_sid - Obtain a SID for a file in a filesystem
2230 * @fstype: filesystem type
2231 * @path: path from root of mount
2232 * @sclass: file security class
2233 * @sid: SID for path
2234 *
2235 * Obtain a SID to use for a file in a filesystem that
2236 * cannot support xattr or use a fixed labeling behavior like
2237 * transition SIDs or task SIDs.
2238 */
2239int security_genfs_sid(const char *fstype,
2240		       char *path,
2241		       u16 orig_sclass,
2242		       u32 *sid)
2243{
2244	int len;
2245	u16 sclass;
2246	struct genfs *genfs;
2247	struct ocontext *c;
2248	int rc, cmp = 0;
2249
2250	while (path[0] == '/' && path[1] == '/')
2251		path++;
2252
2253	read_lock(&policy_rwlock);
2254
2255	sclass = unmap_class(orig_sclass);
2256	*sid = SECINITSID_UNLABELED;
2257
2258	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2259		cmp = strcmp(fstype, genfs->fstype);
2260		if (cmp <= 0)
2261			break;
2262	}
2263
2264	rc = -ENOENT;
2265	if (!genfs || cmp)
2266		goto out;
2267
2268	for (c = genfs->head; c; c = c->next) {
2269		len = strlen(c->u.name);
2270		if ((!c->v.sclass || sclass == c->v.sclass) &&
2271		    (strncmp(c->u.name, path, len) == 0))
2272			break;
2273	}
2274
2275	rc = -ENOENT;
2276	if (!c)
2277		goto out;
2278
2279	if (!c->sid[0]) {
2280		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2281		if (rc)
2282			goto out;
2283	}
2284
2285	*sid = c->sid[0];
2286	rc = 0;
2287out:
2288	read_unlock(&policy_rwlock);
2289	return rc;
2290}
2291
2292/**
2293 * security_fs_use - Determine how to handle labeling for a filesystem.
2294 * @fstype: filesystem type
2295 * @behavior: labeling behavior
2296 * @sid: SID for filesystem (superblock)
2297 */
2298int security_fs_use(
2299	const char *fstype,
2300	unsigned int *behavior,
2301	u32 *sid)
2302{
2303	int rc = 0;
2304	struct ocontext *c;
2305
2306	read_lock(&policy_rwlock);
2307
2308	c = policydb.ocontexts[OCON_FSUSE];
2309	while (c) {
2310		if (strcmp(fstype, c->u.name) == 0)
2311			break;
2312		c = c->next;
2313	}
2314
2315	if (c) {
2316		*behavior = c->v.behavior;
2317		if (!c->sid[0]) {
2318			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2319						   &c->sid[0]);
2320			if (rc)
2321				goto out;
2322		}
2323		*sid = c->sid[0];
2324	} else {
2325		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2326		if (rc) {
2327			*behavior = SECURITY_FS_USE_NONE;
2328			rc = 0;
2329		} else {
2330			*behavior = SECURITY_FS_USE_GENFS;
2331		}
2332	}
2333
2334out:
2335	read_unlock(&policy_rwlock);
2336	return rc;
2337}
2338
2339int security_get_bools(int *len, char ***names, int **values)
2340{
2341	int i, rc;
2342
2343	read_lock(&policy_rwlock);
2344	*names = NULL;
2345	*values = NULL;
2346
2347	rc = 0;
2348	*len = policydb.p_bools.nprim;
2349	if (!*len)
2350		goto out;
2351
2352	rc = -ENOMEM;
2353	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2354	if (!*names)
2355		goto err;
2356
2357	rc = -ENOMEM;
2358	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2359	if (!*values)
2360		goto err;
2361
2362	for (i = 0; i < *len; i++) {
2363		size_t name_len;
2364
2365		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2366		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2367
2368		rc = -ENOMEM;
2369		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2370		if (!(*names)[i])
2371			goto err;
2372
2373		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2374		(*names)[i][name_len - 1] = 0;
2375	}
2376	rc = 0;
2377out:
2378	read_unlock(&policy_rwlock);
2379	return rc;
2380err:
2381	if (*names) {
2382		for (i = 0; i < *len; i++)
2383			kfree((*names)[i]);
2384	}
2385	kfree(*values);
2386	goto out;
2387}
2388
2389
2390int security_set_bools(int len, int *values)
2391{
2392	int i, rc;
2393	int lenp, seqno = 0;
2394	struct cond_node *cur;
2395
2396	write_lock_irq(&policy_rwlock);
2397
2398	rc = -EFAULT;
2399	lenp = policydb.p_bools.nprim;
2400	if (len != lenp)
2401		goto out;
2402
2403	for (i = 0; i < len; i++) {
2404		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2405			audit_log(current->audit_context, GFP_ATOMIC,
2406				AUDIT_MAC_CONFIG_CHANGE,
2407				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2408				sym_name(&policydb, SYM_BOOLS, i),
2409				!!values[i],
2410				policydb.bool_val_to_struct[i]->state,
2411				audit_get_loginuid(current),
2412				audit_get_sessionid(current));
2413		}
2414		if (values[i])
2415			policydb.bool_val_to_struct[i]->state = 1;
2416		else
2417			policydb.bool_val_to_struct[i]->state = 0;
2418	}
2419
2420	for (cur = policydb.cond_list; cur; cur = cur->next) {
2421		rc = evaluate_cond_node(&policydb, cur);
2422		if (rc)
2423			goto out;
2424	}
2425
2426	seqno = ++latest_granting;
2427	rc = 0;
2428out:
2429	write_unlock_irq(&policy_rwlock);
2430	if (!rc) {
2431		avc_ss_reset(seqno);
2432		selnl_notify_policyload(seqno);
2433		selinux_status_update_policyload(seqno);
2434		selinux_xfrm_notify_policyload();
2435	}
2436	return rc;
2437}
2438
2439int security_get_bool_value(int bool)
2440{
2441	int rc;
2442	int len;
2443
2444	read_lock(&policy_rwlock);
2445
2446	rc = -EFAULT;
2447	len = policydb.p_bools.nprim;
2448	if (bool >= len)
2449		goto out;
2450
2451	rc = policydb.bool_val_to_struct[bool]->state;
2452out:
2453	read_unlock(&policy_rwlock);
2454	return rc;
2455}
2456
2457static int security_preserve_bools(struct policydb *p)
2458{
2459	int rc, nbools = 0, *bvalues = NULL, i;
2460	char **bnames = NULL;
2461	struct cond_bool_datum *booldatum;
2462	struct cond_node *cur;
2463
2464	rc = security_get_bools(&nbools, &bnames, &bvalues);
2465	if (rc)
2466		goto out;
2467	for (i = 0; i < nbools; i++) {
2468		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2469		if (booldatum)
2470			booldatum->state = bvalues[i];
2471	}
2472	for (cur = p->cond_list; cur; cur = cur->next) {
2473		rc = evaluate_cond_node(p, cur);
2474		if (rc)
2475			goto out;
2476	}
2477
2478out:
2479	if (bnames) {
2480		for (i = 0; i < nbools; i++)
2481			kfree(bnames[i]);
2482	}
2483	kfree(bnames);
2484	kfree(bvalues);
2485	return rc;
2486}
2487
2488/*
2489 * security_sid_mls_copy() - computes a new sid based on the given
2490 * sid and the mls portion of mls_sid.
2491 */
2492int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2493{
2494	struct context *context1;
2495	struct context *context2;
2496	struct context newcon;
2497	char *s;
2498	u32 len;
2499	int rc;
2500
2501	rc = 0;
2502	if (!ss_initialized || !policydb.mls_enabled) {
2503		*new_sid = sid;
2504		goto out;
2505	}
2506
2507	context_init(&newcon);
2508
2509	read_lock(&policy_rwlock);
2510
2511	rc = -EINVAL;
2512	context1 = sidtab_search(&sidtab, sid);
2513	if (!context1) {
2514		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2515			__func__, sid);
2516		goto out_unlock;
2517	}
2518
2519	rc = -EINVAL;
2520	context2 = sidtab_search(&sidtab, mls_sid);
2521	if (!context2) {
2522		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2523			__func__, mls_sid);
2524		goto out_unlock;
2525	}
2526
2527	newcon.user = context1->user;
2528	newcon.role = context1->role;
2529	newcon.type = context1->type;
2530	rc = mls_context_cpy(&newcon, context2);
2531	if (rc)
2532		goto out_unlock;
2533
2534	/* Check the validity of the new context. */
2535	if (!policydb_context_isvalid(&policydb, &newcon)) {
2536		rc = convert_context_handle_invalid_context(&newcon);
2537		if (rc) {
2538			if (!context_struct_to_string(&newcon, &s, &len)) {
2539				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2540					  "security_sid_mls_copy: invalid context %s", s);
2541				kfree(s);
2542			}
2543			goto out_unlock;
2544		}
2545	}
2546
2547	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2548out_unlock:
2549	read_unlock(&policy_rwlock);
2550	context_destroy(&newcon);
2551out:
2552	return rc;
2553}
2554
2555/**
2556 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2557 * @nlbl_sid: NetLabel SID
2558 * @nlbl_type: NetLabel labeling protocol type
2559 * @xfrm_sid: XFRM SID
2560 *
2561 * Description:
2562 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2563 * resolved into a single SID it is returned via @peer_sid and the function
2564 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2565 * returns a negative value.  A table summarizing the behavior is below:
2566 *
2567 *                                 | function return |      @sid
2568 *   ------------------------------+-----------------+-----------------
2569 *   no peer labels                |        0        |    SECSID_NULL
2570 *   single peer label             |        0        |    <peer_label>
2571 *   multiple, consistent labels   |        0        |    <peer_label>
2572 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2573 *
2574 */
2575int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2576				 u32 xfrm_sid,
2577				 u32 *peer_sid)
2578{
2579	int rc;
2580	struct context *nlbl_ctx;
2581	struct context *xfrm_ctx;
2582
2583	*peer_sid = SECSID_NULL;
2584
2585	/* handle the common (which also happens to be the set of easy) cases
2586	 * right away, these two if statements catch everything involving a
2587	 * single or absent peer SID/label */
2588	if (xfrm_sid == SECSID_NULL) {
2589		*peer_sid = nlbl_sid;
2590		return 0;
2591	}
2592	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2593	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2594	 * is present */
2595	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2596		*peer_sid = xfrm_sid;
2597		return 0;
2598	}
2599
2600	/* we don't need to check ss_initialized here since the only way both
2601	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2602	 * security server was initialized and ss_initialized was true */
2603	if (!policydb.mls_enabled)
2604		return 0;
2605
2606	read_lock(&policy_rwlock);
2607
2608	rc = -EINVAL;
2609	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2610	if (!nlbl_ctx) {
2611		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2612		       __func__, nlbl_sid);
2613		goto out;
2614	}
2615	rc = -EINVAL;
2616	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2617	if (!xfrm_ctx) {
2618		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2619		       __func__, xfrm_sid);
2620		goto out;
2621	}
2622	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2623	if (rc)
2624		goto out;
2625
2626	/* at present NetLabel SIDs/labels really only carry MLS
2627	 * information so if the MLS portion of the NetLabel SID
2628	 * matches the MLS portion of the labeled XFRM SID/label
2629	 * then pass along the XFRM SID as it is the most
2630	 * expressive */
2631	*peer_sid = xfrm_sid;
2632out:
2633	read_unlock(&policy_rwlock);
2634	return rc;
2635}
2636
2637static int get_classes_callback(void *k, void *d, void *args)
2638{
2639	struct class_datum *datum = d;
2640	char *name = k, **classes = args;
2641	int value = datum->value - 1;
2642
2643	classes[value] = kstrdup(name, GFP_ATOMIC);
2644	if (!classes[value])
2645		return -ENOMEM;
2646
2647	return 0;
2648}
2649
2650int security_get_classes(char ***classes, int *nclasses)
2651{
2652	int rc;
2653
2654	read_lock(&policy_rwlock);
2655
2656	rc = -ENOMEM;
2657	*nclasses = policydb.p_classes.nprim;
2658	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2659	if (!*classes)
2660		goto out;
2661
2662	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2663			*classes);
2664	if (rc) {
2665		int i;
2666		for (i = 0; i < *nclasses; i++)
2667			kfree((*classes)[i]);
2668		kfree(*classes);
2669	}
2670
2671out:
2672	read_unlock(&policy_rwlock);
2673	return rc;
2674}
2675
2676static int get_permissions_callback(void *k, void *d, void *args)
2677{
2678	struct perm_datum *datum = d;
2679	char *name = k, **perms = args;
2680	int value = datum->value - 1;
2681
2682	perms[value] = kstrdup(name, GFP_ATOMIC);
2683	if (!perms[value])
2684		return -ENOMEM;
2685
2686	return 0;
2687}
2688
2689int security_get_permissions(char *class, char ***perms, int *nperms)
2690{
2691	int rc, i;
2692	struct class_datum *match;
2693
2694	read_lock(&policy_rwlock);
2695
2696	rc = -EINVAL;
2697	match = hashtab_search(policydb.p_classes.table, class);
2698	if (!match) {
2699		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2700			__func__, class);
2701		goto out;
2702	}
2703
2704	rc = -ENOMEM;
2705	*nperms = match->permissions.nprim;
2706	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2707	if (!*perms)
2708		goto out;
2709
2710	if (match->comdatum) {
2711		rc = hashtab_map(match->comdatum->permissions.table,
2712				get_permissions_callback, *perms);
2713		if (rc)
2714			goto err;
2715	}
2716
2717	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2718			*perms);
2719	if (rc)
2720		goto err;
2721
2722out:
2723	read_unlock(&policy_rwlock);
2724	return rc;
2725
2726err:
2727	read_unlock(&policy_rwlock);
2728	for (i = 0; i < *nperms; i++)
2729		kfree((*perms)[i]);
2730	kfree(*perms);
2731	return rc;
2732}
2733
2734int security_get_reject_unknown(void)
2735{
2736	return policydb.reject_unknown;
2737}
2738
2739int security_get_allow_unknown(void)
2740{
2741	return policydb.allow_unknown;
2742}
2743
2744/**
2745 * security_policycap_supported - Check for a specific policy capability
2746 * @req_cap: capability
2747 *
2748 * Description:
2749 * This function queries the currently loaded policy to see if it supports the
2750 * capability specified by @req_cap.  Returns true (1) if the capability is
2751 * supported, false (0) if it isn't supported.
2752 *
2753 */
2754int security_policycap_supported(unsigned int req_cap)
2755{
2756	int rc;
2757
2758	read_lock(&policy_rwlock);
2759	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2760	read_unlock(&policy_rwlock);
2761
2762	return rc;
2763}
2764
2765struct selinux_audit_rule {
2766	u32 au_seqno;
2767	struct context au_ctxt;
2768};
2769
2770void selinux_audit_rule_free(void *vrule)
2771{
2772	struct selinux_audit_rule *rule = vrule;
2773
2774	if (rule) {
2775		context_destroy(&rule->au_ctxt);
2776		kfree(rule);
2777	}
2778}
2779
2780int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2781{
2782	struct selinux_audit_rule *tmprule;
2783	struct role_datum *roledatum;
2784	struct type_datum *typedatum;
2785	struct user_datum *userdatum;
2786	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2787	int rc = 0;
2788
2789	*rule = NULL;
2790
2791	if (!ss_initialized)
2792		return -EOPNOTSUPP;
2793
2794	switch (field) {
2795	case AUDIT_SUBJ_USER:
2796	case AUDIT_SUBJ_ROLE:
2797	case AUDIT_SUBJ_TYPE:
2798	case AUDIT_OBJ_USER:
2799	case AUDIT_OBJ_ROLE:
2800	case AUDIT_OBJ_TYPE:
2801		/* only 'equals' and 'not equals' fit user, role, and type */
2802		if (op != Audit_equal && op != Audit_not_equal)
2803			return -EINVAL;
2804		break;
2805	case AUDIT_SUBJ_SEN:
2806	case AUDIT_SUBJ_CLR:
2807	case AUDIT_OBJ_LEV_LOW:
2808	case AUDIT_OBJ_LEV_HIGH:
2809		/* we do not allow a range, indicated by the presense of '-' */
2810		if (strchr(rulestr, '-'))
2811			return -EINVAL;
2812		break;
2813	default:
2814		/* only the above fields are valid */
2815		return -EINVAL;
2816	}
2817
2818	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2819	if (!tmprule)
2820		return -ENOMEM;
2821
2822	context_init(&tmprule->au_ctxt);
2823
2824	read_lock(&policy_rwlock);
2825
2826	tmprule->au_seqno = latest_granting;
2827
2828	switch (field) {
2829	case AUDIT_SUBJ_USER:
2830	case AUDIT_OBJ_USER:
2831		rc = -EINVAL;
2832		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2833		if (!userdatum)
2834			goto out;
2835		tmprule->au_ctxt.user = userdatum->value;
2836		break;
2837	case AUDIT_SUBJ_ROLE:
2838	case AUDIT_OBJ_ROLE:
2839		rc = -EINVAL;
2840		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2841		if (!roledatum)
2842			goto out;
2843		tmprule->au_ctxt.role = roledatum->value;
2844		break;
2845	case AUDIT_SUBJ_TYPE:
2846	case AUDIT_OBJ_TYPE:
2847		rc = -EINVAL;
2848		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2849		if (!typedatum)
2850			goto out;
2851		tmprule->au_ctxt.type = typedatum->value;
2852		break;
2853	case AUDIT_SUBJ_SEN:
2854	case AUDIT_SUBJ_CLR:
2855	case AUDIT_OBJ_LEV_LOW:
2856	case AUDIT_OBJ_LEV_HIGH:
2857		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2858		if (rc)
2859			goto out;
2860		break;
2861	}
2862	rc = 0;
2863out:
2864	read_unlock(&policy_rwlock);
2865
2866	if (rc) {
2867		selinux_audit_rule_free(tmprule);
2868		tmprule = NULL;
2869	}
2870
2871	*rule = tmprule;
2872
2873	return rc;
2874}
2875
2876/* Check to see if the rule contains any selinux fields */
2877int selinux_audit_rule_known(struct audit_krule *rule)
2878{
2879	int i;
2880
2881	for (i = 0; i < rule->field_count; i++) {
2882		struct audit_field *f = &rule->fields[i];
2883		switch (f->type) {
2884		case AUDIT_SUBJ_USER:
2885		case AUDIT_SUBJ_ROLE:
2886		case AUDIT_SUBJ_TYPE:
2887		case AUDIT_SUBJ_SEN:
2888		case AUDIT_SUBJ_CLR:
2889		case AUDIT_OBJ_USER:
2890		case AUDIT_OBJ_ROLE:
2891		case AUDIT_OBJ_TYPE:
2892		case AUDIT_OBJ_LEV_LOW:
2893		case AUDIT_OBJ_LEV_HIGH:
2894			return 1;
2895		}
2896	}
2897
2898	return 0;
2899}
2900
2901int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2902			     struct audit_context *actx)
2903{
2904	struct context *ctxt;
2905	struct mls_level *level;
2906	struct selinux_audit_rule *rule = vrule;
2907	int match = 0;
2908
2909	if (!rule) {
2910		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2911			  "selinux_audit_rule_match: missing rule\n");
2912		return -ENOENT;
2913	}
2914
2915	read_lock(&policy_rwlock);
2916
2917	if (rule->au_seqno < latest_granting) {
2918		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2919			  "selinux_audit_rule_match: stale rule\n");
2920		match = -ESTALE;
2921		goto out;
2922	}
2923
2924	ctxt = sidtab_search(&sidtab, sid);
2925	if (!ctxt) {
2926		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2927			  "selinux_audit_rule_match: unrecognized SID %d\n",
2928			  sid);
2929		match = -ENOENT;
2930		goto out;
2931	}
2932
2933	/* a field/op pair that is not caught here will simply fall through
2934	   without a match */
2935	switch (field) {
2936	case AUDIT_SUBJ_USER:
2937	case AUDIT_OBJ_USER:
2938		switch (op) {
2939		case Audit_equal:
2940			match = (ctxt->user == rule->au_ctxt.user);
2941			break;
2942		case Audit_not_equal:
2943			match = (ctxt->user != rule->au_ctxt.user);
2944			break;
2945		}
2946		break;
2947	case AUDIT_SUBJ_ROLE:
2948	case AUDIT_OBJ_ROLE:
2949		switch (op) {
2950		case Audit_equal:
2951			match = (ctxt->role == rule->au_ctxt.role);
2952			break;
2953		case Audit_not_equal:
2954			match = (ctxt->role != rule->au_ctxt.role);
2955			break;
2956		}
2957		break;
2958	case AUDIT_SUBJ_TYPE:
2959	case AUDIT_OBJ_TYPE:
2960		switch (op) {
2961		case Audit_equal:
2962			match = (ctxt->type == rule->au_ctxt.type);
2963			break;
2964		case Audit_not_equal:
2965			match = (ctxt->type != rule->au_ctxt.type);
2966			break;
2967		}
2968		break;
2969	case AUDIT_SUBJ_SEN:
2970	case AUDIT_SUBJ_CLR:
2971	case AUDIT_OBJ_LEV_LOW:
2972	case AUDIT_OBJ_LEV_HIGH:
2973		level = ((field == AUDIT_SUBJ_SEN ||
2974			  field == AUDIT_OBJ_LEV_LOW) ?
2975			 &ctxt->range.level[0] : &ctxt->range.level[1]);
2976		switch (op) {
2977		case Audit_equal:
2978			match = mls_level_eq(&rule->au_ctxt.range.level[0],
2979					     level);
2980			break;
2981		case Audit_not_equal:
2982			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
2983					      level);
2984			break;
2985		case Audit_lt:
2986			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
2987					       level) &&
2988				 !mls_level_eq(&rule->au_ctxt.range.level[0],
2989					       level));
2990			break;
2991		case Audit_le:
2992			match = mls_level_dom(&rule->au_ctxt.range.level[0],
2993					      level);
2994			break;
2995		case Audit_gt:
2996			match = (mls_level_dom(level,
2997					      &rule->au_ctxt.range.level[0]) &&
2998				 !mls_level_eq(level,
2999					       &rule->au_ctxt.range.level[0]));
3000			break;
3001		case Audit_ge:
3002			match = mls_level_dom(level,
3003					      &rule->au_ctxt.range.level[0]);
3004			break;
3005		}
3006	}
3007
3008out:
3009	read_unlock(&policy_rwlock);
3010	return match;
3011}
3012
3013static int (*aurule_callback)(void) = audit_update_lsm_rules;
3014
3015static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
3016			       u16 class, u32 perms, u32 *retained)
3017{
3018	int err = 0;
3019
3020	if (event == AVC_CALLBACK_RESET && aurule_callback)
3021		err = aurule_callback();
3022	return err;
3023}
3024
3025static int __init aurule_init(void)
3026{
3027	int err;
3028
3029	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
3030			       SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
3031	if (err)
3032		panic("avc_add_callback() failed, error %d\n", err);
3033
3034	return err;
3035}
3036__initcall(aurule_init);
3037
3038#ifdef CONFIG_NETLABEL
3039/**
3040 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3041 * @secattr: the NetLabel packet security attributes
3042 * @sid: the SELinux SID
3043 *
3044 * Description:
3045 * Attempt to cache the context in @ctx, which was derived from the packet in
3046 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3047 * already been initialized.
3048 *
3049 */
3050static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3051				      u32 sid)
3052{
3053	u32 *sid_cache;
3054
3055	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3056	if (sid_cache == NULL)
3057		return;
3058	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3059	if (secattr->cache == NULL) {
3060		kfree(sid_cache);
3061		return;
3062	}
3063
3064	*sid_cache = sid;
3065	secattr->cache->free = kfree;
3066	secattr->cache->data = sid_cache;
3067	secattr->flags |= NETLBL_SECATTR_CACHE;
3068}
3069
3070/**
3071 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3072 * @secattr: the NetLabel packet security attributes
3073 * @sid: the SELinux SID
3074 *
3075 * Description:
3076 * Convert the given NetLabel security attributes in @secattr into a
3077 * SELinux SID.  If the @secattr field does not contain a full SELinux
3078 * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
3079 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3080 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3081 * conversion for future lookups.  Returns zero on success, negative values on
3082 * failure.
3083 *
3084 */
3085int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3086				   u32 *sid)
3087{
3088	int rc;
3089	struct context *ctx;
3090	struct context ctx_new;
3091
3092	if (!ss_initialized) {
3093		*sid = SECSID_NULL;
3094		return 0;
3095	}
3096
3097	read_lock(&policy_rwlock);
3098
3099	if (secattr->flags & NETLBL_SECATTR_CACHE)
3100		*sid = *(u32 *)secattr->cache->data;
3101	else if (secattr->flags & NETLBL_SECATTR_SECID)
3102		*sid = secattr->attr.secid;
3103	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3104		rc = -EIDRM;
3105		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3106		if (ctx == NULL)
3107			goto out;
3108
3109		context_init(&ctx_new);
3110		ctx_new.user = ctx->user;
3111		ctx_new.role = ctx->role;
3112		ctx_new.type = ctx->type;
3113		mls_import_netlbl_lvl(&ctx_new, secattr);
3114		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3115			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3116						   secattr->attr.mls.cat);
3117			if (rc)
3118				goto out;
3119			memcpy(&ctx_new.range.level[1].cat,
3120			       &ctx_new.range.level[0].cat,
3121			       sizeof(ctx_new.range.level[0].cat));
3122		}
3123		rc = -EIDRM;
3124		if (!mls_context_isvalid(&policydb, &ctx_new))
3125			goto out_free;
3126
3127		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3128		if (rc)
3129			goto out_free;
3130
3131		security_netlbl_cache_add(secattr, *sid);
3132
3133		ebitmap_destroy(&ctx_new.range.level[0].cat);
3134	} else
3135		*sid = SECSID_NULL;
3136
3137	read_unlock(&policy_rwlock);
3138	return 0;
3139out_free:
3140	ebitmap_destroy(&ctx_new.range.level[0].cat);
3141out:
3142	read_unlock(&policy_rwlock);
3143	return rc;
3144}
3145
3146/**
3147 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3148 * @sid: the SELinux SID
3149 * @secattr: the NetLabel packet security attributes
3150 *
3151 * Description:
3152 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3153 * Returns zero on success, negative values on failure.
3154 *
3155 */
3156int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3157{
3158	int rc;
3159	struct context *ctx;
3160
3161	if (!ss_initialized)
3162		return 0;
3163
3164	read_lock(&policy_rwlock);
3165
3166	rc = -ENOENT;
3167	ctx = sidtab_search(&sidtab, sid);
3168	if (ctx == NULL)
3169		goto out;
3170
3171	rc = -ENOMEM;
3172	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3173				  GFP_ATOMIC);
3174	if (secattr->domain == NULL)
3175		goto out;
3176
3177	secattr->attr.secid = sid;
3178	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3179	mls_export_netlbl_lvl(ctx, secattr);
3180	rc = mls_export_netlbl_cat(ctx, secattr);
3181out:
3182	read_unlock(&policy_rwlock);
3183	return rc;
3184}
3185#endif /* CONFIG_NETLABEL */
3186
3187/**
3188 * security_read_policy - read the policy.
3189 * @data: binary policy data
3190 * @len: length of data in bytes
3191 *
3192 */
3193int security_read_policy(void **data, ssize_t *len)
3194{
3195	int rc;
3196	struct policy_file fp;
3197
3198	if (!ss_initialized)
3199		return -EINVAL;
3200
3201	*len = security_policydb_len();
3202
3203	*data = vmalloc_user(*len);
3204	if (!*data)
3205		return -ENOMEM;
3206
3207	fp.data = *data;
3208	fp.len = *len;
3209
3210	read_lock(&policy_rwlock);
3211	rc = policydb_write(&policydb, &fp);
3212	read_unlock(&policy_rwlock);
3213
3214	if (rc)
3215		return rc;
3216
3217	*len = (unsigned long)fp.data - (unsigned long)*data;
3218	return 0;
3219
3220}
3221